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Abstract
This paper deals with the numerical treatment of a singularly perturbed unsteady
Burger–Huxley equation. We linearize the problem using the
Newton–Raphson–Kantorovich approximation method. We discretize the resulting
linear problem using the implicit Euler method and specially fitted finite difference
method for time and space variables, respectively. We provide the stability and
convergence analysis of the method, which is first-order parameter uniform
convergent. We present several model examples to illustrate the efficiency of the
proposed method. The numerical results depict that the present method is more
convergent than some methods available in the literature.
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1 Introduction
We consider the following unsteady nonlinear singularly perturbed Burger–Huxley equa-
tion:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

£εy(s, t) = ∂y
∂t – ε

∂2y
∂s2 + αy ∂y

∂s – λ(1 – y)(y – θ ) = 0,

(s, t) ∈ � = �s × �t = (0, 1) × (0, T],

y(s, 0) = y0(s), s ∈ �s,

y(0, t) = ℘0(t), y(1, t) = ℘1(t), t ∈ (0, T],

(1)

with left boundary �l = {(s, t) : s = 0, t ∈ �t}, initial boundary �i = {(s, t) : t = 0, s ∈ �s}, and
right boundary �r = {(s, t) : s = 1, t ∈ �t}, where ε is a small singular perturbation param-
eter such that 0 < ε � 1, α ≥ 1, λ ≥ 0, θ ∈ (0, 1), and ∂� = �l ∪ �i ∪ �r , The functions
℘0(t), ℘1(t), and y0(s) are assumed to be sufficiently smooth, bounded, and independent
of ε. Equation (1) shows a prototype model for describing the interaction between nonlin-
ear convection effects, reaction mechanisms, and diffusion transport. This equation has
many intriguing phenomena such as bursting oscillation [1], population genetics [2], in-
terspike [3], bifurcation, and chaos [4]. Several membrane models based on the dynamics
of potassium and sodium ion fluxes can be found in [5].
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In [6–16] and references therein, the authors constructed various analytical and nu-
merical methods for the Burger equations. The Burger–Huxley equation, in which the
highest order derivative term is affected by a small parameter ε (0 < ε � 1), is classified
as the singularly perturbed Burger–Huxley equation (SPBHE). The presence of ε and the
nonlinearity in the problem lead to severe difficulties in approximating the solution of
the problem. For instance, due to the presence of ε, the solution reveals boundary/sharp
interior layer(s), and it is tough to find a stable numerical approximation. While solving
SPBHE, unless specially designed meshes are used, the presented methods in [6–16] and
other standard numerical methods fail to give acceptable results. This limitation of the
conventional numerical methods has encouraged researchers to develop robust numer-
ical techniques that perform well enough independently of ε. Kaushik and Sharma [17]
investigated problem (1) using the finite difference method (FDM) on the piecewise uni-
form Shishkin mesh. In [18] a monotone hybrid finite difference operator on a piecewise
uniform Shishkin mesh is employed to find the approximate solution for problem (1). An
upwind FDM on an adaptive nonuniform grid to find an approximate solution for problem
(1) is suggested by Liu et al. [19]. In [20–23] the authors proposed a parameter uniform
numerical method based on fitted operator techniques for problem (1).

However, the development of the solution methodologies for problem (1) is at an infant
stage. This limitation motivated us to construct a parameter uniform numerical scheme
for solving problem (1) based on the fitted operator approach. The proposed method is
an ε-uniformly convergent numerical algorithm that does not require a priori knowledge
of the location and breadth of the boundary layer(s), which in turn increases the diffi-
culty of finding the free oscillation solution of the problem under consideration. Also, the
proposed method requires less computational effort to solve the families of the problem
under consideration.

2 A priori estimates for the solution of the continuous problem
Lemma 2.1 (maximum principle) If y|∂� ≥ 0 and (£ε)y|� ≥ 0, then y|� ≥ 0.

Proof See [18]. �

Lemma 2.2 (stability estimate) The solution y(s, t) of Eq. (1) is bounded, that is,

‖y‖� ≤ T‖y0‖�i + ‖y‖∂�.

Proof See [18]. �

3 Formulation of the numerical scheme
3.1 Quasi-linearization technique
Equation (1) can be rewritten as

⎧
⎪⎪⎨

⎪⎪⎩

£εy(s, t) = ( ∂y
∂t – ε

∂2y
∂s2 )(s, t) = g(s, t, y(s, t), ∂y

∂s (s, t)), (s, t) ∈ �,

y(s, 0) = y0(s), s ∈ �s,

y(0, t) = ℘0(t), y(1, t) = ℘1(t), t ∈ (0, T],

(2)

where g(s, t, y(s, t), ∂y
∂s (s, t)) = –αy ∂y

∂s + λ(1 – y)(y – θ ) is a nonlinear function of s, t, y(s, t),
∂y
∂s (s, t).
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To linearize the semilinear term of Eq. (1), we choose a reasonable initial approxima-
tion y0(s, t) for the function y(s, t) in the term g(s, t, y(s, t), ∂y

∂s (s, t)) that satisfies both initial
and boundary conditions and is obtained by the separation-of-variables method of the
homogeneous part of the problem under consideration; it is given by

y0(s, t) = y0(s) exp
(
–π2t

)
.

Now we apply the Newton–Raphson–Kantorovich approximation technique to the non-
linear term g(s, t, y(s, t), ∂y

∂s (s, t)) of Eq. (2), which can be linearized as

g
(

s, t, y(m+1)(s, t),
∂y(m+1)

∂s
(s, t)

)

∼= g
(

s, t, y(m)(s, t),
∂y(m)

∂s
(s, t)

)

+
(
y(m+1)(y, t) – y(m)(s, t)

) ∂g
∂y(m)

∣
∣
∣
∣
(s,t,y(m)(s,t), ∂y(m)

∂s (s,t))

+
(

∂y(m+1)

∂s
(s, t) –

∂y(m)

∂s
(s, t)

)
∂g

∂( ∂y(m)

∂s )

∣
∣
∣
∣
(s,t,y(m)(s,t), ∂y(m)

∂s (s,t))
+ · · · ,

(3)

where {y(m)}∞m=0 is a sequence of approximate solutions of g(s, t, y(m)(s, t), ∂y(m)

∂s (s, t)).
For simplicity, we denote y(m+1) = ŷ and substitute Eq. (3) into Eq. (2), which yields

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

£ε ŷ(s, t) = ( ∂ ŷ
∂t – ε

∂2 ŷ
∂s2 + γ

∂ ŷ
∂s + δŷ)(s, t) = v(s, t),

ŷ(s, 0) = y0(s), s ∈ �s,

ŷ(0, t) = φ0(t), t ∈ �t ,

ŷ(1, t) = φ1(t), t ∈ �t ,

(4)

where

γ (s, t) = –
∂g

∂( ∂y(m)

∂s )

∣
∣
∣
∣
(s,t,y(m)(s,t), ∂y(m)

∂s (s,t))
,

δ(s, t) = –
∂m
∂s(m)

∣
∣
∣
∣
(s,t,y(m)(s,t), ∂y(m)

∂s (s,t))
,

v(s, t) = g
(

s, t, y(m)(s, t),
∂y(m)

∂s
(s, t)

)

– y(m) ∂g
∂y(m)

∣
∣
∣
∣
(s,t,y(m)(s,t), ∂y(m)

∂s (s,t))

–
∂y(m)

∂s
(s, t)

∂g

∂( ∂y(m)

∂s )

∣
∣
∣
∣
(s,t,y(m)(s,t), ∂y(m)

∂s (s,t))
.

3.2 Temporal semidiscretization
Now we apply the implicit Euler method with uniform mesh �M

τ = {jτ , 0 < j ≤ M, τ = T/M}
to Eq. (4) in temporal variable:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1 + τ£M
ε )Ŷ (s, tj+1) = (–ε ∂2Ŷ

∂s2 + γ ∂Ŷ
∂s + δŶ )(s, tj+1) – v(s, tj+1) = Ŷ (s, tj),

Ŷ (s, 0) = Y0(s), s ∈ �s,

Ŷ (0, tj+1) = ℘0(tj+1), 0 ≤ j ≤ M – 1,

Ŷ (1, tj+1) = ℘1(tj+1), 0 ≤ j ≤ M – 1.

(5)
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Clearly, the operator (I + τ£M
ε ) satisfies the maximum principle, which confirms the sta-

bility of the semidiscrete equation (5).

Lemma 3.1 (Local Error Estimate) The local truncation error estimate ej+1 = ŷ(s, tj+1) –
Ŷ (s, tj+1) of the solution of Eq. (5) is bounded by

‖ej+1‖∞ ≤ Cτ 2,

and the global error estimate in the temporal direction is given by

‖Ej‖∞ ≤ Cτ , j ≤ T/τ ,

where C is a positive constant independent of ε and τ .

Proof See [23]. �

Lemma 3.2 The derivative of the solution Y j+1(s) of Eq. (5) is bounded by

∥
∥
∥
∥
∂ iY j+1(s)

∂si

∥
∥
∥
∥�s

≤ C
(

1 + ε–i exp

(
–(γ ∗(1 – s))

ε

))

, 0 ≤ i ≤ 4.

Proof See [18]. �

Rewrite Eq. (5) as

⎧
⎨

⎩

–ε
d2Y j+1(s)

ds2 + γ (s) dY j+1(s)
ds + Q(s)Y j+1(s) = ϑ j+1(s), 0 ≤ s ≤ 1,

Y j+1(0) = ℘
j+1
0 , Y j+1(1) = ℘

j+1
1 , 0 < j < M – 1,

(6)

where

Y j+1(s) = Ŷ j+1(s), Q(s) =
(

δ(s) +
1
τ

)

, ϑ j+1(s) =
(

vj+1(s) +
Y j(s)

τ

)

.

3.3 Spatial semidiscretization
In this section, we use the finite difference method for the spatial discretization of problem
(6) with a uniform step size. For right boundary layer problem, by the theory of singular
perturbations [24] the asymptotic solution of the zeroth-order approximation for problem
(6) is given as

Y j+1(s) ≈ Y j+1
0 (s) +

γ (1)
γ (s)

(
℘

j+1
1 – Y j+1

0 (s)
)

exp

(

–γ (s)
1 – s

ε

)

+ O(ε), (7)

where Y j+1
0 (s) is the solution of the reduced problem

γ (s)
dY j+1

0 (s)
ds

+ Q(s)Y j+1
0 (s) = ϑ j+1(s) with Y j+1

0 (1) = ℘
j+1
1 .
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Taking the first terms in Taylor’s series expansion for γ (s) about the point 1, Eq. (7) be-
comes

Y j+1(s) ≈ Y j+1
0 (s) +

(
℘

j+1
1 – Y j+1

0 (s)
)

exp

(

–γ (1)
1 – s

ε

)

+ O(ε). (8)

Now we divide the interval [0, 1] into N equal parts with � = 1/N yielding a space mesh
�N

s = {0 = s0, s1, s2, . . . , sN = 1}. Then we have si = i�, i = 0, 1, 2, . . . , N . By considering Eq. (8)
at si = i� as � → 0 we obtain

lim
�→0

Y j+1(i�) ≈ Y j+1
0 (0) +

(
℘

j+1
1 – Y j+1

0 (1)
)

exp

(

–γ (1)
(

1
ε2 – iρ

))

+ O(ε), (9)

where ρ = �

ε2 .
Let Y j+1(s) be a smooth function in the interval [0, 1]. Then by applying Taylor’s series

we have

Y j+1(si+1) ≈ Y j+1
i+1

≈ Y j+1
i + �

dY j+1
i

ds
+

�2

2!
d2Y j+1

i
ds2 +

�3

3!
d3Y j+1

i
ds3 +

�4

4!
d4Y j+1

i
ds4

+
�5

5!
d5Y j+1

i
ds5 +

�6

2!
d6Y j+1

i
ds6 +

�7

7!
d7Y j+1

i
ds7 +

�8

8!
d8Y j+1

i
ds8 + O

(
�9)

(10)

and

Y j+1(si–1) ≈ Y j+1
i–1

≈ Y j+1
i – �

dY j+1
i

ds
+

�2

2!
d2Y j+1

i
ds2 –

�3

3!
d3Y j+1

i
ds3 +

�4

4!
d4Y j+1

i
ds4

–
�5

5!
d5Y j+1

i
ds5 +

�6

2!
d6Y j+1

i
ds6 –

�7

7!
d7Y j+1

i
ds7 +

�8

8!
d8Y j+1

i
ds8 – O

(
�9).

(11)

Adding Eq. (10) and Eq. (11), we get

Y j+1
i–1 – 2Y j+1

i + Y j+1
i+1 =

2�2

2!
d2Y j+1

i
ds2 +

2�4

4!
d4Y j+1

i
ds4 +

2�6

2!
d6Y j+1

i
ds6 +

2�8

8!
d8Y j+1

i
ds8 + O

(
�10) (12)

and

d2Y j+1
i–1

ds2 –
d2Y j+1

i
ds2 +

d2Y j+1
i+1

ds2

=
2�2

2!
d4Y j+1

i
ds4 +

2�4

4!
d6Y j+1

i
ds6 +

2�6

6!
d8Y j+1

i
ds8 +

2�8

8!
d10Y j+1

i
ds10 + O

(
�12).

(13)

Substituting �4

12
d6Y j+1

i
ds6 from Eq. (13) into Eq. (12), we obtain

Y j+1
i–1 – 2Y j+1

i + Y j+1
i+1 =

�2

30

(
d2Y j+1

i–1
ds2 + 28

d2Y j+1
i

ds2 +
d2Y j+1

i+1
ds2

)

+ R, (14)

where R = �4

20
d4Y j+1

i
ds4 – 13�6

302400
d8Y j+1

i
ds8 + O(�(10)).
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Now from Eq. (6) we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ε
d2Y j+1

i–1
ds2 = γi–1

dY j+1
i–1

ds + Qi–1Y j+1
i–1 – ϑ

j+1
i–1 ,

ε
d2Y j+1

i
ds2 = γi

dY j+1
i

ds + QiY
j+1
i – ϑ

j+1
i ,

ε
d2Y j+1

i+1
ds2 = γi+1

dY j+1
i+1

ds + Qi+1Y j+1
i+1 – ϑ

j+1
i+1 ,

(15)

where we approximate dY j+1
i–1

ds , dY j+1
i

ds , and dY j+1
i+1

ds using nonsymmetric finite differences [25]:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dY j+1
i–1

ds ≈ –Y j+1
i+1 +4Y j+1

i –3Y j+1
i–1

2�
+ �

d2Y j+1
i

ds2 + O(�2),
dY j+1

i
ds ≈ Y j+1

i+1 –Y j+1
i–1

2�
+ O(�2),

dY j+1
i+1

ds ≈ 3Y j+1
i+1 –4Y j+1

i +Y j+1
i–1

2�
– �

d2Y j+1
i

ds2 + O(�2).

(16)

Substituting Eq. (16) into Eq. (15), we obtain

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ε
d2Y j+1

i–1
ds2 = γi–1( –Y j+1

i+1 +4Y j+1
i –3Y j+1

i–1
2�

) + Qi–1Y j+1
i–1 – ϑ

j+1
i–1 ,

ε
d2Y j+1

i
ds2 = γi(

Y j+1
i+1 –Y j+1

i–1
2�

) + QiY
j+1
i – ϑ

j+1
i ,

ε
d2Y j+1

i+1
ds2 = γi+1( 3Y j+1

i+1 –4Y j+1
i +Y j+1

i–1
2�

) + Qi+1Y j+1
i+1 – ϑ

j+1
i+1 .

(17)

Inserting Eq. (17) into Eq. (14) and rearranging, we get

(

ε +
γi+1�

30
–

γi–1�

30

)(
Y j+1

i–1 – 2Y j+1
i + Y j+1

i+1
�2

)

=
(

–γi–1

20�
+

Qi–1

30
–

7γi

15�
+

γi+1

60�

)

Y j+1
i–1 +

(
γi–1

15�
+

14Qi

15�
–

γi+1

15�

)

Y j+1
i

+
(

–γi–1

60�
+

7γi

15�
+

γi+1

20�
+

Qi+1

30

)

Y j+1
i+1 –

1
30

(
ϑ

j+1
i–1 + 28ϑ

j+1
i + ϑ

j+1
i+1

)
.

(18)

Introducing a constant fitting factor σ (ρ) in Eq. (18), we obtain

(

σ (ρ)ε +
γi+1�

30
–

γi–1�

30

)(
Y j+1

i–1 – 2Uj+1
i + Y j+1

i+1
�2

)

=
(

–γi–1

20�
+

Qi–1

30
–

7γi

15h
+

γi+1

60�

)

Y j+1
i–1 +

(
γi–1

15�
+

14Qi

15
–

γi+1

15h

)

Y j+1
i

+
(

–γi–1

60�
+

7γi

15�
+

γi+1

20�
+

Qi+1

30

)

Y j+1
i+1 –

1
30

(
ϑ

j+1
i–1 + 28ϑ

j+1
i + ϑ

j+1
i+1

)
.

(19)

Multiplying (19) by � and taking the limit as � → 0, we get

lim
�→0

σ (ρ)
(

Y j+1
i–1 – 2Y j+1

i + Y j+1
i+1

ρ

)

=
γ (0)

2
(
Y j+1

i+1 – Y j+1
i–1

)
. (20)
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Using Eq. (9), we have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

σ (ρ)
ρ

lim�→0(Y j+1(i� – �) – 2Y j+1(i�) + Y j+1(i� + �))

≈ (℘ j+1
1 – Y j+1

0 (1)) exp(–γ (1)( 1
ε

– iρ))(exp(γ (1)ρ) – 2 + exp(–γ (1)ρ)),
σ (ρ)
ρ

lim�→0(Y j+1(i� + �) – Y j+1(i� – �))

≈ (℘ j+1
1 – Y j+1

0 (1)) exp(–γ (1)( 1
ε

– iρ))(exp(–γ (1)ρ) – exp(γ (1)ρ)).

Using the above expressions in Eq. (20), we get

σ (ρ)
ρ

(
eγ (1)ρ – 2 + e–γ (1)ρ) =

γ (0)
2

(
eγ (1)ρ – e–γ (1)ρ).

On simplifying, we get

σ (ρ) =
γ (0)ρ

2
coth

(
γ (1)ρ

2

)

, (21)

which is the required value of the constant fitting factor σ (ρ). Finally, using Eq. (19) and
the value of σ (ρ) given by Eq. (21), we get

£N ,MY j+1
i = χ–

i Y j+1
i–1 + χ c

i Y j+1
i + χ+

i Y j+1
i+1 = μ

j+1
i ,

i = 1, 2, . . . , N – 1, j = 0, 1, . . . , M – 1,
(22)

where
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

χ–
i = – σ (ρ)ε

�2 – γi–1
60�

– 28γi
60�

– γi+1
60�

+ Qi–1
30 ,

χ c
i = 2σ (ρ)ε

�2 + 28Qi
30 ,

χ+
i = – σ (ρ)ε

�2 + γi–1
60h + γi+1

60h + 28γi
60h + Qi+1

30 ,

μ
j+1
i = 1

30 (ϑ j+1
i–1 + 28ϑ

j+1
i + ϑ

j+1
i+1 ).

For sufficiently small mesh sizes, the above matrix is nonsingular, and |χ c
i | ≥ |χ c

i | + |χ+
i |.

Hence by [26] the matrix χ is an M-matrix and has an inverse. Therefore Eq. (22) can be
solved by the matrix inverse with given boundary conditions.

4 Convergence analysis
Lemma 4.1 If Y j+1

i ≥ 0 on i = 0, N and £N ,MY j+1
i ≥ 0 on �N ,M , then Y j+1

i ≥ 0 at each point
of �N ,M .

Lemma 4.2 The solution Y j+1
i of the discrete scheme in (22) on �N ,M satisfies the following

bound:

∥
∥Y j+1

i
∥
∥ ≤ max

{∣
∣Y j+1

0
∣
∣,

∣
∣Y j+1

N
∣
∣
}

+
‖£N ,M‖

Q∗ ,

where Q(si) ≥ Q∗ > 0.

Hence Lemma 4.2 confirms that the discrete scheme (22) is uniformly stable in supre-
mum norm.
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Lemma 4.3 If Y ∈ C3(I), then the local truncation error in space discretization is given as

|�i| ≤ max
si–1≤s≤si+1

{
28γ �2

180

∣
∣
∣
∣
d3Y j+1(s)

ds3

∣
∣
∣
∣

}

+ O
(
�3), i = 1, 2, . . . , N – 1.

Proof By definition

�i = –σε

{
Y j+1

i–1 – 2Y j+1
i + Y j+1

i+1
�2 –

d2Y j+1
i

ds2

}

+
γi–1

30

{(
–3Y j+1

i–1 + 4Y j+1
i – Y j+1

i–1
2�

+ �
d2Y j+1

i
ds2

)

–
dY j+1

i–1
ds

}

+
28γi

30

{
Y j+1

i+1 – Y j+1
i–1

2�
–

dY j+1
i

ds

}

+
γi+1

30

{(
Y j+1

i+1 – 4Y j+1
i + 3Y j+1

i–1
2�

– �
d2Y j+1

i
ds2

)

–
dY j+1

i+1
ds

}

,

i = 1(1)N – 1.

⇒ �i = –σε

{
�2

12
d4Y j+1

i
ds4 +

�4

360
d6Y j+1

i
ds6 + · · ·

}

+
γi–1

30

{

�
d2Y j+1

i
ds2 –

2�2

3
d3Y j+1

i
ds3 +

}

+
28γi

30

{
�2

6
d3Y j+1

i
ds3 +

�4

120
d5Y j+1

i
ds5 + · · ·

}

+
γi+1

30

{

–�
d2Y j+1

i
ds2 –

2�2

3
d3Y j+1

i
ds3 + · · ·

}

⇒ |�i| ≤ max
si–1≤s≤si+1

{
σ�2ε

12

∣
∣
∣
∣
d4Y j+1(s)

ds4

∣
∣
∣
∣

}

+ max
si–1≤s≤si+1

{
28

180
γ �2

∣
∣
∣
∣
d3Y j+1(s)

ds3

∣
∣
∣
∣

}

.

Using relation (22) with W = γ (0)
2 coth( γ (1)ρ

2 ), we get

⇒ |�i| ≤ max
si–1≤s≤si+1

{
W�3

12

∣
∣
∣
∣
d4Y j+1(s)

ds4

∣
∣
∣
∣

}

+ max
si–1≤s≤si+1

{
28

180
γ �2

∣
∣
∣
∣
d3Y j+1(s)

ds3

∣
∣
∣
∣

}

⇒ |�i| ≤ max
si–1≤s≤si+1

{
28

180
γ �2

∣
∣
∣
∣
d3Y j+1(s)

ds3

∣
∣
∣
∣

}

+ O
(
�3)

⇒ |�i| ≤ O
(
�2), i = 1, 2, . . . , N – 1.

Thus we obtain the desired result. �

Lemma 4.4 Let Y (si, tj+1) be the solution of problem (6), and let Y j+1
i be the solution of the

discrete problem (22). Then we have the following estimate:

∣
∣Y (si, tj+1) – Y j+1

i
∣
∣ ≤ O

(
�2).

Proof Rewrite Eq. (22) in matrix vector form as

ZY = H , (23)
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where Z = (χi,j), 0 ≤ j ≤ M – 1, 1 ≤ i ≤ N – 1, is the tridiagonal matrix with

χi–1,j+1 = –
σ (ρ)ε

�2 –
γi–1

60�
–

28γi

60�
–

γi+1

60�
+

Qi–1

30
,

χi,j+1 =
2σ (ρ)ε

�2 +
28Qi

30
,

χi+1,j+1 = –
σ (ρ)ε

�2 +
γi–1

60�
–

γi+1

60�
+

28γi

60�
+

Qi+1

30
,

and H = (μj+1
i ) is the column vector with (μj+1

i ) = 1
30 (ϑ j+1

i–1 + 28ϑ
j+1
i +ϑ

j+1
i+1 ), i = 1, 2, . . . , N – 1,

with local truncation error

|�i| ≤ C
(
�2).

We also have

ZY – �(�) = H , (24)

where Y = (Y 0, Y 1, . . . , Y N )t and �(�) = (�1(�),�2(�), . . . ,�N (�))t are the actual solution
and the local truncation error, respectively.

From Eqs. (23) and (24) we get

Z(Y – Y ) = �(�). (25)

Then Eq. (25) can be written as

ZE = �(�), (26)

where E = Y – Y = (�0,�1,�2, . . . ,�N )t . Let S be the sum of elements of the ith row of Z.
Then we have

�1 =
N–1∑

j=1

χ1,j =
σε

�2 +
γi+1

60�
+

γi–1

60�
+

28Qi

30
+

Qi+1

30
+

28γi

60�
,

�N–1 =
N–1∑

j=1

χN–1,j =
σε

�2 –
γi+1

60�
–

γi–1

60�
+

28Qi

30
+

Qi–1

30
–

28γi

60�
,

�i =
N–1∑

j=1

χi,j =
1

30
(
ϑ

j+1
i–1 + 28ϑ

j+1
i + ϑ

j+1
i+1

)

= �i + O
(
�2) = Bi0; i = 2(1)N – 2,

where Bi0 = �i = 1
30 (ϑ j+1

i–1 + 28ϑ
j+1
i + ϑ

j+1
i+1 ).

Since 0 < ε � 1, for sufficiently small �, the matrix Y is irreducible and monotone. Then
it follows that Z–1 exists and its elements are nonnegative [27]. Hence from Eq. (26) we
obtain

E = Z–1�(�)
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and

‖E‖ ≤ ∥
∥Z–1∥∥

∥
∥�(�)

∥
∥. (27)

Let χki be the (ki)th element of Z–1. Since χki ≥ 0, by the definition of multiplication of
matrices with its inverses we have

N–1∑

i=1

χki�i = 1, k = 1, 2, . . . , N – 1.

Therefore it follows that

N–1∑

i=1

χki ≤ 1
min0≤i≤N–1 �i

=
1

Bi,0
≤ 1

|Bi0| (28)

for some i0 between 1 and N – 1, and Bi0 = �i. From equations (23), (27), and (28) we
obtain

Ei =
N–1∑

i=1

χ ki�(�), i = 1(1)N – 1,

which implies

Ei ≤ C(�2)
|�i| , i = 1(1)N – 1.

Therefore

‖E‖ ≤ C
(
�2).

This implies that the spatial semidiscretization process is convergent of second order. �

Theorem 4.5 Let y(s, t) be the solution of problem (1), and let Y j
i be the numerical solution

obtained by the proposed scheme (22). Then we have the following error estimate for the
totally discrete scheme:

sup
0<ε�1

max
si ,tj

∣
∣y(si, tj) – Y j

i
∣
∣ ≤ C

(
τ + (�)2).

Proof By combining the result of Lemmas 3.1 and 4.4 we obtain the required bound. �

5 Numerical examples, results, and discussion
In this section, we consider three model problems to verify the theoretical findings of the
proposed method. As the exact solutions of the considered examples are not known, we
calculate the maximum absolute error for each ε given in [28] by

EN ,τ
ε = max

(si ,tj+1)∈�N ,M

∣
∣Y N ,τ (si, tj+1) – Y 2N ,τ /2(si, tj+1)

∣
∣



Daba and Duressa Boundary Value Problems        (2022) 2022:102 Page 11 of 16

and the corresponding order of convergence for each ε by

rN ,τ
ε = log2

(
EN ,τ

ε /E2N ,τ /2
ε

)
.

For all N and τ , the ε-uniform maximum error and the corresponding ε-uniform order of
convergence are calculated using

EN ,τ = max
ε

EN ,τ
ε and rN ,τ = log2

(
EN ,τ /E2N ,τ /2), respectively.

Example 5.1 Consider the following SPBHE:

⎧
⎪⎪⎨

⎪⎪⎩

∂y
∂t – ε

∂2y
∂s2 + y ∂y

∂s – (1 – y)(y – 0.5) = 0, (s, t) ∈ �,

y(s, 0) = s(1 – s2), 0 ≤ s ≤ 1,

y(0, t) = 0 = y(1, t) = 0, t ∈ (0, T].

Example 5.2 Consider the following SPBHE:

⎧
⎪⎪⎨

⎪⎪⎩

∂y
∂t – ε

∂2y
∂s2 + y ∂y

∂s = 0, (s, t) ∈ �,

y(s, 0) = s(1 – s2), 0 ≤ s ≤ 1,

y(0, t) = 0 = y(1, t) = 0, t ∈ (0, T].

Example 5.3 Consider the following SPBHE:

⎧
⎪⎪⎨

⎪⎪⎩

∂y
∂t – ε

∂2y
∂s2 + y ∂y

∂s = (1 – y)(y – 0.5), (s, t) ∈ �,

y(s, 0) = sin(πs), 0 ≤ s ≤ 1,

y(0, t) = 0 = y(1, t) = 0, t ∈ (0, T].

The EN ,τ
ε EN ,τ , and rN ,τ for Examples 5.1, 5.2,and 5.3 are tabulated for various values

of ε, M, and N in Tables 1–4. These results show that the proposed scheme reveals the
parameter uniform convergence of first order. Besides, the numerical results depict that
the proposed method gives better results than those in [17–19, 23]. The 3D view of the
numerical solution of Examples 5.1 and 5.2 at N = 64, M = 40, and ε = 2–18 are plotted in
Fig. 1. The effects of ε and the time step on the solution profile for the considered problems

Table 1 EN,τε , EN,τ , and rN,τ for Example 5.1 with M = N

ε ↓ N → 16 32 64 128 256 512

2–6 4.1511e–03 2.1635e–03 1.1017e–03 5.5395e–04 2.7766e–04 1.3899e–04
2–8 5.1926e–03 2.6194e–03 1.2873e–03 6.3309e–04 3.1331e–04 1.5576e–04
2–10 5.9142e–03 3.0773e–03 1.4933e–03 7.0466e–04 3.3633e–04 1.7942e–04
2–12 6.1411e–03 3.3268e–03 1.6982e–03 7.0466e–04 3.8724e–04 1.7942e–04
2–14 6.1690e–03 3.3829e–03 1.7627e–03 8.9236e–04 4.4031e–04 2.1086e–04
2–16 6.1691e–03 3.3865e–03 1.7723e–03 9.0674e–04 4.5674e–04 2.2707e–04
2–18 6.1691e–03 3.3865e–03 1.7724e–03 9.0765e–04 4.5916e–04 2.3072e–04
2–20 6.1691e–03 3.3865e–03 1.7724e–03 9.0765e–04 4.5918e–04 2.3095e–04
2–22 6.1691e–03 3.3865e–03 1.7724e–03 9.0765e–04 4.5918e–04 2.3095e–04
EN,τ 6.1691e–03 3.3865e–03 1.7724e–03 9.0765e–04 4.5918e–04 2.3095e–04
rN,τ 0.86527 0.93409 0.96550 0.98308 0.99148
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Table 2 EN,τε , EN,τ , and rN,τ for Example 5.1

ε N = 32 64 128 256 512 1024
↓ M = 20 40 80 160 320 640

Present Method
2–6 3.3862e–03 1.7451e–03 8.8199e–04 4.9830e–04 2.2211e–04 1.1118e–04

0.95636 0.98448 0.82375 1.1657 0.99838
2–8 4.0057e–03 2.0129e–03 1.0010e–03 4.4317e–04 2.4846e–04 1.2404e–04

0.99278 1.0078 1.1755 0.8.34851 1.0022
2–10 4.4504e–03 2.2209e–03 1.0791e–03 5.2577e–04 2.5865e–04 1.2819e–04

1.0028 1.0413 1.0373 1.0234 1.0127
2–12 4.6896e–03 2.4227e–03 1.2006e–03 5.7639e–04 2.7481e–04 1.3289e–04

0.95285 1.0129 1.0586 1.0686 1.0482
2–14 4.7443e–03 2.4871e–03 1.2644e–03 6.2915e–04 3.0594e–04 1.4544e–04

0.93173 0.97601 1.0070 1.0402 1.0728
2–16 4.7485e–03 2.4971e–03 1.2792e–03 6.4578e–04 3.2224e–04 1.5880e–04

0.92722 0.96501 0.98613 1.0029 1.0209
2–18 4.7485e–03 2.4972e–03 1.2802e–03 6.4830e–04 3.2598e–04 1.6299e–04
EN,τ 4.7485e–03 2.4972e–03 1.2802e–03 6.4830e–04 3.2598e–04 1.6299e–04
rN,τ 0.92716 0.96394 0.98164 0.99188 1.0000

Results in [19]
EN,τ 2.8299e–01 1.7036e–01 1.1805e–01 7.4251e–02 4.1879e–02 2.2413e–02
rN,τ 0.2844 0.6496 0.6469 0.8100 0.8973

Results in [23]
EN,τ 5.4827e–03 2.9644e–03 1.5416e–03 7.8591e–04 3.9638e–04 1.9820e–04
rN,τ 0.8874 0.9447 0.9756 0.9931 1.0069

Table 3 EN,τε , EN,τ , and rN,τ for Example 5.2

ε N = 32 64 128 256 512 1024
↓ M = 20 40 80 160 320 640

Present Method
2–6 2.7711e–03 2.2111e–03 7.2450e–04 3.6445e–04 1.8272e–04 9.1482e–05

0.32569 1.6097 0.99126 0.99609 0.99807
2–8 3.4720e–03 1.7347e–03 8.6045e–04 4.2759e–04 2.1302e–04 1.0630e–04

1.0011 1.0115 1.0089 1.0052 1.0028
2–10 3.9921e–03 1.9665e–03 9.4700e–04 4.5914e–04 2.2533e–04 1.1154e–04

1.0215 1.0542 1.0444 1.0269 1.0145
2–12 4.3177e–03 2.2111e–03 1.0828e–03 5.1318e–04 2.4267e–04 1.1690e–04

0.95285 1.0129 1.0586 1.0686 1.0482
2–14 4.4129e–03 2.3029e–03 1.1644e–03 5.7521e–04 2.9685e–04 1.2987e–04

0.93828 0.98387 1.0174 0.95435 1.1927
2–16 4.4375e–03 2.3029e–03 1.1882e–03 5.9758e–04 3.0263e–04 1.4530e–04

0.94630 0.95467 0.99157 0.98158 1.0585
2–18 4.4436e–03 2.3335e–03 1.1944e–03 6.0352e–04 3.0263e–04 1.5081e–04
EN,τ 4.4436e–03 2.3335e–03 1.1944e–03 6.0352e–04 3.0263e–04 1.5081e–04
rN,τ 0.92923 0.96621 0.98481 0.99585 1.0048

Results in [19]
EN,τ 2.5614e–01 2.1031e–01 1.3406e–01 8.5618e–02 4.8834e–02 2.6219e–02
rN,τ 0.7322 0.5292 0.6689 0.8262 0.9019

Results in [23]
EN,τ 5.3005e–03 2.8654e–03 1.4887e–03 7.5704e–04 3.8034e–04 1.8926e–04
rN,τ 0.7322 0.5292 0.6689 0.8262 0.9019

are displayed in Figs. 2 and 3, respectively. The log-log plots of maximum absolute errors
for Examples 5.1–5.3 are plotted in Fig. 4. This figure shows that the obtained theoretical
rate of convergence of the proposed method agrees with numerical experiments.
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Table 4 EN,τε , EN,τ , and rN,τ for Example 5.3 with τ = 0.0001

ε ↓ N → 16 32 64 128 256

2–6 5.8282e–03 1.6509e–03 4.4458e–04 1.3541e–04 6.4898e–05
2–8 1.2323e–02 5.1156e–03 1.7053e–03 4.9535e–04 1.5495e–04
2–10 1.4869e–02 7.3963e–03 3.4059e–03 1.3771e–03 4.7100e–04
2–12 1.5284e–02 7.9861e–03 4.0270e–03 1.9576e–03 9.0048e–04
2–14 1.5294e–02 8.0395e–03 4.1387e–03 2.1050e–03 1.0594e–03
2–16 1.5294e–02 8.0396e–03 4.1419e–03 2.1194e–03 1.0682e–03
2–18 1.5294e–02 8.0396e–03 4.1419e–03 2.1195e–03 1.0791e–03
2–20 1.5294e–02 8.0396e–03 4.1419e–03 2.1195e–03 1.0791e–03
2–22 1.5294e–02 8.0396e–03 4.1419e–03 2.1195e–03 1.0791e–03
EN,τ 1.5294e–02 8.0396e–03 4.1419e–03 2.1195e–03 1.0791e–03
rN,τ 0.92777 0.95683 0.96657 0.97390
EN,τ [18] 4.0948e–2 1.8548e–2 7.5517e–3 3.3634e–3 1.6113e–3
EN,τ [17] 4.0835e–2 2.2530e–2 1.1907e–2 6.128e–3 3.110e–3

Figure 1 3D view of numerical solution for N = 64, M = 40, ε = 2–18: (a) Example 5.1, (b) Example 5.2

Figure 2 Effect of ε on the behavior of the solution with layer formation: (a) Example 5.1, (b) Example 5.2

6 Conclusion
We have presented a parameter uniform numerical scheme for the singularly perturbed
unsteady Burger–Huxley equation. The developed scheme constitutes the implicit Euler
in the time direction and specially fitted finite difference method in the space direction.
Theoretical and numerical stability and parameter uniform convergence analysis of the
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Figure 3 Numerical solution for N = 64, M = 40, ε = 2–16 at different time levels: (a) Example 5.1,
(b) Example 5.2

Figure 4 Example 5.1 (a), Example 5.2 (b), and Example 5.3 (c): log-log scale plots of the maximum absolute
errors for different values of ε

developed scheme is presented. The presented method is shown to be ε-uniformly con-
vergent with convergence order O(τ + �2). Several model examples are presented to illus-
trate the efficiency of the proposed method. The proposed scheme gives more accurate
numerical results than those in [17–19, 23].
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