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Abstract
In this paper, we study the fractional Schrödinger equation

{
(–�)su + u = a(x)|u|p–2u + b(x)|u|q–2u,
u ∈ Hs(RN),

where (–�)s denotes the fractional Laplacian of order s ∈ (0, 1), N > 2s, 2 < p < q < 2∗
s ,

and 2∗
s is the fractional critical Sobolev exponent. The weight potentials a or b is a

sign-changing function and satisfies some valid assumptions. We obtain the
existence of infinitely many solutions to the problem by the Nehari manifold.
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1 Introduction and the main results
In this paper, we study the fractional Schrödinger equation

⎧⎨
⎩(–�)su + u = a(x)|u|p–2u + b(x)|u|q–2u,

u ∈ Hs(RN ),
(1.1)

where the fractional Laplacian (–�)s is defined by

(–�)s�(x) = CN ,sP.V .
∫
RN

�(x) – �(y)
|x – y|N+2s dy, � ∈ S

(
R

N)
,

P.V . stands for the Cauchy principal value, CN ,s is a normalizing constant, S(RN ) is the
Schwartz space of rapidly decaying functions, s ∈ (0, 1), N > 2s, 2 < p < q < 2∗

s , and 2∗
s is the

fractional critical Sobolev exponent.
In the last few years, the time-dependent fractional Schrödinger equation has been stud-

ied extensively in the literature. It appears widely in optimization, finance, phase transi-
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tions, stratified materials, crystal dislocation, flame propagation, conservation laws, ma-
terials science, and water waves (see [5]). The standing waves have a wide range of applica-
tions in the real world. Musical instruments generally emit sound due to the standing wave
generated by the vibration of a string. In the nonlinear fractional Schrödinger equation,
the question of the existence and stability of the standing wave solution is an important
research topic. It has been applied in many areas of physics, such as constructive quantum
field theory, plasma physics, nonlinear optics, and so on. A basic motivation for the study
of Eq. (1.1) arises in looking for the standing wave solutions of the type

�(x, t) = e–iEt/εu(x)

for the following time-dependent fractional Schrödinger equation:

iε
∂�

∂t
= ε2s(–�)s� +

(
V (x) + E

)
� – f (x,�), (x, t) ∈R

N ×R. (1.2)

Equation (1.2), introduced by Laskin [16, 17], describes how the wave function of a phys-
ical system evolves over time. Unlike the classical Laplacian operator, the usual analysis
tools for elliptic PDEs cannot be directly applied to (1.2) since (–�)s is a nonlocal opera-
tor. Cafferelli and Silvestre [6] developed a powerful extension method, which transfers the
nonlocal equation (1.2) into a local one on a half-space. Recently, Di Nezza, Palatucci, and
Valdinoci [9] gave a survey on the fractional Sobolev spaces, which are more convenient
for fractional Laplacian equations. Lee, Kim, Kim, and Scapellato [18] examined the exis-
tence of at least two distinct nontrivial solutions to a Schrödinger-type problem involving
the nonlocal fractional p-Laplacian with concave–convex nonlinearities. Since then, there
have been some works on the existence, multiplicity, and concentration phenomenon
of solutions to the nonlinear fractional Schrödinger equation (1.2) and other differential
problems driven by Laplace-type operators; see [1, 2, 7, 10–13, 15, 19–21, 25, 28–32].

When s = 1, (1.1) is the classical semilinear elliptic equation in R
N with sign-changing

weight functions. Equations of this type have been studied extensively in recent years,
mainly on bounded domains. Below we briefly describe some of this work. Berestycki et
al. [3] studied the existence and nonexistence of positive solutions to the problem

⎧⎨
⎩–�u + m(x)u = a(x)up, x ∈ �,

Bu(x) = 0, x ∈ ∂�.
(1.3)

Here m and a may be sign-changing functions, 1 < p < 2∗, Bu = u, and Bu = ∂νu (respec-
tively, the Dirichlet and Neumann boundary conditions). Brown and Zhang [4] considered
a problem similar to (1.3) by splitting the Nehari manifold into three parts correspond-
ing to local minima, local maxima, and points of inflection of the fibering map and then
looked for minimizers of the energy functional on the first two parts. De Paiva [8] studied
the problem

⎧⎨
⎩–�u = a(x)up + λb(x)uq, x ∈ �,

u(x) = 0, x ∈ ∂�,
(1.4)
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where 0 < p < 1 < q ≤ 2∗ – 1, a changes sign, and b ≥ 0. He proved that there exists λ∗ ∈
(0, +∞) such that (1.4) has at least one nonnegative solution for 0 < λ < λ∗ and there is no
such solution for λ > λ∗. For an unbounded domain, we can mention Wu [27], who studied
the multiplicity of positive solutions for the concave–convex elliptic equation

⎧⎨
⎩–�u + u = fλ(x)up–1 + gμ(x)uq–1, x ∈R

N ,

u ∈ H1(RN ),
(1.5)

where 1 < p < 2 < q < 2∗, the parameters λ,μ ≥ 0, fλ = λf+ + f–, (f± := max{0,±f }) is sign-
changing, and gμ(x) = a(x) + μb(x). Here the author used the idea of Brown and Zhang [4]
mentioned above and has split the Nehari manifold into three parts considered separately.
See also [14, 24], where related (singular) problems with sign-changing weights in R

N

are studied by similar techniques. To our best knowledge, there is no similar result for
nonlocal problem (1.2) with sign-changing weight functions, so in this paper, we will fill
this gap.

Our purpose here is to study the fractional Schrödinger equation (1.1). We are interested
in the situation where one of the weight functions a and b is sign-changing, and unlike the
papers mentioned above, we are mainly concerned with the existence of infinitely many
solutions. In what follows, we assume that a and b satisfy some of the following hypothe-
ses:

(H1) a ∈ Lr(RN ) and b ∈ Lt(RN ), where 1 < r
r–1 < 2∗

s
p , 1 < t

t–1 < 2∗
s

q ;
(H2) a, b ∈ L∞(RN ), lim sup|x|→∞ a(x) ≤ 0, and lim sup|x|→∞ b(x) ≤ 0.
(H3) b ≥ 0 in R

N , and the set {x ∈R
N : b(x) > 0} has a nonempty interior.

(H4) a ≤ 0 in R
N , and the set {x ∈R

N : b(x) > 0} has a nonempty interior.
For example, a(x) = e–|x| sin |x| and b(x) = e–|x| satisfy assumptions (H1) or (H2) and (H3).
a(x) = –e–|x| and b(x) = e–|x| sin |x| satisfy assumptions (H1) or (H2) and (H4).

Our main results of this paper is the following:

Theorem 1.1 Assume that (H1) or (H2) and (H3) or (H4) hold. Then problem (1.1) has
infinitely many solutions.

Under the assumptions above, we prove that the Nehari manifold is closed and of class
C2 and that the energy functional corresponding to problem (1.1) is bounded below. When
(H1) or (H2) is satisfied, we show that the energy functional satisfies the Palais–Smale con-
dition on the Nehari manifold, and then using some arguments based on the Krasnoselskii
genus, we establish the existence of infinitely many solutions for problem (1.1).

This paper is organized as follows. In Sect. 2, we describe the functional setting to study
problem (1.1) and prove some preliminary lemmas. In Sect. 3, we complete the proof of
Theorem 1.1.

2 Variational settings and preliminary results
We denote by | · |p the usual norm of the space Lp(R3), 1 ≤ p < ∞, by Br(x) the open
ball with center at x and radius r, and by C or Ci (i = 1, 2, . . . ) positive constants that may
change from line to line. By an ⇀ a and an → a we mean the weak and strong convergence,
respectively, as n → ∞.
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2.1 The functional space setting
Firstly, fractional Sobolev spaces are convenient for our problem, so we will give some
sketches on them; a complete introduction can be found in [9]. We recall that for s ∈ (0, 1),
the fractional Sobolev space Hs(R3) = W s,2(R3) is defined as follows:

Hs(
R

3) =
{

u ∈ L2(
R

3) :
∫
R3

(|ξ |2s∣∣F (u)
∣∣2 +

∣∣F (u)
∣∣2)dξ < ∞

}

with the norm

‖u‖2
Hs(R3) =

∫
R3

(|ξ |2s∣∣F (u)
∣∣2 +

∣∣F (u)
∣∣2)dξ ,

where F denotes the Fourier transform. We also define the homogeneous fractional
Sobolev space Ds,2(R3) as the completion of C∞

0 (R3) with respect to the norm

‖u‖Ds,2(R3) :=
(∫∫

R3×R3

|u(x) – u(y)|2
|x – y|3+2s dx dy

) 1
2

= [u]Hs(R3).

The fractional Laplacian (–�)su of a smooth function u : R3 →R is defined by

F
(
(–�)su

)
(ξ ) = |ξ |2sF (u)(ξ ), ξ ∈R

3,

that is,

F (φ)(ξ ) =
1

(2π ) 3
2

∫
R3

e–iξ ·xφ(x) dx

for functions φ in the Schwartz class. Also, (–�)su can be equivalently represented as (see
[9])

(–�)su(x) = –
1
2

C(s)
∫
R3

u(x + y) + u(x – y) – 2u(x)
|y|3+2s dy, x ∈R

3,

where

C(s) =
(∫

R3

(1 – cos ξ1)
|ξ |3+2s dξ

)–1

, ξ = (ξ1, ξ2, ξ3).

Also, by the Plancherel formula in Fourier analysis we have

[u]2
Hs(R3) =

2
C(s)

∥∥(–�)
s
2 u

∥∥2
2.

As a consequence, the norms on Hs(R3)

u 	−→
(∫

R3
|u|2 dx +

∫∫
R3×R3

|u(x) – u(y)|2
|x – y|3+2s dx dy

) 1
2

,

u 	−→
(∫

R3

(|ξ |2s∣∣F (u)
∣∣2 +

∣∣F (u)
∣∣2)dξ

) 1
2

,
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u 	−→
(∫

R3
|u|2 dx +

∥∥(–�)
s
2 u

∥∥2
2

) 1
2

are equivalent.
For the reader’s convenience, we consider the space X := Hs(RN ) with the norm

‖u‖ =
(∫

R3
|u|2 dx +

∥∥(–�)
s
2 u

∥∥2
2

) 1
2

,

and we review the main embedding result for this class of fractional Sobolev spaces.

Lemma 2.1 ([9]) Let 0 < s < 1. Then there exists a constant C = C(s) > 0 such that

‖u‖2
L2∗s (R3)

≤ C[u]2
Hs(R3)

for every u ∈ Hs(R3), where 2∗
s = 6

3–2s is the fractional critical exponent. Moreover, the em-
bedding X ↪→ Lr(R3) is continuous for any r ∈ [2, 2∗

s ] and is locally compact whenever
r ∈ [2, 2∗

s ).

Lemma 2.2 ([22]) If {un} is bounded in Hs(R3) and for some R > 0,

lim
n→∞ sup

y∈R3

∫
BR(y)

|un|2 dx = 0,

then un → 0 in Lr(R3) for all 2 < r < 2∗
s .

2.2 Properties of the Nehari manifold
Set X := Hs(RN ), and let A, B : X →R be defined by

A(u) :=
∫
RN

a(x)|u|p dx, (2.1)

B(u) :=
∫
RN

b(x)|u|q dx. (2.2)

Remark 2.1 Since 2 < p < q < 2∗
s , it is easy to see that if (H1) or (H2) is satisfied, then A, B ∈

C2(X,R).

It is clear that problem (1.1) is the Euler–Lagrange equation for the functional J : X →R

defined by

J(u) =
1
2
‖u‖2 –

1
p

∫
RN

a(x)|u|p dx –
1
q

∫
RN

b(x)|u|q dx. (2.3)

By this remark the action functional J ∈ C2(X,R), and its critical points are weak solutions
of problem (1.1). Moreover, for all u, v ∈ X, we have

〈
J ′(u), v

〉
=

∫
RN

(–�)
s
2 u(–�)

s
2 v dx –

∫
RN

a(x)|u|p–2uvdx –
∫
R3

b(x)|u|q–2uvdx.

Hence in the following, we consider critical points of I using the variational method.
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We first introduce the Nehari manifold associated with the functional J :

N :=
{

u ∈ X\{0} :
〈
J ′(u), u

〉
= 0

}
=

{
u ∈ X\{0} : ‖u‖2 = A(u) + B(u)

}
.

Now we define the fibering map corresponding to u ∈ X\{0} by setting αu(t) = J(tu), t > 0.
Then

αu(t) =
t2

2
‖u‖2 –

tp

p
A(u) –

tq

q
B(u),

and

α′
u(t) = t‖u‖2 – tp–1A(u) – tq–1B(u).

Moreover, tu ∈N if and only if α′
u(t) = 0.

Lemma 2.3 Suppose that either (H1) or (H2) is satisfied.
(i) If (H3) holds, then the equation α′

u(t) = 0 has only one solution tu > 0, provided that
A(u) > 0 or B(u) > 0. Moreover, J(u) > 0 for all u ∈N .

(ii) If (H4) holds, then the equation α′
u(t) = 0 has only one solution tu > 0, provided that

B(u) > 0. Moreover, J(u) > 0 for all u ∈N .

Proof Suppose (H3) holds. If A(u) ≤ 0 and B(u) = 0, then α′
u(t) > 0 for all t > 0. If B(u) > 0,

or B(u) = 0 and A(u) > 0, then αu has a positive maximum.
Suppose (H4) holds. Since now A(u) ≤ 0, α′

u(t) > 0 for all t > 0 if B(u) ≤ 0, and αu has a
positive maximum if B(u) > 0.

It remains to show that the equation α′
u(t) = 0 has at most one solution. Since αu(tu) > 0,

it will then follow that J(u) > 0 for all u ∈N . Let α′
u(t1) = α′

u(t2) = 0 for t1, t2 > 0. We have

‖u‖2 = tp–2
1 A(u) + tq–2

2 B(u)

and

‖u‖2 = tp–2
2 A(u) + tq–2

2 B(u).

Therefore

(
tp–2
1 – tp–2

2
)‖u‖2 = (t1t2)p–2(tq–p

1 – tq–p
2

)
B(u). (2.4)

From (2.4) we see that either t1 = t2 or B(u) < 0. However, in the second case, α′
t is never 0

under our hypotheses. �

Lemma 2.4 Suppose that (H1) and either (H3) or (H4) is satisfied. Then the Nehari mani-
fold N is a closed C2-manifold. Moreover, N is bounded away from zero.

Proof Let u ∈N . Then from the Sobolev and Hölder inequalities and (H1) we have

‖u‖2 = A(u) + B(u) ≤ |a|r|u|ppr′ + |b|s|u|qqs′ ≤ C1|a|r‖u‖p + C2|b|s‖u‖q, (2.5)
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where r′ = r
r–1 , s′ = s

s–1 , and C1, C2 are positive constants. Since 2 < p < q < 2∗
s , inequality

(2.5) implies that the Nehari manifold is bounded away from 0.
Now we show that it is a closed C2-manifold. Define ψ : X →R as

ψ(u) :=
〈
J ′(u), u

〉
= ‖u‖2 – A(u) – B(u).

By Remark (2.1), ψ ∈ C2(X,R)M and by the definition of ψ , N = ψ–1(0)\{0}. Since N is
bounded away from 0, N is closed. If we show that every point of N is regular for ψ ,
THEN the proof will be complete. Let u ∈N = ψ–1(0)\{0}. Then

‖u‖2 = A(u) + B(u) (2.6)

and

〈
ψ ′(u), u

〉
= 2‖u‖2 – pA(u) – qB(u). (2.7)

It follows from (2.6) and (2.7) that

〈
ψ ′(u), u

〉
= (2 – p)‖u‖2 + (p – q)B(u). (2.8)

Since, according to Lemma 2.3, B(u) ≥ 0 if u ∈N , the right-hand side of (2.8) is negative.
Hence every point of N is regular for ψ . �

Lemma 2.5 Suppose that (H2) and either (H3) or (H4) are satisfied. Then the Nehari man-
ifold N is a closed C2-manifold. Moreover, N is bounded away from zero.

Proof Consider u ∈N and assume that a, b ∈ L∞(RN ). Then by the Sobolev inequality we
have

‖u‖2 = A(u) + B(u) ≤ |a|∞|u|pp + |b|∞|u|qq ≤ C1|a|∞‖u‖p + C2|b|∞‖u‖q, (2.9)

where C1, C2 are positive constants. Using (2.9), we deduce thatN is bounded away from 0.
The rest of the proof is the same as that of Lemma 2.4. �

A functional I ∈ C1(X,R) is said to satisfy the Palais–Smale condition at the level c ∈ R

(the (PS)c-condition for short) if every sequence {un} ⊂ X such that

I(un) → c and I ′(un) → 0 (2.10)

admits a convergent subsequence. A sequence satisfying (2.10) is called a (PS)c-sequence.

Lemma 2.6 Suppose that the assumptions of Lemma 2.4 or 2.5 are satisfied. Then u �= 0 is a
critical point of J if and only if it is a critical point of J|N , and {un} ⊂N is a (PS)c-sequence
for J if and only if it is a (PS)c-sequence for J|N .

Proof It is clear that if u �= 0 is a critical point of J , then u ∈ N . Let u ∈ N . By (2.8) we
know that 〈ψ ′(u), u〉 < 0, and therefore X = TuN ⊕Ru. Since J ′(u)|Ru ≡ 0 by the definition
of N , the conclusion follows. �
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3 Proof of Theorem 1.1
To prove Theorem 1.1, we need to recall the definition of the Krasnoselskii genus and an
abstract multiplicity result in [23]. A set F ⊂ X is said to be symmetric if F = –F . Let

� := {F ⊂ X : F is closed and symmetric}.

For F �= ∅ and F ∈ �, the Krasnoselskii genus of F is the least integer n such that there
exists an odd function f ∈ C(F ,RN\{0}). The genus of F is denoted by γ (F). Set γ (∅) := 0
and γ (F) := ∞ if for all n, there exists no f with the above property.

Theorem 3.1 ([23]) Suppose J ∈ C1(M,R) is an even functional on a complete symmetric
C1,1-manifold M ⊂ V\{0} in some Banach space V . Suppose also that J satisfies the (PS)c-
condition for all c ∈R and is bounded from below on M. Let

γ̂ (M) := sup
{
γ (F) : F ⊂ M is compact and symmetric

}
.

Then the functional J possesses at least γ̂ (M) ≤ ∞ pairs of critical points.

We first need some auxiliary results.

Lemma 3.1 Suppose that assumption (H1) holds. Then the functionals A and B defined by
(2.1) and (2.2) are weakly continuous:

A(un) → A(u) and B(un) → B(u) as un ⇀ u.

Moreover, A′, B′ : X → X∗ are completely continuous:

A′(un) → A′(u) and B′(un) → B′(u) as un ⇀ u.

Proof We only prove the lemma for A and A′; for B, B′, the proof is similar. Let un ∈ X and
un ⇀ u. Using the Rellich–Kondrachov theorem, up to a subsequence, we have

un ⇀ u in X,

un → u in Ll
loc

(
R

N)
, 2 ≤ l < 2∗

s ,

un(x) → u(x) a.e. in R
N .

(3.1)

Let wn := |un|p–2un – |u|p–2u. By (3.1) we get

wn(x) → 0 a.e. in R
N . (3.2)

Assumption (H1) and the Sobolev inequality imply

|wn|
p

p–1 ≤ C1
(|un|p + |u|p) ∈ L

r
r–1

(
R

N)
. (3.3)

The boundedness of {un} in X, (3.2), and (3.3) imply that {|wn|
p

p–1 } is bounded in L r
r–1 (RN )

and up to a subsequence,

|wn|
p

p–1 ⇀ 0 in L
r

r–1
(
R

N)
. (3.4)
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Now let v ∈ X with ‖v‖ ≤ 1. Using the Hölder and the Sobolev inequalities, we deduce that

∣∣〈A′(un) – A′(u), v
〉∣∣ =

∣∣∣∣
∫
RN

a(x)wn dx
∣∣∣∣

≤
(∫

RN

∣∣a(x)
∣∣|v|p dx

) 1
p
(∫

RN

∣∣a(x)
∣∣|wn|

p
p–1

) p–1
p

≤ |a|
1
p
r |v| pr

r–1

(∫
RN

∣∣a(x)
∣∣|wn|

p
p–1

) p–1
p

≤ C|a|
1
p
r ‖v‖

(∫
RN

∣∣a(x)
∣∣|wn|

p
p–1

) p–1
p

≤ C|a|
1
p
r

(∫
RN

∣∣a(x)
∣∣|wn|

p
p–1

) p–1
p

,

where C > 0 is a constant. Since |wn|
p

p–1 ⇀ 0 in L r
r–1 (RN ) and a is in the dual space of

L r
r–1 (RN ), the right-hand side above goes to 0 uniformly with respect to ‖v‖ ≤ 1, which

this implies that A′ is completely continuous. By the definition of A,

A(u) =
1
p
〈
A′(u), u

〉
.

Thus

A(u) – A(un) =
1
p
〈
A′(u), u

〉
–

1
p
〈
A′(un), un

〉 → 0

by the complete continuity of A′. This proves the weak continuity of A. �

Let

a+(x) := max
{

0, a(x)
}

, a–(x) := max
{

0, –a(x)
}

, (3.5)

and define b±(x) similarly. Also, put

A±(u) :=
∫
RN

a±(x)|u|p dx, B±(u) :=
∫
RN

b±(x)|u|q dx.

Lemma 3.2 Suppose that assumption (H2) holds. Then A+, B+ are weakly continuous, and
A′

+, B′
+ : X → X∗ are completely continuous.

Proof We only prove the lemma for A+, A′
+; for B+, B′

+, the proof is similar. Let un ∈ X and
un ⇀ u. Using the Rellich–Kondrachov theorem, up to a subsequence, we have

un ⇀ u in X,

un → u in Ll
loc

(
R

N)
, 2 ≤ l < 2∗

s ,

un(x) → u(x) a.e. in R
N .

(3.6)
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As in the preceding proof, let wn := |un|p–2un – |u|p–2u. We see from the Krasnoselskii
theorem (see [26]) and (3.6) that

wn → 0 in L
p

p–1
loc

(
R

N)
. (3.7)

It follows from (H2) that for any ε > 0, there exists R > 0 such that

a+(x) < ε whenever |x| ≥ R. (3.8)

Using the Hölder and the Sobolev inequalities and (3.7), we obtain

sup
‖v‖≤1

∣∣∣∣
∫

|x|≤R
a+(x)wnv dx

∣∣∣∣ ≤ ∣∣a+∣∣∞
(∫

|x|≤R
|wn|

p
p–1 dx

) p–1
p

(∫
|x|≤R

|v|p dx
) 1

p

≤ C1

(∫
|x|≤R

|wn|
p

p–1 dx
) p–1

p

→ 0

(3.9)

as n → ∞. By inequality (3.3), {wn} is bounded in L
p

p–1 (RN ), hence inequality (3.8), the
Hölder and the Sobolev inequalities imply that there exists a constant C2 > 0, independent
of ε > 0, such that

sup
‖v‖≤1

∣∣∣∣
∫

|x|>R
a+(x)wnv dx

∣∣∣∣ ≤ C2ε. (3.10)

Using (3.9) and (3.10), we deduce that

sup
‖v‖≤1

∣∣〈A′
+(un) – A′

+(u), v
〉∣∣ = sup

‖v‖≤1

∣∣∣∣
∫
RN

a+(x)wnv dx
∣∣∣∣ → 0.

Since

A+(u) =
1
p
〈
A′

+(u), u
〉
,

we see as in the proof of Lemma 3.2 that A+ is weakly continuous. �

Lemma 3.3 Suppose that (H1) or (H2) and (H3) or (H4) are satisfied. Then the functional
J satisfies the (PS)c-condition on N for all c ∈R.

Proof Let c ∈R, and let {wn} ⊂N be a (PS)c-sequence. Then

‖un‖2 = A(un) + B(un) (3.11)

and

J ′(un) → 0, J(un) → c.
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If (H3) holds, then B(u) ≥ 0, and we have, using (3.11) and the boundedness of J(un),

c + 1 ≥ J(u)

=
1
2
‖u‖2 –

1
p

A(u) –
1
q

B(u)

=
(

1
2

–
1
p

)
‖u‖2 +

(
1
p

–
1
q

)
B(u)

≥
(

1
2

–
1
p

)
‖u‖2

(3.12)

for all n large enough.
If (H4) holds, then A(un) ≤ 0, and using (3.11) again, we have

c + 1 ≥ J(u)

=
1
2
‖u‖2 –

1
p

A(u) –
1
q

B(u)

=
(

1
2

–
1
q

)
‖u‖2 –

(
1
p

–
1
q

)
A(u)

≥
(

1
2

–
1
q

)
‖u‖2

(3.13)

for all n large enough. Hence in both cases, {un} is a bounded sequence. So there exists
u ∈ X such that passing to a subsequence, un ⇀ u. Since J(un) → 0, it is easy to see that
J(u) = 0, and it follows that

〈
J ′(un) – J ′(u), un – u

〉 → 0

or, equivalently,

‖un – u‖2 –
〈
A′(un) – A′(u), un – u

〉
–

〈
B′(un) – B′(u), un – u

〉 → 0. (3.14)

If (H1) holds, then by Lemma 3.1, A′(un) → A′(u) and B′(un) → B′(u). Thus from (3.14)
we get un → u in X.

If (H2) holds, then since the function u 	→ |u|t is convex for t ≥ 2 (in particular, for t = p
and q), we have (|v|t–2v – |u|t–2u)(v – u) ≥ 0. Therefore, using (3.14), we have

‖un – u‖2 –
〈
A′

+(un) – A′
+(u), un – u

〉
–

〈
B′

+(un) – B′
+(u), un – u

〉
≤ ‖un – u‖2 –

〈
A′(un) – A′(u), un – u

〉
–

〈
B′(un) – B′(u), un – u

〉
→ 0.

Since A′
+(un) → A′

+(u) and B′
+(un) → B′

+(u), we see that un → u in X again. �

Proof of Theorem 1.1 By Lemmas 2.3–2.5 and 3.3, N is a closed symmetric C2-manifold,
J(u) > 0 for all u ∈N , and J satisfies the (PS)c-condition on N for all c ∈R. If we show that
for any j ≥ 1, there exists a symmetric compact set Fj ⊂ N such that γ (Fj) ≥ j, then the
conclusion will follow from Lemma 2.6 and Theorem 3.1.
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Let j ≥ 1, let Xj be a subspace spanned by j linearly independent functions vk ∈ C∞
0 (RN )

with supp vk ⊂ {x ∈ R
N : b(x) > 0}, and let

Sj–1 := Xj ∩
{

x ∈ X : ‖u‖ = 1
}

.

Then we have B(u) > 0 for all u ∈ Sj–1, and it follows from Lemma 2.3 that the equation
α′

u(t) = 0 has exactly one solution tu ∈ (0,∞). Hence the mapping ϕ : Sj–1 → N given by
ϕ(u) := tuu is well defined, and it is obviously odd. If it is continuous, then Fj := ϕ(Sj–1) is
homeomorphic to Sj–1, and it follows from the properties of genus that γ (Fj) = γ (Sj–1) = j.

We need to show that u 	→ tu is continuous. An easy computation shows that if the
(necessary and sufficient) conditions for the existence of tu given in Lemma 2.3 are satis-
fied, then α′′

u(t) < 0 for t = tu. Hence the continuity of tu follows from the implicit function
theorem. �
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