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Abstract
The paper is devoted to finding a solution and restoring the right-hand side of the
heat equation with reflection of the argument in the second derivative, with a
complex-valued variable coefficient. We prove a theorem on the Riesz basis property
for eigenfunctions of the second-order differential operator with involution in the
second derivative. We establish the existence and uniqueness of the solution of the
studied problems by the method of separation of variables
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1 Introduction
In this paper, we consider the equation of the type

ut(x, t) – uxx(x, t) + αuxx(–x, t) + q(x)u(x, t) = f (x), (x, t) ∈ �, (1.1)

with a complex-valued coefficient q(x) = q1(x) + iq2(x), where � = {–1 < x < 1, 0 < t < T},
–1 < α < 1. Equation (1.1) contains a linear transformation of the involution

(Sf )(x) = f (–x)

in the second derivative. A transformation S is called an involution if

(
S2f

)
(x) = f (x)

for any function f ∈ L2(–1, 1). For α = 0, equation (1.1) is a classical heat conduction equa-
tion. If α �= 0, then equation (1.1) relates the values of the second derivatives in two differ-
ent points and becomes a nonlocal equation.

Equations with involutions have been studied by many researchers. An extensive bib-
liography can be found in monographs [1–3]. A number of papers are devoted to the
solvability of direct and inverse problems for partial differential equations with involution
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(see, for example, [4–12] and references therein). In [4–7], inverse problems for equations
with involution with constant coefficients were considered by the method of separation
of variables. In [9], inverse problems were studied for a parabolic equation containing an
arbitrary linear positive self-conjugate operator with discrete spectrum. Some partial dif-
ferential equations of hyperbolic and elliptic types [13, 14] and equations of subharmonic
oscillations [15] were studied using the involution transformation.

Our work is based on the spectral properties of the second-order nonself-conjugate dif-
ferential operators with involution. Note that in the last decade, there were many papers
devoted to spectral problems for differential operators with involution (see, for example,
[16–19] and references therein). The basis property of eigenfunctions of the first-order
differential operators with involution was studied in [16, 17] (see also references therein),
and in [18–24] the cases of the second-order operators were considered. In [25, 26] the
problems with operators containing an involution in lower terms are considered. For re-
sults concerning nonclassical spectral problems, we refer the reader to [27–30].

The paper consists of four sections. In Sect. 2 the problem statement and necessary def-
initions are considered. Section 3 is devoted to the study of properties of eigenvalues and
eigenfunctions of the second-order differential operators with involution and with a vari-
able complex coefficient. In Sect. 4, we prove a theorem on the existence and uniqueness
of the solution of inverse problems for the heat equation with involution.

2 Statements of problems
The section is devoted to the main aspects of the Fourier method for equation (1.1). Let us
introduce a nonself-adjoint second-order differential operator Lαq : D(Lαq) ⊂ L2(–1, 1) →
L2(–1, 1) by the formula

Lαqy = –y′′(x) + αy′′(–x) + q(x)y(x)

with the domain of definition

D(Lαq) =
{

y(x) ∈ C2[–1, 1] : Ui(y) = ai1y′(–1) + ai2y′(1) + ai3y(–1) + ai4y(1) = 0,

i = 1, 2
}

,

where aij are given complex numbers. We assume that the linear forms U1(u) and U2(u)
are linearly independent. Let us write equation (1.1) as

ut(x, t) + Lαqu(x, t) = f (x), (x, t) ∈ �, (2.1)

and further consider the differential operator Lαq with domain generated by one of the
following four types of boundary conditions:

U1(y) = y(–1) = 0, U2(y) = y(1) = 0; (D)

U1(y) = y′(–1) = 0, U2(y) = y′(1) = 0; (N)

U1(y) = y(–1) – y(1) = 0, U2(y) = y′(–1) – y′(1) = 0; (P)

U1(y) = y(–1) + y(1) = 0, U2(y) = y′(–1) + y′(1) = 0. (AP)
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Consider the following problem: Find a pair of functions u(x, t) and f (x) satisfying equation
(2.1) and conditions

u(x, 0) = ϕ(x), u(x, T) = ψ(x), –1 ≤ x ≤ 1. (2.2)

Definition 2.1 The pair of functions u(x, t) and f (x) is called a solution to problem
(2.1)–(2.2) if the following three conditions are satisfied:

(1) the functions u(x, t) and ux(x, t) are continuous in a closed domain �̄, f (x) ∈ C[–1, 1];
(2) in the domain � the function u(x, t) is continuously differentiable with respect to t

and has a continuous second-order derivative with respect to x;
(3) it satisfies equation (2.1) and conditions (2.2) in the general sense.

To prove the existence and uniqueness of a solution to the problem posed, we use the
Fourier method. In this regard, we have to solve the problem of convergence of expan-
sions of functions from a certain class in terms of eigenfunctions of the following spectral
problem:

LαqX(x) = λX(x). (2.3)

3 Spectral properties of problem (2.3)
The convergence of expansions of eigenfunctions of the operator Lαq is easier to solve if the
system of eigenfunctions {Xk(x)} forms a Riesz basis in the class L2(–1, 1). Therefore, in this
section, we study the basis property of the eigenfunctions of the differential operator Lαq.
The differential operator Lαq is not a self-adjoint operator. The adjoint spectral problem
is written as

L∗
αqZ(x) = λ̄Z(x),

where L∗
αqZ(x) = –Z′′(x) + αZ′′(–x) + q̄(x)Z(x) is the operator adjoint to the operator Lαq.

The domain of the adjoint operator L∗
αq is given by one of the same boundary conditions

(D), (N), (P), or (AP), so that D(L∗
αq) = D(Lαq). We further assume that all eigenvalues of

the operator Lαq are simple and zero is not an eigenvalue. Note that if the number λ = 0
is an eigenvalue, then we can consider the problem LαqX(x) + �X(x) = λX(x) for a fixed
number �. The number � can be chosen so that the number λ = 0 is not an eigenvalue. In
this case, the eigenfunctions will not change.

Let us denote the system of eigenfunctions of operator L∗
αq as {Zn(x)}. The elements of

the systems {Xk(x)} and {Zn(x)} satisfy the biorthogonality condition [31]

(Xk , Zj) =
∫ 1

–1
Xk(x)Z̄j(x) dx = δkj,

where δkj the Kronecker symbol.
The eigenfunctions Xk(x) satisfy the homogeneous equation (2.3), and therefore they can

be considered normalized in the class L2(–1, 1). For q(x) ≡ 0, we denote the operator Lαq as
Lα0, D(Lα0) = D(Lαq). Explicit forms of eigenvalues and eigenfunctions of the operator Lα0

are presented in [23, 24]. The boundary value problem Lα0X(x) = λX(x) has the Green’s
function G0(x, t,λ) if λ = ρ2, where arg

√
ρ ∈ (– π

2 , π
2 ), is not an eigenvalue [23, 24]. The



Mussirepova et al. Boundary Value Problems         (2022) 2022:99 Page 4 of 13

simple poles of the Green’s function G0(x, t,λ) are the numbers
√

λ0k . Let the eigenvalues
λ0k , λk of operators Lα0 and Lαq be numbered so that |λ0k| < |λ0k+1| and |λk| < |λk+1| for
all k, and c0 < |√λ0k+1| – |√λ0k| for a positive number c0. Around every point

√
λ0k , draw

the circumference Oc0 (
√

λ0k) = {√λ : |√λ0k –
√

λ| = c0
2 } of radius c0

2 with center at this
point. Then circumferences Pk = {√λ : |√λ| = |√λ0k| + c0

2 } centered at the origin of the
complex

√
λ-plane and radius |√λk| + c0

2 do not intersect circumferences Oc0 (
√

λ0k). Let
the function Gq(x, t,λ) be the Green’s function of the boundary value (2.3). We denote the
partial sums of expansions of an arbitrary function f ∈ L1(–1, 1) in terms of eigenfunctions
of operators Lα0 and Lαq as

σm(f ) = –
1

2π i

∫

Pm

(∫ 1

–1
G0

(
x, t,ρ2)f (t) dt

)
ρ dρ,

Sm(f ) = –
1

2π i

∫

Pm

(∫ 1

–1
Gq

(
x, t,ρ2)f (t) dt

)
ρ dρ,

respectively.

Definition 3.1 We say that the sequence Sm(f ) is equiconvergent with the σm(f ) on the
interval –1 ≤ x ≤ 1 if Sm – σm → 0 uniformly on the interval as m → ∞.

The following equiconvergence theorem is valid.

Theorem 3.2 Let the following three conditions be satisfied:
(1) all eigenvalues of the operators Lα0 and Lαq are simple;
(2) the complex-valued coefficient q(x) belong to the class L1(–1, 1), and in the case of

problems (P) and (AP), we additionally require that α �= 0;
(3) for any

√
λ beyond the circles Oc0 (

√
λ0k), the Green’s function G0(x, t,λ) satisfies the

estimate

∣
∣G0(x, t,λ)

∣
∣ ≤ c1(α, c0)|√λ|–1

r(x, t,
√

λ), (3.1)

where r(x, t,
√

λ) = (e–α2| Im
√

λ|(2–|x|–|t|) + e–α2| Im
√

λ|||x|–|t||), α2 = min{α1,α0}, and α0 =
√

1
1–α

,

α1 =
√

1
1+α

.
Then for any function f ∈ L1(–1, 1), the sequences Sm(f ) and σm(f ) equiconverge on the

interval –1 ≤ x ≤ 1.

Proof Note that for problems (N) and (P), estimates (3.1) were obtained and theorems on
equiconvergence were proved [23, 24]. An analysis of the proofs of the equiconvergence
theorems shows that they are based only on estimate (3.1) and do not depend on the type
of the boundary conditions. Therefore the proof of the theorem is a word-for-word repe-
tition of the proof of those results.

For problems (D) and (AP), as in [23, 24], the validity of estimate (3.1) can be shown.
Therefore we suppose that estimate (3.1) is valid for all the problems under considera-
tion. The operator L00 with boundary conditions (P) and (AP) has an infinite number of
multiple eigenvalues. For problems of this type, the question of the Riesz basis property
of the eigenfunctions of the operator L0q with an arbitrary differentiable complex-valued
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coefficient q(x) remains unsolved. Therefore we assume that α �= 0. Regarding the condi-
tions of Theorem 3.2, note the following. If q(x) ≡ 0, then the operator Lα0 with periodic
boundary conditions has two series of eigenvalues λk1 = (1 +α)k2π2 and λk2 = (1 –α)k2π2,
which are simple if

√
1+α
1–α

�= m0 and
√

1–α
1+α

�= n0 for all integers m0, n0. The corresponding
eigenfunctions have the form

Xk1(x) = sin kπx, k = 1, 2, . . . ; Xk2(x) = cos kπx, k = 0, 1, 2, . . . ,

and form a complete orthonormal system in L2(–1, 1). �

Let us formulate a theorem on the basis property of the eigenfunctions of the operator
Lαq.

Theorem 3.3 Let conditions (1) and (2) of Theorem 3.2 be satisfied. Then the system of
eigenfunctions of the operator Lαq forms a basis in the space L2(–1, 1).

Proof It is known [23, 24] that the system of eigenfunctions of the operator Lα0 forms an
orthonormal basis of the space L2(–1, 1). For any function f ∈ L2(–1, 1), the inequality

∣∣f (x) – Sm(f )
∣∣ ≤ ∣∣f (x) – σm(f )

∣∣ +
∣∣σm(f ) – Sm(f )

∣∣

is satisfied. Using Theorem 3.2 and the basis property of the eigenfunctions of the operator
Lα0, we obtain the statement of the theorem. The theorem is proved. �

Theorem 3.3 does not answer the question of unconditional basis or Riesz basis property
of the eigenfunctions of the operator Lαq. The solution to this question is given by the
following theorem.

Theorem 3.4 Let all the conditions of Theorem 3.3 be satisfied, and let for all eigenvalues
λk of the operator Lαq, the inequalities | Imλk| ≤ const be fulfilled.

Then the system of eigenfunctions of operator Lαq forms a Riesz basis in the space L2(–1, 1),
and therefore for any function f (x) ∈ L2(–1, 1), we have the relations [32]

c2‖f ‖2
L2 ≤

∞∑

k=1

∣
∣∣
∣

∫ 1

–1
f (x)X̄k(x) dx

∣
∣∣
∣

2

≤ c3‖f ‖2
L2 ;

c4‖f ‖2
L2 ≤

∞∑

k=1

∣∣
∣∣

∫ 1

–1
f (x)Z̄k(x) dx

∣∣
∣∣

2

≤ c5‖f ‖2
L2 .

(3.2)

Proof Under conditions of the theorem, the system of eigenfunctions {Zk(x)} of the adjoint
operator L∗

αq also forms a basis in L2(–1, 1) [32]. Since any basis is a uniformly minimal
system, the following condition [33] is satisfied for any number k:

‖Xk‖L2‖Zk‖L2 ≤ c6, c6 > 0, (3.3)

in the sense of the norm in L2(–1, 1). It was shown in [19] that condition (3.3) is necessary
and sufficient for the unconditional basis property in L2(–1, 1) for each of the systems
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{Xk(x)} and {Zk(x)} if all eigenvalues λ of the operator Lαq satisfy the conditions

sup | Im
√

λ| < ∞; sup
β≥1

∑

|Re
√

λ–β|≤1

1 < ∞. (3.4)

Estimates (3.4) are satisfied by the condition of the theorem. Therefore, by the main the-
orem in [19], each of the systems {Xk(x)} and {Zk(x)} forms an unconditional basis. Since
the system {Xk(x)} is normalized and

1 = (Xk , Zk) ≤ ‖Xk‖L2‖Zk‖L2 ≤ c6,

the system {Zk(x)} is almost normalized: 1 ≤ ‖Zk‖L2 ≤ c6. Since an almost normalized
unconditional basis is a Riesz basis [34], the theorem is proved. �

In the case of positive self-adjoint operators, the eigenvalues are real and positive. In
the case of nonself-adjoint operators, the eigenvalues can be complex numbers. We must
study the conditions for the nonnegativity of their real parts. The eigenvalues λk of the
operator Lαq have the following properties.

Lemma 3.5 Let q ∈ C[–1, 1]. Then the inequality | Imλk| ≤ max |q2(x)| is fulfilled for all
numbers k. Under the additional condition Req(x) = q1(x) ≥ 0 in the interval –1 ≤ x ≤ 1,
the estimate Reλk > 0 is valid for all eigenvalues of the operator Lαq.

Proof Let us multiply both parts of equation (2.3) by the complex adjoint function X̄k(x)
and integrate the resulting equality over the interval (–1, 1). Each of the considered bound-
ary conditions is self-adjoint. Therefore the resulting nonintegral terms vanish, and we get
the equality

∫ 1

–1

∣∣X ′
k(x)

∣∣2 dx + α

∫ 1

–1
X ′

k(–x)X̄ ′
k(x) dx +

∫ 1

–1
q(x)

∣∣Xk(x)
∣∣2 dx = λk

∫ 1

–1

∣∣Xk(x)
∣∣2 dx.

Writing out separately the real and imaginary parts of the last equality, we arrive at the
following two relations:

α

∫ 1

–1
Im

[
X ′

k(–x)X̄ ′
k(x)

]
dx +

∫ 1

–1
q2(x)

∣
∣Xk(x)

∣
∣2 dx = Imλk

∫ 1

–1

∣
∣Xk(x)

∣
∣2 dx,

∫ 1

–1

∣∣X ′
k(x)

∣∣2 dx + α

∫ 1

–1
Re

{
X ′

k(–x)X̄ ′
k(x)

}
dx +

∫ 1

–1
q1(x)

∣∣Xk(x)
∣∣2 dx

= Reλk

∫ 1

–1

∣∣Xk(x)
∣∣2 dx.

As Im[X ′
k(–x)X̄ ′

k(x)] = (2i)–1[X ′
k(–x)X̄ ′

k(x) – X̄ ′k(–x) ¯̄ ′Xk(x)], the first integral in the first
relation is equal to zero, and we get the inequality | Imλk| ≤ max |q2(x)|. The continuity of
the coefficient q implies the first statement of the lemma.

To prove the second statement of the lemma, assume the contrary. Let there be a sub-
sequence {λkn} satisfying the condition Reλkn < 0. Then the second relation implies the
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inequality

∫ 1

–1

∣
∣X ′

kn (x)
∣
∣2 dx + α

∫ 1

–1
Re

{
X ′

kn (–x)X̄ ′
kn (x)

}
dx +

∫ 1

–1
q1(x)

∣
∣Xkn (x)

∣
∣2 dx

= Reλkn

∫ 1

–1

∣∣Xkn (x)
∣∣2 dx < 0,

from which we obtain the estimate
∫ 1

–1

∣
∣X ′

kn (x)
∣
∣2 dx +

∫ 1

–1
q1(x)

∣
∣Xkn (x)

∣
∣2 dx < –α

∫ 1

–1
Re

{
X ′

kn (–x)X̄ ′
kn (x)

}
dx.

The left side of the last relation is positive. Then the right side of this relation is also pos-
itive. Therefore we can apply the inequality 2|ab| ≤ |a|2 + |b|2 to the right side of the ob-
tained relation. After simple transformations, we arrive at the estimate

(
1 – |α|)

∫ 1

–1

∣∣X ′
kn

∣∣2 dx +
∫ 1

–1
q1(x)|Xkn |2 dx < 0.

As –1 < α < 1 and q1(x) ≥ 0, we come to a contradiction, which proves the lemma. �

Note that the lemma just proved is also valid for an arbitrary q ∈ C[–1, 1]. In this case,
Reλk > 0 starting from some number k0, so that Reλk ≥ |min q1(x)|, k ≥ k0, if min q1(x) < 0.

Theorem 3.4 and the first statement of Lemma 3.5 imply the following.

Corollary 3.6 Let the following two conditions be satisfied:
(1) all eigenvalues of the operators Lα0 and Lαq are simple;
(2) the complex-valued coefficient q belongs to the class C[–1, 1], and in the case of prob-

lems (P) and (AP), we additionally require that α �= 0.
Then the system of eigenfunctions of the operator Lαq forms a Riesz basis in the space

L2(–1, 1).

Note that the proved Theorem 3.3 means that each of the expansions

f (x) =
∞∑

k=1

(f , Zk)Xk(x), f (x) =
∞∑

k=1

(f , Xk)Zk(x)

converges to the function f (x) in L2(–1, 1), where

(f , Xk) =
∫ 1

–1
f (x)X̄k(x) dx, (f , Zk) =

∫ 1

–1
f (x)Z̄k(x) dx. (3.5)

We need the following lemma.

Lemma 3.7 Let all the conditions of Corollary 3.6 be satisfied. Then for any function ϕ

from the domain of the operator Lαq, each of the Fourier series

ϕ(x) =
∞∑

k=1

(ϕ, Zk)Xk(x), ϕ(x) =
∞∑

k=1

(ϕ, Xk)Zk(x) (3.6)

converges uniformly for –1 ≤ x ≤ 1.
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Proof Let us rewrite equation (2.3) in the form (the number λ = 0 is not an eigenvalue)

Xk(x) =
–X ′′

k (x) + αX ′′
k (–x) + q(x)Xk(x)
λk

.

Then

(ϕ, Xk) =
∫ 1

–1
ϕ(x)X̄k(x) dx

=
∫ 1

–1
ϕ(x)

[
–X̄ ′′k(x) + αX̄ ′′k(–x) + q̄(x)X̄k(x)

λ̄k

]
dx

=
1
λ̄k

∫ 1

–1

[
–ϕ′′(x) + αϕ′′(–x) + q̄(x)ϕ(x)

]
X̄k(x) dx.

Using this relation, the second series in (3.6) can be written as

ϕ(x) =
∞∑

k=1

Ak

λ̄k
Zk(x), (3.7)

where

Ak =
∫ 1

–1

[
–ϕ′′(x) + αϕ′′(–x) + q̄(x)ϕ(x)

]
X̄k(x) dx.

On the other hand, it is well known that the adjoint spectral problem is equivalent to
the integral equation

Zk(x) = λ̄k

∫ 1

–1
G∗(x, t)Z̄k(t) dt,

where G∗(x, t) is the Green’s function of the adjoint boundary value problem for λ = 0. By
definition [22, 23], the Green’s function G∗(x, t) is continuous for x ∈ [–1, 1] and t ∈ [–1, 1]
and therefore is bounded. Denote Ck(x) =

∫ 1
–1 G∗(x, t)Z̄k(t) dt. Then equality (3.7) takes the

form

∞∑

k=1

λk
–1AkZk(x) =

∞∑

k=1

AkCk(x).

As |Ak||Ck(x)| ≤ 1
2 (|Ak|2 + |Ck(x)|2), we have

∞∑

k=1

∣
∣λk

–1AkZk(x)
∣
∣ =

∞∑

k=1

∣
∣AkCk(x)

∣
∣ ≤

∞∑

k=1

|Ak|2 +
∞∑

k=1

∣
∣Ck(x)

∣
∣2. (3.8)

Since the quantities Ak are the Fourier coefficients of the expansion in the Riesz basis
{Zk(x)}, k = 1, 2, . . . , and Ck(x) are the Fourier coefficients of the expansion of the Green’s
function G(x, t) in the Riesz basis {Xk(x)}, by (3.2) both series on the right-hand side of
inequality (3.8) converge, and

∞∑

k=1

∣∣Ck(x)
∣∣2 ≤

∫ 1

–1

∣∣G∗(x, t)
∣∣2 dt ≤ M0, ∀x ∈ [–1, 1].
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This implies the absolute and uniform convergence of the second series (3.6). The abso-
lute and uniform convergence of the first series (3.6) is proved similarly. The lemma is
proved. �

4 Solvability of the inverse problem for the heat equation with involution
Let us state a theorem on the solvability of the inverse problem (2.1)–(2.2). Recall that the
domain D(Lαq) of the operator Lαq is generated by one of the boundary conditions (D),
(N), (P), or (AP) (in the case of problems (P) and (AP), we additionally require that α �= 0)
and all its eigenvalues are simple.

Theorem 4.1 Let q ∈ C[–1, 1], ϕ,ψ ∈ D(Lαq). Then problem (2.1)–(2.2) has a unique so-
lution, which can be represented as

u(x, t) = ϕ(x) +
∞∑

k=1

(Lαqϕ, Zk) – (Lαqψ , Zk)
λk(1 – e–λk T )

(
e–λk t – 1

)
Xk(x),

f (x) = Lαqϕ(x) –
∞∑

k=1

(Lαqϕ, Zk) – (Lαqψ , Zk)
(1 – e–λk T )

Xk(x).

Proof According to Theorem 3.4, each of the systems {Xk(x)} and {Zk(x)} consisting of
the eigenfunctions of operators Lαq and L∗

αq, respectively, forms a Riesz basis in the space
L2(–1, 1). The functions u(x, t) and f (x) can be represented as

u(x, t) =
∞∑

k=1

Tk(t)Xk(x), (4.1)

f (x) =
∞∑

k=1

fkXk(x), (4.2)

where Tk(t) are unknown functions, and fk are unknown constants. Substituting expres-
sions (4.1) and (4.2) into equation (2.1), we obtain the equation

T ′
k(t) + λkTk(t) = fk .

Solution to this equation has the form

Tk(t) =
fk

λk
+ Cke–λk t

with unknown constants fk and Ck . Taking into account conditions (2.2), we obtain the
following equalities:

Tk(0) =
fk

λk
+ Ck = ϕk , Tk(T) =

fk

λk
+ Cke–λk T = ψk ,

where ϕk = (ϕ, Zk) and ψk = (ψ , Zk) are presented as in (3.5). From the last two equalities
we find the constants

Ck =
ϕk – ψk

1 – e–λk T , fk = λkϕk – λkCk .
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First, substituting the values Tk(t) and fk into (4.1) and (4.2), we obtain a formal solution
to problem (2.1)–(2.2) in the form

u(x, t) = ϕ(x) +
∞∑

k=1

Ck
(
e–λk t – 1

)
Xk(x), (4.3)

f (x) = Lαqϕ(x) –
∞∑

k=1

λkCkXk(x). (4.4)

In (4.3) the first term was obtained by virtue of Lemma 3.7. In (4.4), we used the equality
λkϕk = λk(ϕ, Zk) = (ϕ, L∗

αqZk) = (Lαqϕ, Zk) and the convergence of series (3.6), from which
we obtain the convergence of the series

∑∞
k=1 (Lαqϕ, Zk)Xk(x) to the function Lαqϕ(x). The

found values of the constants are transformed into the form

Ck =
ϕk – ψk

1 – e–λk T

=
(ϕ, Zk) – (ψ , Zk)

1 – e–λk T =
(ϕ, L∗

αqZk) – (ψ , L∗
αqZk)

λk(1 – e–λk T )
=

(Lαqϕ, Zk) – (Lαqψ , Zk)
λk(1 – e–λk T )

.

From this we finally obtain the formal solution of problem (2.1)–(2.2) in the form

u(x, t) = ϕ(x) +
∞∑

k=1

(Lαqϕ, Zk) – (Lαqψ , Zk)
λk(1 – e–λk T )

(
e–λk t – 1

)
Xk(x), (4.5)

f (x) = Lαqϕ(x) –
∞∑

k=1

(Lαqϕ, Zk) – (Lαqψ , Zk)
(1 – e–λk T )

Xk(x). (4.6)

The convergence of series (4.6) follows from Lemma 3.7. From Lemma 3.5 (Reλk > 0), we
get the estimates λke–λkτ → 0, k → ∞, and |λke–λk t| ≤ |λke–λkτ |, t ≥ τ > 0, and starting
from a number k ≥ k0, the inequality |λke–λk t| ≤ |λke–λkτ | < 1, t ≥ τ > 0, is satisfied. These
estimates allow us to prove the uniform convergence of series (4.5) and formally differenti-
ated series corresponding to the functions ut(x, t), utt(x, t), ux(x, t), uxx(x, t) in the domain
�̄. The existence of a solution to problem (2.1)–(2.2) is proved.

Let us prove the uniqueness of the solution. Let there be two solutions u1(x), f1(x) and
u2(x), f2(x) to problem (2.1)–(2.2). Then the functions u(x, t) = u1(x, t) – u2(x, t) and f (x) =
f1(x) – f2(x) satisfy equation (2.1) and homogeneous conditions

u(0) = u(T) = 0. (4.7)

Consider the following sequences:

uk(t) =
∫ 1

–1
u(x, t)X̄k(x) dx =

(
u(x, t), Xk(x)

)
, fk =

∫ 1

–1
f (x)X̄k(x) dx =

(
f (x), Xk(x)

)
.

Further, as L̄∗
αq = Lαq and D(L∗

αq) = D(Lαq), we have Xk = Z̄k . Then, taking into account the
self-conjugation of the boundary conditions (D), (N), (P), and (AP), from equations (2.1)
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we obtain

d
dt

uk(t) =
(
ut(x, t), Xk(x)

)

=
(
Lαqu(x, t) + f (x), Xk(x)

)

=
(
Lαqu(x, t), Xk(x)

)
+ fk

=
(
u(x, t), L∗

αqXk(x)
)

+ fk

=
(
u(x, t), λ̄kXk(x)

)
+ fk = λkuk(t) + fk .

Thus for uk(t), we obtain the equation

d
dt

uk(t) = λkuk(t) + fk ,

whose solution is

uk(t) = Akeλk t –
fk

λk
,

where Ak and fk are unknown constants. The function uk(t) satisfies homogeneous con-
ditions (4.7):

uk(0) = Ak –
fk

λk
= 0, uk(T) = Akeλk T –

fk

λk
= 0.

Then from the equalities

Ak =
fk

λk
,

fk

λk

(
eλk T – 1

)
= 0

we get fk = Ak = 0, from which it follows that

uk(t) =
∫ 1

–1
u(x, t)X̄k(x) dx ≡ 0.

Then the basis property of the system {Xk(x)} implies the equality

f (x) ≡ 0, u(x, t) ≡ 0,

that is, f1(x) = f2(x), u1(x, t) = u2(x, t). The theorem is proved. �

5 Conclusions
Summarizing, we have proved the unique solvability of inverse problems for the heat equa-
tion with involution with a complex-valued variable coefficient. In the course of proving
the solvability, we have proved an important theorem on the Riesz basis property of eigen-
functions of the second-order differential operator with involution in the second deriva-
tive. The results obtained can be useful for further development of the theory of solvability
of mixed problems for partial differential equations with involution.
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