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Abstract
In this paper, we show that the radially symmetric k-admissible solutions set of a
k-Hessian equation Dirichlet problem with homogeneous boundary condition
contains a reversed S-shaped connected component. By determining the shape of
unbounded continua of the solutions, we obtain the existence and multiplicity of
radially symmetric k-admissible solutions with respect to the bifurcation parameter λ.
The proof is based on the bifurcation technique.
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1 Introduction
Consider the following k-Hessian equation Dirichlet problem with homogeneous bound-
ary condition

⎧
⎨

⎩

Sk(D2u) = λkf (–u) in B1,

u = 0 on ∂B1,
(1.1)

where B1 = {x ∈ R
n : |x| < 1}, λ is a positive parameter, Sk(D2u) is the k-Hessian operator

of u, k ∈ {1, . . . , n}, f : [0,∞) → [0,∞) is a continuous function with f (s) > 0 for all s > 0.
Let λ(D2u) := (λ1,λ2, . . . ,λn) be the eigenvalues of the Hessian matrix D2u and σk(λ) be the
kth elementary symmetric function of λ defined as follows:

σk
(
λ
(
D2u

))
=

∑

1≤i1<i2<···<ik≤n

λi1λi2 · · ·λik .

Then, Sk(D2u) := σk(λ(D2u)).
To work with elliptic operators, we always need u to be a k-admissible function. A func-

tion u ∈ C2(B1) ∩ C0(B1) is called k-admissible if λ(D2u) ∈ �k , where

�k =
{
λ ∈ R

n : σj(λ) > 0, j = 1, 2, . . . k
}

.
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It is worth noting that the k-Hessian operator is elliptic for any k-admissible function u.
Moreover, a k-admissible solution is subharmonic and, by the maximum principle, is neg-
ative in B1, see [1, p. 30]. The k-Hessian operator includes the following special examples:

• when k = 1, S1(D2u) = �u =
∑

∂2u/∂x2
i and

• when k = n, Sn(D2u) = det D2u.
Hence, the k-Hessian equation can be regarded as an extension of the semilinear elliptic

equation and the Monge–Ampère equation. The study of the Monge–Ampère equation
began with Monge [2] in 1784 and was continued by Ampère [3] in 1820. Since then,
many scholars have studied this equation. For a full discussion, we recommend [4] and
references therein.

The study of k-admissible solutions for a k-Hessian equation by the bifurcation tech-
nique can be traced back to Jacobsen [5]. In 1999, Jacobsen established the global bifurca-
tion result for problem (1.1). Let μ1 be the first eigenvalue of boundary value problem

⎧
⎨

⎩

Sk(D2u) = λk(–u)k in B1,

u = 0 on ∂B1,
(1.2)

which was first obtained in [1]. Jacobsen [5] proved that problem (1.1) with f (s) = sk + g(s)
and lims→0+ g(s)/sk = 0 possesses an unbounded continuum C of nontrivial admissible so-
lutions, which bifurcates from (μ1, 0) and lies in the strip {(λ, u) : 0 ≤ λ ≤ μ1}. Dai and Luo
[6] in 2018 pointed out that the conclusion of “C lies in the strip {(λ, u) : 0 ≤ λ ≤ μ1}” is not
true. By using the bifurcation technique, they corrected this result and studied the global
behavior of admissible solutions for problem (1.1). In another paper, Dai [7] established
the existence, nonexistence, uniqueness, and multiplicity of radial symmetric k-admissible
solutions of problem (1.1) by using the bifurcation technique according to the asymptotic
behavior of f at 0 and ∞. However, the sublinear and superlinear conditions imposed on
the nonlinearities only deduce a relatively simple shape of the component, and they pro-
vided no information on at least two direction turns of the connected component. In 2019,
by the bifurcation technique, Ma, He and Yan [8] improved the result of [7], showing in
their Theorem 1.1 that problem (1.1) has at least three radially symmetric k-admissible
solutions under suitable conditions on the nonlinearity.

Very recently, He and Miao [9] showed that the k-admissible solutions of (1.1) are in
general not convex, and they constructed a new cone and obtained the existence of three
radially symmetric k-admissible solutions via the Leggett–Williams’ fixed-point theorem.
Zhang, Xu and Wu [10] studied the k-admissible solutions for the eigenvalue problem of
a singular k-Hessian equation. By constructing the upper and lower solutions of the k-
Hessian equation, the existence of a radially symmetric solution for the eigenvalue prob-
lem is established via Schauder’s fixed-point theorem.

For other results concerning the existence, nonexistence, and multiplicity of k-admis-
sible solutions for a k-Hessian equation, we refer the reader to [11–21] and the references
therein.

Inspired by [5–10] and by a modified version of the global bifurcation result of problem
(1.1) in [6], we show in this paper the existence of a reversed S-shaped connected component
of radially symmetric k-admissible solutions of (1.1). As a byproduct, we assert further that
(1.1) has one, two or three radially symmetric k-admissible solutions under the suitable
conditions on the nonlinearity.
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Throughout the paper, we make the following hypotheses on the nonlinearity f :
(F1) there exist α > 0, f0 > 0 and f1 > 0 such that

lim
s→0+

f (s) – f k
0 sk

sk+α
= f k

1 ; (1.3)

(F2)

f∞ := lim
s→∞

f (s)
sk = ∞; (1.4)

(F3) there exists s0 > 0 such that if 0 ≤ s ≤ s0 we have

0 ≤ f (s) ≤ Ck
nf k

0

μk
1n

sk
0,

where μ1 > 0 is the first eigenvalue of (1.2). Moreover, μ1 is simple (see [1]).
Let X = C[0, 1] with the normal ‖u‖ = maxr∈[0,1] |u(r)|. Let E = {u ∈ C1[0, 1] : u′(0) =

u(1) = 0} with the norm ‖u‖1 = maxr∈[0,1] |u(r)| + maxr∈[0,1] |u′(r)|. Let X+ = {u ∈ X : u ≥ 0}
and P+ be the set of functions in X+ that are positive in [0, 1). Also, set K+ = R× P+ under
the product topology.

Our main result is the following theorem.

Theorem 1.1 (see Fig. 1) Assume that (F1)–(F3) hold. Then, there exist λ∗ ∈ (0, μ1
f0

) and
λ∗ > μ1

f0
such that:

(i) (1.1) has at least one radially symmetric k-admissible solution if 0 < λ < λ∗;
(ii) (1.1) has at least two radially symmetric k-admissible solutions if λ = λ∗;
(iii) (1.1) has at least three radially symmetric k-admissible solutions if λ∗ < λ < μ1/f0;
(iv) (1.1) has at least two radially symmetric k-admissible solutions if μ1/f0 < λ ≤ λ∗;
(v) (1.1) has at least one radially symmetric k-admissible solution if λ = λ∗;
(vi) (1.1) has no radially symmetric k-admissible solution if λ > λ∗.

Remark 1.1 Condition (F1) implies

lim
s→0+

f (s)
sk = f k

0 .

Figure 1 Reversed S-shaped connected component
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Remark 1.2 Let us consider the function

f (s) = msk + sk ln(1 + s), m > 0, s ∈ [0,∞).

Obviously, f satisfies (F1) and (F2) with

α = 1, f0 = m1/k , f1 = 1.

It is easy to see that if m > mCk
n

μk
1n

is sufficiently large, then the function f also satisfies (F3).

Remark 1.3 Note that Condition (F1) has never been used before, as far as the authors
know. Indeed, under (F1), we have an unbounded subcontinuum that is bifurcating from
(μ1/f0, 0) and goes leftward. Conditions (F2) and (F3) lead the unbounded subcontinuum
to the right at some point, and finally to the left near λ = 0.

The paper is organized as follows. In Sect. 2, we show global bifurcation phenomena
from the trivial branch with the leftward direction near the initial point. Section 3 is de-
voted to showing that there are at least two direction turns of the component and com-
pleting the proof of Theorem 1.1.

2 Preliminaries
In this section, we give some lemmas and show a global bifurcation phenomenon from
the trivial branch.

Lemma 2.1 ([11]) Assume z(r) ∈ C2[0, R] is radially symmetric and z′(0) = 0. Then, the
function u(|x|) = z(r) with r = |x| < R belongs to C2(BR), and

λ
(
D2u

)
=

⎧
⎨

⎩

(z′′(r), z′(r)
r , . . . , z′(r)

r ), r ∈ (0, R),

(z′′(0), z′′(0), . . . , z′′(0)), r = 0,

Sk
(
λ
(
D2u

))
=

⎧
⎨

⎩

Ck–1
n–1z′′(r)( z′(r)

r )k–1 + Ck
n–1( z′(r)

r )k , r ∈ (0, R),

Ck
n(z′′(0))k , r = 0,

where BR = {x ∈R
n : |x| < R} and Cm

n = n!
(n–m)!m! .

Lemma 2.2 The function u ∈ C2(B1) is a radially symmetric k-admissible solution of the
problem (1.1) if and only if z(r) is a solution of the boundary value problem

⎧
⎨

⎩

(rn–k(z′)k)′ = λk n
Ck

n
rn–1f (–z), r ∈ (0, 1),

z′(0) = z(1) = 0.
(2.1)

Let v = –z. The problem (2.1) can be written as

⎧
⎨

⎩

(rn–k(–v′)k)′ = λk n
Ck

n
rn–1f (v), r ∈ (0, 1),

v′(0) = v(1) = 0.
(2.2)
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Next, we will establish the global bifurcation result for the problem (2.2) with f (s) =
sk + g(s), i.e.,

⎧
⎨

⎩

(rn–k(–v′)k)′ = λk n
Ck

n
rn–1(vk + g(v)), r ∈ (0, 1),

v′(0) = v(1) = 0.
(2.3)

Here, g : R+ → R satisfies lims→0+ g(s)/sk = 0 and the following subcritical growth restric-
tion

∣
∣g(s)

∣
∣ ≤ C

(
1 + |s|q–1) (2.4)

for some q ∈ (0, k∗), where

k∗ =

⎧
⎨

⎩

(n+2)k
n–2k if 1 ≤ k < n

2 ,

∞ if n
2 ≤ k ≤ n

is the critical exponent for the k-Hessian operator [12]. In particular, in [12], the author
proved that the boundary value problem

⎧
⎨

⎩

Sk(D2u) = (–u)p in BR,

u = 0 on ∂BR

has no solution in C1(B̄R) ∩ C4(BR) for the supercritical (or critical) case p ≥ k∗ and it
admits a solution that is radially symmetric and is in C2(B̄R) in the subcritical case 0 <
p < k∗, with p �= k. Moreover, if k = 1, the 1-Hessian operator is the Laplacian and k∗ =
(n + 2)/(n – 2) is the critical Sobolev exponent.

Lemma 2.3 ([7, Theorem 1.1]) The pair (μ1, 0) is a bifurcation point of problem (2.3) and
the associated bifurcation branch C ⊆ (K+ ∪ {(μ1, 0)}) is unbounded in [0,∞) × X.

Lemma 2.4 ([7, Theorem 6.5]) If f0 ∈ (0,∞), f∞ = ∞ and (2.4) holds, there is an un-
bounded component C of the set of positive solutions of problem (2.2) bifurcating from
(μ1/f0, 0) such that C ⊆ (K+ ∪ {(μ1/f0, 0)}). Moreover, C joins (μ1/f0, 0) to (0,∞).

Lemma 2.5 Let the hypotheses of Lemma 2.4 hold. Suppose (λj, uj) ⊂ C is a sequence of
positive solutions of (2.2) that satisfies

‖uj‖ → 0 and λj → μ1/f0 as n → ∞.

Then, there exists a subsequence of {uj}, again denoted by {uj}, such that uj/‖uj‖ converges
uniformly to φ1 on [0, 1]. Moreover, uj/‖uj‖1 converges to φ1 in C1[0, 1]. Here, φ1(r) is the
eigenfunction of (1.2) corresponding to μ1.

Proof As the proof is very similar to that in [8, Lemma 2.3] we omit it here. �
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3 Direction turn of bifurcation
Lemma 3.1 Let the hypotheses of Lemma 2.4 hold. Then, there exists δ > 0 such that (λ, u) ∈
C and |λ – μ1/f0| + ‖u‖ ≤ δ implies λ < μ1/f0.

Proof For contradiction, we assume that there exists a sequence {(λj, uj)} ⊂ C satisfying

λj → μ1/f0, ‖uj‖ → 0 and λj ≥ μ1/f0.

By Lemma 2.5, there exists a subsequence of {uj}, again denoted by {uj}, such that uj/‖uj‖
converges uniformly to φ1 on [0, 1], where φ1(r) > 0 is the first eigenfunction of (1.2) that
satisfies ‖φ1‖ = 1. Multiplying Eq. (2.2) with (λ, v) = (λj, uj) by uj and integrating it on [0, 1],
we obtain

(λj)k n
Ck

n

∫ 1

0
rn–1f

(
uj(r)

)
uj(r) dr =

∫ 1

0
rn–k(–u′

j(r)
)k+1 dr,

that is

(λj)k n
Ck

n

∫ 1

0
rn–1 f (uj(r))

‖uj‖k
uj(r)
‖uj‖ dr =

∫ 1

0
rn–k (–u′

j(r))k+1

‖uj‖k+1 dr.

From Lemma 2.5, after taking a subsequence and relabeling if necessary, uj/‖uj‖ converges
to φ1 in C1[0, 1]. Since

∫ 1

0
rn–k(–φ′

1(r)
)k+1 dr = μk

1
n

Ck
n

∫ 1

0
rn–1φk+1

1 dr,

it follows that

(λj)k n
Ck

n

∫ 1

0
rn–1 f (uj(r))

‖uj‖k
uj(r)
‖uj‖ dr = μk

1
n

Ck
n

∫ 1

0
rn–1 (uj(r))k+1

‖uj‖k+1 dr – ζ̂ (j),

and accordingly,

(λj)k n
Ck

n

∫ 1

0
rn–1f

(
uj(r)

)
uj(r) dr = μk

1
n

Ck
n

∫ 1

0
rn–1(uj(r)

)k+1 – ζ̂ (j)‖uj‖k+1,

with ζ̂ : N →R satisfying limj→∞ ζ̂ (j) = 0.
That is,

n
Ck

n

∫ 1

0
rn–1 f (uj(r)) – f k

0 |uj(r)|k
|uj(r)|k+α

∣
∣
∣
∣
uj(r)
‖uj‖

∣
∣
∣
∣

k+1+α

dr

=
nμk

1
Ck

n
– nf k

0
Ck

n
λk

j

λk
j ‖uj‖α

∫ 1

0
rn–1

∣
∣
∣
∣
uj(r)
‖uj‖

∣
∣
∣
∣

k+1

dr – ζ̂ (j).

Lebesgue’s dominated convergence theorem, condition (F1) implies that

∫ 1

0
rn–1 f (uj(r)) – f k

0 |uj(r)|k
|uj(r)|k+α

∣
∣
∣
∣
uj(r)
‖uj‖

∣
∣
∣
∣

k+1+α

dr → f k
1

∫ 1

0
rn–1∣∣φ1(r)

∣
∣k+1+α dr > 0
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and

∫ 1

0
rn–1

∣
∣
∣
∣
uj(r)
‖uj‖

∣
∣
∣
∣

k+1

dr →
∫ 1

0
rn–1∣∣φ1(r)

∣
∣k+1 dr > 0.

This contradicts λj ≥ μ1/f0. �

Remark 3.1 Lemma 3.1 implies that the bifurcation branch C has the leftward direction
from the bifurcation point (μ1/f0, 0).

Lemma 3.2 Assume that (F1)–(F3) hold. Let u be a positive solution of (2.2) with 0 < f (s) ≤
f∗sk for some f∗ > 0. Then, there exists a constant C > 0 independently of u such that

∣
∣u′(r)

∣
∣ ≤ λC‖u‖, r ∈ [0, 1].

Proof Integrating Eq. (2.2) on [0, r] and recalling that f (s) ≤ f∗sk , we have

(
–u′(r)

)k = rk–n
∫ r

0

(

λk n
Ck

n
tn–1f

(
u(t)

)
)

dt ≤
∫ 1

0

(

λk n
Ck

n
f∗‖u‖k

)

dt,

that is,

∣
∣u′∣∣ ≤ λ

(∫ 1

0

n
Ck

n
f∗ dt

)1/k

‖u‖. �

Lemma 3.3 Assume that (F3) holds. Suppose u is a positive solution of (2.2) with ‖u‖ = s0.
Then,

λ > μ1/f0.

Proof Let (λ, u) be a positive solution of (2.2). By Lemma 3.2 and condition (F3), it follows
that

s0 = ‖u‖ = –
∫ 1

0
u′(x) dx ≤

∫ 1

0

∣
∣u′(x)

∣
∣dx < λ

(∫ 1

0

n
Ck

n

Ck
nf k

0

μk
1n

dt
)1/k

‖u‖.

That is, λ > μ1
f0

. �

Remark 3.2 By Lemma 3.3, we know that there exists a direction turn of the bifurcation
branch C that grows to the right at some point (λ∗, uλ∗ ) ∈ C , where ‖uλ∗‖ = s0.

Proof of Theorem 1.1 Let C be as in Lemma 2.4. By Lemma 2.4, C is bifurcating from ( μ1
f0

, 0)
and joins (μ1/f0, 0) to (0,∞).

Since C is unbounded, there exists {(λn, un)} such that (λn, un) ∈ C and λn + ‖un‖ → ∞.
By Lemma 2.4, we have that ‖un‖ → ∞ and λn → 0, then there exists (λ0, u0) ∈ C such
that ‖u0‖ = s0 and Lemma 3.3 shows that λ0 > μ1

f0
.

By Lemmas 3.1 and 3.3, C passes through some points ( μ1
f0

, v1) and ( μ1
f0

, v2) with ‖v1‖ <
s0 < ‖v2‖, and there exist λ and λ that satisfy 0 < λ < μ1

f0
< λ and both (i) and (ii):
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(i) if λ ∈ ( μ1
f0

,λ], then there exist u and v such that (λ, u), (λ, v) ∈ C and ‖u‖ < s0 < ‖v‖;
(ii) if λ ∈ (λ, μ1

f0
], then there exist u and v such that (λ, u), (λ, v) ∈ C and ‖u‖ < ‖v‖ < s0.

Define λ∗ = sup{λ : λ satisfies (i)} and λ∗ = inf{λ : λ satisfies (ii)}. Then, by the standard
arguments, (2.2) has a positive solution at λ = λ∗ and λ = λ∗, respectively.

Clearly, C turns to the right at (λ∗,‖uλ∗‖) and to the left at (λ∗,‖uλ∗‖), and finally to the
left near λ = 0. This complete the proof of Theorem 1.1. �

Now, we strengthen the assumptions on f . Assume, in addition to (F1)–(F3), that f sat-
isfies:

(F4) there exists s1 > 2s0 > 0 such that 0 ≤ s ≤ s1 implies that

min
s1≤s≤2s1

f (s)
sk >

f k
0

μk
1
ηk

1,

where η1 is the first positive eigenvalue of the following problem

⎧
⎨

⎩

(rn–k(–v′)k)′ = ηk n
Ck

n
rn–1vk , r ∈ (0, 1),

v′(0) = v( 1
2 ) = 0.

By an argument similar to proving [8, Lemma 3.5] with small modification, we may ob-
tain the following result.

Lemma 3.4 Assume (F4) holds. Let (λ, u) be a positive solution of (2.2) with ‖u‖ = s1. Then,
λ < μ1

f0
.

Remark 3.3 Lemma 3.4 means that there exists a direction turn of the bifurcation contin-
uum C that grows to the left at some point (λ∗∗, uλ∗∗ ) ∈ C , where ‖uλ∗∗‖ = s1.

Using the method similar to that used in proving Lemmas 3.3 and 3.4 infinite time, we
have

Theorem 3.1 Assume that (F1)–(F4) hold. Then, the continuum C is unbounded, joins
( μ1

f0
, 0) to (0,∞), and oscillates around the axis {λ = μ1

f0
} an infinite number of times.
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