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Abstract
By exploiting an abstract critical-point result for differentiable and parametric
functionals, we show the existence of infinitely many weak solutions for nonlinear
elliptic equations with nonhomogeneous boundary conditions. More accurately, we
determine some intervals of parameters such that the treated problem admits either
an unbounded sequence of solutions or a pairwise distinct sequence of solutions that
strongly converges to zero. No symmetric condition on the nonlinear term is
considered.
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1 Introduction
The purpose of this paper is to discuss the mixed elliptic problem involving the p-
Laplacian

⎧
⎪⎪⎨

⎪⎪⎩

–�pu + q(x)|u|p–2u = λf (x, u) in �,

u = 0 on �1,

|∇u|p–2 ∂u
∂ν

= μg(u) on �2,

(Mλ,μ)

where � is a nonempty bounded open subset of the Euclidean space (Rn, | · |), n ≥ 3, with
a boundary of class C1, �1 and �2 are two smooth (n – 1)-dimensional submanifolds of
∂� such that �1 ∩�2 = ∅, �̄1 ∪ �̄2 = ∂�, �̄1 ∩ �̄2 = �, with � a smooth (n – 2)-dimensional
submanifold of ∂�, λ > 0 and μ ≥ 0 are real parameters, �pu := div(|∇u|p–2∇u) with
p > n, q ∈ L∞(�) with q0 := ess inf� q > 0, f : � × R → R is an L1-Carathéodory func-
tion, g : R → R is a nonnegative continuous function, and ν is the outer unit normal to
∂�.

Elliptic differential problems with mixed boundary conditions of Dirichlet–Neumann
type can be exploited to characterize many concrete situations, acting as models in ap-
plied sciences. Solidification and melting of a material in industrial processes as well as
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wave phenomena and heat transfer are classical examples of fields in which mixed condi-
tions are important. In particular, a conversant example is presented by an iceberg partially
submerged in water, for which mixed conditions must be constrained on its boundary. To
be precise, in the portion under the water, one constrains a Dirichlet boundary condi-
tion, while in the remaining part of the boundary that is in contact with the air, Neumann
conditions are used.

In the literature, the existence, multiplicity, and regularity of solutions for elliptic prob-
lems with mixed boundary conditions have been considered in the last decades; see for
instance the papers [1, 4–6, 8–10, 13] and the references therein. In particular, the authors
in [5], by using a smooth version of [7, Theorem 2.1], established the existence of infinitely
many solutions for the following mixed boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

–�pu + q(x)|u|p–2u = λf (x, u) in �,

u = 0 on �1,

|∇u|p–2 ∂u
∂ν

= 0 on �2.

Recently, Bonanno and D’Aguì [4] studied problem (Mλ,μ). They obtained the existence
of at least two nontrivial and nonnegative weak solutions for problem (Mλ,μ) by applying
a two nonzero critical-point theorem, which is obtained in [3].

Further, Bonanno et al. in [6], by means of three critical-point theorems, studied the
existence of at least three nonzero and nonnegative weak solutions for problem (Mλ,μ).

Motivated by the above works, the goal of the present work is to acquire sufficient condi-
tions to suggest that problem (Mλ,μ) has infinitely many nontrivial and nonnegative weak
solutions. For this, we need that the primitive F of f assures an appropriate oscillatory
behavior either at infinity (for finding unbounded solutions) or at the origin (for obtaining
arbitrarily small solutions), while G, the primitive of g , has an adequate growth (see Theo-
rems 3.1 and 3.7). Our analysis is based on the last critical-point theorem of Bonanno and
Molica Bisci [7] and is included in Lemma 2.3 below.

Finally, we cite the papers [11, 14, 15] for some relevant contributions related to the
subject of this work.

2 Preliminaries
In the present section, we first give the notion of weak solutions, the variational setting of
the problem and some classical definitions and the results that we will use in the rest of
the paper.

Let X be a subset of the Sobolev space W 1,p(�), by which we mean

X = W 1,p
0,�1

(�) :=
{

u ∈ W 1,p(�) : u|�1 = 0
}

equipped with the norm

‖u‖ :=
(∫

�

∣
∣∇u(x)

∣
∣p dx +

∫

�

q(x)
∣
∣u(x)

∣
∣p dx

)1/p

.

Definition 2.1 A weak solution of problem (Mλ,μ) is any u ∈ X such that

∫

�

∣
∣∇u(x)

∣
∣p–2∇u(x) · ∇v(x) dx +

∫

�

q(x)
∣
∣u(x)

∣
∣p–2u(x)v(x) dx
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= λ

∫

�

f
(
x, u(x)

)
v(x) dx + μ

∫

�2

g
(
γ
(
u(x)

))
γ
(
v(x)

)
dσ ,

for all v ∈ X, where γ : W 1,p(�) → Lp(∂�) is the trace operator.

We note that, since p > n, W 1,p(�) is embedded in C0(�), X is embedded in C0(�). Thus,
by setting

k := sup
u∈W 1,p(�)\{0}

supx∈� |u(x)|
(
∫

�
|∇u(x)|p dx +

∫

�
q(x)|u(x)|p dx)1/p ,

one has

‖u‖∞ ≤ k‖u‖, (2.1)

where ‖ · ‖∞ is the usual norm in L∞(�).
Note that if � is convex, an explicit upper bound for the constant k is

k1 := 2
p–1

p max

{(
1

∫

�
q(x) dx

) 1
p

,
diam(�)

n
1
p

(
p – 1
p – n

meas(�)
) p–1

p ‖q‖∞
∫

�
q(x) dx

}

,

where diam(�) is the diameter of �, meas(�) is the Lebesgue measure of �, and, explicitly,
k ≤ k1 (see [2, Remark 1].

Now, denoting the Euler function by

�(t) :=
∫ +∞

0
zt–1e–z dz, ∀t > 0,

we define

σ (p, n) := inf
μ∈]0,1[

1 – μn

μn(1 – μ)p ,

and consider μ ∈ ]0, 1[ such that σ (p, n) = 1–μn

μn(1–μ)p . Further, set

R := sup
x∈�

dist(x, ∂�).

Easy computations show that there is x0 ∈ � such that B(x0, R) ⊆ �, and, for μ ∈ ]0, 1[,
one has B(x0,μR) ⊂ B(x0, R). Put

gμ(p, n) := μn +
1

(1 – μ)p nB(μ,1)(n, p + 1),

where B(μ,1)(n, p + 1) denotes the generalized incomplete beta function defined as follows

B(μ,1)(n, p + 1) :=
∫ 1

μ

tn–1(1 – t)(p+1)–1 dt.

We also denote by

ωR :=
π

n
2

�(1 + n
2 )

Rn,
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the measure of the n-dimensional ball of radius R, and

a(�2) :=
∫

�2

dσ .

The following lemma is taken from [4, Lemma 2.3].

Lemma 2.2 If we assume f (x, 0) ≥ 0 for a.e. x ∈ �, then the weak solutions of problem
(Mλ,μ) are nonnegative.

We will establish our results by exploiting the following smooth version of Theorem 2.1
of [7], which is a more exact version of Ricceri’s Variational Principle [12, Theorem 2.5].

Lemma 2.3 Let X be a reflexive real Banach space, let ,� : X → R be two Gâteaux
differentiable functionals such that  is sequentially weakly lower semicontinuous, strongly
continuous, and coercive, and � is sequentially weakly upper semicontinuous. For every
r > infX , let

ϕ(r) := inf
u∈–1(]–∞,r[)

(supv∈–1(]–∞,r[) �(v)) – �(u)
r – (u)

,

γ := lim inf
r→+∞ ϕ(r), and δ := lim inf

r→(infX )+
ϕ(r).

Then, the following properties hold:
(a) If γ < +∞, then for each λ ∈ ]0, 1/γ [, the following alternative holds: either

(a1) Iλ :=  – λ� possesses a global minimum, or
(a2) there is a sequence {un} of critical points (local minima) of Iλ such that

lim
n→+∞(un) = +∞.

(b) If δ < +∞, then for each λ ∈ ]0, 1/δ[, the following alternative holds: either
(b1) there is a global minimum of  that is a local minimum of Iλ, or
(b2) there is a sequence {un} of pairwise distinct critical points (local minima) of

Iλ that weakly converges to a global minimum of , with limn→+∞ (un) =
infX .

3 Main results
Before presenting the main result, we define some notation. We set

δ :=
R

k(ωR[μnσ (p, n) + ‖q‖∞Rpgμ(p, n)])
1
p

,

A∞ := lim inf
ξ→+∞

∫

�
max|t|≤ξ F(x, t) dx

ξp ,

B∞ := lim sup
ξ→+∞

∫

B(x0,μR) F(x, ξ ) dx
ξp ,
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where the constants R, k, ωR, μ, σ (p, n), and gμ(p, n) have been defined in Sect. 2, and F is
the potential of f defined by

F(x, t) :=
∫ t

0
f (x, ξ ) dξ , ∀(x, t) ∈ � ×R.

We assume throughout, and without further mention, that f (x, 0) ≥ 0 for a.e. x ∈ �.
We formulate our main result as follows.

Theorem 3.1 Assume that
(A1) F(x, t) ≥ 0 for each (x, t) ∈ (B(x0, R) \ B(x0,μR)) ×R

+;
(A2) A∞ < δpB∞.

Then, for every λ ∈ � := ] 1
p(kδ)pB∞ , 1

pkpA∞ [ and for every arbitrary nonnegative continuous
function g : R → R, whose potential G(t) :=

∫ t
0 g(ξ ) dξ for all t ∈ R, satisfying the condi-

tion

G∞ := lim sup
ξ→+∞

G(ξ )
ξp < +∞, (3.1)

if we put

μG,λ :=
1

pkpa(�2)G∞
(
1 – λpkpA∞

)
,

where μG,λ = +∞ when G∞ = 0, then problem (Mλ,μ) has an unbounded sequence of non-
negative weak solutions for every μ ∈ [0,μG,λ[ in X.

Proof Our purpose is to apply Lemma 2.3(a) to problem (Mλ,μ). For this, fix λ̄ ∈ � and g
satisfying our hypotheses. Since λ̄ < 1

pkpA∞ , one has

μG,λ̄ =
1

pkpa(�2)G∞
(
1 – λ̄pkpA∞

)
> 0.

Now, fix μ̄ ∈ [0,μG,λ̄[. For every u ∈ X, let the functionals ,�λ̄,μ̄ : Eα →R be defined by

(u) :=
1
p
‖u‖p,

�λ̄,μ̄(u) :=
∫

�

F
(
x, u(x)

)
dx +

μ̄

λ̄

∫

�2

G
(
γ
(
u(x)

))
dσ ,

and set

Iλ̄,μ̄(u) := (u) – λ̄�λ̄,μ̄(u), u ∈ X.

It is known that ,�λ̄,μ̄ ∈ C1(X,R) and they satisfy all regularity hypotheses requested in
Lemma 2.3. In particular, for each u, v ∈ X we have

′(u)(v) =
∫

�

∣
∣∇u(x)

∣
∣p–2∇u(x) · ∇v(x) dx +

∫

�

q(x)
∣
∣u(x)

∣
∣p–2u(x)v(x) dx,
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� ′
λ̄,μ̄(u)(v) =

∫

�

f
(
x, u(x)

)
v(x) dx +

μ̄

λ̄

∫

�2

g
(
γ
(
u(x)

))
γ
(
v(x)

)
dσ .

Hence, the critical points of Iλ̄,μ̄ are weak solutions of problem (Mλ̄,μ̄).
First, we prove that λ̄ < 1/γ . Hence, assume that {ξn} is a sequence of positive numbers

such that limn→+∞ ξn = +∞ and

lim
n→+∞

∫

�
max|t|≤ξn F(x, t) dx

ξ
p
n

= A∞.

Set rn := 1
p ( ξn

k )p for every n ∈N. Then, for all v ∈ X with (v) < rn, taking (2.1) into account,
we have ‖v‖∞ ≤ ξn. Clearly, (0) = �λ̄,μ̄(0) = 0. Thus, for every n ∈ N,

ϕ(rn) = inf
u∈–1(]–∞,rn[)

(supv∈–1(]–∞,rn[) �λ̄,μ̄(v)) – �λ̄,μ̄(u)
rn – (u)

≤ supv∈–1(]–∞,rn[) �λ̄,μ̄(v)
rn

≤ pkp
(∫

�
max|t|≤ξn F(x, t) dx

ξ
p
n

+
μ̄

λ̄

a(�2)G(ξn)
ξ

p
n

)

.

Therefore, from hypothesis (A2) and situation (3.1), we obtain

γ ≤ lim inf
n→+∞ ϕ(rn) ≤ pkp

(

A∞ +
μ̄

λ̄
a(�2)G∞

)

< +∞.

It follows from μ̄ ∈ [0,μG,λ̄[ that

γ ≤ pkp
(

A∞ +
μ̄

λ̄
a(�2)G∞

)

< pkpA∞ +
1 – pkpλ̄A∞

λ̄
.

Hence,

λ̄ =
1

pkpA∞ + (1 – pkpλ̄A∞)/λ̄
<

1
γ

.

Assume that λ̄ is fixed. We claim that the functional Iλ̄,μ̄ is unbounded from below.
Since 1/λ̄ < p(kδ)pB∞, there is a sequence {ηn} of positive numbers and τ > 0 such that
limn→+∞ ηn = +∞ and

1/λ̄ < τ < p(kδ)p

∫

B(x0,μR) F(x,ηn) dx
η

p
n

(3.2)

for every n ∈N large enough. For all n ∈N, define wn ∈ X by

wn(x) :=

⎧
⎪⎪⎨

⎪⎪⎩

0, if x ∈ � \ B(x0, R),
ηn

R(1–μ) (R – |x – x0|), if x ∈ B(x0, R) \ B(x0,μR),

ηn, if x ∈ B(x0,μR).

(3.3)
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Hence, one has

‖wn‖p =
∫

�

∣
∣∇wn(x)

∣
∣p dx +

∫

�

q(x)
∣
∣wn(x)

∣
∣p dx

=
η

p
n

Rp(1 – μ)p

(∫

B(x0,R)\B(x0,μR)

(
1 + q(x)

∣
∣R – |x – x0|

∣
∣p)dx

)

+ ηp
n

∫

B(x0,μR)
q(x) dx.

Taking into account that

∫

B(x0,R)\B(x0,μR)

∣
∣R – |x – x0|

∣
∣p dx = nωRRpB(μ,1)(n, p + 1),

for any fixed n ∈N, we deduce that

(wn) ≤ 1
p

(
ηn

R

)p

ωR
[
μnσ (p, n) + ‖q‖∞Rpgμ(p,n)

]
=

1
p(kδ)p ηp

n. (3.4)

On the other hand, bearing (A1) in mind, we obtain

�λ̄,μ̄(wn) =
∫

B(x0,R)\B(x0,μR)
F
(

x,
ηn

R(1 – μ)
(
R – |x – x0|

)
)

dx +
∫

B(x0,μR)
F(x,ηn) dx

≥
∫

B(x0,μR)
F(x,ηn) dx. (3.5)

It follows from (3.2), (3.4), and (3.5) that

Iλ̄,μ̄(wn) ≤ 1
p(kδ)p ηp

n – λ̄

∫

B(x0,μR)
F(x,ηn) dx <

1
p(kδ)p ηp

n(1 – λ̄τ ),

for all n ∈N large enough. Since λ̄τ > 1 and limn→+∞ ηn = +∞, we have

lim
n→+∞ Iλ̄,μ̄(wn) = –∞.

Hence, our claim is established. Thus, Iλ̄,μ̄ has no global minimum and, by Lemma 2.3(a),
there is a sequence {un} of critical points of Iλ̄,μ̄ such that limn→+∞ ‖un‖ = +∞. Hence,
problem (Mλ̄,μ̄) has an unbounded sequence of weak solutions, and bearing Lemma 2.2 in
mind, the weak solutions are nonnegative. The proof is complete. �

Remark 3.2 When f is a nonnegative function, hypothesis (A1) holds and hypothesis (A2)
becomes

(A2′) A′∞ := lim infξ→+∞
∫

� F(x,ξ ) dx
ξp < δpB∞.

In this case, (A2′) certifies that for all λ ∈ ] 1
p(kδ)pB∞ , 1

pkpA′∞ [ and all μ ∈ [0, 1
pkpa(�2)G∞ (1 –

pkpλA′∞)[, problem (Mλ,μ) admits an unbounded sequence of nonnegative weak solutions
in X.

Here, we present some specific cases of the main result. The first one is in the au-
tonomous case.
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Corollary 3.3 Let f : R → R be a nonnegative continuous function. Put F(t) :=
∫ t

0 f (ξ ) dξ

for all t ∈R, and assume that

lim inf
ξ→+∞

F(ξ )
ξp = 0 and 0 < B∞

� := lim sup
ξ→+∞

F(ξ )
ξp ≤ +∞.

Then, for every λ > 1
p(kδ)pμnωRB∞

�
, for every arbitrary nonnegative continuous function g :

R →R, whose potential satisfying (3.1), and for each μ ∈ [0, 1
pkpa(�2)G∞ [, the problem

⎧
⎪⎪⎨

⎪⎪⎩

–�pu + q(x)|u|p–2u = λf (u) in �,

u = 0 on �1,

|∇u|p–2 ∂u
∂ν

= μg(u) on �2,

(AMλ,μ)

has an unbounded sequence of nonnegative weak solutions in X.

Corollary 3.4 Assume that the hypothesis (A1) holds, and

A∞ <
1

pkp and B∞ >
1

p(kδ)p .

Then, for every arbitrary nonnegative continuous function g : R → R, whose potential G
satisfies the condition (3.1), if we put

μG :=
1

pkpa(�2)G∞
(
1 – pkpA∞

)
,

problem (M1,μ) has an unbounded sequence of nonnegative weak solutions for every μ ∈
[0,μG[ in X.

Now, we present the following existence result in which instead of the hypothesis (A2)
a more general situation is considered.

Theorem 3.5 Assume that the hypothesis (A1) holds, and there exist two sequences {an}
and {bn} in [0, +∞[, with limn→∞ bn = +∞, such that

(A3) for some n0 ∈N one has an < δbn for each n ≥ n0;
(A4) A∞ := limn→∞

∫

� max|t|≤bn F(x,t) dx–
∫

B(x0,μR) F(x,an) dx

bp
n– 1

δp ap
n

< δpB∞.

Then, for each λ ∈ ] 1
p(kδp)B∞ , 1

pkpA∞ [, the problem

⎧
⎪⎪⎨

⎪⎪⎩

–�pu + q(x)|u|p–2u = λf (x, u) in �,

u = 0 on �1,
∂u
∂ν

= 0 on �2,

(Mλ)

has an unbounded sequence of nonnegative weak solutions in X.

Proof Obviously, from (A4) we obtain (A2), by choosing an = 0 for all n ∈N. Further, if we
assume (A4) instead of (A2) and set rn := 1

p ( bn
k )p for every n ∈N, by the same reasoning as
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in the proof of Theorem 3.1 with μ = 0, we obtain

ϕ(rn) ≤ inf
u∈–1(]–∞,rn[)

∫

�
max|t|≤bn F(x, t) dx –

∫

�
F(x, u(x)) dx

1
p ( bn

k )p – 1
p‖u‖p

≤
∫

�
max|t|≤bn F(x, t) dx –

∫

B(x0,μR) F(x, an) dx
1
p ( bn

k )p – 1
p(kδ)p ap

n
,

for every n ≥ n0, where wn is as in (3.3) with an instead of ηn. Hence, we have a favorable
conclusion. �

The next result is an outcome of Theorem 3.5 and suggests the existence of infinitely
many solutions to (Mλ) for every λ that lies in a precise half-line.

Corollary 3.6 Assume that the hypothesis (A1) holds, and there exist two sequences {an}
and {bn} in [0, +∞[, with limn→∞ bn = +∞, such that (A3) holds and

(A5)
∫

B(x0,μR) F(x, an) dx =
∫

�
max|t|≤bn F(x, t) dx for each n ∈N.

If B∞ > 0, then, for each λ > 1
p(kδ)pB∞ , problem (Mλ) has an unbounded sequence of nonneg-

ative weak solutions in X.

Proof By (A5) we obtain A∞ = 0. Thus, since B∞ > 0, hypothesis (A4) of Theorem 3.5
holds and the proof is complete. �

Set

A0 := lim inf
ξ→0+

∫

�
max|t|≤ξ F(x, t) dx

ξp ,

B0 := lim sup
ξ→0+

∫

B(x0,μR) F(x, ξ ) dx
ξp .

In a similar way as in the proof of Theorem 3.1 but using conclusion (b) of Lemma 2.3
instead of (a), we will obtain the following result.

Theorem 3.7 Let the hypotheses (A1) and
(A6) A0 < δpB0,

be satisfied. Then, for every λ ∈ ] 1
p(kδ)pB0 , 1

pkpA0
[ and for every arbitrary nonnegative contin-

uous function g : R →R, whose potential satisfies the condition

G0 := lim sup
ξ→0+

G(ξ )
ξp < +∞, (3.6)

if we put

μ̃G,λ :=
1

pkpa(�2)G0

(
1 – λpkpA0

)
,

where μ̃G,λ = +∞ when G0 = 0, for every μ ∈ [0, μ̃G,λ[, then problem (Mλ,μ) has a sequence
of nonnegative weak solutions, which strongly converges to zero in X.
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Theorem 3.8 Assume that the hypothesis (A1) holds, and there exist two sequences {cn}
and {dn} in [0, +∞[, with limn→∞ dn = 0, such that

(A7) for some n0 ∈N one has cn < δdn for each n ≥ n0;
(A8) A0 := limn→∞

∫

� max|t|≤dn F(x,t) dx–
∫

B(x0,μR) F(x,cn) dx

dp
n– 1

δp cp
n

< δpB0.

Then, for every λ ∈ ] 1
p(kδ)pB0 , 1

pkpA0
[, problem (Mλ) has a sequence of nonnegative weak so-

lutions that strongly converges to zero in X.

The following theorem is an important consequence of Theorem 3.8.

Theorem 3.9 Let f : R → R be a continuous function such that inft≥0 F(t) = 0. Moreover,
let h ∈ C(�) with minx∈�h(x) > 0. Suppose that there are two sequences {cn} and {dn} in
[0, +∞[, with cn < dn for every n ≥ ν , and limn→∞ dn = 0, such that

(A9) limn→∞ dn
cn

= +∞;
(A10) maxt∈[cn ,dn] f (t) ≤ 0 for every n ≥ ν ;
(A11) 1

p(kδ)p ∫

B(x0,μR) h(x) dx < lim supξ→0+
F(ξ )
ξp < +∞.

Then, the problem

⎧
⎪⎪⎨

⎪⎪⎩

–�pu + q(x)|u|p–2u = h(x)f (u) in �,

u = 0 on �1,
∂u
∂ν

= 0 on �2,

has a sequence of nonnegative weak solutions that strongly converges to zero in X.

Proof Our purpose is to deal with Theorem 3.8. First, note that, by inft≥0 F(t) = 0 and
minx∈�h(x) > 0, hypothesis (A1) holds. Moreover, if {cn} and {dn} are two sequences in
[0, +∞[ satisfying our hypotheses, then there exists n0 ≥ ν such that cn < δdn for all n ≥ n0.
Thus, the hypothesis (A7) in Theorem 3.5 is checked. We will establish that

A0 := lim
n→∞

‖h‖L1(�) max|t|≤dn F(t) – (
∫

B(x0,μR) h(x) dx)F(cn)
dp

n – 1
δp cp

n
= 0.

For this, we define

hn := ‖h‖L1(�)
max|t|≤dn F(t)

cp
n

–
(∫

B(x0,μR)
h(x) dx

)
F(cn)

cp
n

,

for every n ≥ n0. At this step, observe that hypothesis (A10) yields

max
|t|≤dn

F(t) = max
|t|≤cn

F(t). (3.7)

Therefore, since
∫

B(x0,μR) h(x) dx
‖h‖L1(�)

≤ 1 and F(cn) ≥ 0,

and bearing in mind (3.7), we can write

max|t|≤dn F(t)
cp

n
=

max|t|≤cn F(t)
cp

n
≥ F(cn)

cp
n

>

∫

B(x0,μR) h(x) dx
‖h‖L1(�)

F(cn)
cp

n
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for all n ≥ n0. Hence, since hn ≥ 0 for all n ≥ n0, we have

0 ≤ lim sup
n→∞

hn.

Further, by (A11) one has

0 < lim sup
ξ→0+

F(ξ )
ξp < +∞, (3.8)

and consequently (note that cn ↘ 0+ as n → ∞) we obtain

0 ≤ lim sup
n→∞

F(cn)
c2

n
< +∞. (3.9)

Now, let ξn ∈ ]0, cn] be a sequence such that F(ξn) := max|t|≤cn F(t) for all n ≥ n0. Thus,

lim sup
n→∞

max|t|≤dn F(t)
cp

n
= lim sup

n→∞
max|t|≤cn F(t)

cp
n

= lim sup
n→∞

F(ξn)
cp

n
≤ lim sup

n→∞
F(ξn)
ξ

p
n

.

The above relations and (3.8) yield

0 ≤ lim sup
n→∞

max|t|≤dn F(t)
cp

n
≤ lim sup

n→∞
F(ξn)
ξ

p
n

< +∞.

Hence, there exists a constant β such that

0 ≤ lim sup
n→∞

hn = β . (3.10)

Then, by (A9) and (3.10), we have

A0 = lim sup
n→∞

hn

( dn
cn

)p – 1
δp

= 0.

Consequently, hypothesis (A8) holds. Finally, bearing in mind hypothesis (A11), one has
1 ∈ ] 1

p(kδ)pB0 , +∞[. Thanks to Theorem 3.8, the proof is complete. �

The next result is a direct consequence of Theorem 3.9.

Proposition 3.10 Let h ∈ C(�) satisfying minx∈� h(x) > 0. Also, let {cn} and {dn} be two
sequences in [0, +∞[ such that dn+1 < cn < dn for all n ≥ ν , limn→∞ dn = 0, and limn→∞ dn

cn
=

+∞. Moreover, let ϕ ∈ C1([0, 1]) be a nonnegative function such that ϕ(0) = ϕ(1) = ϕ′(0) =
ϕ′(1) = 0 and

max
s∈[0,1]

ϕ(s) >
1

p(kδ)p
∫

B(x0,μR) h(x) dx
.

Further, let g : R →R be the function defined by

g(t) :=

⎧
⎨

⎩

ϕ( t–dn+1
cn–dn+1

) if t ∈ ⋃
n≥ν[dn+1, cn],

0 otherwise.
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Then, the problem

⎧
⎪⎪⎨

⎪⎪⎩

–�pu + q(x)|u|p–2u = h(x)y(u) in �,

u = 0 on �1,
∂u
∂ν

= 0 on �2,

(Mhy
1 )

where

y(u) := |u|p–1(pg(u) + ug ′(u)
)
,

has a sequence of nonnegative weak solutions that strongly converges to zero in X.

Proof Assume that {cn} and {dn} are two positive sequences satisfying our hypotheses. We
assert that all the hypotheses of Theorem 3.9 are verified. Indeed, we have

F(t) :=
∫ t

0
y(ξ ) dξ = tpg(t) for all t ∈R

+.

Moreover, straightforward computations certify that

max
t∈[cn+1,dn+1]

y(t) = 0,

for all n ≥ ν , and

lim sup
ξ→0+

F(ξ )
ξp = lim sup

ξ→0+
g(ξ ) = max

s∈[0,1]
ϕ(s) >

1
p(kδ)p

∫

B(x0,μR) h(x) dx
.

The conclusion follows by Theorem 3.9. �

Finally, we show a real example of the application of Proposition 3.10.

Example 3.11 Let h ∈ C(�) satisfying minx∈� h(x) > 0 and take the positive real sequences

an :=
1

n!n
and bn :=

1
n!

,

for all n ≥ 2. Now, define ϕ ∈ C1([0, 1]) as follows

ϕ(s) := αe
1

s(s–1) +4,
(∀s ∈ [0, 1]

)

and let

g(t) :=

⎧
⎨

⎩

ϕ( t–1/(n+1)!
1/(n!n)–1/(n+1)! ) if t ∈ A,

0 otherwise,

where

A :=
⋃

n≥2

[
1

(n + 1)!
,

1
(n!n)

]

.
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If

α >
1

p(kδ)p
∫

B(x0,μR) h(x) dx
,

the problem (Mhy
1 ) has a sequence of nonnegative weak solutions that strongly converges

to zero in X.
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