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Abstract
In the paper, we study the oscillatory and spectral properties of a fourth-order
differential operator. These properties are established based on the validity of some
weighted second-order differential inequality, where the inequality’s weights are the
coefficients of the operator. The inequality, in turn, is established for functions
satisfying certain boundary conditions that depend on the boundary behavior of its
weights at infinity and at zero.
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1 Introduction
Let I = (0,∞) and 1 < p, q < ∞. Let r, υ , and u be a.e. positive functions such that r is
continuously differentiable, u and υ are locally integrable on the interval I . Moreover,
r–1 ≡ 1

r ∈ Lloc
1 (I) and υ–p′ ∈ Lloc

1 (I), where p′ = p
p–1 .

We consider the following inequality:

(∫ ∞

0

∣∣u(t)f (t)
∣∣q dt

) 1
q

≤ C
(∫ ∞

0

∣∣υ(t)D2
r f (t)

∣∣p dt
) 1

p
, f ∈ C∞

0 (I), (1)

where D2
r f (t) = d

dt r(t) df (t)
dt and C∞

0 (I) is the set of compactly supported functions infinitely
time continuously differentiable on I . Moreover, assume that D1

r f (t) = r(t) df (t)
dt .

For r = 1, inequality (1) has the form

(∫ ∞

0

∣∣u(t)f (t)
∣∣q dt

) 1
q

≤ C
(∫ ∞

0

∣∣υ(t)f ′′(t)
∣∣p dt

) 1
p

. (2)

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13661-022-01659-1
https://crossmark.crossref.org/dialog/?doi=10.1186/s13661-022-01659-1&domain=pdf
mailto:kalybay@kimep.kz
http://creativecommons.org/licenses/by/4.0/


Baiarystanov et al. Boundary Value Problems         (2022) 2022:78 Page 2 of 21

At the end of the 70s of the last century, the Czech mathematician A. Kufner set the prob-
lem of studying a weighted differential inequality in the form

(∫ ∞

0

∣∣u(t)f (t)
∣∣q dt

) 1
q

≤ C
(∫ ∞

0

∣∣υ(t)f (n)(t)
∣∣p dt

) 1
p

, f ∈ C∞
0 (I), (3)

where n ≥ 1. For n = 1, the validity of inequality (3) was first established by P. Gurka, and
this result was presented in [24, Chap. 8]. Improvements to this result are given in [1]
and [11]. A survey of results for n ≥ 2 with comments and some proofs are given in [17,
Chap. 4] and [18].

Let W 2
p,υ(r) ≡ W 2

p,υ (r, I) be a set of functions f : I → R, having generalized derivatives
together with functions D1

r f (t) on the interval I , with the finite norm

‖f ‖W 2
p,υ (r) =

∥∥υD2
r f

∥∥
p +

∣∣D1
r f (1)

∣∣ +
∣∣f (1)

∣∣, (4)

where ‖ · ‖p is the standard norm of the space Lp(I).
By the conditions on the functions r and υ , we have that C∞

0 (I) ⊂ W 2
p,υ(r). Denote by

W̊ 2
p,υ (r) ≡ W̊ 2

p,υ (r, I) the closure of the set C∞
0 (I) with respect to norm (4). Then inequality

(1) is equivalent to the inequality

(∫ ∞

0

∣∣u(t)f (t)
∣∣q dt

) 1
q

≤ C
(∫ ∞

0

∣∣υ(t)D2
r f (t)

∣∣p dt
) 1

p
, f ∈ W̊ 2

p,υ(r); (5)

in addition, the least constants in (1) and (5) coincide.
Criteria for the fulfillment of inequality (2) under various boundary conditions on the

function f are given in [21] and [22]. In this paper, following the ideas of [22], we give
criteria for the fulfillment of inequality (5) and two-sided estimates for its least constant,
suitable for establishing the oscillatory properties of the differential equation

D2
r
(
υ(t)D2

r y(t)
)

– u(t)y(t) = 0, t > 0, (6)

and the spectral properties of the operator L generated by the differential expression

Ly(t) =
1

u(t)
D2

r
(
υ(t)D2y(t)

)
. (7)

For r = 1, relations (6) and (7) have the forms

(
υ(t)y′′(t)

)′′ – u(t)y(t) = 0, (8)

Ly(t) =
1

u(t)
(
υ(t)y′′(t)

)′′. (9)

The recent paper [14] presents a relationship between inequality (5), the oscillatory
properties of equation (6), and the spectral properties of the operator L generated by ex-
pression (7). This relationship shows that oscillation and nonoscillation of equation (6)
depend on the value of the least constant in inequality (5), while the spectral properties of
the operator L depend on the strong nonoscillation of equation (6). Thus, the study of in-
equality (5) plays a leading role. In turn, the study of inequality (5) depends on the degree
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of singularity of the functions υ–1 and r–1 at the endpoints of the interval I . The concept
of “degree of singularity” follows from the results of the work [13] (see Theorems C+ and
C– below). For f ∈ W 2

p,v(r, I), we assume that limt→0+ f (t) = f (0), limt→0+ D1
r f (t) = D1

r f (0),
limt→∞ f (t) = f (∞), and limt→∞ D1

r f (t) = D1
r f (∞) regardless of whether they are finite or

infinite. Let W 2
p,v(r, I0) and W 2

p,v(r, I∞) be the contraction sets of functions from W 2
p,v(r, I)

on (0, 1] and [1,∞), respectively.

Theorem C+ Let 1 < p < ∞.
(i) If v–1 /∈ Lp′ (I∞), r–1 /∈ L1(I∞) or r–1 ∈ L1(I∞),

∫ ∞
1 v–p′ (t)(

∫ ∞
t r–1(x) dx)p′ dx = ∞,

then W̊ 2
p,v(r, I∞) = W 2

p,v(r, I∞). (In this case, for all f ∈ W 2
p,v(r, I), there do not exist

f (∞) and D1
r f (∞).)

(ii) If v–1 /∈ Lp′ (I∞), r–1 ∈ L1(I∞) and
∫ ∞

1 v–p′ (t)(
∫ ∞

t r–1(x) dx)p′ dt < ∞, then

W̊ 2
p,v(r, I∞) =

{
f ∈ W 2

p,v(r, I∞) : f (∞) = 0
}

.

(In this case, for all f ∈ W 2
p,v(r, I), there exists only f (∞).)

(iii) If v–1 ∈ Lp′ (I∞), r–1 /∈ L1(I∞), and
∫ ∞

1 v–p′ (t)(
∫ t

1 r–1(x) dx)p′ dt = ∞, then

W̊ 2
p,v(r, I∞) =

{
f ∈ W 2

p,v(r, I∞) : D1
r f (∞) = 0

}
.

(In this case, for all f ∈ W 2
p,v(r, I), there exists only D1

r f (∞).)
(iv) If v–1 ∈ Lp′ (I∞) and r–1 ∈ L1(I∞), then

W̊ 2
p,v(r, I∞) =

{
f ∈ W 2

p,v(r, I∞) : f (∞) = D1
r f (∞) = 0

}
.

(In this case, for all f ∈ W 2
p,v(r, I), there exist both f (∞) and D1

r f (∞).)

Theorem C– Let 1 < p < ∞.
(i) If v–1 /∈ Lp′ (I0), r–1 /∈ L1(I0) or r–1 ∈ L1(I0),

∫ 1
0 v–p′ (t)(

∫ t
0 r–1(x) dx)p′ dx = ∞, then

W̊ 2
p,v(r, I0) = W 2

p,v(r, I0). (In this case, for all f ∈ W 2
p,v(r, I), there do not exist f (0) and

D1
r f (0).)

(ii) If v–1 /∈ Lp′ (I0), r–1 ∈ L1(I0), and
∫ 1

0 v–p′ (t)(
∫ t

0 r–1(x) dx)p′ dt < ∞, then

W̊ 2
p,v(r, I0) =

{
f ∈ W 2

p,v(r, I0) : f (0) = 0
}

.

(In this case, for all f ∈ W 2
p,v(r, I), there exists only f (0).)

(iii) If v–1 ∈ Lp′ (I0), r–1 /∈ L1(I0), and
∫ 1

0 v–p′ (t)(
∫ 1

t r–1(x) dx)p′ dt = ∞, then

W̊ 2
p,v(r, I0) =

{
f ∈ W 2

p,v(r, I0) : D1
r f (0) = 0

}
.

(In this case, for all f ∈ W 2
p,v(r, I), there exists only D1

r f (0).)
(iv) If v–1 ∈ Lp′ (I0) and r–1 ∈ L1(I0), then

W̊ 2
p,v(r, I0) =

{
f ∈ W 2

p,v(r, I0) : f (0) = D1
r f (0) = 0

}
.

(In this case, for all f ∈ W 2
p,v(r, I), there exist both f (0) and D1

r f (0).)
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If neither f (∞) nor D1
r f (∞) exist, the functions v–1 and r–1 are said to be strongly sin-

gular at infinity (see item (i), Theorem C+). If only f (∞) or D1
r f (∞) exists, the functions

v–1 and r–1 are said to be weakly singular at infinity (see item (ii) or (iii), Theorem C+). If
both f (∞) and D1

r f (∞) exist, the functions v–1 and r–1 are said to be regular at infinity (see
item (iv), Theorem C+). Similarly, Theorem C– defines the concepts of strong singularity,
weak singularity, and regularity of the functions v–1 and r–1 at zero. In the paper [2], the
oscillatory properties of a higher-order equation in form (6) are studied in the case of reg-
ularity at one endpoint and strong singularity at the other endpoint of the interval. This
case can be called “standard”, because the order of the corresponding inequality coincides
with the number of boundary conditions on f . When the functions v–1 and r–1 are regular
at one endpoint and weakly singular at the other endpoint of the interval, inequality (5)
is of the second order, but f satisfies three boundary conditions, so we have the so-called
“overdetermined” case. This creates additional difficulties in estimating the least constant
in (5), because we need to obtain conditions on weights in (5) that directly determine the
oscillation of equation (6). For inequality (5), there are four overdetermined cases, two
of which {(iv)+, (iii)–} and {(iii)+, (iv)–} are studied in the paper [14], where (i)+ denotes
item (i) of Theorem C+, (i)– denotes item (i) of Theorem C–, and so on. Here we study the
remaining overdetermined cases {(iv)+, (ii)–} and {(ii)+, (iv)–}.

There are only two works [2] and [14] that investigate the oscillatory properties of equa-
tion (6), which, when expanded, has the form

r
(
vry′′)′′ + r

(
vr′y′)′′ + r′(vry′′)′ + r′(vr′y′)′ – uy = 0, t ∈ I.

All other works investigate equations in form (8), i.e., when r = 1. In a series of works (see,
e.g., [7, 8, 26, 27]), the oscillation of equations in form (8) is studied by the known methods
of the qualitative theory of differential equations, but there one or both of coefficients in (8)
are power functions. This is due to the fact that these methods are effective for studying
the oscillatory properties of second-order differential equations but they are difficult to
extend to fourth- and higher-order differential equations. Based on suitable inequalities,
the method presented in this paper is known as the “variational method”, and it differs
from the previous methods. This variational method allows to remove restrictions on the
coefficients. Using the variational method, the paper [23] studies oscillation of equations
in form (8) in the standard case, while the papers [15] and [16] discuss the problem in the
overdetermined cases. The spectral properties of the operator of the fourth and higher
orders generated by the differential expression in form (9) are considered, e.g., in the works
[3, 4], [9, Chaps. 29 and 34], [11, 19, 25].

Note that in the theory of differential equations there are situations similar to the one
described above, when techniques that are useful for second-order equations turn out to
be useless when solving problems of order higher than two. For example, the recent paper
[5] contributes to the development of a possible unitary method for some higher-order
elliptic problems, since the known methods for these problems are typically for second-
order equations not for higher order.

This paper is organized as follows. Section 2 contains all the auxiliary statements nec-
essary to prove the main results. In Sect. 3, we establish the validity of inequality (5) in the
cases {(iv)+, (ii)–} and {(ii)+, (iv)–}. In Sect. 4, on the basis of the obtained results, we get
strong oscillation and nonoscillation conditions for equation (6). In Sect. 5, we consider
the spectral properties of the operator L generated by differential expression (7).
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2 Preliminaries
Let –∞ ≤ a < b ≤ ∞. Suppose that χ(a,b)(·) stands for the characteristic function of the
interval (a, b).

Theorem A Let 1 < p ≤ q < ∞.
(i) Inequality

(∫ b

a

∣∣∣∣u(t)
∫ t

a
f (s) ds

∣∣∣∣
q

dt
) 1

q
≤ C

(∫ b

a

∣∣v(t)f (t)
∣∣p dt

) 1
p

(10)

holds if and only if

A+ = sup
z∈(a,b)

(∫ b

z
uq(t) dt

) 1
q
(∫ z

a
v–p′

(s) ds
) 1

p′
< ∞;

in addition,

A+ ≤ C ≤ p
1
q
(
p′) 1

p′ A+,

where C is the least constant in (10).
(ii) Inequality

(∫ b

a

∣∣∣∣u(t)
∫ b

t
f (s) ds

∣∣∣∣
q

dt
) 1

q
≤ C

(∫ b

a

∣∣v(t)f (t)
∣∣p dt

) 1
p

(11)

holds if and only if

A– = sup
z∈(a,b)

(∫ z

a
uq(t) dt

) 1
q
(∫ b

z
v–p′

(s) ds
) 1

p′
< ∞.

In addition,

A– ≤ C ≤ p
1
q
(
p′) 1

p′ A–,

where C is the least constant in (11). Let

B–
1 (a, b) = sup

z∈(a,b)

(∫ b

z
uq(t)

(∫ t

z
r–1(x) dx

)q

dt
) 1

q
(∫ z

a
v–p′ (s) ds

) 1
p′

,

B–
2 (a, b) = sup

z∈(a,b)

(∫ b

z
uq(t) dt

) 1
q
(∫ z

a

(∫ z

s
r–1(x) dx

)p′

v–p′ (s) ds
) 1

p′
,

B–(a, b) = max
{

B–
1 (a, b), B–

2 (a, b)
}

.

The following two statements follow from the results of the work [12].

Theorem B– Let 1 < p ≤ q < ∞. The inequality

(∫ b

a

∣∣∣∣u(t)
∫ t

a

(∫ t

s
r–1(x) dx

)
f (s) ds

∣∣∣∣
q

dt
) 1

q
≤ C

(∫ b

a

∣∣v(t)f (t)
∣∣p dt

) 1
p

(12)
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holds if and only if B–(a, b) < ∞. In addition, B–(a, b) ≤ C ≤ 8p
1
q (p′)

1
p′ B–(a, b), where C is

the least constant in (12).

Let

B+
1 (a, b) = sup

z∈(a,b)

(∫ z

a

(∫ z

t
r–1(x) dx

)q

uq(t) dt
) 1

q
(∫ b

z
v–p′

(s) ds
) 1

p′
,

B+
2 (a, b) = sup

z∈(a,b)

(∫ z

a
uq(t) dt

) 1
q
(∫ b

z

(∫ s

z
r–1(x) dx

)p′

v–p′
(s) ds

) 1
p′

,

B+(a, b) = max
{

B+
1 (a, b), B+

2 (a, b)
}

.

Theorem B+ Let 1 < p ≤ q < ∞. Inequality

(∫ b

a

∣∣∣∣u(t)
∫ b

t

(∫ s

t
r–1(x) dx

)
f (s) ds

∣∣∣∣
q

dt
) 1

q
≤ C

(∫ b

a

∣∣v(t)f (t)
∣∣p dt

) 1
p

(13)

holds if and only if B+(a, b) < ∞. In addition, B+(a, b) ≤ C ≤ 8p
1
q (p)

1
p′ B+(a, b), where C is

the least constant in (13).

3 Inequality (5)
Assume that all the conditions of Theorems C– and C+ are given for p = 2.

As pointed out in the Introduction, depending on the degree of singularity of the func-
tions v–1 and r–1 at infinity and at zero, for the function f ∈ W 2

p,v(r, I), Theorems C– and
C+ give all possible cases of the existence of the following limits: limt→∞ f (t) = f (∞),
limt→∞ D1

r f (t) = D1
r f (∞), limt→0+ f (t) = f (0), and limt→0+ D1

r f (t) = D1
r f (0). Theorem 6 of

[14] lists all pairs of items of Theorems C– and C+, under which inequality (5) does not
hold, they are the following: [(i)+, (i)–], [(ii)+, (i)–], [(iii)+, (i)–], [(i)+, (ii)–], [(i)+, (iii)–], and
[(iii)+, (iii)–]. For the pairs [(i)+, (iv)–], [(iv)+, (i)–], [(iii)+, (ii)–], [(ii)+, (iii)–], and [(ii)+, (ii)–],
the function f ∈ W̊ 2

p,v(r, I) has two boundary conditions at the endpoints of the interval
I , i.e., the standard case; therefore, second-order inequality (5) is equivalent to the well-
known integral inequalities (see [22]). For the pairs [(iv)+, (ii)–], [(ii)+, (iv)–], [(iv)+, (iii)–],
and [(iii)+, (iv)–], the function f ∈ W̊ 2

p,v(r, I) has three boundary conditions at the endpoints
of the interval I , i.e., the overdetermined cases. As mentioned above, in [14], inequality (5)
was studied under the conditions of the pairs [(iv)+, (iii)–] and [(iii)+, (iv)–]. Here we study
the remaining cases [(iv)+, (ii)–] and [(ii)+, (iv)–].

Assume that ρ(t) =
∫ t

0 r–1(x) dx, t ∈ I . Let B+
1 (τ ,∞) ≡ B+

1 (τ ), B+
2 (τ ,∞) ≡ B+

2 (τ ),

B+
3 (τ ) =

1
ρ(τ )

(∫ τ

0
ρq(t)uq(t) dt

) 1
q
(∫ ∞

τ

(∫ s

τ

r–1(x) dx
)p′

v–p′
(s) ds

) 1
p′

,

F–
1 (τ ) = sup

0<z<τ

1
ρ(τ )

(∫ z

0
ρq(t)uq(t) dt

) 1
q
(∫ τ

z

(∫ τ

s
r–1(x) dx

)p′

v–p′
(s) ds

) 1
p′

,

F–
2 (τ ) = sup

0<z<τ

1
ρ(τ )

(∫ τ

z

(∫ τ

t
r–1(x) dx

)q

uq(t) dt
) 1

q
(∫ z

0
ρp′ (s)v–p′ (s) ds

) 1
p′

,

B+(τ ) = max
{

B+
1 (τ ), B+

2 (τ )
}

, B+(τ ) = max
{

B+(τ ), B+
3 (τ )

}
,
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F–(τ ) = max
{

F–
1 (τ ), F–

2 (τ )
}

, B+F– = inf
τ∈I

max
{
B+(τ ), F–(τ )

}
,

where τ ∈ I .
Let v̄(s) = ρ(s)v(s), s ∈ I , and v̄–1 ∈ Lp′ (I). Then, for any τ ∈ I , there exists kτ such that

∫ τ

0
v̄–p′

(t) dt = kτ

∫ ∞

τ

v̄–p′
(t) dt; (14)

in addition, kτ increases in τ , limτ→0+ kτ = 0, and limτ→∞ kτ = ∞. Moreover, there exists
τ1 ∈ I such that kτ1 = 1 and

∫ τ1
0 v̄–p′ (t) dt =

∫ ∞
τ1

v̄–p′ (t) dt.
The following theorem uses the ideas of the proof of Theorem 2.2 in [22].

Theorem 1 Let 1 < p ≤ q < ∞ and {(iv)+, (ii)–} hold, i.e., r–1 ∈ L1(I), v–1 ∈ Lp′ (I∞), v–1 /∈
Lp′ (I0), and

∫ 1
0 v–p′ (t)(

∫ t
0 r–1(x) dx)p′ dt < ∞. Then, for the least constant C in (5), the esti-

mates

4– 1
p B+F– ≤ C ≤ 11p

1
q
(
p′) 1

p′ BF– (15)

and

sup
τ∈I

(
1 + kp–1

τ

)– 1
p F–(τ ) ≤ C ≤ 11p

1
q
(
p′) 1

p′ F–(
τ–)

(16)

hold, where

τ– = inf
{
τ > 0 : B+(τ ) ≤ F–(τ )

}
. (17)

Proof Sufficiency. By the conditions of Theorem 1, on the basis of item (iv) of Theorem C+

and item (ii) of Theorem C–, we have

W̊ 2
p,v(r, I) =

{
f ∈ W 2

p,v(r, I) : f (0) = f (∞) = D1
r f (∞) = 0

}
. (18)

Let τ ∈ I . We assume that f (t) =
∫ t

0 r–1(x)D1
r f (x) dx for 0 < t < τ , f (t) = –

∫ ∞
t r–1(x)D1

r f (x) dx
for t > τ , and D1

r f (x) = –
∫ ∞

x D2
r f (s) ds for x ∈ I . Then, for f ∈ W̊ 2

p,v(r, I), we have

f (t) = –
∫ t

0
r–1(x)

∫ ∞

x
D2

r f (s) ds dx

= –
∫ t

0
ρ(s)D2

r f (s) ds – ρ(t)
∫ τ

t
D2

r f (s) ds – ρ(t)
∫ ∞

τ

D2
r f (s) ds (19)

for 0 < t < τ and

f (t) =
∫ ∞

t
r–1(x)

∫ ∞

x
D2

r f (s) ds dx =
∫ ∞

t

(∫ s

t
r–1(x) dx

)
D2

r f (s) ds (20)

for t > τ .



Baiarystanov et al. Boundary Value Problems         (2022) 2022:78 Page 8 of 21

For f ∈ W̊ 2
p,v(r, I) from (18) we get

0 =
∫ ∞

0
r–1(x)D1

r f (x) dx = –
∫ ∞

0
r–1(x)

∫ ∞

x
D2

r f (s) ds dx

= –
∫ ∞

0
D2

r f (s)
∫ s

0
r–1(x) dx ds = –

∫ ∞

0
ρ(s)D2

r f (s) ds.

Assume that ρ(s)D2
r f (s) = g(s), s ∈ I . Hence,

∫ ∞
0 g(s) ds = 0. To the right-hand side of (19)

we add ρ(t)
ρ(τ )

∫ ∞
0 g(s) ds = 0. Then, for f ∈ W̊ 2

p,v(r, I), from (19) and (20) we obtain

f (t) = χ(0,τ )(t)
[

ρ(t)
ρ(τ )

∫ ∞

τ

(∫ s

τ

r–1(x) dx
)

g(s)
ρ(s)

ds –
ρ(τ ) – ρ(t)

ρ(τ )

∫ t

0
g(s) ds

–
ρ(t)
ρ(τ )

∫ τ

t

(∫ τ

s
r–1(x) dx

)
g(s)
ρ(s)

ds
]

+ χ(0,∞)(t)
∫ ∞

t

(∫ s

t
r–1(x) dx

)
g(s)
ρ(s)

ds. (21)

In view of (21), the belonging f ∈ W̊ 2
p,v(r, I) is equivalent to the belonging g ∈ Lp,v̄(I) and∫ ∞

0 g(s) ds = 0. Assume that L̃p,v̄(I) = {g ∈ Lp,v̄(I) :
∫ ∞

0 g(s) ds = 0}.
Replacing (21) into the left-hand side of (5), we get it in the form

(∫ τ

0

∣∣∣∣u(t)
ρ(t)
ρ(τ )

∫ ∞

τ

(∫ s

τ

r–1(x) dx
)

g(s)
ρ(s)

ds

– u(t)
ρ(τ ) – ρ(t)

ρ(τ )

∫ t

0
g(s) ds – u(t)

ρ(t)
ρ(τ )

∫ τ

t

(∫ τ

s
r–1(x) dx

)
g(s)
ρ(s)

ds
∣∣∣∣
q

dt

+
∫ ∞

τ

∣∣∣∣u(t)
∫ ∞

t

(∫ s

t
r–1(x) dx

)
g(s)
ρ(s)

ds
∣∣∣∣
q

dt
) 1

q
≤ C

(∫ ∞

0

∣∣v̄(s)g(s)
∣∣p ds

) 1
p

. (22)

Now, in the left-hand side of (22), applying Minkowski’s inequality for sums, then
Hölder’s inequality, Theorem A, and Theorem B+, we get

(∫ ∞

0

∣∣u(t)f (t)
∣∣q dt

) 1
q

≤ p
1
q
(
p′) 1

p′ (F–
1 (τ ) + F–

2 (τ )
)(∫ τ

0

∣∣v(s)D2
r f (s)

∣∣p ds
) 1

p

+
(
8p

1
q
(
p′) 1

p′ B+(τ ) + B+
3 (τ )

)(∫ ∞

τ

∣∣v(s)D2
r f (s)

∣∣p ds
) 1

p

≤ [(
2p

1
q
(
p′) 1

p′ F–(τ )
)p′

+
(
9p

1
q
(
p′) 1

p′ B+(τ )
)p′] 1

p′
(∫ ∞

0

∣∣v(s)D2
r f (s)

∣∣p ds
) 1

p

≤ 11p
1
q
(
p′) 1

p′ max
{
B+(τ ), F–(τ )

}(∫ ∞

0

∣∣v(s)D2
r f (s)

∣∣p ds
) 1

p
. (23)

Since the left-hand side of (23) is independent of τ ∈ I , (23) implies the right estimate in
(15).
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The condition r–1 ∈ L1(I) of Theorem 1 gives that limt→∞ ρ(t) = ρ(∞) < ∞. There-
fore, the function ρ(τ )B+(τ ) does not increase and ρ(τ )F–(τ ) does not decrease. Let
limτ→∞ ρ(τ )F–(τ ) = D. If D = ∞, then for sufficiently large τ ∈ I , we obviously have that
ρ(τ )F–(τ ) > ρ(τ )B+(τ ). Moreover, ρ(τ )F–(τ ) > ρ(τ )B+

3 (τ ) follows from the relation

ρ(τ )B+
3 (τ ) =

(∫ N

0
ρq(t)uq(t) dt

) 1
q
(∫ ∞

τ

(∫ s

τ

r–1(x) dx
)p′

v–p′
(s) ds

) 1
p′

+
(∫ τ

N
ρq(t)uq(t) dt

) 1
q
(∫ ∞

τ

(∫ s

τ

r–1(x) dx
)p′

v–p′
(s) ds

) 1
p′

(24)

for large τ > N > 0, where the second term is less than B+
2 (N). If D < ∞, then from

the estimates limτ→∞ ρ(τ )F–
2 (τ ) ≤ D we find that (

∫ ∞
t r–1(x) dx)u(t) ∈ Lq(I∞). Hence,

limτ→∞ ρ(τ )B+
2 (τ ) = 0. Moreover, limτ→∞ ρ(τ )B+

i (τ ) = 0, i = 1, 3, follows from (24) and
from

ρ(τ )B+
1 (τ ) ≤

(∫ ∞

τ

(∫ ∞

t
r–1(x) dx

)q

uq(t) dt
) 1

q
(∫ ∞

τ

v–p′
(s) ds

) 1
p′

.

Thus, in some neighborhood of infinity, we have that ρ(τ )F–(τ ) > ρ(τ )B+(τ ). Therefore,
in relation (17) there exists τ– > 0 and F–(τ–) ≥ B+(τ–). Consequently,

F–(
τ–) ≥ B+F– = inf

τ∈I

1
ρ(τ )

max
{
ρ(τ )B+(τ ),ρ(τ )F–(τ )

}
,

and the right estimate in (16) holds.
Necessity. By the conditions of Theorem 1, we have that v̄–1 ∈ Lp′ (I). Therefore, (14)

holds. For τ ∈ I , we consider two sets £1 = {g ∈ Lp,v̄(0, τ ) : g ≤ 0} and £2 = {g ∈ Lp,v̄(τ ,∞) :
g ≥ 0}. Further, repeating the steps of the necessary part of Theorem 7 in [14], for each
g1 ∈ £1 and g2 ∈ £2, we construct functions g2 ∈ £2 and g1 ∈ £1 such that g(t) = g1(t) for
0 < t ≤ τ and g(t) = g2(t) for t > τ belongs to the set L̃p,v̄(I). In addition, assuming in both
cases g(t) = g1(t) for 0 < t ≤ τ and g(t) = g2(t) for t > τ , we have

∫ ∞

0

∣∣v̄(t)g(t)
∣∣p dt =

(
1 + kp–1

τ

)∫ τ

0

∣∣v̄(t)g1(t)
∣∣p dt

=
(
1 + k1–p

τ

)∫ ∞

τ

∣∣v̄(t)g2(t)
∣∣p dt < ∞. (25)

Replacing the constructed function g ∈ L̃p,v(I) in (22), we obtain

(∫ τ

0

∣∣∣∣u(t)
ρ(t)
ρ(τ )

∫ ∞

τ

(∫ s

τ

r–1(x) dx
)

g2(s)
ρ(s)

ds

+ u(t)
ρ(τ ) – ρ(t)

ρ(τ )

∫ t

0

∣∣g1(s)
∣∣ds + u(t)

ρ(t)
ρ(τ )

∫ τ

t

(∫ τ

s
r–1(x) dx

) |g1(s)|
ρ(s)

ds
∣∣∣∣
q

dt

+
∫ ∞

τ

∣∣∣∣u(t)
∫ ∞

t

(∫ s

t
r–1(x) dx

)
g2(s)
ρ(s)

ds
∣∣∣∣
q

dt
) 1

q
≤ C

(∫ ∞

0

∣∣v̄(s)g(s)
∣∣p ds

) 1
p

. (26)

In the left-hand side of (26), all terms are nonnegative.
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Let the function g ∈ L̃p,v̄(I) be generated by the function g2 ∈ £2. Then, from (25) and
(26), we have

1
ρ(τ )

(∫ τ

0
ρq(t)uq(t) dt

) 1
q
∫ ∞

τ

(∫ s

τ

r–1(x) dx
)

g2(s)
ρ(s)

ds

≤ C
(
1 + k1–p

τ

) 1
p

(∫ ∞

τ

∣∣v̄(t)g2(t)
∣∣p dt

) 1
p

,

(∫ ∞

τ

(
u(t)

∫ ∞

t

(∫ s

t
r–1(x) dx

)
g2(s)
ρ(s)

ds
)q

dt
) 1

q

≤ C
(
1 + k1–p

τ

) 1
p

(∫ ∞

τ

∣∣v̄(t)g2(t)
∣∣p dt

) 1
p

.

Due to the arbitrariness of g2 ∈ £2, on the basis of the reverse Hölder inequality and The-
orem B+, we obtain

B+(τ ) ≤ C
(
1 + k1–p

τ

) 1
p , B+

3 (τ ) ≤ C
(
1 + k1–p

τ

) 1
p ,

i.e.,

B+(τ ) ≤ C
(
1 + k1–p

τ

) 1
p . (27)

Similarly, for the function g ∈ L̃p,v̄(I) generated by the function g1 ∈ £1, from (25) and
(26) we have

1
ρ(τ )

(∫ τ

0

(
u(t)

(∫ τ

t
r–1(x) dx

)∫ t

0

∣∣g1(s)
∣∣ds

)q

dt
) 1

q

≤ C
(
1 + kp–1

τ

) 1
p

(∫ τ

0

∣∣v̄(t)g1(t)
∣∣p dt

) 1
p

,

1
ρ(τ )

(∫ τ

0

(
u(t)ρ(t)

∫ τ

t

(∫ τ

s
r–1(x) dx

) |g1(s)|
ρ(s)

ds
)q

dt
) 1

q

≤ C
(
1 + kp–1

τ

) 1
p

(∫ τ

0

∣∣v̄(t)g1(t)
∣∣p dt

) 1
p

.

The latter, due to the arbitrariness of g1 ∈ £1, by Theorem A, gives that

F–(τ ) ≤ C
(
1 + kp–1

τ

) 1
p . (28)

From (27) and (28) we find that

B+F– = inf
τ∈I

max
{
B+(τ ), F–(τ )

} ≤ C inf
τ∈I

[
max

{(
1 + kp–1

τ

)(
1 + k1–p

τ

)}] 1
p ≤ 4

1
p C,

which yields the left estimate in (15). From (28) we get the left estimate in (16). The proof
of Theorem 1 is complete. �



Baiarystanov et al. Boundary Value Problems         (2022) 2022:78 Page 11 of 21

Assume that ρ̄(t) =
∫ ∞

t r–1(x) dx, t ∈ I . Let B–
1 (0, τ ) ≡ B–

1 (τ ), B–
2 (0, τ ) ≡ B–

2 (τ ),

B–
3 (τ ) =

1
ρ̄(τ )

(∫ ∞

τ

ρ̄q(t)uq(t) dt
) 1

q
(∫ τ

0

(∫ τ

s
r–1(x) dx

)p′

v–p′
(s) ds

) 1
p′

,

F+
1 (τ ) = sup

z>τ

1
ρ̄(τ )

(∫ z

τ

(∫ z

τ

r–1(x) dx
)q

uq(t) dt
) 1

q
(∫ ∞

z
ρ̄p′

(s)v–p′
(s) ds

) 1
p′

,

F+
2 (τ ) = sup

z>τ

1
ρ̄(τ )

(∫ ∞

z
ρ̄q(t)uq(t) dt

) 1
q
(∫ z

τ

(∫ s

τ

r–1(x) dx
)p′

v–p′ (s) ds
) 1

p′
,

B–(τ ) = max
{

B–
1 (τ ), B–

2 (τ )
}

, B–(τ ) = max
{

B–(τ ), B–
3 (τ )

}
,

F+(τ ) = max
{

F+
1 (τ ), F+

2 (τ )
}

, B–F+ = inf
τ∈I

max
{
B–(τ ), F+(τ )

}
,

where τ ∈ I .

Theorem 2 Let 1 < p ≤ q < ∞ and {(ii)+, (iv)–} hold, i.e., r–1 ∈ L1(I), v–1 /∈ Lp′ (I∞), v–1 ∈
Lp′ (I0), and

∫ ∞
1 v–p′ (t)(

∫ ∞
t r–1(x) dx)p′ dt < ∞. Then, for the least constant C in (5), the es-

timates

4– 1
p B–F+ ≤ C ≤ 11p

1
q
(
p′) 1

p′ B–F+

and

sup
τ∈I

(
1 + k1–p

τ

)– 1
p F+(τ ) ≤ C ≤ 11p

1
q
(
p′) 1

p′ F+(
τ+)

hold, where

τ+ = inf
{
τ > 0 : B–(τ ) ≤ F+(τ )

}
.

Proof The conditions of Theorem 2 are symmetric to the conditions of Theorem 1. There-
fore, the statement of Theorem 2 follows from the statement of Theorem 1. In inequality
(5), under the conditions of Theorem 2, we change the variables t = 1

x , then we obtain
inequality (5) and the conditions of Theorem 1, where u(x) is replaced by ˜u(x) = u( 1

x )x– 2
q ,

v(x) is replaced by ṽ(x) = v( 1
x )x

2
p′ , and r(x) is replaced by r̃(x) = r( 1

x )x2. Thus, the conditions
of Theorem 2 turn to the conditions of Theorem 1 for the functions ṽ and r̃. Now, we use
Theorem 1 and get the results with respect to the functions ũ, ṽ, and r̃. Then, changing
the variable to t, we prove Theorem 2. �

4 Oscillation properties of equation (6)
Let us remind that in [14] inequality (5) was studied under the conditions of the pairs
[(iv)+, (iii)–] and [(iii)+, (iv)–], while in this paper it is studied under the conditions of the
other pairs [(iv)+, (ii)–] and [(ii)+, (iv)–]. Therefore, the characterizations of inequality (5)
obtained here differ from those obtained in [14]. However, the method of applying them
to study equation (6) and operator L is the same. In order to give a more complete presen-
tation, in this Sect. 4 and next Sect. 5, we repeat some of the steps from the corresponding
Sections of [14].
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Two points t1 and t2, such that t1 �= t2 of the interval I , are called conjugate with respect
to equation (6), if there exists a solution y of equation (6) such that y(t1) = y2(t2) = 0 and
D1

r y(t1) = D1
r y(t2) = 0. Equation (6) is called oscillatory at infinity (at zero), if for any T ∈ I ,

there exist conjugate points with respect to equation (6) to the right (left) of T . Otherwise,
equation (6) is called nonoscillatory at infinity (at zero).

On the basis of Theorems 28 and 31 of [9] (see also, e.g., Lemma 2.1 of [26]), we have
the following two variational lemmas.

Lemma 1 Equation (6) is nonoscillatory at infinity if and only if there exists T > 0 and the
inequality

∫ ∞

T
v(t)

∣∣D2
r f (t)

∣∣2 – u(t)
∣∣f (t)

∣∣2 dt ≥ 0, f ∈ C∞
0 (T ,∞), (29)

holds.

Lemma 2 Equation (6) is nonoscillatory at zero if and only if there exists T > 0 and the
inequality

∫ T

0
v(t)

∣∣D2
r f (t)

∣∣2 – u(t)
∣∣f (t)

∣∣2 dt ≥ 0, f ∈ C∞
0 (0, T), (30)

holds.

Let T ≥ 0. We consider the inequality

∫ ∞

T
u(t)

∣∣f (t)
∣∣2 dt ≤ CT

∫ ∞

T
v(t)

∣∣D2
r f (t)

∣∣2 dt, f ∈ W̊ 2
p,v

(
r, (T ,∞)

)
. (31)

In the work [14], on the basis of Lemmas 1 and 2, there was proved the following lemma.

Lemma 3 Let CT be the least constant in (31).
(i) Equation (6) is nonoscillatory at infinity if and only if there exists a constant T > 0

such that 0 < CT ≤ 1 holds.
(ii) Equation (6) is oscillatory at infinity if and only if CT > 1 for all T ≥ 0.

For the inequality

∫ T

0
u(t)

∣∣f (t)
∣∣2 dt ≤ CT

∫ T

0
v(t)

∣∣D2
r f (t)

∣∣2 dt, f ∈ W̊ 2
p,v

(
r, (0, T)

)
, (32)

we have one more lemma from [14].

Lemma 4 Let CT be the least constant in (32).
(i) Equation (6) is nonoscillatory at zero if and only if there exists a constant T > 0 such

that 0 < CT ≤ 1 holds.
(ii) Equation (6) is oscillatory at zero if and only if CT > 1 for all T ≥ 0.

The conditions for oscillation and nonoscillation of equation (6) at zero and at infin-
ity directly follow from Lemmas 1, 2 and Theorems 1, 2. Let us present those oscillatory
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properties, which we need to establish the spectral properties of the operator L, namely
the conditions for strong oscillation and nonoscillation of equation (6) with the parameter
λ > 0:

D2
r
(
v(t)D2

r y(t)
)

– λu(t)y(t) = 0, t ∈ I. (33)

Equation (33) is called strong oscillatory (nonoscillatory) at zero and at infinity if it is
oscillatory (nonoscillatory) for all λ > 0 at zero and at infinity, respectively.

From inequalities (31) and (32) for equation (33), we respectively have

λ

∫ ∞

T
u(t)

∣∣f (t)
∣∣2 dt ≤ λCT

∫ ∞

T
v(t)

∣∣D2
r f (t)

∣∣2 dt, f ∈ W̊ 2
p,v

(
r, (T ,∞)

)
, (34)

λ

∫ T

0
u(t)

∣∣f (t)
∣∣2 dt ≤ λCT

∫ T

0
v(t)

∣∣D2
r f (t)

∣∣2 dt, f ∈ W̊ 2
p,v

(
r, (0, T)

)
. (35)

The following lemma was also proved in [14].

Lemma 5 Let CT be the least constant in (34) ((35)).
(i) Equation (33) is strong nonoscillatory at infinity (at zero) if and only if

limT→∞ CT = 0 (limT→0+ CT = 0).
(ii) Equation (33) is strong oscillatory at infinity (at zero) if and only if CT = ∞ (CT = ∞)

for any T > 0.

Now, on the basis of Lemma 5, as in [14], we establish criteria of strong oscillation and
nonoscillation of equation (33) at zero and at infinity. Let p = q = 2 in the expressions B–(τ ),
F+(τ ), B+(τ ), and F–(τ ). We replace u2 by u and v–2 by v–1. In addition, we assume that
B̄–(T , τ ) = (B–(τ ))2, F̄+(τ ) = (F+(τ ))2, B̄+(τ ) = (B+(τ ))2, and F̄–(τ ) = (F–(τ ))2. Moreover, we
take

B̄–
3 (τ ) =

1
ρ̄2(τ )

∫ ∞

τ

ρ̄2(t)u(t) dt
∫ τ

0

(∫ τ

s
r–1(x) dx

)2

v–1(s) ds

and

B̄+
3 (τ ) =

1
ρ2(τ )

∫ τ

0
ρ2(t)u(t) dt

∫ ∞

τ

(∫ s

τ

r–1(x) dx
)2

v–1(s) ds

instead of B–
3 (τ ) and B+

3 (τ ), respectively.

Theorem 3 Let r–1 ∈ L1(I), v–1 ∈ L1(I∞), v–1 /∈ L1(I0), and

∫ 1

0
v–1(t)

(∫ t

0
r–1(x) dx

)2

dt < ∞.

(i) Equation (33) is strong nonoscillatory at zero if and only if

lim
τ→0+

sup
0<z<τ

1
ρ2(τ )

∫ z

0
ρ2(t)u(t) dt

∫ τ

z

(∫ τ

s
r–1(x) dx

)2

v–1(s) ds = 0, (36)

lim
τ→0+

sup
0<z<τ

1
ρ2(τ )

∫ τ

z

(∫ τ

t
r–1(x) dx

)2

u(t) dt
∫ z

0
ρ2(s)v–1(s) ds = 0. (37)
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(ii) Equation (33) is strong oscillatory at zero if and only if

lim
τ→0+

sup
0<z<τ

1
ρ2(τ )

∫ z

0
ρ2(t)u(t) dt

∫ τ

z

(∫ τ

s
r–1(x) dx

)2

v–1(s) ds = ∞ (38)

or

lim
τ→0+

sup
0<z<τ

1
ρ2(τ )

∫ τ

z

(∫ τ

t
r–1(x) dx

)2

u(t) dt
∫ z

0
ρ2(s)v–1(s) ds = ∞. (39)

Proof (i) Suppose that equation (33) is strong nonoscillatory at zero. Then, by Lemma 5,
we have that limT→0+ CT = 0 for the least constant CT in inequality (35). From the left
estimate in (16) for inequality (35) we have

sup
0<τ<T

(1 + kτ )–1F̄–(τ ) ≤ CT , (40)

where T > 0.
By the definition of kτ on the interval (0, T), we find that limτ→0+ kτ = 0. Therefore, 0 =

limT→0+ CT ≥ limτ→0+ (1 + kτ )–1F̄–(τ ) = limτ→0+ F̄–(τ ). The latter gives that

lim
τ→0+

F̄i
–(τ ) = 0, i = 1, 2. (41)

Consequently, (36) and (37) hold.
Inversely, let (36) and (37) hold, i.e., (41) hold. From the right estimate in (16), for in-

equality (35), we have

CT ≤ 222F̄–(
τ–)

, (42)

where τ– ∈ (0, T). Since limT→0+ τ– = 0, then from (41) we get

lim
T→0+

CT ≤ 222 lim
T→0+

F̄–(
τ–)

= 222 lim
τ→0+

F̄–(τ ) = 0.

Thus, limT→0+ CT = 0 and, by Lemma 5, equation (33) is strong nonoscillatory at zero.
(ii) Let equation (33) be strong oscillatory at zero. Then, by Lemma 5, for any T > 0,

we have that CT = ∞, where CT is the least constant in (35). Therefore, from (42) we get
F̄–(τ–) = ∞ for any T > 0. Since τ– ∈ (0, T), then limτ→0+ F̄–(τ ) = ∞. This means that
either (38) or (39) or both hold.

Inversely, let (38) hold, i.e., limτ→0+ F̄1
–(τ ) = ∞. Since F̄–(τ ) does not decrease, then

F̄–(τ ) = ∞ for any τ ∈ (0, T) and for any T > 0. Then from (40) we get that CT = ∞ for
any T > 0. Hence, by Lemma 5, equation (33) is strong oscillatory at zero. Similarly, if (39)
holds, then from (40) we get that equation (33) is strong oscillatory at zero. The proof of
Theorem 3 is complete. �

Now, we assume that the function u together with the function v is positive and suf-
ficiently times continuously differentiable on the interval I . In the theory of oscillatory
properties of differential equations, there is the reciprocity principle (see [6]), from which
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it follows that equation (33) and its reciprocal equation

D2
r
(
u–1(t)D2

r y(t)
)

– λv–1(t)y(t) = 0, t ∈ I, (43)

are simultaneously oscillatory or nonoscillatory.
On the basis of this reciprocity principle, from Theorem 3 we have the following state-

ment.

Theorem 4 Let r–1 ∈ L1(I), u /∈ L1(I0), u ∈ L1(I∞), and

∫ 1

0
u(t)

(∫ t

0
r–1(x) dx

)2

dt < ∞.

(i) Equation (33) is strong nonoscillatory at zero if and only if (36) and (37) hold.
(ii) Equation (33) is strong oscillatory at zero if and only if (38) or (39) holds.

Similarly, on the basis of inequality (34), we have the following theorem.

Theorem 5 Let r–1 ∈ L1(I), v–1 /∈ L1(I∞), v–1 ∈ L1(I0), and

∫ ∞

1
v–1(t)

(∫ ∞

t
r–1(x) dx

)2

dt < ∞.

(i) Equation (33) is strong nonoscillatory at infinity if and only if

lim
τ→∞ sup

z>τ

1
ρ̄2(τ )

∫ z

τ

(∫ z

τ

r–1(x) dx
)2

u(t) dt
∫ ∞

z
ρ̄2(s)v–1(s) ds = 0, (44)

lim
τ→∞ sup

z>τ

1
ρ̄2(τ )

∫ ∞

z
ρ̄2(t)u(t) dt

∫ z

τ

(∫ s

τ

r–1(x) dx
)2

v–1(s) ds = 0. (45)

(ii) Equation (33) is strong oscillatory at infinity if and only if

lim
τ→∞ sup

z>τ

1
ρ̄2(τ )

∫ z

τ

(∫ z

τ

r–1(x) dx
)2

u(t) dt
∫ ∞

z
ρ̄2(s)v–1(s) ds = ∞ (46)

or

lim
τ→∞ sup

z>τ

1
ρ̄2(τ )

∫ ∞

z
ρ̄2(t)u(t) dt

∫ z

τ

(∫ s

τ

r–1(x) dx
)2

v–1(s) ds = ∞. (47)

Using the reciprocity principle, the following statement follows from the application of
Theorem 5 to equation (43).

Theorem 6 Let r–1 ∈ L1(I), u ∈ L1(I0), u /∈ L1(I∞), and

∫ ∞

1
u(t)

(∫ ∞

t
r–1(x) dx

)2

dt < ∞.

(i) Equation (33) is strong nonoscillatory at infinity if and only if (44) and (45) hold.
(ii) Equation (33) is strong oscillatory at infinity if and only if (46) or (47) holds.
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5 Spectral characteristics of differential operator L
Let the minimal differential operator Lmin be generated by the differential expression

ly(t) =
1

u(t)
D2

r
(
v(t)D2

r y
)

in the space L2,u ≡ L2(u; I) with inner product (f , g)2,u =
∫ ∞

0 f (t)g(t)u(t) dt, i.e., Lminy = ly is
an operator with the domain D(Lmin) = C∞

0 (I).
It is known that all self-adjoint extensions of the minimal differential operator L have

the same spectrum (see [9]).
One of the most important problems in the theory of singular differential operators

is to find conditions under which any self-adjoint extension L of the operator Lmin has
a spectrum, which is discrete and bounded below. These properties (boundedness below
and discreteness) guarantee that the singular operator behaves like a regular one (see [10]).

The relationship between the oscillatory properties of equation (33) and spectral prop-
erties of the operator L is explained in the following statement.

Lemma 6 ([9]) The operator L is bounded below and has a discrete spectrum if and only
if equation (33) is strong nonoscillatory.

On the basis of Lemma 6, from Theorems 3–6 as corollaries, we obtain the following
propositions.

Proposition 1 Let the conditions of Theorem 3 or 4 hold. Then the operator L is bounded
below and has a discrete spectrum if and only if (36) and (37) hold.

Proposition 2 Let the conditions of Theorem 5 or 6 hold. Then the operator L is bounded
below and has a discrete spectrum if and only if (44) and (45) hold.

The operator Lmin is nonnegative. Therefore, it has Friedrich’s extension LF . By Propo-
sitions 1 and 2, the operator LF has a discrete spectrum if and only if (36) and (37) hold
under the conditions of Proposition 1, and (44) and (45) hold under the conditions of
Proposition 2.

Since for p = q = 2 inequality (5) can be rewritten as (f , f )2C–2 ≤ (LF f , f )2,u, then from
Theorems 1 and 2 we have the following propositions.

Proposition 3 Let the conditions of Theorem 3 hold. Then the operator LF is positive-
definite if and only if B̄+F̄– = infτ∈I max{B̄+(τ ), F̄–(τ )} < ∞. Moreover, there exist constants
α,β : 0 < α < β , and the estimate αB̄+F̄– ≤ λ–1

1 ≤ βB̄+F̄– holds for the smallest eigenvalue
λ1 of the operator LF .

Proposition 4 Let the conditions of Theorem 5 hold. Then the operator LF is positive-
definite if and only if B̄–F̄+ = infτ∈I max{B̄–(τ ), F̄+(τ )} < ∞. Moreover, there exist constants
α,β : 0 < α < β , and the estimate αB̄–F̄+ ≤ λ–1

1 ≤ βB̄–F̄+ holds for the smallest eigenvalue
λ1 of the operator LF .
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Let us note that for the operator LF , from Theorem 1 under the conditions of Theorem 3,
we have the following spectral problem:

⎧⎨
⎩

D2
r (v(t)D2

r y(t)) = λu(t)y(t),

D′
ry(0) = D′

ry(∞) = y(∞) = 0,

while from Theorem 2 under the conditions of Theorem 5, we have the following spectral
problem:

⎧⎨
⎩

D2
r (v(t)D2

r y(t)) = λu(t)y(t),

y(0) = D′
ry(0) = D′

ry(∞) = 0.

Since according to Rellih’s lemma (see [20, p. 183]) the operator L–1
F has a discrete spec-

trum bounded below in L2,u if and only if the space with the norm (LF f , f )
1
2
2,u is compactly

embedded into the space L2,u, then from Propositions 1 and 2 we have one more statement.

Proposition 5 Let the conditions of Theorem 3 (Theorem 5) hold. Then the embedding
W̊ 2

2,v(r, I) ↪→ L2,u is compact and the operator L–1
F is uniformly continuous on L2,u if and

only if (36) and (37) ((44) and (45)) hold.

The following statement is from the work [2].

Lemma 7 Let H = H(I) be a certain Hilbert function space and C[0,∞) ∩ H be dense in it.
For any point x0 ∈ I , we introduce the operator Ex0 f = f (x0) defined on C[0,∞) ∩ H , which
acts in the space of complex numbers. Let us assume that Ex0 is a closure operator. Then
the norm of this operator is equal to the value (

∑∞
n=1 |ϕn(x0)|2) 1

2 (finite or infinite), where
{ϕn(·)}∞n=1 is any complete orthonormal system of continuous functions in H .

Let

D+(t) =
∫ t

0
ρ2(z)v–1(z) dz + ρ2(t)

∫ ∞

t
v–1(z) dz, t ∈ I.

Lemma 8 Let the conditions of Theorem 3 hold. Then

(
D+(t)

) 1
2 = sup

f ∈W̊ 2
2,v(r)

|f (t)|
‖D2

r f ‖2,v
, t ∈ I, (48)

where

∥∥D2
r f

∥∥
2,v =

(∫ ∞

0
v(t)

∣∣D2
r f (t)

∣∣2 dt
) 1

2
.

Proof Let τ ∈ I . Assume that

D+(t, τ ) =
[
χ(0,τ )(t)

∫ ∞

τ

(∫ s

τ

r–1(x) dx
)2

v–1(s) ds

+ χ(0,τ )(t)
∫ τ

t

(∫ τ

s
r–1(x) dx

)2

v–1(s) ds
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+ χ(0,τ )(t)
(∫ τ

t
r–1(x) dx

)2 ∫ t

0
v–1(s) ds

+ χ(τ ,∞)(t)
∫ ∞

t

(∫ s

t
r–1(x) dx

)2

v–1(s) ds
] 1

2
.

From (19) and (20), for the function f ∈ W̊ 2
2,v(r), we have

f (t) = χ(0,τ )(t)
[

–
∫ t

0
ρ(s)D2

r f (s) ds – ρ(t)
∫ τ

t
D2

r f (s) ds – ρ(t)
∫ ∞

τ

D2
r f (s) ds

]

+ χ(τ ,∞)(t)
∫ ∞

t

(∫ s

t
r–1(x) dx

)
D2

r f (s) ds. (49)

In (49), taking the modulus in both parts and applying Hölder’s inequality in the integrals
of each term, we obtain

∣∣f (t)
∣∣ ≤ χ(0,τ )(t)

[∫ t

0
ρ2(z)v–1(z) dz + ρ2(t)

∫ τ

t
v–1(z) dz

] 1
2
(∫ τ

0
v(s)

∣∣D2
r f (s)

∣∣2 ds
) 1

2

+
[
χ(0,τ )(t)ρ(t)

(∫ ∞

τ

v–1(z) dz
) 1

2

+ χ(τ ,∞)(t)
(∫ ∞

t

(∫ z

t
r–1(x) dx

)2

v–1(z) dz
) 1

2
](∫ ∞

τ

v(s)
∣∣D2

r f (s)
∣∣2 ds

) 1
2

.

Therefore,

∣∣f (t)
∣∣ ≤

[
χ(0,τ )(t)

∫ t

0
ρ2(z)v–1(z) dz + χ(0,τ )ρ

2(t)
∫ ∞

t
v–1(z) dz

+ χ(τ ,∞)(t)
∫ ∞

τ

(∫ z

t
r–1(x) dx

)2

v–1(z) dz
] 1

2 ∥∥D2
r f

∥∥
2,v,

i.e.,

∣∣f (t)
∣∣ ≤ inf

τ∈I
D+(t, τ )

∥∥D2
r f

∥∥
2,v.

Since
(
D+(t)

) 1
2 = limτ→∞ D+(t, τ ) ≥ infτ∈I D+(t, τ ), then from the last relation we have the

estimate from above of the right-hand side of (48):

(
D+(t)

) 1
2 ≥ sup

f ∈W̊ 2
2,v(r)

|f (t)|
‖D2

r f ‖2,v
. (50)

Now, we need to establish a similar estimate from below. We fix t ∈ I in (49) and select
a function D2

r f depending on t as follows:

(
D2

r f
)

t(s) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

–χ(0,t)(s)ρ(s)v–1(s) if 0 < t < τ ,

–χ(t,τ )(s)ρ(t)v–1(s) if 0 < t < τ ,

–χ(τ ,∞)(s)ρ(t)v–1(s) if 0 < t < τ ,

χ(t,∞)(s)(
∫ s

t r–1(x) dx)v–1(s) if t > τ .
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Replacing this function in (49), we get the value of the function f (D2
r f )t(z) at the point

z = t:

ft(t) = χ(0,τ )(t)
∫ t

0
ρ2(s)v–1(s) ds + χ(0,τ )(t)ρ2(t)

∫ ∞

t
v–1(s) ds

+ χ(τ ,∞)(t)
∫ ∞

τ

(∫ s

t
r–1(x) dx

)2

v–1(s) ds =
(
D+(t, τ )

)2. (51)

Let us calculate the norm L2,u of the function (D2
r f )t :

(∫ ∞

0
v(s)

∣∣(D2
r f

)
t(s)

∣∣2 ds
) 1

2

=
(∫ τ

0
v(s)

∣∣(D2
r f

)
t(s)

∣∣2 ds +
∫ ∞

τ

v(s)
∣∣(D2

r f
)

t(s)
∣∣2 ds

) 1
2

=
[
χ(0,τ )(t)

∫ t

0
ρ2(s)v–1(s) ds + χ(0,τ )(t)ρ2(t)

∫ ∞

t
v–1(s) ds

+ χ(τ ,∞)(t)
∫ ∞

τ

(∫ s

t
r–1(x) dx

)2

v–1(s) ds
] 1

2
= D+(t, τ ). (52)

From (51) and (52), we get

sup
f ∈W̊ 2

2,v(r)

|f (t)|
‖D2

r f ‖2,v
≥ |ft(t)|

‖(D2
r f )t‖2,v

= D+(t, τ )

for any τ ∈ I . Since the left-hand side of this equality does not depend on τ ∈ I , passing to
the limit at its right-hand side, we obtain the lower bound

sup
f ∈W̊ 2

2,v(r)

|f (t)|
‖D2

r f ‖2,v
≥ (

D+(t)
) 1

2 ,

which, together with (50), gives (48). The proof of Lemma 8 is complete. �

Let the operator L–1
F be uniformly continuous on L2,u. Let {λk}∞k=1 be eigenvalues and

{ϕk}∞k=1 be a corresponding complete orthonormal system of eigenfunctions of the opera-
tor L–1

F .

Theorem 7 Let the conditions of Theorem 3 hold. Let (36) and (37) hold.
(i) Then

D+(t) =
∞∑

k=1

|ϕk(t)|2
λk

, t ∈ I. (53)

(ii) The operator L–1
F is nuclear if and only if

∫ ∞
0 u(t) D+(t) dt < ∞, and for the nuclear

norm ‖L–1
F ‖σ1 of the operator L–1

F , the relation

∫ ∞

0
u(t) D+(t) dt =

∥∥L–1
F

∥∥
σ1

=
∞∑

k=1

1
λk

(54)

holds.
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Proof By the condition of Theorem 7, we have that the operator L–1
F is uniformly contin-

uous on L2,u (see Proposition 5). In Lemma 7, we take W̊ 2
2,v(r, I) with the norm ‖D2

r f ‖2,v as

the space H(I). Since the system of functions {λ– 1
2

k ϕk}∞k=1 is a complete orthonormal system
in the space W̊ 2

2,v(r, I), then by Lemma 7 we have

‖Et‖2 =
(

sup
f ∈W̊ 2

2,v(r)

|f (t)|
‖D2

r f ‖2,v

)2

=
∞∑

k=1

|ϕk(t)|2
λk

,

where Etf = f (t). The latter and (48) give (53). Multiplying both sides of (53) by u and
integrating them from zero to infinity, we get (54). The proof of Theorem 7 is complete. �

Let

D–(t) =
∫ ∞

t
ρ̄2(z)v–1(z) dz + ρ̄2(t)

∫ t

0
v–1(z) dz, t ∈ I.

Similarly, we have the following statement.

Theorem 8 Let the conditions of Theorem 4 hold. Let (44) and (45) hold.
(i) Then

D–(t) =
∞∑

k=1

|ϕk(t)|2
λk

, t ∈ I.

(ii) The operator L–1
F is nuclear if and only if

∫ ∞
0 u(t) D–(t) dt < ∞, and for the nuclear

norm ‖L–1
F ‖σ1 of the operator L–1

F , the relation

∫ ∞

0
u(t) D–(t) dt =

∥∥L–1
F

∥∥
σ1

=
∞∑

k=1

1
λk

holds.
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8. Došlý, O., Růžička, V.: Nonoscillation criteria and energy functional for even-order half-linear two-term differential

equations. Electron. J. Differ. Equ. 2016, 95 (2016)
9. Glazman, I.M.: Direct Methods of Qualitative Spectral Analysis of Singular Differential Operators. Gosudarstv. Izdat.

Fiz.-Mat. Lit., Moscow (1963)
10. Hinton, D.B., Lewis, R.T.: Discrete spectra criteria for singular differential operators with middle terms. Math. Proc.

Camb. Philos. Soc. 77, 337–347 (1975)
11. Kalyabin, G.A.: A necessary and sufficient condition for the spectrum of a homogeneous operation to be discrete in

in the matrix case. Differ. Equ. 9, 951–954 (1973)
12. Kalybay, A., Baiarystanov, A.O.: Exact estimate of norm of integral operator with Oinarov condition. Kazakh Math. J.

21(1), 614 (2021)
13. Kalybay, A., Keulimzhaeva, Z.A., Oinarov, R.: On the density of compactly supported functions in a space with

multiweighted derivatives. Proc. Steklov Inst. Math. 312, 179–193 (2021)
14. Kalybay, A., Oinarov, R., Sultanaev, Y.: Weighted second-order differential inequality on set of compactly supported

functions and its applications. Mathematics 9, 2830 (2021). https://doi.org/10.3390/math9212830
15. Kalybay, A., Oinarov, R., Sultanaev, Y.: Weighted differential inequality and oscillatory properties of fourth order

differential equations. J. Inequal. Appl. 2021, 199 (2021). https://doi.org/10.1186/s13660-021-02731-7
16. Kalybay, A., Oinarov, R., Sultanaev, Y.: Oscillation and spectral properties of some classes of higher order differential

operators and weighted nth order differential inequalities. Electron. J. Qual. Theory Differ. Equ. 2021, 3 (2021).
https://doi.org/10.14232/ejqtde.2021.1.3

17. Kufner, A., Persson, L.-E.: Weighted Inequalities of Hardy Type. World Scientific, River Edge (2003)
18. Kufner, A., Persson, L.-E., Samko, N.: Weighted Inequalities of Hardy Type, 2nd edn. World Scientific, Hackensack (2017)
19. Lewis, R.T.: The discreteness of the spectrum of self-adjoint, even order, one-term, differential operators. Proc. Am.

Math. Soc. 42, 480–482 (1974)
20. Mynbaev, K.T., Otelbayev, M.: Weighted Function Spaces and the Spectrum of Differential Operators. Nauka, Moscow

(1988)
21. Nasyrova, M.: Weighted inequalities involving Hardy-type and limiting geometric mean operators. PhD thesis, Luleå

University of Technology, Sweden (2002)
22. Nasyrova, M., Stepanov, V.D.: On weighted Hardy inequalities on semiaxis for functions vanishing at the endpoints.

J. Inequal. Appl. 1(3), 223–238 (1997)
23. Oinarov, R., Rakhimova, S.Y.: Oscillation and nonoscillation of two terms linear and half-linear equations of higher

order. Electron. J. Qual. Theory Differ. Equ. 2010, 49 (2010)
24. Opic, B., Kufner, A.: Hardy-Type Inequalities. Longman, Harlow (1990)
25. Stepanov, V.D.: On one weighted inequality of Hardy type for higher derivatives. Proc. Steklov Inst. Math. 187,

205–220 (1990)
26. Zhang, M.: Oscillation criteria and spectrum of self-adjoint even order two-term differential operators. Appl. Mech.

Mater. 751, 331–336 (2015). https://doi.org/10.4028/www.scientific.net/AMM.751.331
27. Zhang, M., Sun, J., Ao, J.: Oscillation criteria of a class of fourth order differential equations. Math. Methods Appl. Sci.

(2012). https://doi.org/10.1002/mma.1583

https://doi.org/10.14232/ejqtde.2015.1.19
https://doi.org/10.3390/math9212830
https://doi.org/10.1186/s13660-021-02731-7
https://doi.org/10.14232/ejqtde.2021.1.3
https://doi.org/10.4028/www.scientific.net/AMM.751.331
https://doi.org/10.1002/mma.1583

	Oscillatory and spectral properties of fourth-order differential operator and weighted differential inequality with boundary conditions
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Inequality (5)
	Oscillation properties of equation (6)
	Spectral characteristics of differential operator L
	Acknowledgements
	Funding
	Availability of data and materials
	Declarations
	Ethics approval and consent to participate
	Competing interests
	Author contributions
	Author details
	Publisher's Note
	References


