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Abstract
In this paper, we give some basic concepts of q-calculus that will be needed in this
paper. Then, we built the q-nonlocal condition that ensures the solution existence
and uniqueness of the fractional q-integrodifferential equation. Also, we introduce
the continuous dependence of the solution. We find the numerical solution using the
finite-difference-Trapezoidal and the cubic B-spline-Trapezoidal methods. Finally, we
give three examples to illustrate the validity of our main results.

Keywords: q-integrodifferential equation; Existence and uniqueness of solution;
Numerical solutions

1 Introduction
The q-calculus has many applications in various fields such as electronics, mathematics,
and physics. Hence, many researchers have paid much attention to study it. The differ-
ential equations were developed using the q-calculus to describe several unique physi-
cal processes seen in quantum dynamics, discrete dynamical systems, discrete stochastic
processes, and so on. The existence, uniqueness, and numerical solutions for the differ-
ent types of differential equations have been under consideration by many researchers.
El-Sayed et al. investigated the existence, uniqueness, and some properties of solutions to
a variety of nonlocal integrodifferential equations [1–3]. Ibrahim et al. discussed the ex-
istence of a unique solution to the nonlinear integrodifferential equations of the first and
second order with the initial and nonlocal conditions [4, 5]. Tair et al. used two numerical
treatments for solving the linear integrodifferential Fredholm equation with a weakly sin-
gular kernel [6]. Zhao and Corless used the compact finite-difference method to find the
numerical solution of the Fredholm integrodifferential equation [7]. Dehghan and Saa-
datmandi used the Chebyshev finite-difference method to solve the Fredholm integrodif-
ferential equation [8]. Raftari introduced the numerical solutions of the linear Volterra
integrodifferential equations using the homotopy perturbation method and the finite-
difference method [9]. Ishak and Ahmed used the Trapezoidal method to find the nu-
merical solution of the Volterra integrodifferential equation [10]. Garba and Bichi used
the finite-difference-composite Simpson’s method to find the numerical solution of the
first-order Fredholm integrodifferential equation [11]. Pandey in [12], Saadati et al. in [13]
and Ahmed in [14] used the finite-difference-Trapezoidal method to find the solutions to
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various integrodifferential equations. Mittal and Jain in [15], Gholamian, Nadjaf in [16],
Hamzah in [17], and Mirzaee, and Alipour in [18] used the cubic B-spline to solve the
different types of integrodifferential equations.

Now, we suggest the fractional q-integrodifferential equation as follows:

u′′(t) = g
(
t, u(t), Iσ

q f
(
t, u′(t)

))
, t ∈ (0, 1], (1)

with the q-nonlocal condition

(1 – q)τ
n∑

i=0

qiu
(
qiτ

)
= α, u′(0) = β , τ ∈ (0, 1], (2)

where α and β are constants, and f and g are given functions.
Our paper is organized as follows: In Sect. 2, we give some basic concepts of q-calculus.

In Sect. 3, we give the integral representation. The existence of the solution u(t) will be
investigated in Sect. 4. In Sect. 5, we discuses the solution uniqueness. We show the con-
tinuous dependence of the solution on α in Sect. 6. In Sect. 7, we give a brief explanation
of the derivation of the finite-difference-Trapezoidal and the cubic B-spline-Trapezoidal
methods. In Sect. 8, we give three examples and satisfy the assumptions of the existence
theorem on them and solve it numerically using the finite-difference-Trapezoidal and the
cubic B-spline-Trapezoidal methods. Finally, we give the conclusions in Sect. 9.

2 Some q-calculus notations and definitions
Now, we go over some basic q-calculus definitions that will be used in this work.

Definition 2.1 ([19]) For any number c

[c]q =
1 – qc

1 – q
,

where q ∈ (0, 1).

Definition 2.2 ([19]) The q-derivative of f (t) can be defined as

(Dqf )(t) =
f (t) – f (qt)

t – qt
,

lim
q→1

Dqf (t) =
df (t)

dt
.

Definition 2.3 ([20]) A q-analog of the common Pochhammer symbol that is called a
q-shifted factorial is defined by

(c; q)n =

⎧
⎨

⎩
1, n = 0,
∏n–1

i=0 (1 – cqi), n ∈N
∗,

Also,

(c; q)∞ =
∞∏

i=0

(
1 – cqi), n ∈N

∗.
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Definition 2.4 ([20]) The q-gamma function is defined as

�q(c) =
(q, q)∞
(qc; q)∞

(1 – q)1–c,

and satisfies �q(c + 1) = [c]q�q(c), �q(1) = 1.

Definition 2.5 ([21]) Let f be a function defined on [0, 1]. The fractional q-integral of the
Riemann–Liouville type of order σ ≥ 0 is given by

(
Iσ

q f
)
(t) =

⎧
⎨

⎩
f (t), σ = 0,

1
�q(σ )

∫ t
0 (t – qs)σ–1f (s) dqs.

(3)

Lemma 2.6 ([21]) For σ > 0, using q-integration by parts, we have

(
Iσ

q 1
)
(t) =

t(σ )

�q(σ + 1)
. (4)

3 Integral representation
Consider the fractional q-integrodifferential problem (1) and (2) with the following as-
sumptions:

1. g : [0, 1] ×R
2 →R satisfies the Caratheodory condition. There exist a function

G(t) ∈ L1[0, 1] and a positive constant c1 > 0, such that

∣∣g(t, u,χ )
∣∣ ≤ G(t) + c1|u| + c1|χ |.

2. f : [0, 1] ×R →R satisfies the Caratheodory condition. There exist a function
ν(t) ∈ L1[0, 1] and a positive constant c2 > 0, such that

∣∣f (t, v)
∣∣ ≤ ν(t) + c2|v|.

3. There exist positive constancies Mi for i = 1, 2 such that:

sup
t∈(0,1]

∫ t

0
G(θ ) dθ ≤ M1, sup

t∈(0,1]

∫ t

0
Iσ

q ν(θ ) dθ ≤ M2.

4. 2c1 + c1c2
(σ+1)�q(σ+1) < 1.

Lemma 3.1 The solution of the fractional q-integrodifferential problem (1) and (2), if it
exists, can be represented by the q-integral equation as follows:

u(t) =
1

(1 – q)τ
∑n

i=0 qi

[

α–(1–q)τ
n∑

i=0

qi
∫ qiτ

0
v(θ ) dθ

]

+
∫ t

0
v(θ ) dθ , ∀t ∈ (0, 1], (5)
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where

v(t) = β +
∫ t

0
g

(

θ ,
1

(1 – q)τ
∑n

i=0 qi

[

α – (1 – q)τ
n∑

i=0

qi
∫ qiτ

0
v(θ ) dθ

]

+
∫ θ

0
v(s) ds,

Iσ
q f

(
θ , v(θ )

)
)

dθ .

(6)

Proof Integrating both sides of (1) we obtain

u′(t) = u′(0) +
∫ t

0
g
(
θ , u(θ ), Iσ

q f
(
θ , u′(θ )

))
dθ , t ∈ (0, 1]. (7)

Let u′(t) = v(t) in (7), we obtain

v(t) = β +
∫ t

0
g
(
θ , u(θ ), Iσ

q f
(
θ , v(θ )

))
dθ , t ∈ (0, 1], (8)

where

u(t) = u(0) +
∫ t

0
v(θ ) dθ , t ∈ (0, 1], (9)

using the q-nonlocal condition (2), we obtain

(1 – q)τ
n∑

i=0

qiu
(
qiτ

)
= u(0)(1 – q)τ

n∑

i=0

qi + (1 – q)τ
n∑

i=0

qi
∫ qiτ

0
v(θ ) dθ . (10)

Then,

u(0) =
1

(1 – q)τ
∑n

i=0 qi

[

α – (1 – q)τ
n∑

i=0

qi
∫ qiτ

0
v(θ ) dθ

]

. (11)

Using (8), (9), and (11), we obtain (5) and (6). This complete the proof. �

4 Solution existence
Theorem 4.1 Let assumptions 1–4 be satisfied. Then, the q-integral equation (6) has at
least one solution.

Proof Let us define the operator F associated with the q-integral equation (6) as

Fv(t) = β +
∫ t

0
g

(

θ ,
1

(1 – q)τ
∑n

i=0 qi

[

α – (1 – q)τ
n∑

i=0

qi
∫ qiτ

0
v(θ ) dθ

]

+
∫ θ

0
v(s) ds,

Iσ
q f

(
θ , v(θ )

)
)

dθ , ∀t ∈ (0, 1].
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Let Qr = {v(t) ∈R : ‖v‖C ≤ r}, where r =
|β|+M1+ c1|α|

(1–q)τ
∑n

i=0 qi +c1M2

1–(2c1+ c1c2
(σ+1)�q(σ+1) )

. Then, we have for v(t) ∈ Qr

∥
∥Fv(t)

∥
∥

C ≤ |β| +
∫ t

0

∣∣
∣∣
∣
g

(

θ ,
1

(1 – q)τ
∑n

i=0 qi

[

α – (1 – q)τ
n∑

i=0

qi
∫ qiτ

0
v(θ ) dθ

]

+
∫ θ

0
v(s) ds, Iσ

q f
(
θ , v(θ )

)
)∣∣∣

∣∣
dθ

≤ |β| +
∫ t

0

[

G(θ ) + c1

∣
∣∣∣
∣

1
(1 – q)τ

∑n
i=0 qi

[

α – (1 – q)τ
n∑

i=0

qi
∫ qiτ

0
v(θ ) dθ

]

+
∫ θ

0
v(s) ds

∣∣
∣∣
∣

+ c1Iσ
q
∣∣f

(
θ , v(θ )

)∣∣
]

dθ

≤ |β| + M1 +
∫ t

0

[
c1

(1 – q)τ
∑n

i=0 qi

[

|α| + (1 – q)τ
n∑

i=0

qi
∫ qiτ

0

∣∣v(θ )
∣∣dθ

]

+ c1

∫ θ

0

∣
∣v(s)

∣
∣ds + c1Iσ

q
(
ν(θ ) + c2

∣
∣v(θ )

∣
∣)

]

dθ

≤ |β| + M1 +
∫ t

0

[
c1

(1 – q)τ
∑n

i=0 qi |α| + c1‖v‖ + c1‖v‖ + c1M2

+ c1c2‖v‖ θσ

�q(σ + 1)

]
dθ

≤ |β| + M1 +
c1|α|

(1 – q)τ
∑n

i=0 qi + 2c1r + c1M2 +
c1c2r

(σ + 1)�q(σ + 1)
= r.

This proves that F : Qr → Qr and the class of functions {Fv(t)} is uniformly bounded in Qr .
Now, let t1 and t2 ∈ (0, 1] such that |t2 – t1| < δ, then

∣
∣Fv(t2) – Fv(t1)

∣
∣

=

∣
∣∣
∣∣
β +

∫ t2

0
g

(

θ ,
1

(1 – q)τ
∑n

i=0 qi

[

α – (1 – q)τ
n∑

i=0

qi
∫ qiτ

0
v(θ ) dθ

]

+
∫ θ

0
v(s) ds, Iσ

q f
(
θ , v(θ )

)
)

dθ

– β –
∫ t1

0
g

(

θ ,
1

(1 – q)τ
∑n

i=0 qi

[

α – (1 – q)τ
n∑

i=0

qi
∫ qiτ

0
v(θ ) dθ

]

+
∫ θ

0
v(s) ds, Iσ

q f
(
θ , v(θ )

)
)

dθ

∣
∣∣∣
∣

≤
∫ t2

t1

∣∣
∣∣
∣
g

(

θ ,
1

(1 – q)τ
∑n

i=0 qi

[

α – (1 – q)τ
n∑

i=0

qi
∫ qiτ

0
v(θ ) dθ

]

+
∫ θ

0
v(s) ds,

Iσ
q f

(
θ , v(θ )

)
)∣

∣∣∣
∣
dθ
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≤
∫ t2

t1

G(θ ) dθ +
c1(t2 – t1)|α|

(1 – q)τ
∑n

i=0 qi + c1r(t2 – t1) + c1r(t2 – t1)

+ c1

∫ t2

t1

Iσ
q ν(θ ) dθ + c1c2r

∫ t2

t1

θσ

�q(σ + 1)
dθ .

This means that the class of functions {Fv(t)} is equicontinuous in Qr . �

Let vm(t) ∈ Qr , vm(t) → v(t)(m → ∞), then from the continuity of the two functions g
and f , we obtain g(t, um,χm) → g(t, u,χ ) and f (t, vm) → f (t, v) as m → ∞. Also,

lim
m→∞ Fvm(t) = lim

m→∞

[

β +
∫ t

0
g

(

θ ,
1

(1 – q)τ
∑n

i=0 qi

[

α – (1 – q)τ
n∑

i=0

qi
∫ qiτ

0
vm(θ ) dθ

]

+
∫ θ

0
vm(s) ds, Iσ

q f
(
θ , vm(θ )

)
)

dθ

]

.

Using the Lebesgue dominated convergence theorem [22], and assumptions 1 and 2, we
obtain

lim
m→∞ Fvm(t) = β +

∫ t

0
lim

m→∞ g

(

θ ,
1

(1 – q)τ
∑n

i=0 qi

[

α – (1 – q)τ
n∑

i=0

qi
∫ qiτ

0
vm(θ ) dθ

]

+
∫ θ

0
vm(s) ds, Iσ

q f
(
θ , vm(θ )

)
)

dθ = Fv(t).

Then, Fvm(t) → Fv(t) as m → ∞. This implies that the operator F is continuous. By using
the Schauder fixed-point theorem [23], the q-integral equation (6) has at least one solution
v(t) ∈ C[0, 1]. Thus, the fractional q-integrodifferential equation (1) and (2) has a solution
u(t) ∈ C[0, 1] from Lemma 3.1.

5 Solution uniqueness
Let g and f satisfy the following assumptions:

(i) g : [0, 1] ×R
2 →R is measurable in t for any u,χ ∈ R and satisfies the Lipschitz

condition

∣∣g(t, u,χ ) – g(t, u1,χ1)
∣∣ ≤ c1|u – u1| + c1|χ – χ1|.

(ii) f : [0, 1] ×R →R is measurable in t for any v ∈R and satisfies the Lipschitz
condition

∣∣f (t, v) – f (t, w)
∣∣ ≤ c2|v – w|.

Theorem 5.1 Let the assumptions (i)–(ii) be satisfied. Then, the q-integral equation (6)
has a unique solution.
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Proof Let v and w be two solutions of the q-integral equation (6). Then,

∣
∣v(t) – w(t)

∣
∣

≤
∫ t

0

∣∣∣
∣∣
g

(

θ ,
1

(1 – q)τ
∑n

i=0 qi

[

α – (1 – q)τ
n∑

i=0

qi
∫ qiτ

0
v(θ ) dθ

]

+
∫ θ

0
v(s) ds, Iσ

q f
(
θ , v(θ )

)
)

– g

(

θ ,
1

(1 – q)τ
∑n

i=0 qi

[

α – (1 – q)τ
n∑

i=0

qi
∫ qiτ

0
w(θ ) dθ

]

+
∫ θ

0
w(s) ds, Iσ

q f
(
θ , w(θ )

)
)∣

∣∣∣
∣
dθ

≤
∫ t

0

[

c1

∣∣
∣∣
∣

1
(1 – q)τ

∑n
i=0 qi (1 – q)τ

n∑

i=0

qi
∫ qiτ

0

(
w(θ ) – v(θ )

)
dθ +

∫ θ

0

(
v(s) – w(s)

)
ds

∣∣
∣∣
∣

+ c1Iσ
q
∣∣f

(
θ , v(θ )

)
– f

(
θ , w(θ )

)∣∣
]

dθ

≤ c1

∫ t

0

[∣∣w(θ ) – v(θ )
∣∣ +

∣∣v(s) – w(s)
∣∣ + c2

θσ

�q(σ + 1)
∣∣v(θ ) – w(θ )

∣∣
]

dθ

≤ c1‖w – v‖C + c1‖w – v‖C + c1c2
1

(σ + 1)�q(σ + 1)
‖v – w‖C

≤
(

2c1 +
c1c2

(σ + 1)�q(σ + 1)

)
‖w – v‖C .

Hence,

[
1 –

(
2c1 +

c1c2

(σ + 1)�q(σ + 1)

)]
‖w – v‖C ≤ 0.

Since 2c1 + c1c2
(σ+1)�q(σ+1) < 1, then w(t) = v(t) and the solution of the integral equation (6) is

unique. Thus, from Lemma 3.1, the fractional q-integrodifferential problem (1) with the
q-nonlocal condition (2) possesses a unique solution u(t) ∈ C[0, 1]. �

6 Continuous dependence
In this section, we present the continuous dependence for a solution on a constant α.

6.1 Continuous dependence on α

Definition 6.1 The solution u(t) ∈ C[0, 1] of the q-nonlocal problem (1) and (2) depends
continuously on α, if

∀ε > 0, ∃δ(ε) s.t.
∣∣α – α∗∣∣ < δ ⇒ ∥∥u – u∗∥∥ < ε,

where u∗ is the solution of the q-nonlocal problem

u∗′′(t) = g
(
t, u∗(t), Iσ

q f
(
t, u∗′(t)

))
, t ∈ (0, 1], (12)
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with the q-nonlocal condition

(1 – q)τ
n∑

i=0

qiu∗(qiτ
)

= α, u∗′(0) = β . (13)

Theorem 6.2 Let the assumptions of the theorem (5.1) be satisfied. Then, the solution of
the fractional q-integrodifferential equation (1) with the q-nonlocal condition (2) is contin-
uously dependent on α.

Proof Let u(t) and u∗(t) be two solutions of the q-nonlocal problem (1) and (2), and (12)
and (13), respectively. Then,

∣∣v(t) – v∗(t)
∣∣

=

∣
∣∣
∣∣

∫ t

0

[

g

(

θ ,
1

(1 – q)τ
∑n

i=0 qi

[

α – (1 – q)τ
n∑

i=0

qi
∫ qiτ

0
v(θ ) dθ

]

+
∫ θ

0
v(s) ds, Iσ

q f
(
θ , v(θ )

)
)

– g

(

θ ,
1

(1 – q)τ
∑n

i=0 qi

[

α∗ – (1 – q)τ
n∑

i=0

qi
∫ qiτ

0
v∗(θ ) dθ

]

+
∫ θ

0
v∗(s) dsIσ

q f
(
θ , v∗(θ )

)
)]

dθ

∣∣
∣∣
∣

≤
∫ t

0

∣∣
∣∣∣
g

(

θ ,
1

(1 – q)τ
∑n

i=0 qi

[

α – (1 – q)τ
n∑

i=0

qi
∫ qiτ

0
v(θ ) dθ

]

+
∫ θ

0
v(s) ds, Iσ

q f
(
θ , v(θ )

)
)

dθ

– g

(

θ ,
1

(1 – q)τ
∑n

i=0 qi

[

α∗ – (1 – q)τ
m∑

i=0

qi
∫ qiτ

0
v∗(θ ) dθ

]

+
∫ θ

0
v∗(s) ds, Iσ

q f
(
θ , v∗(θ )

)
)∣

∣∣
∣∣
dθ

≤
∫ t

0

[
c1

1
(1 – q)τ

∑n
i=0 qi

∣∣α – α∗∣∣ + c1
∣∣v∗(θ ) – v(θ )

∣∣ + c1
∣∣v(s) – v∗(s)

∣∣

+ c1Iσ
q
∣∣f

(
θ , v(θ )

)
– f

(
θ , v∗(θ )

)∣∣
]

dθ

≤
∫ t

0

[
c1

1
(1 – q)τ

∑n
i=0 qi

∣
∣α – α∗∣∣ + 2c1

∥
∥v – v∗∥∥

C + c1c2
θσ

�q(σ + 1)
∥
∥v – v∗∥∥

C

]
dθ

≤ c1
1

(1 – q)τ
∑n

i=0 qi

∣∣α – α∗∣∣ + 2c1
∥∥v – v∗∥∥

C + c1c2
1

(σ + 1)�q(σ + 1)
∥∥v – v∗∥∥

C

≤ c1δ

(1 – q)τ
∑n

i=0 qi +
(

2c1 +
c1c2

(σ + 1)�q(σ + 1)

)∥
∥v – v∗∥∥

C .
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Hence,

∥
∥v – v∗∥∥

C ≤
c1δ

(1–q)τ
∑n

i=0 qi

1 – (2c1 + c1c2
(σ+1)�q(σ+1) )

.

Therefore,

∣
∣u(t) – u∗(t)

∣
∣ =

∣
∣∣∣
∣

1
(1 – q)τ

∑n
i=0 qi

[

α – (1 – q)τ
n∑

i=0

qi
∫ qiτ

0
v(θ ) dθ

]

+
∫ t

0
v(θ ) dθ

–
1

(1 – q)τ
∑n

i=0 qi

[

α∗ – (1 – q)τ
n∑

i=0

qi
∫ qiτ

0
v∗(θ ) dθ

]

+
∫ t

0
v∗(θ ) dθ

∣∣
∣∣∣

≤ 1
(1 – q)τ

∑n
i=0 qi

∣∣α – α∗∣∣ + 2
∥∥v – v∗∥∥

C .

Hence,

∥
∥u – u∗∥∥

C ≤ δ

(1 – q)τ
∑n

i=0 qi +
2c1δ

(1–q)τ
∑n

i=0 qi

1 – (2c1 + c1c2
1

(σ+1)�q(σ+1) )
= ε.

From the above results, the solution to the q-nonlocal problem (1) and (2) is continuously
dependent on α. �

7 Numerical technique methodology
In this part, we want to find the numerical solution of equation (1) under the q-nonlocal
condition (2) using the finite-difference-Trapezoidal and the cubic B-spline-Trapezoidal
methods. Before we start, let us introduce the problem (1) and (2) in the following

u′′(t) – c1ϕ
(
u(t)

)
= G(t) + c1Iσ

q f
(
t, u′(t)

)
, (14)

(1 – q)τ
n∑

i=0

qiu
(
qiτ

)
= α, u′(0) = β ,

where f (t, u′(t)) = c2(ρ(t) + φ(u′(t)). Then, by using (3), we can write (14) as

u′′(t) – c1ϕ
(
u(t)

)
= G(t) + c1

1
�q(σ )

∫ t

0
c2(t – qs)σ–1(ρ(s) + φ

(
u′(s)

))
dqs. (15)

Now, we divide the domain [0, t] of equation (15) into m finite points as 0 = t0 < t1 < · · · <
tm–1 < tm = mh. We use a uniform step length h = (ti – a)/i. By taking u′′

i = u′′(ti), ϕ(ui) =
ϕ(u(ti)), φ(u′

j) = φ(u′(sj)), ρ(sj) = ρj, G(ti) = Gi. Then, (15) can be written as

u′′
i – c1ϕ(ui) = γi +

c1c2

�q(σ )

∫ ti

0
(ti – qsj)σ–1φ

(
u′

j
)

dqs, (16)

where

γi = Gi +
c1c2

�q(σ )

∫ ti

0
(ti – qsj)σ–1ρj dqs.
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Let kij = (ti – qsj)σ–1. Then, (16) can be written as

u′′
i – c1ϕ(ui) = γi +

c1c2

�q(σ )

∫ ti

0
kijφ

(
u′

j
)

dqs. (17)

7.1 A brief review of the finite-difference-trapezoidal method
The idea is based on approximating the differential part of (17) using the finite-difference
method and the integral part using the Trapezoidal rule [5] as follows:

1. The derivative part of (17) can be approximated using the central difference as follows

u′′
i ≈ ui+1 – 2ui + ui–1

h2 ,

u′
i ≈ ui+1 – ui–1

2h
.

(18)

2. The integral part of (17) can be approximated using the Trapezoidal rule as

∫ ti

0
kijφ

(
u′

j
)

dqs ≈ h
2

[

ki0φ
(
u′

0
)

+ 2
i–1∑

j=1

kijφ
(
u′

j
)

+ kiiφ
(
u′

i
)
]

, i = 0, 1, 2, 3, . . . , m.

3. Then, (17) can be written as

ui+1 – 2ui + ui–1

h2 – c1ϕ(ui)

= γi +
c1c2

�q(σ )
h
2

[

ki0φ

(
u1 – u–1

2h

)
+ 2

i–1∑

j=1

kijφ

(
uj+1 – uj–1

2h

)

+ kiiφ

(
ui+1 – ui–1

2h

)]

, i = 0, 1, . . . , m.

(19)

7.2 A brief review of the cubic B-spline-trapezoidal method
The interpolation function of the continuous function u(t) on a set of points {ti}m

i=0 based
on the cubic B-spline basis functions is defined as follows

u(t) =
m+1∑

i=–1

CiBi(t), t ∈ (0, 1], (20)

where {Ci}m+1
i=–1 are constants to be determined and {B–1, B0, B1, . . . , Bm+1} form a basis that

was defined in [18]. Now, we combine the cubic B-spline with the Trapezoidal method to
find the numerical solution of (17) by following these steps:

1. Using the cubic B-spline method, the solution u(t) of the q-integral equation (17) can
be approximated as

u(ti) = ui ≈ Ci–1 + 4Ci + Ci+1,
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also,

u′(ti) = u′
i ≈ 3

h
(Ci+1 – Ci–1),

u′′(ti) = u′′
i ≈ 6

h2 (Ci–1 – 2Ci + Ci+1).

2. We use the Trapezoidal method to approximate the integral part of (17).
3. Therefore, (17) can be written as

6
h2 (Ci–1 – 2Ci + Ci+1) – c1ϕ(Ci–1 + 4Ci + Ci+1)

= γi +
c1c2

�q(σ )
3
2

[

ki0φ(C1 – C–1) + 2
i–1∑

j=1

kijφ(Cj+1 – Cj–1) + kiiφ(Ci+1 – Ci–1)

]

,

i = 0, 1, . . . , m.

8 Test problems
In this part, we satisfy the assumptions of the existence Theorem 4.1 on three examples
of fractional q-integrodifferential equations and we solve them numerically by using the
finite-difference-Trapezoidal method and the cubic B-spline-Trapezoidal method.

Test problem 1 In (15) we take G(t) = (–0.111111t – 1.33333) sin(t) + 0.111111 cos(t) –
0.111111, ρ(t) = cos(t), c1 = 1

3 , c2 = 1
3 , σ = 2, q = 0.5, τ = 0.2, n = 2, α = 0.026108, β = 1,

ϕ(u(t)) = u(t), φ(u′(t)) = u′(t), then 2c1 + c1c2
(σ+1)�q(σ+1) = 2

3 + 1
9

1
3�0.5(3) = 0.691358 < 1. The

exact solution of this problem is u(t) = sin(t).

The assumptions 1–4 of theorem (4.1) are clearly satisfied, implying that the given q-
nonlocal problem has a continuous solution. The numerical solution of this problem is
now found using the finite-difference-Trapezoidal and the cubic-Trapezoidal approach
with m = 20.

Table 1 and Fig. 1 give the comparison between the numerical solutions of the problem
using the finite-Trapezoidal and the cubic-Trapezoidal methods and exact solutions of this
problem. We can see from the previous comparison that the cubic-Trapezoidal method is
better than the finite-Trapezoidal method and both methods are effective.

Table 1 The exact and numerical solutions of Test problem 1

ti Exact solutions Finite-Trap. Abs. error
(finite-Trap.)

cubic-Trap. Abs. error
(cubic-Trap.)

0.1 0.099833 0.099813 2.0228E–5 0.099833 2.6953E–7
0.2 0.198669 0.198696 2.0337E–5 0.198669 2.1720E–7
0.3 0.295520 0.295579 5.9337E–5 0.295519 1.5071E–6
0.4 0.389418 0.389515 9.6192E–5 0.389414 3.9097E–6
0.5 0.479426 0.479556 1.3044E–4 0.479418 7.6246E–6
0.6 0.564642 0.564804 1.6178E–4 0.564629 1.2706E–5
0.7 0.644218 0.644408 1.9009E–4 0.644199 1.9032E–5
0.8 0.717356 0.717572 2.1550E–4 0.717329 2.6272E–5
0.9 0.783327 0.783565 2.3837E–4 0.783293 3.3862E–5
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Figure 1 Comparison between the numerical and exact solutions of Test problem 1

Table 2 The exact and numerical solutions of Test problem 2

ti Exact solutions Finite-Trap. Abs. error
(finite-Trap.)

cubic-Trap. Abs. error
(cubic-Trap.)

0.1 0.995004 0.995051 4.68397E–5 0.995708 7.03498E–4
0.2 0.980067 0.980110 4.38007E–5 0.980776 7.09112E–4
0.3 0.955336 0.955374 3.78139E–5 0.956054 7.17392E–4
0.4 0.921061 0.921086 2.46425E–5 0.921785 7.23787E–4
0.5 0.877583 0.877573 9.36794E–6 0.878297 7.14083E–4
0.6 0.825336 0.825237 9.86059E–5 0.825989 6.53025E–4
0.7 0.764842 0.764526 3.16339E–4 0.765308 4.66117E–4
0.8 0.696707 0.695906 8.01112E–4 0.696719 1.31684E–5
0.9 0.621609 0.619817 1.79268E–3 0.620662 9.47673E–4

Furthermore, we study the continuous dependence on α using the finite-difference-
Trapezoidal method. If we take |α – α∗| = 10–5 ⇒ |u(0.4) – u∗(0.4)| = 5.84198 × 10–5.
Therefore, u(t) is continuously dependent on α.

Test problem 2 In (15) we take G(t) = – 1
4 (5 cos(t)), ρ(t) = sin(t), c1 = 1

4 , c2 = 1
5 , σ = 5

2 , q =
0.2, τ = 0.5, n = 1, α = 0.43063, β = 0, ϕ(u(t)) = u(t), φ(u′(t)) = u′(t), then 2c1 + c1c2

(σ+1)�q(σ+1) =
2
4 + 1

20
1

7
2 �0.2( 7

2 )
= 0.510707 < 1. The exact solution of this problem is u(t) = cos(t).

The assumptions 1–4 of Theorem 4.1 are clearly satisfied, implying that the given q-
nonlocal problem has a continuous solution. The numerical solution of this problem is
now found using the finite-difference-Trapezoidal and the cubic-Trapezoidal approach
with m = 20.

Table 2 and Fig. 2 give the comparison between the numerical solutions of the problem
using the finite-Trapezoidal and the cubic-Trapezoidal methods and exact solutions of this
problem. We can see from the previous comparison that the finite-Trapezoidal method is
better than the cubic-Trapezoidal method and both methods are effective.

Test problem 3 In (15) we take G(t) = –0.0389995t3/2 – 0.0118895t7/2 – t2

6 , ρ(t) = t2,
ϕ(u(t)) = u2, φ(u′(t)) = u′2, c1 = 1

6 , c2 = 1
4 , σ = 3

2 , q = 0.5, τ = 0.2, α = 0.025, β = 1, n = 1,
2c1 + c1c2

1
(σ+1)�q(σ+1) = 2

4 + 1
20

1
5
2 �0.5( 5

2 )
= 0.347332 < 1. The exact solution of this problem is

u(t) = t.
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Figure 2 Comparison between the numerical and exact solutions of Test problem 2

Table 3 The exact and numerical solutions of Test problem 3

ti Exact solutions Finite-Trap. Abs. error
(finite-Trap.)

cubic-Trap. Abs. error
(cubic-Trap.)

0.1 0.1 0.100001 7.6971E–7 0.100001 8.1913E–7
0.2 0.2 0.199999 3.8486E–7 0.199999 4.0956E–7
0.3 0.3 0.299996 4.3613E–6 0.299996 4.4824E–6
0.4 0.4 0.399987 1.3468E–5 0.399986 1.3704E–5
0.5 0.5 0.499970 3.0454E–5 0.499969 3.0822E–5
0.6 0.6 0.599942 5.8463E–5 0.599941 5.8978E–5
0.7 0.7 0.699899 1.0100E–4 0.699898 1.0168E–4
0.8 0.8 0.799838 1.6195E–4 0.799837 1.6281E–4
0.9 0.9 0.899754 2.4555E–4 0.899753 2.4661E–4

Figure 3 Comparison between the numerical and exact solutions of Test problem 3

The assumptions 1–4 of Theorem 4.1 are clearly satisfied, implying that the given q-
nonlocal problem has a continuous solution. The numerical solution of this problem is
now found using the finite-difference-Trapezoidal and the cubic-Trapezoidal approach
with m = 20.

Table 3 and Fig. 3 give the comparison between the numerical solutions of the problem
using the finite-Trapezoidal and the cubic-Trapezoidal methods and the exact solutions of
this problem. We can see from the previous comparison that both methods are effective.
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9 Conclusion
The existence and uniqueness of the solution for the fractional q-integrodifferential equa-
tion have been investigated under some conditions. We discussed the continuous de-
pendence of the solution on α. We used the finite-difference-Trapezoidal and the cubic
B-spline-Trapezoidal methods to find the numerical solution of the proposed problem.
We give three examples to compare between the results of the finite-Trapezoidal, cubic-
Trapezoidal methods, and exact solutions. The results illustrated that the two methods
are effective.
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