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Abstract
This paper is concerned with the nonlinear Klein–Gordon–Maxwell systems. Unlike all
known results in the literature, the Schrödinger operator –� + V is allowed to be
indefinite and the weaker superlinear conditions are imposed instead of the common
4-superlinear conditions on f . By combining a local linking argument and Morse
theory, we obtain that the system admits a nontrivial solution.
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1 Introduction
In this paper, we investigate the existence of nontrivial solution to the following Klein–
Gordon–Maxwell systems with sign-changing potentials:

⎧
⎨

⎩

–�u + V (x)u – (2ω + φ)φu = f (x, u), x ∈R
3,

–�φ = (ω + φ)u2, x ∈R
3,

(1.1)

where ω is a positive constant, f ∈ C(R3 × R) is a nonlinearity, V ∈ C(R3) is a potential,
and V changes sign.

It is known to all that the Klein–Gordon–Maxwell system was proposed by Benci
and Fortunato [1], they considered the following electrostatic nonlinear Klein–Gordon–
Maxwell system:

⎧
⎨

⎩

–�u + (m0 – (ω + φ2))u = |u|p–2u, x ∈R
3,

–�φ = (ω + φ)u2, x ∈R
3,

(1.2)

where m0, ω are real positive constants, and obtained infinitely many solitary wave solu-
tions of (1.2) when m0 > ω, p ∈ (4, 6). Such a system is a model describing solitary waves
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for the nonlinear stationary Klein–Gordon equation in the three-dimensional space in-
teracting with the electromagnetic field; see [2, 3].

System (1.2) was introduced by D’Aprile and Mugnai in [4], where the authors proved
there just the existence of a trivial solution for p ∈ (0, 2] or p ≥ 6 by applying a Pohozaev-
type argument. In [5], system (1.2) was shown to admit infinitely many radial solutions
for any 0 < ω < m0

√
p–2

2 and p ∈ (2, 4). Azzollini and Pomponio in [6] investigated the
existence range of (m0,ω) for p ∈ (2, 4) by using the Nehari method. Via the minimization
method of [6] and the indirect method developed by Struwe [7] and Jeanjean [8], a weaker
condition on (1.2) was proposed by Azzollini, Pisani, and Pomponio in [9], they established
the nontrivial radial solution of (1.2). Recently, the results in [9] were improved by Chen
and Tang [10].

For the system (1.1) with nonconstant potential V , it seems that the first result is due to
He [11], where he assumed that the potential V is positive and coercive, and showed the
existence of high-energy solutions by a variant fountain theorem and symmetric mountain
pass theorem. Furthermore, in [12] Li and Tang improved and complemented the results
in [11]. In [13], Cunha proved that system (1.1) with f (x, u) = f (u) has a ground state so-
lution, assuming that the potential V is positive and periodic, the nonlinearity f satisfies
4-superlinear and the weaker Ambrosetti–Rabinowitz (A-R) condition.

When V is sign-changing, Ding and Li [14] proved that system (1.1) has infinitely
many solutions under a variant 4-superlinear condition. Later, improving the results in
[11, 12, 14] by some new trick and symmetric mountain pass theorem, Chen and Tang
[15] obtained infinitely many solutions under a very general nonlinear term. As we know,
when V is sign-changing, the existing literature only deals with the existence of infinitely
many solutions of system (1.1). In this case, it is necessary that f (x, t) is odd as a function
of t.

The main object of the present paper is to complement the results obtained in [11–
15]. We emphasize that in all these papers the authors only considered the case where
the energy functional of system (1.1) is even. In [11–15], one may apply the symmetric
mountain pass theorem (see [16]) which can be applied to the Schrödinger operator –� +
V when it is not positive definite. But, without the symmetry hypothesis on the energy
functional, the approaches used in [11–15] are no longer applicable for (1.1) when the
potential V is sign-changing. Besides, by all accounts, the mountain pass theorem is no
longer suited to this situation. We attempt to take advantage of the linking theorem to
solve the semilinear problems. Unfortunately, as pointed out in [17], the energy functional
of Klein–Gordon–Maxwell system (1.1) would not enjoy the general linking geometry due
to the nonlocal term; see [17] for details.

Motivated by the above works, the question about the existence of solution for (1.1) with
a sign-changing potential has not been studied in the past and our paper is a first attempt
to prove the existence of a solution without the symmetry hypothesis.

We assume that V and f enjoy the following hypotheses:
(V1) V ∈ C(R3,R), infx∈R3 V (x) > –∞ and μ(V –1(–∞, M]) < ∞ for all M > 0, where μ is

the Lebesgue measure on R
3.

(F1) f ∈ C(R3 ×R,R) and there exist constants C0 > 0 and p ∈ (2, 6) such that

∣
∣f (x, t)

∣
∣ ≤ C0

(
1 + |t|p–1), for all (x, t) ∈R

3 ×R;
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(F2) f (x, t) = o(|t|) as t → 0, uniformly in x ∈R
3;

(F3) lim|t|→∞ F(x,t)
|t|2 = +∞ uniformly in x ∈R

3, and there exists r0 > 0 such that F(x, t) ≥ 0,
for all x ∈R

3, |t| ≥ r0;
(F4) there exists μ > 2 and θ > 0 such that f (x, t)t –μF(x, t)+θ t2 ≥ 0, for all (x, t) ∈R

3 ×R.
What is new is the potential V is allowed to be sign-changing. To overcome this diffi-

culty, the authors need to give some modifications and definitions as follows.
Under hypotheses (V1), (F1), (F3), and (F4), we can choose α > 0 such that

Ṽ (x) := V (x) + α ≥ 1, for all x ∈ R
3, (1.3)

f (x, t)t + αt2 ≥ 0, for all (x, t) ∈R
3 ×R, (1.4)

and

2F(x, t) + αt2 ≥ 0, for all (x, t) ∈R
3 ×R. (1.5)

In our problem, the work space E is defined by

E :=
{

u ∈ H1(
R

3) :
∫

R3

(|∇u|2 + V (x)u2)dx < +∞
}

.

Thus, E is a Hilbert space with its norm is ‖u‖ = (
∫

R3 (|∇u|2 + Ṽ (x)u2) dx)1/2.
If (V1) holds, by the compact embedding theorem established by Bartsch–Wang [18],

the embedding E ↪→ Ls(R3) is compact for any s ∈ [2, 6). Applying the spectral theory of
self-adjoint compact operators, denote –∞ < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · as the complete
sequence of eigenvalues of

–�u + V (x)u = λu, u ∈ E. (1.6)

Each eigenvalue is repeated according to its multiplicity, and let e1, e2, . . . be the corre-
sponding orthonormal eigenfunctions in L2(R3).

Inspired by [15, 19, 20], by combining a local linking argument of Li and Willem [21]
and infinite-dimensional Morse theorem [22], we will obtain our main result as follows:

Theorem 1.1 Assume (V1), (F1)–(F4) hold. If 0 is not an eigenvalue of (1.6), then problem
(1.1) possesses a nontrivial solution.

Remark 1.1 It is interesting to note that unlike many works in Klein–Gordon–Maxwell
systems, in our paper, the potential V is allowed to be sign-changing. The method we
used in this paper also works for other nonlocal problems, which include the Schrödinger–
Kirchhoff equation [23] and the Schrödinger–Poisson system [24].

Notation Throughout this paper, we assume that the usual norm in Ls-space is ‖u‖s =
(
∫

R3 |u|s dx)1/s; ‖u‖D1,2 = (
∫

R3 |∇u|2 dx)1/2 denotes the usual norm in D1,2-space; C, C1,
C2, . . . denote different positive constants.
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2 Proof of Theorem 1.1
System (1.1) has a variational structure, its weak solutions (u,φ) ∈ E × D1,2(R3) are critical
points of the functional given by

I(u,φ) =
1
2

∫

R3

(|∇u|2 + V (x)u2 – |∇φ|2 – (2ω + φ)φu2)dx –
∫

R3
F(x, u) dx. (2.1)

But I(u,φ) may be strongly ill-behaved in E, i.e., unbounded from below and above on
infinite-dimensional spaces. The next step is the usual reduction argument to obtain a
single variable functional.

Lemma 2.1 ([11]) For any fixed u ∈ H1(R3), there exists a unique φ = φu ∈ D1,2(R3) which
solves equation

–�φ + u2φ = –ωu2.

Moreover, the map 	 : u ∈ H1(R3) 	−→ 	[u] := φu ∈ D1,2(R3) is continuously differentiable,
and

(1) –ω ≤ φu ≤ 0 on the set {x : u(x) 
= 0};
(2) ‖φu‖D1,2 ≤ C1‖u‖2 and

∫

R3 |φu|u2 dx ≤ C2‖u‖4
12
5

≤ C3‖u‖4.

Lemma 2.2 ([6]) If un ⇀ u in H1(R3), then, up to subsequences, φun ⇀ φu in D1,2(R3).
Moreover, 	′(un) → 	′(u) in the sense of distributions, where 	 is defined in Lemma 2.1.

Using Lemma 2.1, the functional J(u) = I(u,φu) has the form

J(u) =
1
2

∫

R3

(|∇u|2 + V (x)u2)dx –
∫

R3

(
1
2
ωφuu2 + F(x, u)

)

dx. (2.2)

In view of [11], under (V1) and (F1), we have J(u) ∈ C1(E,R) and we will look for its critical
points. It is well known that if u is a critical point for J(u) with φ = φu, then (u,φ) ∈ E ×
D1,2(R3) is a critical point for I(u,φ).

We are ready to prove Theorem 1.1. Since 0 is not an eigenvalue of (1.6), we can assume
that there exists an integer d ≥ 0 such that 0 ∈ (λd,λd+1) where we set λ0 = –∞. For d ≥ 1,
we denote E– = span{e1, . . . , ed}andE+ = (E–)⊥. In particular, if d = 0, we set E– = {0} and
E+ = E. Then E– and E+ are the negative and positive spaces of the quadratic form B(u) =
1
2
∫

R3 (|∇u|2 + V (x)u2) dx, respectively. Furthermore, there exits a constant η > 0 such that

±B(u) ≥ η‖u‖2, u ∈ E±. (2.3)

To find critical points of the functionals with indefinite quadratic part, a natural idea is to
apply the linking theorem. Fortunately, as in [19] on Schrödinger–Poisson equations and
[20] on quasilinear Schrödinger equations, we observe that our functional J has a local
linking at 0. Hence, by employing infinite-dimensional Morse theory [22], we can prove
the existence of one nontrivial solution for problem (1.1). Thus we recall some concepts
and results about Morse theory and local linking theorem.
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Let E be a real Banach space, J be a C1-functional on E, and u an isolated critical point
of J with J(u) = c. Define

Jc :=
{

u ∈ E : J(u) ≤ c
}

.

Next we recall that the qth critical group of J at an isolated critical point u is defined by
Cq(J , u) := Hq(Jc, Jc \{0}), q ∈N = {0, 1, 2, . . . }, where Hq(·, ·) is called the singular homology
with integer coefficients.

If J satisfies the (PS) condition or Cerami condition and a < infu∈K J(u), where K is de-
fined by K := {u ∈ E : J ′(u) = 0}, then the critical groups of J at infinity are defined by

Cq(J ,∞) := Hq
(
E, Ja).

Definition 2.1 Let {un} ⊂ E be a Cerami sequence, that is,

{
J(un)

}
is bounded and

(
1 + ‖un‖

)
J ′(un) → 0. (2.4)

Then J is said to satisfy the Cerami condition if any Cerami sequence has a convergent
subsequence in E.

In Morse theory, we need to show that J satisfies the Cerami condition. Fortunately, by
a standard argument as in [15], we easily prove the following lemma.

Lemma 2.3 Assume that (V1), (F1), (F3), and (F4) hold. Then J satisfies the Cerami condi-
tion.

Proof Let {un} ⊂ E be a Cerami sequence. First, we prove that {‖un‖} is bounded. On
the contrary suppose that ‖un‖ → ∞. Consider vn = un/‖un‖, then ‖vn‖ = 1. Passing to a
subsequence, we know that vn ⇀ v in E, then since the embedding E ↪→ Ls(R3) is compact
for any s ∈ [2, 6), we have vn → v in Ls(R3) for 2 ≤ s < 6, and vn → v a.e. on R

3. Noticing
that –ω ≤ φun ≤ 0 and (F4) holds, we have

c + o(1) = J(un) –
1
μ

〈
J ′(un), un

〉

=
(

1
2

–
1
μ

)

‖un‖2 +
∫

R3

[(
2
μ

–
1
2

)

ωφun +
1
μ

φ2
un –

(
1
2

–
1
μ

)

α

]

u2
n dx

+
∫

R3

[
1
μ

f (x, un)un – F(x, un)
]

dx

≥
(

1
2

–
1
μ

)

‖un‖2 –
∫

R3

[
2
μ

ω2 +
(

1
2

–
1
μ

)

α +
θ

μ

]

u2
n dx.

(2.5)

Multiplying (2.5) by 1/‖un‖2, it follows from vn → v in L2(R3) that

[
2
μ

ω2 +
(

1
2

–
1
μ

)

α +
θ

μ

]

‖v‖2
2 =

[
2
μ

ω2 +
(

1
2

–
1
μ

)

α +
θ

μ

]

lim
n→∞‖vn‖2

2 > 0, (2.6)

where μ > 2. Then one deduces that v 
= 0. For a.e. x ∈ R
3 such that v(x) 
= 0, we have

limn→∞ |un(x)| = ∞. Hence, it follows from (F1), (F3), (1.3), (1.5), (2.4), (2.6), and Fatou’s
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lemma that

0 = lim
n→∞

c + o(1)
‖un‖2 = lim

n→∞
J(un)
‖un‖2

≤ 1
2

– lim inf
n→∞

ω

2‖un‖2

∫

R3
φun u2

n dx

– lim inf
n→∞

∫

R3

2F(x, un) + α|un|2
2|un|2 |vn|2 dx

≤ 1
2

+ lim inf
n→∞

ω2‖un‖2
2

2‖un‖2 –
∫

R3
lim inf

n→∞
2F(x, un) + α|un|2

2|un|2 |vn|2 dx = –∞,

(2.7)

which is a contradiction. Hence, un is bounded in E. And then, we have un ⇀ u in E,
un → u in Ls(R3) for 2 ≤ s < 6 and un → u a.e. on R

3. With the help of Lemma 2.2,
a standard argument (see [14], Lemma 3.1) shows that un → u in E up to a subse-
quence. �

2.1 Critical groups at zero
Proposition 2.1 ([21]) Suppose J ∈ C1(E,R) has a local linking at zero with respect to the
decomposition E = E– ⊕ E+, i.e., for some ε > 0,

J(u) ≤ 0 for u ∈ E– ∩ Bε , and J(u) > 0 for u ∈ (
E+ \ {0}) ∩ Bε , (2.8)

where Bε = {u ∈ E : ‖u‖ < ε}. If d = dim E– < ∞, then Cd(J , 0) 
= 0.

Lemma 2.4 Under assumptions (V1), (F1), and (F2), the functional J has a local linking
at zero with respect to decomposition E = E– ⊕ E+, where E–, E+ are as in Sect. 2 and d =
dim E–.

Proof From (F1) and (F2), for all ε > 0, there exists Cε > 0 such that

∣
∣F(x, t)

∣
∣ ≤ εt2 + Cε|t|p. (2.9)

Hence, we get

∣
∣
∣
∣

∫

R3
F(x, u) dx

∣
∣
∣
∣ ≤ o

(‖u‖2) as ‖u‖ → 0.

Using this and Lemma 2.1, as ‖u‖ → 0, we obtain

J(u) =
1
2

∫

R3

(|∇u|2 + V (x)u2)dx –
∫

R3

(
1
2
ωφuu2 + F(x, u)

)

dx

=
1
2

∫

R3

(|∇u|2 + V (x)u2)dx + o
(‖u‖2).

(2.10)

From this and (2.3), this implies that J has a local linking property at zero. �
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2.2 Critical groups at infinity
Lemma 2.5 Let f satisfy (F1), (F3), and (F4). Then Cq(J ,∞) ∼= 0, for any q ∈N = {0, 1, 2, . . . }.

Proof Let S∞ be the unit sphere in E. First, we need prove that

J(sh) → –∞, as s → +∞, for any h ∈ S∞. (2.11)

Due to (F3), Lemma 2.1(1), and (1.5), we deduce

J(sh) =
1
2

∫

R3

(∣
∣∇(sh)

∣
∣2 + Ṽ (x)(sh)2)dx –

1
2

∫

R3
ωφsh(sh)2 dx

–
1
2

∫

R3

(
2F(x, sh) + α(sh)2)dx

≤ s2
(

1
2

+
1
2
ω2

∫

R3
h2 dx –

1
2s2

∫

R3

(
2F(x, sh) + α(sh)2)dx

)

→ –∞, as s → +∞.

In what follows, we will prove the following claim.

Claim There exists A > 0 such that if J(u) ≤ –A, then

d
dt

∣
∣
∣
∣
t=1

J(tu) < 0.

If the claim is not true, there exists a sequence {un} ⊂ E such that

J(un) ≤ –n and
〈
J ′(un), un

〉
=

d
dt

∣
∣
∣
∣
t=1

J(tun) ≥ 0. (2.12)

From (2.12), (F4), and the fact that –ω ≤ φun ≤ 0, we deduce

0 ≥ J(un) –
1
μ

〈
J ′(un), un

〉

=
(

1
2

–
1
μ

)∫

R3

(|∇un|2 + Ṽ (x)|un|2
)

dx

+
∫

R3

((
2
μ

–
1
2

)

ωφun +
1
μ

φ2
un –

(
1
2

–
1
μ

)

α

)

u2
n dx

+
∫

R3

(
1
μ

f (x, un)un – F(x, un)
)

dx

≥
(

1
2

–
1
μ

)∫

R3

(|∇un|2 + Ṽ (x)|un|2
)

dx

–
∫

R3

(
2
μ

ω2 +
(

1
2

–
1
μ

)

α +
θ

μ

)

u2
n dx.

(2.13)

It is easy to know that if {un} is a bounded sequence in E, then {J(un)} is also bounded.
Then, since J(un) ≤ –n, we must have

∫

R3

(|∇un|2 + Ṽ (x)|un|2
)

dx → +∞, as n → +∞.
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Set vn = un
‖un‖ , then {vn} is a bounded sequence in E. Up to subsequence, we may assume

that

vn ⇀ v in E, vn → v in L2(
R

3), vn → v a.e. in R
3. (2.14)

Multiplying both sides of (2.13) by ‖un‖–2, we obtain

∫

R3

(
2
μ

ω2 +
(

1
2

–
1
μ

)

α +
θ

μ

)

v2
n dx ≥ 1

2
–

1
μ

. (2.15)

Then since μ > 2, (2.14) and (2.15) imply that v 
= 0. From this, (F3), (F4), and (1.4), we
know

1
‖un‖2

∫

R3

(
f (x, un)un + αu2

n
)

dx → +∞, as n → +∞. (2.16)

From the assumption 〈J ′(un), un〉 ≥ 0 and (2.16), we have

0 ≤ 〈
J ′(un), un

〉

=
∫

R3

(|∇un|2 + Ṽ (x)u2
n
)

dx –
∫

R3
(2ω + φu)φuu2

n dx

–
∫

R3

(
f (x, un)un + αu2

n
)

dx

≤ ‖un‖2
(

1 +
∫

R3 2ω2u2
n dx

‖un‖2 –
1

‖un‖2

∫

R3

(
f (x, un)un + αu2

n
)

dx
)

→ – ∞, as n → ∞.

(2.17)

This is impossible, so the conclusion of the claim is true.
From the claim and (2.11), for B > A large enough and u ∈ S∞, there exists a unique

T := T(u) > 0 such that

J
(
T(u)u

)
= –B.

Based on the implicit function theorem, we get that

T is a continuous function from S∞ to R.

So the deformation retract η : [0, 1] × (E \ B∞) → E defined by

η(s, u) = (1 – s)u + sT(u)u

satisfies η(0, u) = u, η(1, u) ∈ J–B, where B∞ = {u ∈ E : ‖u‖ ≤ 1}. It follows that

Cq(J ,∞) = Hq(E, J–B) ∼= Hq(E, E \ B∞) ∼= 0, for all q ∈ N. �

To find the nontrivial critical point, we will apply the following proposition.
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Proposition 2.2 ([22]) Suppose J ∈ C1(E,R) satisfies the Cerami condition and for some
k ∈N, Ck(J , 0) 
= Ck(J ,∞). Then J has a nontrivial critical point.

Proof of Theorem 1.1 First, from Lemma 2.3, we known that J satisfies the Cerami condi-
tion. On the one hand, due to Lemma 2.4, J has a local linking at zero with respect to the
decomposition E = E– ⊕ E+, then by Proposition 2.1, for d = dim E–1, we have Cd(J , 0) 
= 0.
On the other hand, Lemma 2.5 says that for all q ∈N, Cq(J ,∞) = 0. Hence, using Proposi-
tion 2.2, we prove that J has a nontrivial critical point u. Then (u,φu) is a nontrivial solution
of system (1.1). �
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