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Abstract
In this paper, continuous cobweb models with a generalized Caputo derivative called
Caputo–Katugampola are investigated for both supply and demand functions and
their perturbations. The convergence of each solution in the perturbed and
unperturbed cases to a single equilibrium is proved. Moreover, some numerical
experiments are provided to validate the theoretical results.
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1 Introduction
It is vital to utilize mathematical models to investigate various economic processes in or-
der to make appropriate decisions. The time gap between supply and demand explains
economic volatility. The mismatch between supply and demand responses, as Leontief in
[26] pointed out, might be an essential component in defining market equilibrium. The
market dynamics of supply and demand have been increasingly modeled in this regard.
Commodity-price volatility can, in fact, offer a planning challenge for many businesses.
The cobweb theorem is the name given to this phenomena, Waugh in [29]. The cobweb
models, in particular [1, 17], which represent the pricing dynamics on a market for a non-
storable meal that takes a unit of time to create. In economic dynamics, the cobweb model
has been proposed as a benchmark model [13, 19, 22].

The global demand for fractional calculus (FC) appears to be increasing exponentially.
In the modeling of applied mathematics, physics, image processing, and engineering, FC
has drawn a lot of interest due to its influential qualities in communicating the complex
dynamics of nonsentimental systems [4, 5]. The traditional cobweb model with static ex-
pectations is thus a very useful tool for studying price dynamics. If supply and demand are
linear, though, one of three types of occurrences can be observed: convergence to steady-
state balance, series of period two, and unbounded variations. The equilibrium between
supply and demand may not always be available due to the influence of many factors such
as political stability, economic conditions, and tax-rate variation.
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In a fluctuating market, we perceive a variation in price, quantity, or other noise, which
prevents us from making investment decisions or deciding how much to supply or how
many items to produce from one period to the next. Muth [22] explored efficient markets
and the theory of price fluctuations using the cobweb framework. Nonlinear cobweb dy-
namics were studied by Gaffney et al. [4, 5]. Furthermore, some work on cobweb models
including time delays has been completed. Matsumoto et al. [27] and Gori et al. [20, 21]
investigated the terminal behavior and Hopf bifurcation of the cobweb model with time
delays.

The integer-order calculus is troublesome for various physical systems with fractional
(noninteger) derivatives in their real dynamics. Fractional-order differential equations are
employed to accurately represent these systems. In heat-transfer systems, for example
[16], financial systems [30], and electromagnetic systems [18], the fractional-order cal-
culus was used to model the data. In recent years, there has been a significant increase
in the use of fractional-order equations in stability theory [7, 14, 25, 28, 30], and various
papers have been published in this area.

Bohner and Hatipoğlu [8] studied cobweb models involving conformable fractional
derivatives. They provided the solutions as well as the sufficient conditions for the sta-
bility of the equilibrium value. Moreover, two distinct forms of discrete fractional cob-
web models are shown in [10]. In [9], they expanded their findings to time scales. Chen
and coworkers in [12] explored two types of Caputo fractional derivative dynamic cob-
web models. In order to provide adequate conditions for the equilibrium’s stability, the
researchers provided analytical responses.

In this paper, we propose a dynamic cobweb model with a Caputo–Katugampola frac-
tional derivative of order α ∈ (0, 1), ρ > 0 for the classic model and with noise perturbation.
Section 2 begins with a review of the essential features of the Mittag–Leffler function and
the Caputo–Katugampola operator. Sections 3 and 4 define and obtain our key results for
the situations of a Caputo–Katugampola fractional derivative in the supply and demand
functions, as well as their perturbations. Section 5 contains several examples to illustrate
the theoretical results. Finally, in Sect. 6, some conclusions are presented.

2 Preliminaries
In this section, we review some fundamentals of the fractional calculus. Moreover, we
adopt the notations of the Caputo–Katugampola fractional derivative and integral from
[3, 6, 23, 24].

Definition 1 (Katugampola fractional integral) The Katugampola fractional integral of
order 0 < α < 1, ρ > 0 of a function u ∈ L1([a, b]), 0 < a < b, is defined by

Iα,ρ
a+ u(t) =

ρ1–α

�(α)

∫ t

a

sρ–1u(s)
(tρ – sρ)1–α

ds,

where � is the Gamma function.

Definition 2 (Katugampola fractional derivative) The Katugampola fractional derivative
of order 0 < α < 1, ρ > 0 of a function u on [a, b], 0 < a < b, is defined by

Dα,ρ
a+ u(t) =

ρα

�(1 – α)
t1–ρ d

dt

∫ t

a

sρ–1u(s)
(tρ – sρ)α

ds.
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Definition 3 (Caputo–Katugampola fractional derivative) The Caputo–Katugampola
fractional derivative of order 0 < α < 1, ρ > 0 of a function u on [a, b], 0 < a < b, is defined
by

CDα,ρ
a+ u(t) = Dα,ρ

a+
[
u(t) – u(a)

]

=
ρα

�(1 – α)
t1–ρ d

dt

∫ t

a

sρ–1[u(s) – u(a)]
(tρ – sρ)α

ds.

Lemma 1 If u is a constant, then the fractional derivative of u is CDα,ρ
a+ u(t) = 0.

Definition 4 The Mittag–Leffler function with two parameters is defined as

Eα,β (z) =
+∞∑
k=0

zk

�(kα + β)
,

where α > 0, β > 0, z ∈C.
When β = 1, one has Eα(z) = Eα,1(z).

Lemma 2 ([11]) Let h be a continuous function on J . Then, the solution of problem

⎧⎨
⎩

CDα,ρ
a+ u(t) + λu(t) = h(t) t ∈ J , 0 < α < 1, a,ρ > 0,

u(a) = ua,
(1)

is given by

u(t) = uaEα

(
–λ

(
tρ – aρ

ρ

)α)

+
∫ t

a

(
tρ – sρ

ρ

)α–1

Eα,α

(
–λ

(
tρ – sρ

ρ

)α)
sρ–1h(s) ds.

Lemma 3 ([15]) Let A ∈R
d×d . Assume that the spectrum of A satisfies

σ (A) ⊂
{
λ ∈C\{0} : | argλ| >

απ

2

}
.

Then, the following statements hold:
(i) limt→+∞ ‖Eα(Atα)‖2 = 0.

(ii)
∫ +∞

0 tα–1‖Eα,α(Atα)‖2 dt < ∞,
where ‖ · ‖2 is the 2-norm for a matrix.

3 Cobweb model with a Caputo–Katugampola fractional derivative in the
demand function

The basic cobweb models with a Caputo–Katugampola fractional derivative in the de-
mand function are studied in this section.
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3.1 Basic Cobweb model
The basic cobweb model with a Caputo–Katugampola fractional derivative in the demand
function is given in the following form

D(t) = γ + β
(
p(t) + CDα,ρ

t+
0

p(t)
)
,

S(t) = γ1 + β1p(t),

D(t) = S(t),

(2)

where 0 < α < 1, ρ > 0, γ , β , γ1, β1 ∈R, β �= 0, β �= β1.

Theorem 1 The unique solution of (2) is given by

p(t) = Eα

(
λ

(
tρ – tρ

0
ρ

)α)[
p0 +

r
λ

]
–

r
λ

, (3)

where λ = β1–β

β
, r = γ1–γ

β
and p0 ∈ R.

Proof It is clear from (2) that

γ + β
(
p(t) + CDα,ρ

t+
0

p(t)
)

= γ1 + β1p(t),

that is,

CDα,ρ
t+
0

p(t) = λp(t) + r.

Let x(t) = p(t) + r
λ

. We have

CDα,ρ
t+
0

x(t) = CDα,ρ
t+
0

p(t)

= λp(t) + r

= λ

(
x(t) –

r
λ

)
+ r

= λx(t).

Using Lemma 2, we obtain

x(t) = Eα

(
λ

(
tρ – tρ

0
ρ

)α)
x(t0)

= Eα

(
λ

(
tρ – tρ

0
ρ

)α)[
p(t0) +

r
λ

]
.

Hence,

p(t) = Eα

(
λ

(
tρ – tρ

0
ρ

)α)[
p0 +

r
λ

]
–

r
λ

,

where p0 = p(t0). �
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Remark 1 pe = γ1–γ

β–β1
is the equilibrium value of the system (2).

Theorem 2 Suppose that β1 < β . Then, the solution of (2) converges to the equilibrium
value pe.

Proof We have β1 < b, then λ < 0. It follows from Lemma 3 that

lim
t→+∞ Eα

(
λ

(
tρ – tρ

0
ρ

)α)
= 0.

Therefore,

lim
t→+∞ p(t) = –

r
λ

=
γ1 – γ

β – β1
. �

3.2 Perturbed cobweb model
We consider the system

D(t) = γ + β
(
p(t) + CDα,ρ

t+
0

p(t)
)
,

S(t) = γ1 + β1p(t),

D(t) = S(t) + h(t),

(4)

where h is a continuous function, 0 < α < 1, ρ > 0, γ , β , γ1, β1 ∈R, β �= 0, β �= β1.

Theorem 3 The unique solution of (4) is given by

p(t) = Eα

(
λ

(
tρ – tρ

0
ρ

)α)[
p0 +

r
λ

]
–

r
λ

+
∫ t

t0

(
tρ – sρ

ρ

)α–1

Eα,α

(
λ

(
tρ – sρ

ρ

)α)
sρ–1 h(s)

β
ds,

where λ = β1–β

β
, r = γ1–γ

β
and p0 ∈ R.

Proof It follows from (4) that

γ + β
(
p(t) + CDα,ρ

t+
0

p(t)
)

= γ1 + β1p(t) + h(t),

that is,

CDα,ρ
t+
0

p(t) = λp(t) + r +
h(t)
β

.

Let x(t) = p(t) + r
λ

. We have

CDα,ρ
t+
0

x(t) = CDα,ρ
t+
0

p(t)

= λp(t) + r +
h(t)
β
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= λx(t) +
h(t)
β

.

Using Lemma 2, we obtain

x(t) = Eα

(
λ

(
tρ – tρ

0
ρ

)α)
x(t0)

+
∫ t

t0

(
tρ – sρ

ρ

)α–1

Eα,α

(
λ

(
tρ – sρ

ρ

)α)
sρ–1 h(s)

β
ds.

Hence,

p(t) = Eα

(
λ

(
tρ – tρ

0
ρ

)α)[
p0 +

r
λ

]
–

r
λ

+
∫ t

t0

(
tρ – sρ

ρ

)α–1

Eα,α

(
λ

(
tρ – sρ

ρ

)α)
sρ–1 h(s)

β
ds,

where p0 = p(t0). �

For the convergence of solutions of systems (4) to pe, we consider the following assump-
tion (H1): The function h(t) satisfies:

lim
t→+∞

∫ t

t0

(
tρ – sρ

ρ

)α–1

Eα,α

(
λ

(
tρ – sρ

ρ

)α)
sρ–1h(s) ds = 0. (5)

Remark 2 If limt→+∞ h(t) = 0, then (H1) holds.

Indeed, suppose that limt→+∞ h(t) = 0. Let T > t0.
For t ≥ T , we have

∣∣∣∣
∫ t

t0

(
tρ – sρ

ρ

)α–1

Eα,α

(
λ

(
tρ – sρ

ρ

)α)
sρ–1h(s) ds

∣∣∣∣

≤
∫ T

t0

(
tρ – sρ

ρ

)α–1

Eα,α

(
λ

(
tρ – sρ

ρ

)α)
sρ–1h(s) ds

+
∫ t

T

(
tρ – sρ

ρ

)α–1

Eα,α

(
λ

(
tρ – sρ

ρ

)α)
sρ–1h(s) ds

≤ sup
s≥t0

∣∣h(s)
∣∣ ∫ T

t0

(
tρ – sρ

ρ

)α–1

Eα,α

(
λ

(
tρ – sρ

ρ

)α)
sρ–1 ds

+ sup
s≥T

∣∣h(s)
∣∣ ∫ t

T

(
tρ – sρ

ρ

)α–1

Eα,α

(
λ

(
tρ – sρ

ρ

)α)
sρ–1 ds

≤ sup
s≥t0

∣∣h(s)
∣∣
∫ tρ –tρ0

ρ

tρ –Tρ

ρ

uα–1Eα,α
(
λuα

)
du + sup

s≥T

∣∣h(s)
∣∣
∫ +∞

0
uα–1Eα,α

(
λuα

)
du. (6)

This show that,

lim
t→+∞

∫ t

t0

(
tρ – sρ

ρ

)α–1

Eα,α

(
λ

(
tρ – sρ

ρ

)α)
sρ–1h(s) ds = 0.
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Theorem 4 Suppose that β1 < β and (H1) holds. Then, the solution of (2) converges to the
value pe.

4 Cobweb model with a Caputo–Katugampola fractional derivative in the
supply function

In this section, the basic cobweb model with a Caputo–Katugampola fractional derivative
in the supply function is investigated.

4.1 Basic cobweb model
The basic cobweb model with a Caputo–Katugampola fractional derivative in the supply
function is defined as:

D(t) = γ + βp(t),

S(t) = γ1 + β1
(
p(t) + cCDα,ρ

t+
0

p(t)
)
,

D(t) = S(t),

(7)

where 0 < α < 1, ρ > 0, γ , β , γ1, β1, c ∈R, β1 �= 0, c �= 0, β �= β1.

Theorem 5 The unique solution of (7) is given by

p(t) = Eα

(
λ̃

(
tρ – tρ

0
ρ

)α)[
p0 +

r̃
λ̃

]
–

r̃
λ̃

, (8)

where λ̃ = β–β1
β1c , r̃ = γ –γ1

β1c and p0 ∈ R.

Proof It follows from (7) that

γ1 + β1
(
p(t) + cCDα,ρ

t+
0

p(t)
)

= γ + βp(t),

that is,

CDα,ρ
t+
0

p(t) = λ̃p(t) + r̃.

In the same way as Theorem 1, we obtain

p(t) = Eα

(
λ̃

(
tρ – tρ

0
ρ

)α)[
p0 +

r̃
λ̃

]
–

r̃
λ̃

,

where p0 = p(t0). �

Remark 3 pe = γ1–γ

β–β1
is the equilibrium value of the system (7).

Theorem 6 Suppose that β – β1 < β1c. Then, the solution of (7) converges to the equilib-
rium value pe.
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4.2 Perturbed cobweb model
We consider the system

D(t) = γ + βp(t),

S(t) = γ1 + β1
(
p(t) + cCDα,ρ

t+
0

p(t)
)
,

D(t) = S(t) + g(t),

(9)

where g is a continuous function, 0 < α < 1, ρ > 0, γ , β , γ1, β1, c ∈R, β1 �= 0, c �= 0, β �= β1.

Theorem 7 The unique solution of (9) is given by

p(t) = Eα

(
λ̃

(
tρ – tρ

0
ρ

)α)[
p0 +

r̃
λ̃

]
–

r̃
λ̃

+
∫ t

t0

(
tρ – sρ

ρ

)α–1

Eα,α

(
λ̃

(
tρ – sρ

ρ

)α)
sρ–1 g(s)

β1c
ds,

where p0 ∈R.

Proof It follows from (9) that

γ1 + β1
(
p(t) + cCDα,ρ

t+
0

p(t)
)

+ g(t) = γ + βp(t),

that is,

CDα,ρ
t+
0

p(t) = λ̃p(t) + r̃ –
g(t)
β1c

.

In the same way as Theorem 3, we obtain

p(t) = Eα

(
λ̃

(
tρ – tρ

0
ρ

)α)[
p0 +

r̃
λ̃

]
–

r̃
λ̃

+
∫ t

t0

(
tρ – sρ

ρ

)α–1

Eα,α

(
λ̃

(
tρ – sρ

ρ

)α)
sρ–1 g(s)

β1c
ds,

where p0 = p(t0). �

For the convergence of solutions of systems (4) to pe, we consider the following assump-
tion (H2): The function g(t) satisfies:

lim
t→+∞

∫ t

t0

(
tρ – sρ

ρ

)α–1

Eα,α

(
λ̃

(
tρ – sρ

ρ

)α)
sρ–1g(s) ds = 0. (10)

Theorem 8 Suppose that β – β1 < β1c and (H2) holds. Then, the solution of (2) converges
to the value pe.
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Table 1 The values of p(t) for the unperturbed and perturbed model of Example 1

t 100 500 1000

α pm pa p∗
a pm pa p∗

a pm pa p∗
a

ρ = 0.5
0.3 7.0251 7.0230 7.0502 6.7294 6.7276 6.7385 6.6088 6.6072 6.6145
0.5 6.1667 6.1611 6.1971 5.8118 5.8086 5.8202 5.6899 5.6874 5.6944
0.7 5.4929 5.4868 5.5162 5.2614 5.2595 5.2662 5.2004 5.1993 5.2028
0.9 5.0961 5.0945 5.1069 5.0390 5.0388 5.0408 5.0274 5.0274 5.0284

ρ = 1
0.3 6.4563 6.4549 6.4592 5.9978 5.9970 5.9979 5.8376 5.8370 5.8374
0.5 5.5535 5.5519 5.5566 5.2513 5.2510 5.2518 5.1781 5.1779 5.1783
0.7 5.1418 5.1413 5.1453 5.0440 5.0440 5.0447 5.0269 5.0269 5.0272
0.9 5.0176 5.0176 5.0211 5.0040 5.0040 5.0046 5.0021 5.0021 5.0024

ρ = 1.5
0.3 5.9286 5.9279 5.9310 5.4897 5.4895 5.4901 5.3663 5.3662 5.3665
0.5 5.2179 5.2176 5.2210 5.0653 5.0653 5.0660 5.0389 5.0388 5.0392
0.7 5.0359 5.0358 5.0392 5.0065 5.0065 5.0072 5.0031 5.0031 5.0035
0.9 5.0031 5.0030 5.0064 5.0003 5.0003 5.0010 5.0001 5.0001 5.0005

5 Numerical results
In this section, we provide two numerical examples to demonstrate our theoretical find-
ings.

Example 1 Consider the basic cobweb model with a Caputo–Katugampola fractional
derivative in the demand function as follows:

D(t) = γ + β
(
p(t) + CDα,ρ

t+
0

p(t)
)
,

S(t) = γ1 + β1p(t),

D(t) = S(t),

with γ = –10,β = 6,γ1 = 5,β1 = 3, and p0 = 10. By choosing these parameters, one can
deduce that

λ =
β1 – β

β
= –0.5, r =

γ1 – γ

γ
= –1.5 and pe =

γ1 – γ

β – β1
= 5,

β1 < β .

Moreover, we consider the perturbed model (4) with h(t) = 1/t. Thus, all the assump-
tions in Theorems 2 and 4 are satisfied, hence, the solution p(t) of both models, ba-
sic and perturbed, should converge to the value pe = 5. By computing the equation
(3) with different values of α,ρ , and the values of the given parameters, we can ob-
tain the values, pm, for the basic model. Furthermore, we obtain the numerical solu-
tions for the corresponding discrete models and compute the values of pa and p∗

a for
the basic and the perturbed model, respectively. Table 1 shows the values pm, pa, and
p∗

a with various values of α,ρ , and t. Figures 1 and 2 show the values of p(t) for the
unperturbed and perturbed models at different values of ρ and α = 0.9. It is obvious
that by choosing a sufficiently large t, both models always convergent to the value pe =
5.
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Figure 1 The values of p(t) (left) and the approximate values of p(t) (right) for Example 1 at various values of ρ
and α = 0.9

Figure 2 The approximate values of p(t) for the perturbed basic cobweb model, Example 1, at various values
of ρ and α = 0.9

Example 2 Consider the basic cobweb model with a Caputo–Katugampola fractional
derivative in the supply function as follows:

D(t) = γ + βp(t),

S(t) = γ1 + β1
(
p(t) + c · CDα,ρ

t+
0

p(t)
)
,

D(t) = S(t),

with γ = 4,β = 6,γ1 = –20,β1 = 2, c = 2, and p0 = 10. Taking these values leads to:

λ̃ =
β – β1

β1c
= –1.5, r̃ =

γ1 – γ

β1c
= 6,
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Table 2 The values of p(t) for the unperturbed and perturbed model of Example 2

t 100 500 1000

α pm pa p∗
a pm pa p∗

a pm pa p∗
a

ρ = 0.5
0.3 5.0733 5.0741 5.0641 4.8711 4.8705 4.8674 4.7944 4.7939 4.7919
0.5 4.5017 4.5004 4.4918 4.3366 4.3360 4.3336 4.2832 4.2828 4.2814
0.7 4.1766 4.1759 4.1703 4.0974 4.0972 4.0959 4.0757 4.0756 4.0749
0.9 4.0310 4.0310 4.0283 4.0143 4.0143 4.0138 4.0104 4.0104 4.0101

ρ = 1
0.3 4.7018 4.7014 4.6994 4.4495 4.4494 4.4490 4.3693 4.3692 4.3690
0.5 4.2252 4.2249 4.2230 4.1009 4.1008 4.1005 4.0713 4.0173 4.0712
0.7 4.0544 4.0543 4.0526 4.0174 4.0174 4.0170 4.0107 4.0107 4.0105
0.9 4.0068 4.0068 4.0051 4.0016 4.0016 4.0012 4.0008 4.0008 4.0007

ρ = 1.5
0.3 4.4144 4.4143 4.4126 4.2067 4.2067 4.2063 4.1524 4.1524 4.1522
0.5 4.0874 4.0873 4.0857 4.0261 4.0261 4.0258 4.0155 4.0155 4.0154
0.7 4.0142 4.0142 4.0125 4.0026 4.0026 4.0023 4.0013 4.0013 4.0011
0.9 4.0012 4.0012 3.9995 4.0001 4.0001 3.9998 4.0001 4.0001 3.9999

and

pe =
γ1 – γ

β – β1
= 4, β – β1 < β1c.

Furthermore, in the perturbed model (9) we take g(t) = 1/t. It is clear that all the assump-
tions in Theorems 5 and 7 are fulfilled. Consequently, the solution p(t) of the perturbed
and unperturbed models should converge to the value pe = 4. To obtain the values, pm, of
the unperturbed model, we have solved equation (8) at different values of α,ρ . In addi-
tion, the values pa for the corresponding unperturbed discrete model are computed. For
the perturbed model, we have computed the approximate solution of p(t) and then ob-
tained the values p∗

a. Table 2 displays the values of pm, pa, and p∗
a with different values of

α,ρ and t. In Figs. 3 and 4, we display the values of p(t) for the unperturbed and perturbed
models at different values of ρ and α = 0.7. It is evident that when t becomes larger both
models always convergent to the point pe = 4.

Remark 4 The numerical results were obtained using a numerical scheme based on a de-
composition formula for the Caputo–Katugampola derivative. This scheme was proposed
by Almeida et al. and it is used to solve such kinds of problem numerically, for more details
see [2]. Furthermore, the numerical values of the Mittag–Leffler functions can be com-
puted by using the MATLAB code known as mlf, which is available on the MathWorks
website.

6 Conclusion
In this paper, we studied continuous cobweb models with the Caputo–Katugampola
derivative for supply and demand functions, as well as their perturbations. It is demon-
strated that in both the perturbed and unperturbed cases, each solution converges to a
single equilibrium. Additionally, some numerical results are included to confirm the the-
oretical results. The equilibrium forms are an essential component in economic sciences,
for which mathematics strives to provide theoretical equations, and this is our future goal.
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Figure 3 The values of p(t) (left) and the approximate values of p(t) (right) for Example 2 at various values of ρ
and α = 0.7

Figure 4 The approximate values of p(t) for the perturbed basic cobweb model, Example 2, at various values
of ρ and α = 0.7
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