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Abstract
In this paper, we consider an n-dimensional manifoldMn endowed with an almost
Bakry–Émery Ricci curvature and study a special case of gradient estimate for the
positive solutions of �u – X .u = f , for a smooth function f and a smooth vector field X
under the almost Ricci solitons condition.
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1 Introduction
Gradient estimates for the solutions of the Poisson equation and the heat equation are very
powerful tools in geometry and analysis, as shown for example in [2, 4, 18]. One of the most
important works in this area is [13], where Li and Yau studied the parabolic kernel of the
Schrödinger operator and proved an estimation for the solution of the heat equation (� –
∂
∂t )u(x, t) = 0 with the Neumann boundary condition ∂u

∂v = 0 on ∂M × (0,∞). Using this
estimate, they deduced a Harnack inequality and stated how to establish various upper and
lower bounds for the heat kernel from the boundary for both the Dirichlet and Neumann
conditions. Then, Wang [16] generalized their results for a compact Riemannian manifold
with a nonconvex boundary. In [17], Zhang obtained a sharpened local Li–Yau gradient
estimate and showed that global and local Li–Yau estimates are identical, therefore he used
the Nash method to obtain the upper bound for the fundamental solution of the following
equation:

⎧
⎨

⎩

�u – Ru – ∂tu = 0,
∂
∂t gij = 2Rij,

(1.1)

here, R is the scalar curvature and Rij is the Ricci curvature. In fact, Perelman [14], intro-
duced an equation like this and gained the lower bound for the solution to it. For more
studies and related research see [6, 7, 9–12]. Recently, Zhang et al. [18], stated the elliptic
and parabolic gradient estimates for a Riemannian manifold M with Ricci curvature that
was bounded from below and therefore they achieved Gaussian upper and lower bounds
for the heat kernel and extended the maximum principle that was stated by Petersen and
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Wai in [15]; also as a result they constructed a kind of cut-off function that had been used
for proving the volume convergence and cone rigidity for Gromov–Hausdorff limits (see
also [5]). In addition, Bamler [3], produced a new version of these works and obtained
bounds for the heat kernel on a Ricci flow background. In this paper, we study the gradi-
ent estimate for the solution of a new equation L2u = f , in which L2u = �u – Xu, under
the almost Ricci soliton condition. Here, X is a smooth vector field on a manifold.

2 Gradient estimate under an almost Ricci soliton
We say that a Riemannian manifold (Mn, g) is an almost Ricci soliton if there exist a vector
field X and a soliton function λ : Mn −→R satisfying

Ric +
1
2
LXg = –λg, (2.1)

where Ric and L stand, respectively, for the Ricci tensor and the Lie derivative. It is called
shrinking, steady or expanding, respectively, if λ < 0, λ = 0 or λ > 0. When the vector field
X is a gradient of a differentiable function h : Mn −→ R the manifold is called a gradient
almost Ricci soliton; in this case the preceding equation turns out to be

Ric + ∇2h = –λg, (2.2)

where ∇2 denotes the Hessian of h. Moreover, when either the vector field X is trivial or
the potential h is constant, the almost Ricci soliton will be called trivial. We note that when
n ≥ 3 and X is a Killing vector field, an almost Ricci soliton will be simply a Ricci soliton,
since in this case we have an Einstein manifold, which implies that λ is a constant.

Let Mn be an almost Ricci soliton with the following conditions

Ric +
1
2
LV g ≥ –λg, (2.3)

and

|V |(y) ≤ K
d(y, O)α

, (2.4)

for a smooth function λ with an upper bound N , a smooth vector field V , and any y ∈ M.
Here, d(y, O) denotes the distance from O to y, K is the positive constant and 0 ≤ α < 1.
In particular, we consider one more condition named the volume noncollapsing condition
when α �= 0,

Vol
(
B(x, 1)

) ≥ ρ, (2.5)

for all x ∈ M and some constant ρ > 0.
Proving our main results, first we need to obtain the Sobolev inequalities for an almost

Ricci soliton and we state the volume-comparison theorem for an almost Ricci soliton
from [1].

Theorem 2.1 (Volume comparison [1]) Assume that for an n-dimension almost Ricci soli-
ton (2.3) and (2.4) hold. Moreover, consider a positive constant N as an upper bound for λ.
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Suppose, in addition, that the volume noncollapsing condition (2.5) holds for positive con-
stants ρ > 0, K ≥ 0 and 0 ≤ α < 1, then for any 0 < r1 < r2 ≤ 1, we have the volume ratio
bound as follows

Vol(B(x, r2))
rn

2
≤ eC(n,N ,K ,α,ρ)[N(r2

2–r2
1)+K (r2–r1)1–α ].

Vol(B(x, r1))
rn

1
, (2.6)

where C = C(n, N , K ,α,ρ) is a constant that depends on (n, N , K ,α,ρ) and B(x, r) is a ball
centered at x with radius r. In particular, this result is true by considering the gradient
soliton vector field V = ∇f .

Now, we use the volume-comparison result and follow the technique and arguments in
[8] to prove the Sobolev inequality on manifolds under the almost Ricci soliton condition.

Theorem 2.2 (Sobolev inequality) Under the same conditions as in the above theorem, we
have the following Sobolev inequalities.

(∮

B(x,r)
|f | n

n–1 dg
) n–1

n
≤ C(n)r

∮

B(x,r)
|∇f |dg, (2.7)

and

(∮

B(x,r)
|f | 2n

n–2 dg
) n–2

n
≤ C(n)r2

∮

B(x,r)
|∇f |2 dg. (2.8)

Moreover, for the case that X = ∇f for some smooth function f , we obtain

(∮

B(x,r)
|f | n

n–1 dg
) n–1

n
≤ C(n)r

∮

B(x,r)
|∇f |dg. (2.9)

Proof Because of the similarity of the method for proving this theorem to the case of in-
tegral Ricci curvature [8] and also considering the Bakry–Émery Ricci condition [18], we
only describe the general path of the proof here.

First, let (2.3), (2.4), and (2.5) hold for an almost Ricci soliton Mn. It follows from the
above volume-comparison theorem, that for r0 = r0(n, N , K ,α,ρ) < 1, we have

eC(n,N ,K ,α,ρ)(Nr2
0+Kr1–α

0 ) ≤ 3
2

,

so for any x ∈ Mn and 0 < r1 < r2 ≤ r0, one has

Vol(B(x, r1))
Vol(B(x, r2))

≥ 2
3

rn
1

rn
2

.

It is clear that we could have the following just like Proposition 3.1 in [18],

Vol(B(x, δr))
Vol(B(x, r))

≤ 1
2

,

for δ = δ(n) and r ≤ r0.
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Now, Let H be any hypersurface dividing M into two parts M1 and M2, B(x, r) be the
geodesic ball that is divided equally by H , then we infer

Vol
(
B(x, r)

) ≤ 2n+3rVol
(
H ∩ B(x, 2r)

)
.

Following the proof of Theorem 1.1 in [8], we obtain the isoperimetric inequality as fol-
lows:

ID∗
n
(
B(x, r)

) ≤ C(n)r,

for any r ≤ r0. Here, r0 = r0(n, N , K ,α,ρ). This is equivalent to the Sobolev inequality stated
in the theorem. �

Without reducing the generality of the issue, here we work on a compact manifold M
that enables us to consider positive bounded functions on M.

Theorem 2.3 Suppose that on a compact Riemannian manifold Mn, (2.3), (2.4), and (2.5)
hold. For p > n

2 , if λ ≤ N , |X| ≤ L and u ≤ θ is a positive bounded function on B(x, r) and
u = 0 on ∂B(x, r) that satisfies

L2u = f , (2.10)

where L2u = �u – X.u, then there exists a positive constant r0 = r0(n, N , K ,α,ρ, L, θ ) such
that for any x ∈ M and 0 < r ≤ r0 we have

sup
B(x, 1

2 r)
|∇u|2 ≤ C(n, N , K ,α,ρ, L, θ )

[(‖f ‖∗
2q,B(x,r)

)2 + r–2(‖u‖∗
2,B(x,r)

)2].

Now, by the same idea of [18] we prove this theorem.

Proof We consider a positive function v = |∇u|2 + ‖f 2‖∗
q,B(x,r), where

‖f ‖∗
q,B(x,r) =

(∮

B(x,r)
|f |q

) 1
q

.

The Bochner formula gives

1
2
�|∇u|2 =

∣
∣∇2u

∣
∣2 + 〈∇u,�∇u〉 + Ric(∇u,∇u),

hence,

�v = 2
∣
∣∇2u

∣
∣2 + 2〈∇u,∇�u〉 + 2Ric(∇u,∇u). (2.11)

Applying the condition stated in the theorem for an almost Ricci soliton, we obtain

�v ≥ 2
〈∇(X.u),∇u

〉
+ 2〈∇u,∇f 〉 + 2Ric(∇u,∇u)

≥ 2uifi – 2λv – (LV g)ijuiuj + 2
〈∇(X.u),∇u

〉
, (2.12)
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and so for arbitrary positive p,

�vp = pvp–1�v + p(p – 1)vp–2|∇v|2

≥ 2pvp–1uifi – 2λpvp – pvp–1(LV g)ijuiuj – 2pvp–1〈∇(X.u),∇u
〉

+
p – 1

p
v–p∣∣∇vp∣∣2. (2.13)

Then, we infer that
∫

B

∣
∣∇(

ηvp)∣∣2 ≤
∫

B
v2p|∇η|2 – 2pη2v2p–1uifi + 2λpη2v2p + pη2v2p–1(LV g)ijuiuj

+ 2pη2v2p–1〈∇(X.u),∇u
〉
, (2.14)

for any η ∈ C∞
0 (Bx(1)) and p ≥ 1. We know that (LV g)ij = ∇iVj + ∇jVi, thus we obtain

1
2

∫

B
η2v2p–1(LV g)ijuiuj = –

∫

B
2ηv2p–1ηjViuiuj + (2p – 1)η2v2p–2vjViuiuj

+ η2v2p–1Viuijuj + η2v2p–1Viuiujj. (2.15)

As we know vj = 2ujjuj, hence, (2.15) becomes

1
2

∫

B
η2v2p–1(LV g)ijuiuj

≤
∫

B
v2p|∇η|2 + η2v2p–2|V |2|∇u|4 –

2p – 1
p

ηvp–1Viuiuj
[(

ηvp)

j – vpηj
]

–
1
2
η2v2p–1Vivi +

1
2
η2v2p–2f 2|∇u|2 +

1
2
η2v2p|V |2 – η2v2p–1ViX.u. (2.16)

From the definition of v, it is obvious that |∇u|4 ≤ v2, therefore

1
2

∫

B
η2v2p–1(LV g)ijuiuj

≤
∫

B

8p – 1
4p

v2p|∇η|2 +
2(2p – 1)2 + 5p

2p
η2v2p|V |2 +

1
2p

∣
∣∇(

ηvp)∣∣2 +
1
2
η2v2p–1f 2

– η2v2p–1ViX.u, (2.17)

and

–
∫

B
η2v2p–1uifi ≤

∫

B

4(2p – 1)2 + 1
2p

η2v2p–1f 2 +
1

2p
v2p|∇η|2 +

1
8p

∣
∣∇(

ηvp)∣∣2. (2.18)

By (2.16) and (2.18), (2.14) becomes

2
∫

B

∣
∣∇(

ηvp)∣∣2 ≤
∫

B
4v2p|∇η|2 + 8λpη2v2p + (8p – 1)v2p|∇η|2

+
(
4(2p – 1)2 + 10p

)
η2v2p|V |2 + 2pη2v2p–1f 2

+
(
16(2p – 1)2 + 4

)
η2v2p–1f 2 + 4v2p|∇η|2



Hajiaghasi and Azami Boundary Value Problems        (2022) 2022:104 Page 6 of 10

– pη2v2p–1ViX.u + 2pη2v2p–1〈∇(X.u),∇u
〉
.

Define a cut function ϕi(s) so that ηi(y) = ϕi(s), such that for ri = ( 1
2 + 1

2i+2 )r, i = 0, 1, 2, . . . ,
ϕi(t) ≡ 1 for t ∈ [0, ri+1], suppϕi ⊆ [0, ri] and – 52i

r ≤ ϕ′
i ≤ 0. Hence,

∮

B(x,ri)

∣
∣∇(

ηivp)∣∣2 ≤
∮

B(x,ri)
8λpη2

i v2p + 16pv2p|∇ηi|2 + 70p2η2
i v2p–1f 2 + 30p2η2

i v2p|V |2

– pη2
i v2p–1ViX.u + 2pη2

i v2p–1〈∇(X.u),∇u
〉
. (2.19)

Note that

2p
∮

B(x,ri)
η2

i v2p–1〈∇(X.u),∇u
〉

= – 2p
∮

B(x,ri)
η2

i v2p–1X.uuij + 2ηiv2p–1X.uuiηij

+ η2
i (2p – 1)v2p–2viX.uui. (2.20)

Also,

–
∮

B(x,ri)
η2

i v2p–1X.uuij = –
∮

B(x,ri)
η2

i v2p–1fX.u –
∮

B(x,ri)
η2

i v2p–1|X.u|2

≤ 1
2

∮

B(x,ri)
η2

i v2pf 2 +
1
2

∮

B(x,ri)
η2

i v2p–2|X.u|2, (2.21)

–
∮

B(x,ri)
ηiv2p–1X.uuiηij ≤ –

∮

B(x,ri)
v2p|∇η|2 + η2

i v2p–2|X|2|∇u|4, (2.22)

and

–2p – 1
∮

B(x,ri)
η2

i v2p–2viX.uui = –
2p – 1

p

∮

B(x,ri)
ηivp–1X.uui

[(
ηvp)

j – vpηj
]

≤
∮

B(x,ri)

1
4p

∣
∣∇(

ηvp)∣∣2 +
(2p – 1)2

p
η2

i v2p|X|2

+
2p – 1

2p
v2p|∇η|2 +

2p – 1
2p

η2
i v2p|X|2. (2.23)

Hence, substituting (2.21), (2.22), and (2.23) into (2.19), we obtain

1
2

∮

B(x,ri)

∣
∣∇(

ηivp)∣∣2

≤
∮

B(x,ri)
8λpη2

i v2p + 20pv2p|∇ηi|2 + 70p2η2
i v2p–1f 2

+ 30p2η2
i v2p|V |2 – pη2

i v2p–1ViX.u + pη2
i v2pf 2 + 9p2η2

i v2p|X|2, (2.24)

by a simple computation, we have

–
∮

B(x,ri)
pη2

i v2p–1ViX.u ≤ 1
2

∮

B(x,ri)
p2η2

i v2p|V |2 + η2
i v2p–1|X|2. (2.25)
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On the other hand, using Young’s inequality we obtain

xy ≤ εxγ + ε
– γ ∗

γ yγ ∗
, ∀x, y > 0,γ > 1,

1
γ

+
1
γ ∗ = 1,

and using the volume-comparison theorems from [1], for r
2 ≤ ri ≤ 3

4 r, we obtain

p2
∮

B(x,ri)
η2

i v2p–1f 2 ≤ ε

(∮

B(x,ri)

(
ηivp) 2n

n–2

) n–2
n

(2.26)

+ ε– a
1–a C

2q
2q–n p

4q
2q–n

∮

B(x,ri)
η2

i v2p, (2.27)

here C = C(n, N , K ,α,ρ) by considering the upper bound N for λ. If q ∈ ( n
2 , n

2α
), then

p2
∮

B(x,ri)
η2

i v2p|V |2

≤ εr–2α
i

(∮

B(x,ri)

(
ηivp) 2n

n–2

) n–2
n

+ ε– a
1–a p

2
1–a C

1
1–a r–2α

i

∮

B(x,ri)
η2

i v2p. (2.28)

Now, considering |X| ≤ L and λ ≤ N , for any ε > 0 and a = n
2q we can rewrite (2.24) as

follows

∮

B(x,ri)

∣
∣∇(

ηivp)∣∣2

≤
∮

B(x,ri)

(
16N + 9p2L2 + L2)η2

i v2p + 40pv2p|∇ηi|2

+ 71ε

(∮

B(x,ri)

(
ηivp) 2n

n–2

) n–2
n

+ 71ε– a
1–a C

2q
2q–n p

4q
2q–n

∮

B(x,ri)
η2

i v2p

+ εr–2α
i

(∮

B(x,ri)

(
ηivp) 2n

n–2

) n–2
n

+ p
4q

2q–n ε– a
1–a C

2q
2q–n r–2α

i

∮

B(x,ri)
η2

i v2p. (2.29)

Since ri ≤ r ≤ 1 and α < 1, using the Sobolev inequality from [18] and choosing ε small
enough, the above inequality becomes

(∮

B(x,ri)

(
ηivp) 2n

n–2

) n–2
n

≤ C(n, N , K ,α,ρ, L)r2
i

∮

B(x,ri)
pv2p|∇ηi|2

+ p2η2
i v2p. (2.30)
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Using the volume-comparison theorem for r2 = ri+1 and r1 = ri, we infer that

(∮

B(x,ri+1)

(
vp) 2n

n–2

) n–2
n

≤ C(n, N , K ,α,ρ)
(∮

B(x,ri)

(
ηivp) 2n

n–2

) n–2
n

≤ C(n, N , K ,α,ρ, L)
∮

B(x,ri)
22ipv2p + p2v2p.

Now, take μ = n
n–2 and p = μi

2 for i = 0, 1, 2, . . . , therefore

(∮

B(x,ri+1)
vμi+1

) n–2
n

=
(∮

B(x,ri+1)

(
vp) 2n

n–2

) n–2
n

≤ C(n, N , K ,α,ρ, L)
(
22i–1μi + μ2i)

∮

B(x,ri)
vμi

≤ C(n, N , K ,α,ρ, L)42i
∮

B(x,ri)
vμi

,

which means that

‖V‖∗
μi+1,B(x,ri+1) ≤ Cμ–i(

42i)μ–i‖v‖∗
μi ,B(x,ri)

. (2.31)

Hence,

sup
B(x, 1

2 r)
v ≤ C
iμ–i(

42i)
iμ–i‖v‖∗
1,B(x, 3

4 r) ≤ C(n, N , K ,α,ρ, L)‖v‖∗
1,B(x, 3

4 r). (2.32)

On the other hand, by considering 0 ≤ u ≤ θ , we have

∫

B(x,r)
η2|∇u|2 =

∫

B(x,r)
–η2u(f + X.u) – 2ηu∇iu∇iη

≤
∫

B(x,r)

1
2

u2η2 +
1
2

f 2η2 + η2Lθ +
1
2
η2|∇u|2 + 2u2|∇η|2.

Due to the definition of η, we have
∮

B(x,r)
η2|∇u|2 ≤ 4

∮

B(x,r)
u2η2 + f 2η2 + η2Lθ + u2|∇η|2

≤ 100r–2(‖u|∗2,B(x,r)
)2 + 4

∥
∥f 2∥∥∗

q,B(x,r) + Lθ .

Subsequently, we infer that

‖v‖∗
1,B(x, 3

4 r) ≤ Vol(B(x, r))
Vol(B(x, 3

4 r))

∮

B(x,r)
η2(|∇u|2 +

∥
∥f 2∥∥∗

q,B(x,r)

)

≤ C(n, N , K ,α,ρ, L, θ )
[
r–2(‖u‖∗

2,B(x,r)
)2 +

(‖f ‖∗
2q,B(x,r)

)2]. (2.33)

Combining (2.33) and (2.32), we arrive at

sup
B(x, 1

2 r)
|∇u|2
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≤ ‖v‖∞,B(x, 1
2 r) ≤ C(n, N , K ,α,ρ, L, θ )

[
r–2(‖u‖∗

2,B(x,r)
)2 +

(‖f ‖∗
2q,B(x,r)

)2]. �

By a similar argument, we have:

Corollary 2.4 Let the following condition hold for a compact gradient almost Ricci soliton

Ric + Hessh ≥ –λg,

and, moreover, we have two conditions for the potential function h as follows:

∣
∣h(y) – h(z)

∣
∣ ≤ K1d(y, z)α and sup

x∈M,0≤r≤1

(
rβ‖∇h‖∗

q,B(x,r)
) ≤ K2.

Then, there is a constant r0 = r0(n, N , K1, K2,α,β , L, θ ), such that by the same conditions as
the last theorem, the solution of (2.10) for any q > n

2 , satisfies

sup
B(x, r

2 )
|∇u|2 ≤ C(n, N , K1, K2,α,β , L, θ )

[
r–2(‖u‖∗

2,B(x,r)
)2 +

(‖h‖∗
2q,B(x,r)

)2].

Corollary 2.5 Suppose that all conditions in Theorem 2.3 hold. If X = 0, then
(i) If λ ≤ N holds, we obtain r0 = r0(n, N , K ,α,ρ) such that

sup
B(x, 1

2 r)
|∇u|2 ≤ C(n, N , K ,α,ρ)

[(‖f ‖∗
2q,B(x,r)

)2 + r–2(‖u‖∗
2,B(x,r)

)2].

(ii) If λ = 0, the constant coefficient changes as C(n, K ,α,ρ).

Remark 2.6 Note that if X = 0 and letting λ be a constant, then the results are the same as
[18].

Corollary 2.7 Let all assumptions in Theorem 2.3 and Corollary 2.4 hold. If r −→ ∞ and
X = 0, then u is a constant.
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