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Abstract
In this article, we propose an iterative method, called the GA iterative method, to
approximate the fixed points of generalized α-nonexpansive mappings in uniformly
convex Banach spaces. Further, we obtain some convergence results of the new
iterative method. Also, we provide a nontrivial example of a generalized
α-nonexpansive mapping and with the example, we carry out a numeral experiment
to show that our new iterative algorithm is more efficient than some existing iterative
methods. Again, we present an interesting strategy based on the GA iterative method
to solve nonlinear third-order boundary value problems (BVPs). For this, we derive a
sequence named the GA–Green iterative method and show that the sequence
converges strongly to the fixed point of an integral operator. Finally, the
approximation of the solution for a nonlinear integrodifferential equation via our new
iterative method is considered. We present some illustrative examples to validate our
main results in the application sections of this article. Our results are a generalization
and an extension of several prominent results of many well-known authors in the
literature.
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1 Introduction and main results
In this paper, N denotes the set of all natural numbers and R the set of real numbers. We
assume that U is a nonempty subset of a Banach space V . A fixed point of a mapping
G : U → U is an element f ∈ U such that Gf = f . The fixed-point set of G is denoted by
F(G) = {f ∈ U : Gf = f }. The mapping G is called a contraction if there exists a constant
β ∈ [0, 1) such that ‖Gf – Gh‖ ≤ β‖f – h‖, for all f , h ∈ U and it is said to be nonexpansive
if ‖Gf – Gh‖ ≤ ‖f – h‖, for all f , h ∈ U. It is said to be quasinonexpansive if F(G) �= ∅ and
‖Gf – �‖ ≤ ‖f – �‖, for all f ∈ U and � ∈ F(G).

It is known that if U is a closed, bounded, convex subset of a uniformly convex Banach
space V , then F(G) �= ∅ for a nonexpansive mapping [5, 9]. The class of nonexpansive map-
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pings has been studied deeply because of their diverse applications. In recent years, several
authors have considered the extensions and generalizations of nonexpansive mappings.

In [33], Suzuki considered a fascinating generalization of nonexpansive mappings and
studied some convergence and the existence results of fixed points for such mappings.

Definition 1.1 A mapping G : U → U is said to satisfy the condition (C) if for all f , h ∈ U,

1
2
‖f – Gf ‖ ≤ ‖f – h‖ ⇒ ‖Gf – Gh‖ ≤ ‖f – h‖. (1.1)

In 2011, Aoyama and Kohsaka [4] introduced the class of α-nonexpansive mappings in
Banach spaces and studied the fixed-point theory of such mappings.

Definition 1.2 A mapping G : U → U is said to be α-nonexpansive if there exists an
α ∈ [0, 1) such that for all f , h ∈ U,

‖Gf – Gh‖2 ≤ α‖f – Gh‖2 + α‖h – Gf ‖2 + (1 – 2α)‖f – h‖2. (1.2)

With α = 0, then it is not difficult to see that every nonexpansive mapping is an α-
nonexpansive mapping.

In [28], Pant and Shukla introduced an important class of mappings that properly con-
tains the class of mappings satisfying condition (C) and further proved some fixed-point
theorems. Such mappings are known as generalized α-nonexpansive mappings.

Definition 1.3 A mapping G : U → U is said to be generalized α-nonexpansive if there
exists an α ∈ [0, 1) such that for each f , h ∈ U,

1
2
‖f –Gf ‖ ≤ ‖f –h‖ ⇒ ‖Gf –Gh‖ ≤ α‖Gf –h‖+α‖Gh– f ‖+(1–2α)‖f –h‖. (1.3)

This class of mappings has been studied by several authors in recent years, see [8, 24,
36, 37].

The theory of fixed points is one of the most powerful and fascinating tools of modern
mathematical analysis and has many applications in diverse fields such as optimization
theory, physics, biology, economics, mathematical engineering, game theory, chemistry,
approximation theory, and many others.

Since the location of fixed points can be obtained by means of iterative methods, sev-
eral authors have introduced many iterative methods over the past two and half decades.
Some of the well-known iterative methods are: Picard [29], Krasnosel’skii [19], Mann
[22], Ishikawa [11], Noor [23], Picard–Man [15], Abbas [1], Agarwal [2], Thakur [34], and
Picard–Ishikawa [25] iterative methods.

The Mann iterative method [22] is constructed as follows:

⎧
⎨

⎩

f0 ∈ U,

fm+1 = (1 – pm)fm + pmGfm,
m ∈ N, (1.4)

where {pm} is a sequence in (0, 1).
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In 1974, Ishikawa [11] constructed a two-step iterative method for approximating fixed
points of nonexpansive mappings as follows:

⎧
⎪⎪⎨

⎪⎪⎩

f0 ∈ U,

hm = (1 – qm)fm + qmGfm,

fm+1 = (1 – pm)fm + pmGhm,

m ∈N, (1.5)

where {qm} and {pm} are sequences in (0, 1).
In 2000, Noor [23] proposed a three-step iterative method that is an extension of the

Mann and Ishikawa iterative methods as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f0 ∈ U,

tm = (1 – ym)fm + ymGfm,

hm = (1 – qm)fm + qmGtm,

fm+1 = (1 – pm)fm + pmGhm,

m ∈N, (1.6)

where {qm}, {pm}, and {ym} are sequences in (0, 1).
In 2007, Agarwal et al. [2] modified the Ishikawa iteration method, called the S iteration

as follows:

⎧
⎪⎪⎨

⎪⎪⎩

f0 ∈ U,

hm = (1 – qm)fm + qmGfm,

fm+1 = (1 – pm)Gfm + pmGhm,

m ∈ N, (1.7)

where {qm} and {pm} are sequences in (0, 1). The authors showed that this iterative algo-
rithm converges faster than the Mann iterative method for contraction mappings.

In 2013, Khan [15] introduced the Picard–Mann iterative method as follows:

⎧
⎪⎪⎨

⎪⎪⎩

f0 ∈ U,

hm = (1 – pm)fm + pmGfm,

fm+1 = Ghm,

m ∈N, (1.8)

where {pm} is a sequence in (0, 1).
Abbas and Nazir [1], in 2014 defined an iterative method that converges faster than the

S iterative method as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f0 ∈ U,

tm = (1 – ym)fm + ymGfm,

hm = (1 – qm)Gfm + qmGtm,

fm+1 = (1 – pm)hm + pmGtm,

m ∈N, (1.9)

where {qm}, {pm}, and {ym} are sequences in (0, 1).
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In 2016, Thakur et el. [34] developed a new iterative method as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f0 ∈ U,

tm = (1 – qm)fm + qmGfm,

hm = G((1 – pm)fm + pmtm),

fm+1 = Ghm,

m ∈N, (1.10)

where {qm} and {pm} are sequences in (0, 1). They proved that (1.10) converges faster than
all of Mann, Ishikawa, Noor, S, and Abbas and Nazir iterative methods.

Very recently, Okeke [25] introduced the Picard–Ishikawa iterative method as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f0 ∈ G,

tm = (1 – qm)fm + qmGfm,

hm = (1 – pm)fm + pmGvm,

fm+1 = Ghm,

m ∈N, (1.11)

where {qm} and {pm} are sequences in (0, 1). The author showed that the Picard–Ishikawa
iterative method (1.11) converges faster than all of Picard, Krasnosel’skii, Mann, Ishikawa,
Noor, Picard–Mann, and Picard–Krasnosel’skii iterative methods.

In this study, we propose the following iterative method, called the GA iterative method:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f0 ∈ G,

vm = (1 – qm)fm + qmGfm,

um = (1 – pm)fm + pmGvm,

tm = Gum,

hm = Gtm,

fm+1 = Ghm,

m ∈N, (1.12)

where {qm} and {pm} are sequences in (0, 1).
We prove both weak and strong convergence results concerning the convergence of the

GA iterative scheme (1.12) to fixed points of generalized α-nonexpansive mappings. Fur-
thermore, we show numerically via a nontrivial example that the GA iterative method
(1.12) enjoys a better rate of convergence than the iterative methods (1.4)–(1.11) for gen-
eralized α-nonexpansive mappings. Again, we present an interesting pattern based on the
GA iterative method to solve nonlinear third-oder BVPs. In view of this, we derive a se-
quence named GA–Green iteration and show that the sequence converges strongly to the
fixed point of an integral operator. Furthermore, we approximate the solution of a nonlin-
ear integrodifferential equation via our new iterative method. We present some illustrative
examples to validate our main results in the application sections.

2 Lemmas and definition
The following definitions and lemmas will be very useful in proving our main results.
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Definition 2.1 Opial’s condition is said to be satisfied by a Banach space V , if for any
sequence {fm} in V that is weakly convergent to f ∈ V implies

lim sup
m→∞

‖fm – f ‖ < lim sup
m→∞

‖fm – h‖, ∀q ∈ V with h �= f .

Definition 2.2 A Banach space V is called uniformly convex if for all ε ∈ (0, 2], then a
constant δ > 0 exists such that for f , h ∈ V satisfying ‖f ‖ ≤ 1, ‖h‖ ≤ 1 and ‖f – h‖ > ε, we
obtain ‖ f +h

2 ‖ < 1 – δ.

Let U stand for a nonempty, closed, and convex subset of a Banach space V . Let {fm} be
a bounded sequence in V . For f ∈ V , we put

r
(
f , {fm}) = lim sup

m→∞
‖fm – f ‖.

The asymptotic radius of {fm} relative to U is defined by

r
(
U , {fm}) = inf

{
r
(
f , {fm}) : f ∈ U

}
.

The asymptotic center of {fm} relative to U is given as

A
(
U , {fm}) =

{
f ∈ U : r

(
f , {fm}) = r

(
U , {fm})}.

It is well known that in a uniformly convex Banach space, A(U , {fm}) consists of exactly
one point.

Let U stand for a nonempty, closed, and convex subset of a Banach space V . A mapping
G : U → U is said to be demiclosed with respect to f ∈ V , if for each sequence {fm} that
converges weakly to f ∈ U and {Gfm} converges strongly to h implies that Gf = h.

Lemma 2.3 ([38]) Let {θm} be a nonnegative real sequence satisfying the following inequal-
ity:

θm+1 ≤ (1 – σm)θm,

where σm ∈ (0, 1) for all m ∈ N and
∑∞

m=0 σm = ∞, then limm→∞ θm = 0.

Lemma 2.4 ([32]) Let {θm} and {λm} be nonnegative real sequences satisfying

θm+1 ≤ (1 – σm)θm + σmλm,

where σm ∈ (0, 1) for all m ∈ N,
∑∞

m=0 σm = ∞ and λm ≥ 0 for all m ∈N, then

0 ≤ lim sup
m→∞

θm ≤ lim sup
m→∞

λm.

Definition 2.5 ([31]) A mapping G : U → U is said to satisfy condition (I) if there exists a
nondecreasing function g : [0,∞) → [0,∞) with g(0) = 0 and, g(s) > 0 for each s > 0 such
that ‖f – Gf ‖ ≥ g(d(f ,�(G))) for each f ∈ U , where d(f ,�(G)) = inf�∈�(G) ‖f – �‖.
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Lemma 2.6 ([30]) Suppose V is a uniformly convex Banach space and {ιm} is any sequence
satisfying 0 < f ≤ ιm ≤ h < 1 for all m ≥ 1. Suppose {fm} and {hm} are any sequences of V
such that

lim sup
m→∞

‖fm‖ ≤ x,

lim sup
m→∞

‖hm‖ ≤ x and

lim sup
m→∞

∥
∥ιmfm + (1 – ιm)hm

∥
∥ = x

for some x ≥ 0. Then, limm→∞ ‖fm – hm‖ = 0.

Proposition 2.7 ([28]) Let U stand for a nonempty subset of a Banach space V . Assume
G : U → U is any mapping.

(i) If G is a mapping satisfying condition (C), then G is a generalized α-nonexpansive
mapping.

(ii) If G is a generalized α-nonexpansive mapping with a nonempty fixed point set, then
G is a quasinonexpansive mapping.

(iii) If G is a generalized α-nonexpansive mapping, then F(G) is closed. Moreover, if V is
strictly convex and U is convex, then F(G) is also convex.

(iv) If G is a generalized α-nonexpansive mapping, then

‖f – Gh‖ ≤
(

3 + α

1 – α

)

‖f – Gf ‖ + ‖f – h‖, ∀f , h ∈ U .

3 Proof of the main results
In this section, we will establish and prove our main results.

3.1 Weak and strong convergence theorems
In this section, we establish and prove some convergence theorems of the GA iterative
method (1.12) for generalized α-nonexpansive mappings. Further, we present a nontrivial
example of generalized α-nonexpansive mappings to analyze the convergence rate of the
GA iterative method (1.12) with some existing iterative methods.

Theorem 3.1 Let G : U → U be a generalized α-nonexpansive mapping defined on a
nonempty, closed, and convex subset U of a Banach space V . Let {fm} be a sequence defined
by the GA iterative method (1.12), then limm→∞ ‖fm – �‖ exists for all � ∈ F(G).

Proof Let � ∈ F(G), then using (1.12) and Proposition 2.7(ii), we have

‖vm – �‖ =
∥
∥(1 – qm)fm + qmGfm – �

∥
∥

≤ (1 – qm)‖fm – �‖ + qm‖Gfm – �‖
≤ (1 – qm)‖fm – �‖ + qm‖fm – �‖
≤ ‖fm – �‖. (3.1)



Okeke et al. Boundary Value Problems        (2022) 2022:103 Page 7 of 26

Also, from (3.1), we obtain

‖um – �‖ =
∥
∥(1 – pm)fm + pmGvm – �

∥
∥

≤ (1 – pm)‖fm – �‖ + pm‖Gvm – �‖
≤ (1 – pm)‖fm – �‖ + pm‖vm – �‖
≤ ‖fm – �‖. (3.2)

Now, by (3.2), we obtain

‖tm – �‖ = ‖Gum – �‖
≤ ‖um – �‖
≤ ‖fm – �‖. (3.3)

Hence, using (3.3), we obtain

‖hm – �‖ = ‖Gtm – �‖
≤ ‖tm – �‖
≤ ‖fm – �‖. (3.4)

Finally, using (3.4), we have

‖fm+1 – �‖ = ‖Ghm – �‖ ≤ ‖hm – �‖ ≤ ‖fm – �‖,

which implies that the sequence {‖fm –�‖} is decreasing and bounded. Thus, limm→∞ ‖fm –
�‖ exists for all � ∈ F(G). �

Theorem 3.2 Let G, U, V , and {fm} be defined as in Theorem 3.1. Then, F(G) �= ∅ if and
only if the sequence {fm} is bounded and limm→∞ ‖Gfm – fm‖ = 0.

Proof By Theorem 3.1, we have shown that {fm} is bounded and limm→∞ ‖fm – �‖ exists
for any � ∈ F(G). Let

lim
m→∞‖fm – �‖ = j , (3.5)

then using (3.1) and (3.5), we have

lim sup
m→∞

‖vm – �‖ ≤ lim sup
m→∞

‖fm – �‖ = j . (3.6)

Since a generalized α-nonexpansive mapping with a nonempty fixed point set F(G) �= ∅ is
a quasinonexpansive mapping, we obtain

lim sup
m→∞

‖Gfm – �‖ ≤ lim sup
m→∞

‖fm – �‖ = j . (3.7)
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On the one hand, using (1.12), we have

‖fm+1 – �‖ = ‖Ghm – �‖
≤ ‖hm – �‖
= ‖Gtm – �‖
≤ ‖tm – �‖
= ‖Gum – �‖
≤ ‖um – �‖
=

∥
∥(1 – pm)fm + pmGvm – �

∥
∥

≤ (1 – pm)‖fm – �‖ + pm‖Gvm – �‖
≤ (1 – pm)‖fm – �‖ + pm‖vm – �‖
= ‖fm – �‖ – pm‖fm – �‖ + pm‖vm – �‖, (3.8)

which implies that

‖fm+1 – �‖ – ‖fm – �‖
pm

≤ ‖vm – �‖ – ‖fm – �‖. (3.9)

Hence,

‖fm+1 – �‖ – ‖fm – �‖ ≤ ‖fm+1 – �‖ – ‖fm – �‖
pm

≤ ‖vm – �‖ – ‖fm – �‖, (3.10)

which yields

‖fm+1 – �‖ ≤ ‖vm – �‖. (3.11)

Therefore,

j ≤ lim inf
m→∞ ‖vm – �‖. (3.12)

From (3.6) and (3.12), we have

j = lim
m→∞‖vm – �‖

= lim
m→∞

∥
∥(1 – pm)fm + pmGfm – �

∥
∥

= lim
m→∞

∥
∥pm(Gfm – �) + (1 – pm)(fm – �)

∥
∥. (3.13)

Using (3.5), (3.7), (3.13), and Lemma 2.6, we have

lim
m→∞‖Gfm – fm‖ = 0. (3.14)

Conversely, let � ∈ A(U, {fm}). Then,

r
({fm},G�

)
= lim sup

m→∞
‖fm – G�‖
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≤ lim sup
m→∞

{(
3 + α

1 – α

)

‖fm – Gfm‖ + ‖Gfm – �‖
}

= lim sup
m→∞

(
3 + α

1 – α

)

‖fm – Gfm‖ + lim sup
m→∞

‖Gfm – �‖

≤ lim sup
m→∞

‖fm – �‖

= r
({fm},�). (3.15)

This implies that G� ∈ A(U, {fm}). Since V is uniformly convex, then A(U, {fm}) is a unit
set and therefore, we have G� = �. Hence, F(G) �= ∅. �

Theorem 3.3 Let G, U, V , and {fm} be defined as in Theorem 3.1 such that F(G) �= ∅.
Suppose that V satisfies Opial’s property, then {fm} converges weakly to a member of F(G).

Proof Since G is a generalized α-nonexpansive mapping with F(G) �= ∅, then by Theo-
rem 3.1 and Theorem 3.2, we have that limm→∞ ‖fm –�‖ exists and limm→∞ ‖Gfm – fm‖ = 0.
Next, we will prove that {fm} have exactly one weakly subsequential limit in F(G). Let k and
� be two weak subsequential limits of {fmj} and {fmk }, respectively. By Theorem 3.2, the
demiclosedness of (I – G) at 0 implies that (I – G)k. Hence, Gk = k and similarly, G� = �.
Now, we have to show the uniqueness. Suppose k �= �, then from Opial’s property, one has

lim
m→∞‖fm – k‖ = lim

mj→∞‖fmj – k‖ < lim
mj→∞‖fmj – �‖ = lim

m→∞‖fm – �‖

= lim
mk→∞‖fmk – �‖ < lim

mk→∞‖fmk – k‖ = lim
m→∞‖fm – k‖,

which is a contradiction, so k = �. Hence, {fm} converges weakly to a fixed point of G. �

Theorem 3.4 Let G, U, V , and {fm} be defined as in Theorem 3.1 such that F(G) �= ∅.
Then, {fm} converges strongly to a fixed point of G if and only if limm→∞ d(fm, F(G)) = 0,
where d(f , F(G)) = inf{‖f – �‖ : � ∈ F(G)}.

Proof The necessity is trivial and will be neglected. Next, we will prove the convex case. If
for any � ∈ F(G), lim infm→∞ d(fm, F(G)) = 0. By Theorem 3.1, we have that limm→∞ ‖fm –�‖
exists for each � ∈ F(G) and it follows that lim infm→∞ d(fm, F(G)) = 0. Now, we claim that
{fm} is a Cauchy sequence in U. Owing to the fact that lim infm→∞ d(fm, F(G)) = 0 in as
much as for any ℘ > 0, there exists m0 ∈N such that for all m ≥ m0

d
(
fm, F(G)

)
<

℘

2
,

inf
{‖fm – �‖ : � ∈ F(G)

}
<

℘

2
.

Hence, inf{‖fm0 – �‖ : � ∈ F(G)} < ℘

2 . Therefore, there exists � ∈ F(G) such that

‖fm0 – �‖ <
℘

2
.

For c, m ≥ m0, we have

‖fm+c – fm‖ ≤ ‖fm+c – �‖ + ‖fm – �‖
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≤ ‖fm0 – �‖ + ‖fm0 – �‖
= 2‖fm0 – �‖ < ℘.

This implies that {fm} is a Cauchy sequence in U. From the completeness of U, we have
limm→∞ fm = q for some q ∈ U. Also, limm→∞ d(fm, F(G)) = 0 shows that q ∈ F(G). �

Theorem 3.5 Let G, U, V , and {fm} be defined as in Theorem 3.1 such that F(G) �= ∅. If U

is compact, then {fm} converges strongly to any � ∈ F(G).

Proof Since F(G) �= ∅, we have shown in Theorem 3.2 that limm→∞ ‖Gfm – fm‖ = 0. Due to
the compactness of C, one can have a subsequence {fmj} of {fm} such that limm→∞ fmj →
� ∈ U. By Proposition 2.7, we have

‖fmj – G�‖ ≤
(

3 + α

1 – α

)

‖Gfmj – fmj‖ + ‖fmj – �‖. (3.16)

On taking j → ∞, G� = �, i.e., � ∈ F(G). From Theorem 3.1, limm→∞ ‖fm – �‖ exists for
every � ∈ F(G) and so the sequence {fm} converges strongly to �. �

Theorem 3.6 Let G, U, V , and {fm} be defined as in Theorem 3.1 such that F(G) �= ∅. If
condition (I) is satisfied by G, then {fm} converges strongly to a fixed point of G.

Proof By Theorem 3.2, we have that

lim
m→∞‖Gfm – fm‖ = 0. (3.17)

By condition (I) and (5.11), we have

lim
m→∞ g

(
d
(
fm, F(G)

)) ≤ lim
m→∞‖Gfm – fm‖ = 0, (3.18)

i.e., limm→∞ g(d(fm, F(G))) = 0. Since g is a nondecreasing function such g(0) = 0, g(s) > 0,
for each s ∈ (0,∞), then we obtain

lim
m→∞ d

(
fm, F(G)

)
= 0. (3.19)

By Theorem 3.4, we know that the sequence {fm} converges strongly to a point of F(G). �

Now, we perform a numerical experiment using a generalized α-nonexpansive mapping
that is not a Suzuki generalized nonexpansive mapping.

Example 3.7 Let V = R and U = [3, 6]. Let the mapping G : U → U be defined by

Gf =

⎧
⎨

⎩

f +3
2 , if f ∈ [3, 4],

3, if f ∈ (4, 6].

Now, we show that G is a generalized α-nonexpansive mapping for α = 1
3 . To show that,

the following cases are considered:
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Case (a): If f , h ∈ [3, 4], we obtain

α|Gf – h| + α|Gh – f | + (1 – 2α)|f – h|

=
1
3

∣
∣
∣
∣
f + 3

2
– h

∣
∣
∣
∣ +

1
3

∣
∣
∣
∣
h + 3

2
– f

∣
∣
∣
∣ +

1
3
|f – h|

≥ 1
3

∣
∣
∣
∣
3f
2

–
3h
2

∣
∣
∣
∣ +

1
3
|f – h|

≥ 1
2
|f – g| +

1
3
|f – h|

≥ 1
2
|f – h| = |Gf – Gh|.

Case (b): If f ∈ [3, 4] and h ∈ (4, 6], then

α|Gf – h| + α|Gh – f | + (1 – 2α)|f – h|

=
1
3

∣
∣
∣
∣
f + 3

2
– h

∣
∣
∣
∣ +

1
3
|f – 3| +

1
3
|f – h|

≥ 1
3

∣
∣
∣
∣

f
2

+ h –
9
2

∣
∣
∣
∣ +

1
3
|f – h|

≥ 1
3

∣
∣
∣
∣
3f
2

–
9
2

∣
∣
∣
∣

≥ 1
2
|f – 3| = |Gf – Gh|.

Case (c): If f , h ∈ (4, 6], then

α|Gf – h| + α|Gh – f | + (1 – 2α)|f – h| ≥ 0 = |Gf – Gh|.

From all the above-illustrated cases, we know that G is a generalized α-nonexpansive map-
ping for α = 1

3 . Now, we show that G does not fulfill condition (C). If we take f = 39
10 and

h = 29
7 , then

1
2
‖f – Gf ‖ =

9
40

≤ 17
70

= ‖f – h‖.

On the other hand,

‖Gf – Gh‖ =
9

20
>

17
70

= ‖f – h‖.

Thus, G does not satisfy condition (C).

Next, using the above example and taking pm = qm = ym = n+2
n+3 for m ∈ N and f0 = 4, then

we obtain Tables 1 and 2, and Figs. 1 and 2.
Clearly, from the above tables and figures, all the iterative methods converge to � = 3

and the GA iterative method converges faster to � = 3 than all the others.
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Table 1 Comparison of the GA iterative method with Mann, S, Picard–Mann and Picard–Ishikawa
iterative methods

Step Mann S Picard–Mann Picard–Ishikawa GA

1 4.0000000000 4.0000000000 4.0000000000 4.0000000000 4.0000000000
2 3.6250000000 3.3593750000 3.3125000000 3.2421875000 3.0605468750
3 3.3906250000 3.1291503906 3.0976562500 3.0586547852 3.0036659241
4 3.2441406250 3.0464134216 3.0305175781 3.0142054558 3.0002219602
5 3.1525878906 3.0166798234 3.0095367432 3.0034403838 3.0000134390
6 3.0953674316 3.0059943115 3.0029802322 3.0008332180 3.0000008137
7 3.0596046448 3.0021542057 3.0009313226 3.0002017950 3.0000000493
8 3.0372529030 3.0007741677 3.0002910383 3.0000488722 3.0000000030
9 3.0232830644 3.0002782165 3.0000909495 3.0000118362 3.0000000002
10 3.0145519152 3.0000999841 3.0000284217 3.0000028666 3.0000000000
11 3.0090949470 3.0000359318 3.0000088818 3.0000006943 3.0000000000
12 3.0056843419 3.0000129130 3.0000027756 3.0000001681 3.0000000000
13 3.0035527137 3.0000046406 3.0000008674 3.0000000407 3.0000000000
14 3.0022204460 3.0000016677 3.0000002711 3.0000000099 3.0000000000
15 3.0013877788 3.0000005993 3.0000000847 3.0000000024 3.0000000000
16 3.0008673617 3.0000002154 3.0000000265 3.0000000006 3.0000000000
17 3.0005421011 3.0000000774 3.0000000083 3.0000000001 3.0000000000
18 3.0003388132 3.0000000278 3.0000000026 3.0000000000 3.0000000000
19 3.0002117582 3.0000000100 3.0000000008 3.0000000000 3.0000000000
20 3.0001323489 3.0000000036 3.0000000003 3.0000000000 3.0000000000
21 3.0000827181 3.0000000013 3.0000000001 3.0000000000 3.0000000000
22 3.0000516988 3.0000000005 3.0000000000 3.0000000000 3.0000000000
23 3.0000323117 3.0000000002 3.0000000000 3.0000000000 3.0000000000
24 3.0000201948 3.0000000001 3.0000000000 3.0000000000 3.0000000000
25 3.0000126218 3.0000000000 3.0000000000 3.0000000000 3.0000000000

Table 2 Comparison of speed of convergence of the GA iterative method with Ishikawa, Noor,
Abbas, and Thakur iterative methods

Step Ishikawa Noor Abbas Thakur GA

1 4.0000000000 4.0000000000 4.0000000000 4.0000000000 4.0000000000
2 3.4843750000 3.4316406250 3.2792968750 3.1796875000 3.0605468750
3 3.2346191406 3.1863136292 3.0780067444 3.0322875977 3.0036659241
4 3.1136436462 3.0804205313 3.0217870399 3.0058016777 3.0002219602
5 3.0550461411 3.0347127684 3.0060850522 3.0010424890 3.0000134390
6 3.0266629746 3.0149834411 3.0016995361 3.0001873222 3.0000008137
7 3.0129148783 3.0064674619 3.0004746751 3.0000336595 3.0000000493
8 3.0062556442 3.0027916193 3.0001325753 3.0000060482 3.0000000030
9 3.0030300777 3.0012049763 3.0000370279 3.0000010868 3.0000000002
10 3.0014676939 3.0005201167 3.0000103418 3.0000001953 3.0000000000
11 3.0007109142 3.0002245035 3.0000028884 3.0000000351 3.0000000000
12 3.0003443491 3.0000969048 3.0000008067 3.0000000063 3.0000000000
13 3.0001667941 3.0000418281 3.0000002253 3.0000000011 3.0000000000
14 3.0000807909 3.0000180547 3.0000000629 3.0000000002 3.0000000000
15 3.0000391331 3.0000077931 3.0000000176 3.0000000000 3.0000000000
16 3.0000189551 3.0000033638 3.0000000049 3.0000000000 3.0000000000
17 3.0000091814 3.0000014520 3.0000000014 3.0000000000 3.0000000000
18 3.0000044472 3.0000006267 3.0000000004 3.0000000000 3.0000000000
19 3.0000021541 3.0000002705 3.0000000001 3.0000000000 3.0000000000
20 3.0000010434 3.0000001168 3.0000000000 3.0000000000 3.0000000000
21 3.0000005054 3.0000000504 3.0000000000 3.0000000000 3.0000000000
22 3.0000002448 3.0000000218 3.0000000000 3.0000000000 3.0000000000
23 3.0000001186 3.0000000094 3.0000000000 3.0000000000 3.0000000000
24 3.0000000574 3.0000000041 3.0000000000 3.0000000000 3.0000000000
25 3.0000000278 3.0000000017 3.0000000000 3.0000000000 3.0000000000
26 3.0000000135 3.0000000008 3.0000000000 3.0000000000 3.0000000000
27 3.0000000065 3.0000000003 3.0000000000 3.0000000000 3.0000000000
28 3.0000000032 3.0000000001 3.0000000000 3.0000000000 3.0000000000
29 3.0000000015 3.0000000001 3.0000000000 3.0000000000 3.0000000000
30 3.0000000007 3.0000000000 3.0000000000 3.0000000000 3.0000000000
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Figure 1 Graph corresponding to Table 1

Figure 2 Graph corresponding to Table 2

4 An application to nonlinear third-order BVPs
A BVP for a given differential equation involves finding a solution of the given differential
equation subject to a given set of boundary conditions.

BVPs emanate in many branches of physics as any physical differential equation will have
them. Problems involving wave equations are in most cases expressed as BVPs. Several
important BVPs include Sturm–Liouville problems.

The third-order differential equations occur in diverse areas of physics and applied
mathematics, for example, a three-layer beam, in the deflection of a curved beam having
a constant or varying cross section, gravity-driven flows or electromagnetic waves. Third-
order BVPs were discussed in many papers in recent years, for instance, see [6, 14, 21, 35]
and references therein.

Solutions of BVPs can sufficiently be approximated by some efficient numerical meth-
ods. Some of these are the finite-difference method, the standard 5-point formula, the
standard analytic method, and the iterative method.

In recent years, several iterative methods based on Green’s function have been devel-
oped for solving second- and third-order nonlinear BVPs. Some of these are Picard–
Green, Krasnosel’skii–Green, Mann–Green, Ishikawa–Green, and Khan–Green iterative
methods, e.g., see [12, 13, 16, 18] and the references therein.

Very recently, Khuri and Louhichi [17] presented a fascinating approach that is based on
embedding Green’s function into the Ishikawa iterative method for solutions of nonlinear
third-order BVPs.
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Motivated by the above results, in this section, we present a strategy based on the GA
iterative method (1.12) to solve a nonlinear third-order BVP in the form of a Green’s func-
tion.

4.1 Brief demonstration of Green’s functions
Consider the following general linear third-order BVP,

Li[η] = g(ψ)η′′′ + w(ψ)η′′ + z(ψ)η′ + r(ψ)η = ϕ(ψ), (4.1)

where a ≤ ψ ≤ b and subject to the boundary conditions:

B1[η] = μ1η(a) + μ2η
′(a) + μ3η

′′(a) = μ,

B2[η] = ζ1η(b) + ζ2(b)η′(b) + ζ3η
′′(b) = ζ ,

B3[η] = τ1η(c) + τ2η
′(c) + τ3η

′′(c) = τ , (4.2)

where c = a or b.
The Green’s function is defined to be the solution for the following equation

–Li
[
G(ψ , s)

]
= δ(ψ – s), (4.3)

where δ is the Kronecker Delta that is subject to B1[G(ψ , s)] = B2[G(ψ , s)] = B3[G(ψ , s)] = 0.
It is worth noting that for operators that are not self-adjoint, the right-hand side of (4.3)
will be replaced by –δ(ψ – s). For ψ �= s, we solve Li[G(ψ , s)] = 0 and obtain

G(ψ , s) =

⎧
⎨

⎩

e1η1 + e2η2 + e3η3, a < ψ < s,

d1η1 + d2η2 + d3η3, s < ψ < b,

where η1, η2, η3 are linearly independent solutions of Li[η] = 0 and the constants are de-
rived through the following properties:

(V1) G satisfies the associated homogeneous boundary conditions

B1
[
G(ψ , s)

]
= B2

[
G(ψ , s)

]
= 0, (4.4)

(V2) Continuity of G at ψ = s:

e1η1(s) + e2η2(s) + e3η3(s) = d1η1(s) + d2η2(s) + d3η3(s), (4.5)

(V3) Continuity of G′ at ψ = s:

e1η
′
1(s) + e2η

′
2(s) + e3η

′
3(s) = d1η

′
1(s) + d2η

′
2(s) + d3η

′
3(s), (4.6)

(V4) At ψ = s, G′′ has a jump discontinuity:

1
g(s)

+ e1η
′′
1(s) + e2η

′′
2(s) + e3η

′′
3(s) = d1η

′′
1(s) + d2η

′′
2(s) + d3η

′′
3(s). (4.7)
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4.2 GA–Green iterative method
Applying the Green’s function to the GA iterative method (1.12), the following differential
equation will be considered:

Li[ρ] + No[ρ] = ϕ(ψ ,ρ), (4.8)

where Li[ρ] and No[ρ] are linear and nonlinear operators in ρ , respectively, and ϕ(ψ ,ρ)
is a function in ρ that could be linear or nonlinear.

We now define the following linear integral operator in terms of Green’s function as
follows:

�[ρ] =
∫ b

a
G(ψ , s) ds, (4.9)

where G is the Green’s function that is corresponding to the linear differential operator
Li[ρ]. Observe that � has a fixed point if and only if ρ is a solution of (4.8).

From (4.9), we have the following:

�[ρ] =
∫ b

a
G(ψ , s)

[
Li[ρ] + No[ρ] – ϕ(s,ρ) – No[ρ] + ϕ(s,ρ)

]
ds

=
∫ b

a
G(ψ , s)

(
Li[ρ] + No[ρ] – ϕ(ψ , s)

)
ds +

∫ b

a
G(ψ , s)

(
ϕ(s,ρ) – No[ρ]

)
ds

= ρ +
∫ b

a
G(ψ , s)

(
Li[ρ] + No[ρ] – ϕ(s,ρ)

)
ds.

Now, by applying the GA iterative method (1.11), we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

vm = (1 – qm)fm + qm�[fm],

um = (1 – pm)fm + pm�[vm],

tm = �[um],

hm = �[tm],

fm+1 = �[hm],

(4.10)

where {qm} and {pm} are sequences in [0, 1]. Then, for all m ∈N, this leads to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

vm = (1 – qm)fm + qm[fm +
∫ b

a G(ψ , s)(Li[fm] + No[fm] – ϕ(s, fm)) ds],

um = (1 – pm)fm + pm[vm +
∫ b

a G(ψ , s)(Li[vm] + No[vm] – ϕ(s,ρ)) ds],

tm = um +
∫ b

a G(ψ , s)(Li[um] + No[um] – ϕ(s,ρ)) ds,

hm = tm +
∫ b

a G(ψ , s)(Li[tm] + No[tm] – ϕ(s,ρ)) ds,

fm+1 = hm +
∫ b

a G(ψ , s)(Li[hm] + No[hm] – ϕ(s, hm)) ds.

(4.11)
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Thus, we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

vm = fm + qm
∫ b

a G(ψ , s)(Li[fm] + No[fm] – ϕ(s, fm)) ds,

um = (1 – pm)fm + pm[vm +
∫ b

a G(ψ , s)(Li[vm] + No[vm] – ϕ(s, vm)) ds],

tm = um +
∫ b

a G(ψ , s)(Li[um] + No[um] – ϕ(s,ρ)) ds,

hm = tm +
∫ b

a G(ψ , s)(Li[tm] + No[tm] – ϕ(s,ρ)) ds,

fm+1 = hm +
∫ b

a G(ψ , s)(Li[hm] + No[hm] – ϕ(s, hm)) ds.

(4.12)

Remark 4.1 Our new iterative method (4.12) is independent of all Picard–Green, Mann–
Green, Ishikawa–Green, and Khan–Green iterative methods that are already existing in
the literature.

4.3 Convergence result
In this section, we prove the convergence theorem of the proposed iterative method (4.12).
Without loss of generality, we will consider the convergence analysis of our method for the
following nonlinear BVP:

–f ′′′(ψ) = ϕ
(
f (ψ), f ′(ψ),η′′(ψ)

)
, subject to f (1) = Q, f ′′(1) = P, f (2) = W . (4.13)

Solving the associated homogeneous equation η′′′ = 0 implies

G(ψ , s) =

⎧
⎨

⎩

e1t2 + e2t + e3, 1 ≤ ψ ≤ s ≤ 2,

d1t2 + d2t + d3, 1 ≤ s ≤ ψ ≤ 2.
(4.14)

The unknowns e1, e2, e3, d1, d2, and d3 can be obtained using the properties (V1)–(V4).
After finding the unknowns, we then have the following Green’s function:

G(ψ , s) =

⎧
⎨

⎩

– 1
2 s2 + 2s – 2 + ( 1

2 s2 – 2s + 2)t, 1 ≤ ψ ≤ s ≤ 2,

–s2 + 2s – 2 + ( 1
2 s2 – 2s + 2)t – 1

2 t2, 1 ≤ s ≤ ψ ≤ 2.

Thus, the GA–Green iterative method (4.12) now has the form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

vm = fm + qm
∫ 2

1 G(ψ , s)(f (3)
m – ϕ(s, fm, f ′

m, f ′′
m)) ds,

um = (1 – pm)fm + pm[vm +
∫ 2

1 G(ψ , s)(v(3)
m – ϕ(s, vm, v′

m, v′′
m)) ds],

tm = um +
∫ 2

1 G(f , s)(u(3)
m – ϕ(s, um, u′

m, u′′
m)) ds,

hm = tm +
∫ 2

1 G(ψ , s)(t(3)
m – ϕ(s, tm, t′

m, t′′
m)) ds,

fm+1 = hm +
∫ 2

1 G(ψ , s)(h(3)
m – ϕ(s, hm, h′

m, h′′
m)) ds,

m ∈N, (4.15)

where the initial iterate f0 fulfilled the corresponding equation f ′′′ = 0 and the bound-
ary conditions f0(1) = Q, f ′′

0 (1) = P, and f0(2) = W . Next, we define the operator ϒG :
C2([1, 2]) → C2([1, 2]) by

ϒG(f ) = f +
∫ 2

1
G(ψ , s)

(
f (3) – ϕ

(
s, f , f ′, f ′′))ds. (4.16)
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Then, (4.15) reduces to the following form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

vm = (1 – qm)fm + qmϒG(fm),

um = (1 – pm)fm + pmϒG(vm),

tm = ϒG(um),

hm = ϒG(tm),

fm+1 = ϒG(hm),

m ∈N. (4.17)

On the other hand, by using the method of integration by parts three times to evaluate
∫ 2

1 G(ψ , s)f ′′′(s) ds in (4.16) and since
∫ 2

1
∂3G
∂3s3 (ψ , s)f (s) ds =

∫ 2
1 δ(ψ – s)f (s) ds, we have that

ϒG(f ) = (2 – ψ)Q +
1
2
(
ψ2 – 3ψ + 2

)
P + (ψ – 1)W –

∫ 2

1
G(ψ , s)ϕ

(
s, f , f ′, f ′′)ds. (4.18)

Our next target is to prove that under some mild conditions on the function ϕ, the inte-
gral operator ϒG is a contraction on the Banach space C2([1, 2]) with respect to the norm
‖f ‖C2 =

∑2
i=0 sup[1,2] |f (i)|.

Theorem 4.2 Suppose that the function ϕ, which appears in the definition of the operator
ϒG, fulfills the following Lipschitz condition:

∣
∣ϕ

(
s, f , f ′, f ′′) – ϕ

(
s, h, h′, h′′)∣∣

≤ Θ1
∣
∣f (s) – h(s)

∣
∣ + �2

∣
∣f ′(s) – h′(s)

∣
∣ + �3

∣
∣f ′′(s) – h′′(s)

∣
∣, (4.19)

where Θ1, Θ2, and Θ3 are positive constants satisfying

1
8

max{Θ1,Θ2,Θ3} < 1. (4.20)

Then, ϒG is a contraction on the Banach space (C2([1, 2]),‖ · ‖C2 ) and the sequence {fm}
defined by the GA–Green iterative method (4.17) converges strongly to the fixed point of
ϒG.

Proof Let f1, f2 ∈ C2([1, 2]). Then, by (4.19), we obtain

∣
∣ϒG(f1) – ϒG(f2)

∣
∣ =

∣
∣
∣
∣

∫ 2

1
G(ψ , s)(

(
ϕ
(
s, f1, f ′

1, f ′′
1
)

– ϕ
(
s, f2, f ′

2, f ′′
2
))

ds
∣
∣
∣
∣

≤
∫ 2

1

∣
∣G(ψ , s)

∣
∣
∣
∣(ϕ

(
s, f1, f ′

1, f ′′
1
)

– ϕ
(
s, f2, f ′

2, f ′′
2
)∣
∣ds

≤
(

sup
[1,2]×[1,2]|

∣
∣G(ψ , s)

∣
∣
)∫ 2

1

∣
∣(ϕ

(
s, f1, f ′

1, f ′′
1
)

– ϕ
(
s, f2, f ′

2, f ′′
2
)∣
∣ds

= G
(

3
2

, 1
)∫ 2

1

∣
∣(ϕ

(
s, f1, f ′

1, f ′′
1
)

– ϕ
(
s, f2, f ′

2, f ′′
2
)∣
∣ds

=
1
8

∫ 2

1

∣
∣(ϕ

(
s, f1, f ′

1, f ′′
1
)

– ϕ
(
s, f2, f ′

2, f ′′
2
)∣
∣ds
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≤ 1
8

∫ 2

1

[
Θ1

∣
∣f1(s) – f2(s)

∣
∣ + �2

∣
∣f ′

1(s) – f ′
2(s)

∣
∣ + �3

∣
∣f ′′

1 (s) – f ′′
2 (s)

∣
∣
]

ds

≤ 1
8

max{Θ1,Θ2,Θ3}
∫ 2

1

( 2∑

i=0

sup
[1,2]

∣
∣f (i)

1 – f (i)
2

∣
∣

)

≤ 1
8

max{Θ1,Θ2,Θ3}‖f1 – f2‖C2

= v‖f1 – f2‖C2 ,

where v = 1
8 max{Θ1,Θ2,Θ3} < 1. Thus, ϒG is a contraction.

Next, we prove that the sequence {fm} defined by the GA–Green iterative method (4.17)
converges strongly to the fixed point of ϒG. Since ϒG is a contraction, then by the Banach
contraction principle, we know that ϒG has a unique fixed point in (C2([1, 2]),‖ · ‖C2 ),
say �. We will now show that fm → � as m → ∞. Using (4.17), we have

‖vm – �‖ =
∥
∥(1 – qm)fm + qmϒG(fm) – �

∥
∥

≤ (1 – qm)‖fm – �‖ + qm
∥
∥ϒG(fm) – �

∥
∥

≤ (1 – qm)‖fm – �‖ + qmβ‖fm – �‖
=

(
1 – (1 – β)qm

)‖fm – �‖. (4.21)

Using (4.21), we have

‖um – �‖ =
∥
∥(1 – pm)fm + pmϒG(vm) – �

∥
∥

≤ (1 – pm)‖fm – �‖ + pm
∥
∥ϒG(vm) – �

∥
∥

≤ (1 – pm)‖fm – �‖ + pmβ‖vm – �‖
≤ (

1 – (1 – β)qm
)(

1 – (1 – β)pm
)‖fm – �‖. (4.22)

Also, using (4.22), we obtain

‖tm – �‖ =
∥
∥ϒG(um) – �

∥
∥

≤ β‖um – �‖
≤ β

(
1 – (1 – β)qm

)(
1 – (1 – β)pm

)‖fm – �‖. (4.23)

Since 0 < β < 1 and pm, qm ∈ [0, 1], then it follows that
⎧
⎨

⎩

(1 – (1 – β)qm) < 1,

(1 – (1 – β)pm) < 1.
(4.24)

Thus, using (4.24), (4.23) becomes

‖tm – �‖ ≤ β‖fm – �‖. (4.25)

By (4.25), we obtain

‖hm – �‖ =
∥
∥ϒG(tm) – �

∥
∥
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≤ β‖tm – �‖
≤ β2‖fm – �‖. (4.26)

Finally, from (4.26), we obtain

‖fm+1 – �‖ =
∥
∥ϒG(hm) – �

∥
∥

≤ β‖hm – �‖
≤ β3‖fm – �‖. (4.27)

By induction, we have

‖fm+1 – �‖ ≤ β3(m+1)‖f0 – �‖. (4.28)

Since 0 < β < 1, then we have that {fm} converges strongly to �. �

5 An application to nonlinear Volterra delay integrodifferential equations
In this section, we consider the following delay nonlinear Volterra integrodifferential equa-
tion:

f ′(s) = g
(

s, f (s), f
(
ϑ(s)

)
,
∫ s

0
℘

(
s, k, f (k), f

(
ϑ(k)

))
dk

)

, s ∈ I, (5.1)

f (s) = ϕ(s), s ∈ [–z, 0], (5.2)

where I = [0,� ], � > 0 and ϕ ∈ C([–z, 0],R).
A function g ∈ C([–z,� ],R) ∩ C′([0,� ],R) satisfying (5.1)–(5.2) is called a solution of

the initial value problem (IVP) (5.1)–(5.2).
Assume that the following assumptions hold:
(A1) Let g ∈ C([0,� ]×R

3,R), ℘ ∈ C([0,� ]× [0,� ]×R
2,R) and ϑ ∈ C([0,� ], [–z,� ])

be such that ϑ(s) ≤ s.
(A2) The constants Lg , L℘ > 0 exist such that

∣
∣g(s, b1, b2, b3) – g(s, d1, d2, d3)

∣
∣ ≤ Lg

(|b1 – d1| + |b2 – d2| + |b3 – d3|
)
;

∣
∣℘(s, k, b1, b2) – ℘(s, k, d1, d2)

∣
∣ ≤ L℘

(|b1 – d1| + |b2 – d2|
)

for all s, k ∈ I , bi, di ∈R (i = 1, 2, 3).
(A3) �Lg[2 + L℘� ] < 1.
(A4) There exists a constant ζ > 0 such that the positive, nondecreasing, and continuous

function ψ : [–z,� ] → [0,∞) satisfies

∫ s

0
ψ(k) dk ≤ ζφ(s), s ∈ [0,� ]. (5.3)

Apparently, from condition (A1), the IVP (5.1)–(5.2) is equivalent to the following equa-
tions:

f (s) = ψ(0) +
∫ s

0
g
(

k, f (k), f
(
ϑ(k)

)
,
∫ k

0
℘

(
k, τ , f (τ ), f

(
ϑ(τ )

))
dτ

)

dk, s ∈ I,
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f (s) = ψ(s), s ∈ [–z, 0].

In [20], Kucche and Shikhare studied the existence and uniqueness results concerning the
solution of the problem (5.1)–(5.2) as follows.

Theorem 5.1 Suppose the conditions (A1)–(A4) are fulfilled, then the problem (5.1)–(5.2)
has a unique solution and the equation (5.1) is generalized Ulam–Hyers–Rassias stable
with respect to the function ψ .

Our main aim in this section is to solve the delay nonlinear Volterra integrodifferential
equation (5.1)–(5.2) via a new efficient iterative method (1.12). In view of this, we state
and prove the following theorem.

Theorem 5.2 Let {fm} be the sequence defined by (1.12) with pm, qm ∈ (0, 1) satisfying
∑∞

m=0 pm = ∞. If the assumptions (A1)–(A3) hold, then the IVP (5.1)–(5.2) has a unique
solution, say, � in C([–z,� ],R) ∩ C′([0,� ],R) and {fm} converges to �.

Proof Note that B = C([–z,� ],R) endowed with the Chebyshev norm ‖ · ‖C is a Banach
space. Let {fm} be the sequence defined by the iterative method (1.12) for the operator
T : B → B defined by

Tf (s) = ψ(0) +
∫ s

0
f
(

k, f (k), f
(
ϑ(k)

)
,
∫ k

0
℘

(
k, τ , f (τ ), f

(
ϑ(τ )

))
dτ

)

dk, s ∈ I,

Tf (s) = ψ(s), s ∈ [–z, 0].

Let � denote the fixed point of T . Next, we show that fm → � as m → ∞. It is clear that for
s ∈ [–z, 0], fm → � as m → ∞. Now, for s ∈ I , we have

‖vm – �‖ =
∥
∥(1 – qm)fm + qmTfm – �

∥
∥

≤ (1 – qm)‖fm – �‖ + qm‖Tfm – T�‖
= (1 – qm)

∣
∣fm(s) – �(s)

∣
∣ + qm

∣
∣T(fm)(s) – T(�)(s)

∣
∣

= (1 – qm)
∣
∣fm(s) – �(s)

∣
∣

+ qm

∣
∣
∣
∣ψ(0) +

∫ s

0
g
(

k, fm(k), fm
(
ϑ(k)

)
,
∫ k

0
℘

(
k, τ , fm(τ ), fm

(
ϑ(τ )

))
dτ

)

dk

– ψ(0) –
∫ s

0
f
(

k,�(k),�
(
ϑ(k)

)
,
∫ k

0
℘

(
k, τ ,�(τ ),�

(
ϑ(τ )

))
dτ

)

dk
∣
∣
∣
∣

≤ (1 – qm)
∣
∣fm(s) – �(s)

∣
∣

+ qm

∫ s

0
Lg

{

max
0≤c1≤k

∣
∣fm(c1) – �(c1)

∣
∣ + max

0≤c1≤k

∣
∣fm

(
ϑ(c1)

)
– �

(
ϑ(c1)

)∣
∣

+
∫ k

0
L℘

[
max

0≤c2≤τ

∣
∣fm(c2) – �(c2)

∣
∣ + max

0≤c2≤τ
|fm

(
ϑ(c2)

)
– �

(
ϑ(c2)

)]
dτ

}

dk

≤ (1 – qm)
∣
∣fm(s) – �(s)

∣
∣

+ qm

∫ s

0
Lg

{

max
–z≤c1≤�

∣
∣fm(c1) – �(c1)

∣
∣ + max

–z≤τ1≤�

∣
∣fm(τ1) – �(τ1)

∣
∣



Okeke et al. Boundary Value Problems        (2022) 2022:103 Page 21 of 26

+
∫ k

0
L℘

[
max

–z≤c2≤�

∣
∣fm(c2) – �(c2)

∣
∣ + max

–z≤τ2≤�
|fm(τ2) – �(τ2)

]
dτ

}

dk

≤ (1 – qm)‖fm – �‖C + qm

∫ s

0
Lg

{

2‖fm – �‖C + 2
∫ k

0
L℘‖fm – �‖Cdτ

}

dk

≤ (1 – qm)‖fm – �‖C + qmkLg(2 + L℘� )‖fm – �‖C

=
[
1 – qm

(
1 – �Lg(2 + L℘� )

)]‖fm – �‖C , (5.4)

and

‖um – �‖ =
∥
∥(1 – pm)fm + pmTvm – �

∥
∥

≤ (1 – pm)‖fm – �‖ + pm‖Tvm – �‖
= (1 – pm)

∣
∣fm(s) – �(s)

∣
∣ + pm

∣
∣T(vm)(s) – T(�)(s)

∣
∣

= (1 – pm)
∣
∣fm(s) – �(s)

∣
∣

+ pm

∣
∣
∣
∣ψ(0) +

∫ s

0
g
(

k, vm(k), vm
(
ϑ(k)

)
,
∫ k

0
℘

(
k, τ , vm(τ ), vm

(
ϑ(τ )

))
dτ

)

dk

– ψ(0) –
∫ s

0
g
(

k,�(k),�
(
ϑ(k)

)
,
∫ k

0
℘

(
k, τ ,�(τ ),�

(
ϑ(τ )

))
dτ

)

dk
∣
∣
∣
∣

≤ (1 – pm)
∣
∣fm(s) – �(s)

∣
∣

+ pm

∫ s

0
Lg

{

max
0≤c1≤k

∣
∣vm(c1) – �(c1)

∣
∣ + max

0≤c1≤k

∣
∣vm

(
ϑ(c1)

)
– �

(
ϑ(c1)

)∣
∣

+
∫ k

0
L℘

[
max

0≤c2≤τ

∣
∣vm(c2) – �(c2)

∣
∣ + max

0≤c2≤τ
|vm

(
ϑ(c2)

)
– �

(
ϑ(c2)

)]
dτ

}

dk

≤ (1 – pm)
∣
∣fm(s) – �(s)

∣
∣

+ pm

∫ s

0
Lg

{

max
–z≤c1≤�

∣
∣vm(c1) – �(c1)

∣
∣ + max

–z≤τ1≤�

∣
∣vm(τ1) – �(τ1)

∣
∣

+
∫ k

0
L℘

[
max

–z≤c2≤�

∣
∣vm(c2) – �(c2)

∣
∣ + max

–z≤τ2≤�
|vm(τ2) – �(τ2)

]
dτ

}

dk

≤ (1 – pm)‖fm – �‖C + pm

∫ s

0
Lg

{

2‖vm – �‖C + 2
∫ k

0
L℘‖vm – �‖Cdτ

}

dk

≤ (1 – pm)‖fm – �‖C + pmkLg(2 + L℘� )‖vm – �‖C

=
[
1 – pm

(
1 – �Lg(2 + L℘� )

)]‖vm – �‖C , (5.5)

and

‖tm – �‖ = ‖Tum – T�‖
=

∣
∣T(vm)(s) – T(�)(s)

∣
∣

=
∣
∣
∣
∣ψ(0) +

∫ s

0
g
(

k, um(k), um
(
ϑ(k)

)
,
∫ k

0
℘

(
k, τ , um(τ ), um

(
ϑ(τ )

))
dτ

)

dk

– ψ(0) –
∫ s

0
g
(

k,�(k),�
(
ϑ(k)

)
,
∫ k

0
℘

(
k, τ ,�(τ ),�

(
ϑ(τ )

))
dτ

)

dk
∣
∣
∣
∣



Okeke et al. Boundary Value Problems        (2022) 2022:103 Page 22 of 26

≤
∫ s

0
Lg

{

max
0≤c1≤k

∣
∣um(c1) – �(c1)

∣
∣ + max

0≤c1≤k

∣
∣um

(
ϑ(c1)

)
– �

(
ϑ(c1)

)∣
∣

+
∫ k

0
L℘

[
max

0≤c2≤τ

∣
∣um(c2) – �(c2)

∣
∣ + max

0≤c2≤τ
|um

(
ϑ(c2)

)
– �

(
ϑ(c2)

)]
dτ

}

dk

≤
∫ s

0
Lg

{

max
–z≤c1≤�

∣
∣um(c1) – �(c1)

∣
∣ + max

–z≤τ1≤�

∣
∣um(τ1) – �(τ1)

∣
∣

+
∫ k

0
L℘

[
max

–z≤c2≤�

∣
∣um(c2) – �(c2)

∣
∣ + max

–z≤τ2≤�
|um(τ2) – �(τ2)

]
dτ

}

dk

≤
∫ s

0
Lg

{

2‖um – �‖C + 2
∫ k

0
L℘‖um – �‖Cdτ

}

dk

≤ �Lg(2 + L℘� )‖um – �‖C , (5.6)

and

‖hm – �‖ = ‖Ttm – T�‖
=

∣
∣T(tm)(s) – T(�)(s)

∣
∣

=
∣
∣
∣
∣ψ(0) +

∫ s

0
g
(

k, tm(k), tm
(
ϑ(k)

)
,
∫ k

0
℘

(
k, τ , tm(τ ), tm

(
ϑ(τ )

))
dτ

)

dk

– ψ(0) –
∫ s

0
g
(

k,�(k),�
(
ϑ(k)

)
,
∫ k

0
℘

(
k, τ ,�(τ ),�

(
ϑ(τ )

))
dτ

)

dk
∣
∣
∣
∣

≤
∫ s

0
Lg

{

max
0≤c1≤k

∣
∣tm(c1) – �(c1)

∣
∣ + max

0≤c1≤k

∣
∣tm

(
ϑ(c1)

)
– �

(
ϑ(c1)

)∣
∣

+
∫ k

0
L℘

[
max

0≤c2≤τ

∣
∣tm(c2) – �(c2)

∣
∣ + max

0≤c2≤τ
|tm

(
ϑ(c2)

)
– �

(
ϑ(c2)

)]
dτ

}

dk

≤
∫ s

0
Lg

{

max
–z≤c1≤�

∣
∣tm(c1) – �(c1)

∣
∣ + max

–z≤τ1≤�

∣
∣tm(τ1) – �(τ1)

∣
∣

+
∫ k

0
L℘

[
max

–z≤c2≤�

∣
∣tm(c2) – �(c2)

∣
∣ + max

–z≤τ2≤�
|vm(τ2) – �(τ2)

]
dτ

}

dk

≤
∫ s

0
Lg

{

2‖tm – �‖C + 2
∫ k

0
L℘‖tm – �‖Cdτ

}

dk

≤ �Lg(2 + L℘� )‖tm – �‖C , (5.7)

and

‖fm+1 – �‖ = ‖Thm – T�‖
=

∣
∣T(hm)(s) – T(�)(s)

∣
∣

=
∣
∣
∣
∣ψ(0) +

∫ s

0
g
(

k, hm(k), hm
(
ϑ(k)

)
,
∫ k

0
℘

(
k, τ , hm(τ ), hm

(
ϑ(τ )

))
dτ

)

dk

– ψ(0) –
∫ s

0
g
(

k,�(k),�
(
ϑ(k)

)
,
∫ k

0
℘

(
k, τ ,�(τ ),�

(
ϑ(τ )

))
dτ

)

dk
∣
∣
∣
∣

≤
∫ s

0
Lg

{

max
0≤c1≤k

∣
∣hm(c1) – �(c1)

∣
∣ + max

0≤c1≤k

∣
∣hm

(
ϑ(c1)

)
– �

(
ϑ(c1)

)∣
∣
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+
∫ k

0
L℘

[
max

0≤c2≤τ

∣
∣hm(c2) – �(c2)

∣
∣ + max

0≤c2≤τ
|hm

(
ϑ(c2)

)
– �

(
ϑ(c2)

)]
dτ

}

dk

≤
∫ s

0
Lg

{

max
–z≤c1≤�

∣
∣hm(c1) – �(c1)

∣
∣ + max

–z≤τ1≤�

∣
∣hm(τ1) – �(τ1)

∣
∣

+
∫ k

0
L℘

[
max

–z≤c2≤�

∣
∣hm(c2) – �(c2)

∣
∣ + max

–z≤τ2≤�
|hm(τ2) – �(τ2)

]
dτ

}

dk

≤
∫ s

0
Lg

{

2‖hm – �‖C + 2
∫ k

0
L℘‖hm – �‖C dτ

}

dk

≤ �Lg(2 + L℘� )‖hm – �‖C . (5.8)

Using (5.4), (5.5), (5.6), (5.7), and (5.8), we obtain

‖fm+1 – �‖ ≤ [
�Lf (2 + L℘� )

]3[1 – pm
(
1 – �Lg(2 + L℘� )

)]‖fm – �‖C . (5.9)

Using assumption (A3), we obtain

‖fm+1 – �‖ ≤ [
1 – pm

(
1 – �Lg(2 + L℘� )

)]‖fm – �‖C . (5.10)

Now, define σm = pm(1 – �Lg(2 + L℘� )) < 1, then σm ∈ (0, 1) such that
∑∞

m=0 σm = ∞ and
set θm = ‖fm – �‖C . Observe that (5.10) takes the form

θm+1 = (1 – σm)θm.

Thus, all the assumptions of Theorem 3.1 are fulfilled. Hence, limm→∞ ‖fm – �‖ = 0. �

Next, we give an example to validate our main result obtained in Theorem 5.2 as follows.

Example Consider the delay nonlinear Volterra integrodifferential equation defined as
follows:

f ′(s) = 1 –
s cos(f (s))

120
+

f (s)
30

–
s cos(f (ϑ(s)))

40

+
1

10

∫ s

0

s
12

{
sin

(
f (k)

)
+ sin

(
f
(
ϑ(k)

))}
dk, s ∈ [0, 2], (5.11)

f (s) = 0, s ∈ [–1, 0], (5.12)

where ϑ(s) = s
3 , s ∈ [–1, 0]. Clearly, we know that ϑ(s) ≤ s, s ∈ [0, 2]. (i) Define ϑ : [0, 2] ×

[0, 2] ×R×R×R by

℘
(
s, k, f (k), f

(
ϑ(k)

))
=

s
12

{
sin

(
f (k)

)
+ sin

(
f
(
ϑ(k)

))}
, s, k ∈ [0, 2].

Thus, for all s, k ∈ [0, 2] and f1, f2, h1, h2 ∈R, we have

∣
∣℘(s, k, f1, f2) – ℘(s, k, h1, h2)

∣
∣ ≤ t

12
{| sin f1 – sin h1| + | sin f2 – sin h2|

}

≤ 2
12

{|f1 – h1| + |f2 – h2|
}

.
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(ii) Again, we define f : [0, 2] ×R×R×R →R by

g
(

s, f (s), f
(
ϑ(s)

)
,
∫ s

0
℘

(
s, k, f (k), f

(
ϑ(k)

))
dk

)

= 1 –
s cos(f (s))

120
+

f (s)
30

–
s cos(f (ϑ(s)))

40

+
1

10

∫ s

0

s
12

{
sin

(
f (k)

)
+ sin

(
f
(
ϑ(k)

))}
dk

= 1 –
s cos(f (s))

120
+

f (s)
30

–
s cos(f (ϑ(s)))

40

+
1

10

∫ s

0
℘

(
s, k, f (k), f

(
ϑ(k)

))
dk, s ∈ [0, 2].

Then, for all s ∈ [0, 2] and f1, f2, f3, h1, h2, h3 ∈R and by the mean-value theorem, we obtain

∣
∣℘(s, f1, f2, f3) – ℘(s, h1, h2, h3)

∣
∣

≤
{

s
120

| cos f1 – cos h1| +
1

30
|f1 – h1|+

}

+
s

40
| cos f2 – cos h2| +

1
10

|f3 – h3|

≤
{

2
120

| cos f1 – cos h1| +
1

30
|f1 – h1|+

}

+
2

40
| cos f2 – cos h2| +

1
10

|f3 – h3|

≤ 2
12

{|f1 – h1| + |f2 – h2| + |f3 – h3|
}

. (5.13)

It is easy to see that the above-defined functions g and ℘ fulfill the conditions (A1) and
(A2) with Lg = 2

12 , L℘ = 2
12 . Again, it is true that �Lg(2 + �L℘) = 2 · 2

12 (2 + 2 · 2
12 ) = 112

144 < 1.
Thus, condition (A3) holds. Now, if we choose pm = 1

m , then it follows that
∑∞

m=0 pm = ∞.
In addition, it is obvious that the exact solution of the problem (5.11)–(5.12) is the func-

tion

f (s) =

⎧
⎨

⎩

s, s ∈ [0, 2],

0, s ∈ [–1, 0].
(5.14)

Remark 5.3 For given fixed z > 0, and define ϑ1(s) = s – z, s ∈ [0, k]. Then, the special case
of the problem (5.1)–(5.2) is obtained as follows:

f ′(s) = g1

(

s, f (s), f (s – z),
∫ s

0
℘1

(
s, k, f (k), f (s – z)

)
ds

)

, s ∈ [0,� ], (5.15)

f (s) = ψ(s), s ∈ [–z, 0], (5.16)

which is an initial IVP for a nonlinear Volterra integrodifferential equation.
There exist several results concerning the approximation of the solution of the problem

(5.15)–(5.16) for ℘1(s, k, f (k), f (k –z)) = 0 (see [3, 7, 10, 24–27, 36]). It follows that our result
in Theorem 5.2 is a generalization of the corresponding results in [3, 7, 10, 24–27, 36] and
so are many others in the existing literature.
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6 Conclusions
In this paper, we have introduced a five-step iterative method (1.12) for approximating the
fixed points of generalized α-nonexpansive mappings. Furthermore, we studied the weak
and strong convergence theorems of the new iterative method. Again, a numerical ex-
periment that was carried out showed that our new iterative method has a better speed of
convergence than several existing iterative methods. We also utilized our iterative method
to find the solutions of nonlinear third-order BVPs based on Green’s function and a delay
nonlinear Volterra integrodifferential equation. A nontrivial example that authenticates
the assumptions used in our main result of Theorem 5.2 is provided. The delay nonlin-
ear Volterra integrodifferential equation (5.1)–(5.2) studied in this manuscript properly
includes the nonlinear delay differential equations considered in [3, 7, 10, 24–27, 36].
Hence, our results are generalizations and extensions of the corresponding results in
[3, 7, 10, 24–27, 36] and several others in the existing literature.
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