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Abstract
The Fokas-Lenells (FL) equation, which is rich in physical property in soliton theory as
well as optical fiber, is a generalization of the higher-order Schrödinger equation. We
construct the periodic solutions of the FL equation based on the Jacobi elliptic
function expansion method in this context. Moreover, the characteristics of the
obtained solutions are visualized graphically by selecting appropriate parameters.
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1 Introduction
Many complex phenomena of nature can be described by a large number of nonlinear
evolution equations [1–10], so studying soliton solutions of nonlinear evolution equations
is significant [9–13]. In recent years, the research of soliton theory has been penetrated
into different areas, for instance, the plasma physics, fluid mechanics, and optics [11–20].

In nonlinear optics, many equations have been modeled to structure the propagation of
optical pulses in various media [21–27]; the most famous equation of which is nonlinear
Schrödinger equation (NLSE) [28, 29]. However, the Fokas-Lenells (FL) equation (1.1) was
first proposed and derived by Fokas and Lenells via the bi-Hamiltonian method, which is
a generalization of the NLSE [30–32],

iqy + αqyy + βqyt + qq∗(γ q + iσ rqy) = 0, (1.1)

where q(y, t) represents soliton profile, and asterisk denotes conjugate complex, α repre-
sents velocity dispersion, γ represents the self-phase modulation coefficient, β the Space-
time dispersion coefficient, and σ the nonlinear dispersion coefficient, while y and t de-
note space and time variables, respectively. Equation (1.1) and NLSE is equivalent to the
Camassa-Holm equation and KdV equation in correlation [33, 34]. By gauge transforma-
tion, Eq. (1.1) can be reduced to a simple form,

iqyt – iqyy + 2qy – qyqq∗ + iq = 0. (1.2)
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As all we know, many scholars have done a lot of work on the solution of FL system
[35–44]. For example, the bright, dark, and singular soliton solutions of Eq. (1.2) are found
by extended trial function method [35, 36]. Different kinds of exact solutions and analytical
representation for the rogue waves of Eq. (1.2) are derived via the Darboux transforma-
tion [37–40]. A class of exact combined soliton solutions of Eq. (1.2) is obtained by the
complex envelope function method [41]. The general dark N-soliton solution of Eq. (1.2)
is constructed by the Hirota direct method [42]. Singular and combo-soliton solutions are
presented using exp(–ϕ(ξ )) function approach [43]. Exact explicit travelling wave solu-
tions are given by the method of dynamical systems [44].

The Jacobi elliptic function expansion method takes the form of constructing solution
to get new exact solutions, which plays an important role in obtaining exact solutions of
many equations and models [45–49]. However, many researchers use the extended Jaco-
bian elliptic function expansion method to obtain more general and richer solitary wave
solutions of different physical models [50–55]. In this paper, we apply the extended Jaco-
bian elliptic function method to solve new exact solutions of Eq. (1.2).

The overall framework of this paper will be designed as below. In Sect. 2, steps and hints
of the method are listed. In Sect. 3, the periodic solutions and exact solutions of Eq. (1.2)
are presented. Meanwhile, we draw some figures for those soliton solutions; the conclusion
is given in the last section.

2 Program description
First, we state the general process of the Jacobi elliptic function expansion method [50–55]:

Suppose a nonlinear equation with two independent variable:

F
(
φ,φ2,φy,φt ,φyy,φtt , . . .

)
= 0. (2.1)

Applying the following transformation to Eq. (2.1)

φ(y, t) = 	(ς ), ς = k(y – ct), (2.2)

we can get

L
(
	(ς ),	2(ς ),	′(ς ),	′′(ς ), . . .

)
= 0, (2.3)

here k shows wave number, and c is for wave speed.
Assume that the solution of Eq. (2.3) has a limited form of the extended Jacobi elliptic

function:

	(ς ) =
M∑

j=–M

djY j(ς ), (2.4)

where Y (ς ) = sn(ς , m) or cn(ς , m) or dn(ς , m) (0 < m < 1). The value of M can be solved by
equating the highest order of the nonlinear term and the linear derivative term in Eq. (2.3).
The value of dj (j = –M, . . . , M) can be obtained by solving a system of equations, resulting
from the substitution of Eq. (2.4) into (2.3), with a computer. Taking Y (ς ), M, and dj into
Eq. (2.4), we obtain a general expression for the solution of Eq. (2.1) in terms of the Jacobi
elliptic function.
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To make better use of this method, we note the following points:
1. Decision of the highest order

O(V ) = M, O
(
V r) = rM, O

(
dsV
dς s

)
= M + s,

O
(

V r dsV
dς s

)
= (r + 1)M + s.

(2.5)

2. Identical relation

sn2(ς , m) + cn2(ς , m) = 1,

dn2(ς , m) + m2sn2(ς , m) = 1,

m2cn2(ς , m) + 1 – m2 = dn2(ς , m),

cn2(ς , m) +
(
1 – m2)sn2(ς , m) = dn2(ς , m).

(2.6)

3. Derivative relations

sn′(ς , m) = cn(ς , m)dn(ς , m),

cn′(ς , m) = –sn(ς , m)dn(ς , m),

dn′(ς , m) = –m2sn(ς , m)cn(ς , m).

(2.7)

4. Limit relation

m → 1, sn(ς , m) → tanhς ,

cn(ς , m) → sechς , dn(ς , m) → sechς .

m → 0, sn(ς , m) → sinς , cn(ς , m) → cosς , dn(ς , m) → 1.

(2.8)

3 Application to FLE
The solution of Eq. (1.2) can be supposed to be:

q(y, t) = Q(ς )eiϕ , ς = k(y – ct),ϕ = ay – ωt, (3.1)

here k, c, a, and ω refer to real arbitrary constants.
Taking Eq. (3.1) into (1.2) and simplifying, we can obtain real and imaginary parts:

(c + 1)k2Q′′ –
(
aω + a2 + 2a + 1

)
Q + aQ3 = 0, (3.2)

(
ac + ω + 2a + 2 – Q2)kQ′ = 0. (3.3)

Using (2.5) in Eq. (3.2), we can obtain M = 1.
So, we can get:

Q(ς ) = d–1Y –1(ς ) + d0 + d1Y (ς ). (3.4)
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3.1 Periodic solutions of FLE
Case 1: If Y (ς ) = sn(ς , m)

Set 1:

{
d–1 = ∓

√
2ik

√
1 + c√

a
, d0 = 0, d1 = ∓

√
2ikm

√
1 + c√

a
,

ω =
–(1 + a)2 – k2(1 + c)(1 + 6m + m2)

a

}
. (3.5)

Using Eq. (3.4) and (3.5), we obtain

q(y, t) =
(

∓
√

2ik
√

1 + c√
a

sn–1(k(y – ct)
) ∓

√
2ikm

√
1 + c√

a
sn

(
k(y – ct)

)
)

× exp

(
i
(

ay +
(1 + a)2 + k2(1 + c)(1 + 6m + m2)

a
t
))

. (3.6)

Set 2:

{
d–1 = ∓

√
2ik

√
1 + c√

a
, d0 = 0, d1 = 0,ω =

–(1 + a)2 – k2(1 + c)(1 + m2)
a

}
. (3.7)

Using Eq. (3.4) and (3.7), we obtain

q(y, t) = ∓
√

2ik
√

1 + c√
a

sn–1(k(y – ct)
)

× exp

(
i
(

ay +
(1 + a)2 + k2(1 + c)(1 + m2)

a
t
))

. (3.8)

Set 3:

{
d–1 = ∓

√
2ik

√
1 + c√

a
, d0 = 0, d1 = ±

√
2ikm

√
1 + c√

a
,

ω =
–(1 + a)2 – k2(1 + c)(1 – 6m + m2)

a

}
. (3.9)

Using Eq. (3.4) and (3.9), we obtain

q(y, t) =
(

∓
√

2ik
√

1 + c√
a

sn–1(k(y – ct)
) ±

√
2ikm

√
1 + c√

a
sn

(
k(y – ct)

)
)

× exp

(
i
(

ay +
(1 + a)2 + k2(1 + c)(1 – 6m + m2)

a
t
))

. (3.10)

Set 4:

{
d–1 = 0, d0 = 0, d1 = ∓

√
2ikm

√
1 + c√

a
,ω =

–(1 + a)2 – k2(1 + c)(1 + m2)
a

}
. (3.11)
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Using Eq. (3.4) and (3.11), we obtain

q(y, t) = ∓
√

2ikm
√

1 + c√
a

sn
(
k(y – ct)

)

× exp

(
i
(

ay +
(1 + a)2 + k2(1 + c)(1 + m2)

a
t
))

. (3.12)

Case 2: If Y (ς ) = cn(ς , m)
Set 1:

{
d–1 = –

√
2k

√
1 + c

√
–1 + m2

√
a

, d0 = 0, d1 = ∓
√

2km
√

1 + c√
a

,

ω =
–(1 + a)2 + k2(1 + c)(–1 + 2m2 ± 6m

√
–1 + m2)

a

}
. (3.13)

Using Eq. (3.4) and (3.13), we obtain

q(y, t) =
(

–
√

2k
√

1 + c
√

–1 + m2
√

a
cn–1(k(y – ct)

) ∓
√

2km
√

1 + c√
a

cn
(
k(y – ct)

))

× exp

(
i
(

ay +
(1 + a)2 + k2(1 + c)(1 – 2m2 ∓ 6m

√
–1 + m2)

a
t
))

. (3.14)

Set 2:

{
d–1 = ∓

√
2k

√
1 + c

√
–1 + m2

√
a

, d0 = 0, d1 = 0,

ω =
–(1 + a)2 – k2(1 + c)(1 – 2m2)

a

}
. (3.15)

Using Eq. (3.4) and (3.15), we obtain

q(y, t) = ∓
√

2k
√

1 + c
√

–1 + m2
√

a
cn–1(k(y – ct)

)

× exp

(
i
(

ay +
(1 + a)2 + k2(1 + c)(1 – 2m2)

a
t
))

. (3.16)

Set 3:

{
d–1 =

√
2k

√
1 + c

√
–1 + m2

√
a

, d0 = 0, d1 = ∓
√

2km
√

1 + c√
a

,

ω =
–(1 + a)2 + k2(1 + c)(–1 + 2m2 ∓ 6m

√
–1 + m2)

a

}
. (3.17)

Using Eq. (3.4) and (3.17), we obtain

q(y, t) =
(√

2k
√

1 + c
√

–1 + m2
√

a
cn–1(k(y – ct)

) ∓
√

2km
√

1 + c√
a

cn
(
k(y – ct)

))

× exp

(
i
(

ay +
(1 + a)2 + k2(1 + c)(1 – 2m2 ± 6m

√
–1 + m2)

a
t
))

. (3.18)
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Set 4:

{
d–1 = 0, d0 = 0, d1 = ∓

√
2km

√
1 + c√

a
,ω =

–(1 + a)2 + k2(1 + c)(–1 + 2m2)
a

}
. (3.19)

Using Eq. (3.4) and (3.19), we obtain

q(y, t) = ∓
√

2km
√

1 + c√
a

cn
(
k(y – ct)

)

× exp

(
i
(

ay +
(1 + a)2 + k2(1 + c)(1 – 2m2)

a
t
))

. (3.20)

Case 3: If Y (ς ) = dn(ς , m)
Set 1:

{
d–1 = –

i
√

2k
√

1 + c
√

–1 + m2
√

a
, d0 = 0, d1 = ∓

√
2
√

k2(1 + c)√
a

,

ω =
–(1 + a)2 + k2(1 + c)(2 – m2) ± 6ik

√
–1 + m2

√
k2(1 + c)2

a

}
. (3.21)

Using Eq. (3.4) and (3.21), we obtain

q(y, t)

=
(

–
i
√

2k
√

1 + c
√

–1 + m2
√

a
dn–1(k(y – ct)

) ∓
√

2
√

k2(1 + c)√
a

dn
(
k(y – ct)

)
)

× exp

(
i

×
(

ay +
–(1 + a)2 + k2(1 + c)(2 – m2) ∓ 6ik

√
–1 + m2

√
k2(1 + c)2

a
t
))

. (3.22)

Set 2:

{
d–1 =

i
√

2k
√

1 + c
√

–1 + m2
√

a
, d0 = 0, d1 = ∓

√
2
√

k2(1 + c)√
a

,

ω =
–(1 + a)2 + k2(1 + c)(2 – m2) ∓ 6ik

√
–1 + m2

√
k2(1 + c)2

a

}
. (3.23)

Using Eq. (3.4) and (3.23), we obtain

q(y, t)

=
(

i
√

2k
√

1 + c
√

–1 + m2
√

a
dn–1(k(y – ct)

) ∓
√

2
√

k2(1 + c)√
a

dn
(
k(y – ct)

)
)

× exp

(
i

×
(

ay +
–(1 + a)2 + k2(1 + c)(2 – m2) ∓ 6ik

√
–1 + m2

√
k2(1 + c)2

a
t
))

. (3.24)
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Set 3:

{
d–1 = 0, d0 = 0, d1 = ∓

√
2
√

k2(1 + c)√
a

,ω =
–(1 + a)2 + k2(1 + c)(2 – m2)

a

}
. (3.25)

Using Eq. (3.4) and (3.25), we obtain

q(y, t) =
(

∓
√

2
√

k2(1 + c)√
a

dn
(
k(y – ct)

)
)

× exp

(
i
(

ay +
(1 + a)2 + k2(1 + c)(m2 – 2)

a
t
))

. (3.26)

Set 4:

{
d–1 = ∓ i

√
2k

√
1 + c

√
–1 + m2

√
a

, d0 = 0, d1 = 0, (3.27)

ω =
–(1 + a)2 + k2(1 + c)(2 – m2)

a

}
. (3.28)

Using Eq. (3.4) and (3.27), we obtain

q(y, t) =
(

i
√

2k
√

1 + c
√

–1 + m2
√

a
dn–1(k(y – ct)

)
)

× exp

(
i
(

ay +
(1 + a)2 + k2(1 + c)(m2 – 2)

a
t
))

. (3.29)

3.2 Degradation
The following are degenerative forms of the above periodic solutions when m → 1:

Case 1: sn(ς , m) → tanhς , then Eq. (3.6), (3.8), (3.10), and (3.12) are simplified to the
following:

q(y, t) = ∓
√

2ik
√

1 + c√
a

(
coth

(
k(y – ct)

)
+ tanh

(
k(y – ct)

))

× exp

(
i
(

ay +
(1 + a)2 + 8k2(1 + c)

a
t
))

, (3.30)

q(y, t) = ∓
√

2ik
√

1 + c√
a

coth
(
k(y – ct)

)

× exp

(
i
(

ay +
(1 + a)2 + 2k2(1 + c)

a
t
))

, (3.31)

q(y, t) = ∓
√

2ik
√

1 + c√
a

(
coth

(
k(y – ct)

)
+ tanh

(
k(y – ct)

))

× exp

(
i
(

ay +
(1 + a)2 – 4k2(1 + c)

a
t
))

, (3.32)

q(y, t) = ∓
√

2ik
√

1 + c√
a

tanh
(
k(y – ct)

)

× exp

(
i
(

ay +
(1 + a)2 + 2k2(1 + c)

a
t
))

. (3.33)
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Case 2: cn(ς , m) → sechς , then Eq. (3.14), (3.18), and (3.20) are simplified to the follow-
ing:

q(y, t) = ∓
√

2k
√

1 + c√
a

sech
(
k(y – ct)

) × exp

(
i
(

ay +
(1 + a)2 – k2(1 + c)

a
t
))

. (3.34)

Case 3: dn(ς , m) → sechς , then Eq. (3.22), (3.24), and (3.26) are simplified to the follow-
ing:

q(y, t) =
(

∓
√

2
√

k2(1 + c)√
a

sech
(
k(y – ct)

))

× exp

(
i
(

ay +
(1 + a)2 – k2(1 + c))

a
t
))

. (3.35)

The following are degenerative forms of the above periodic solutions when m → 0:
Case 1: sn(ς , m) → sinς , then Eq. (3.6), (3.8), and (3.10) are simplified to the following:

q(y, t) = ∓
√

2ik
√

1 + c√
a

csc
(
k(y – ct)

) × exp

(
i
(

ay +
(1 + a)2 + k2(1 + c)

a
t
))

. (3.36)

Case 2: cn(ς , m) → cosς , then Eq. (3.14), (3.16), and (3.18) are simplified to the follow-
ing:

q(y, t) = –i
√

2k
√

1 + c√
a

sec
(
k(y – ct)

) × exp

(
i
(

ay +
(1 + a)2 + k2(1 + c)

a
t
))

. (3.37)

3.3 Figure
In this part, we present some two- and three-dimensional graphs of Eq. (1.2) that we have
solved in part 3.2.

By selecting particular parameters, Figs. 1–5 show the solitary wave of q(y, t). From the
two-dimensional graphs, the amplitude of the solition wave doesn’t change over time, but
their spatial position shifts.

4 Summary
We apply the extended Jacobi elliptic function expansion scheme to the Fokas-Lenells
equation; moreover, the periodic wave solutions are obtained. In particular, when m → 1

Figure 1 Graphs of the solitary wave for (3.33) withm → 1, a = 1, c = 1, k = 1
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Figure 2 Graphs of the solitary wave for (3.36) withm → 0, a = 1, c = 0.1, k = 1

Figure 3 Graphs of the solitary wave for (3.34) withm → 1, a = 2, c = 0.6, k = 0.01

Figure 4 Graphs of the solitary wave for (3.37) withm → 0, a = 2, c = 0.6, k = 0.01

Figure 5 Graphs of the solitary wave for (3.35) withm → 1, a = 1, c = 1, k = 1
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and m → 0, these periodic solutions are degraded to solitary solutions, and their graphs
are drawn in two cases.
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