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Abstract
This manuscript is related to establishing appropriate results for the existence and
uniqueness of solutions to a class of nonlinear impulsive implicit fractional-order
differential equations (FODEs). It is remarkable that impulsive differential equations
have attracted great popularity due to various important applications in the
mathematical modeling of real-world phenomena/processes, particularly in biological
or biomedical engineering domains as well as in control theory. The mentioned
problem is considered under four-point nonlocal boundary conditions and the
derivative is taken in the Caputo sense. Our results are based on fixed-point theorems
due to Banach and Schaefer. To justify our results, two suitable examples are given.
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1 Introduction
The area of FODEs has attracted considerable attention from researchers due to their ap-
plications in various scientific and engineering disciplines. For instance, different appli-
cations of FODEs were investigated in epidemiology and control theory in [1] and [2],
respectively. Some fundamental results and applications in engineering were discussed in
[3]. Applications of fractional calculus in physics were discussed in [4]. A detailed theory
and applications were given in [5]. Some interesting applications of the said area in nan-
otechnology were studied in [6]. Various real-world applications of FODEs in engineering
and sciences were investigated in [7]. Further, in [8] and [9] the authors discussed some
applications of FODEs in bioengineering and dynamical systems of hereditary mechan-
ics, respectively. Various phenomena of damped structure related to viscoelasticity were
studied by using fractional calculus in [10].

Furthermore, one of the supreme desirable research areas in the field of FODEs is the
qualitative theory of solutions. Much research work has been framed in this regard. For a
detailed study of basic theory and results, we refer to the book [11]. One of the important
areas is known as the study of boundary value problems (BVPs) of fractional differential
equations because most technical, physical, and dynamical problems are subject to some
boundary conditions. Therefore, the mentioned area has been considered very well by
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researchers in the last three decades. The authors of [12, 13], and [14] established sufficient
results for the existence of solutions to various nonlocal BVPs of FODEs. The authors of
[15] and [16] studied some multipoint BVPs of FODEs for qualitative theory. A coupled
system of impulsive BVPs of FODEs was studied in [17] by using fixed-point theory. Also,
the authors of [18, 19], and [20] studied the existence and stability theory for different
kinds of initial and BVPs of FODEs via fixed-point theory.

Impulsive differential equations (IDEs) constitute a very important class of the aforesaid
area. The said class models those evolutionary processes that undergo abrupt changes. Ad-
ditionally, these problems consist of a natural description of the evolutionary processes
and are hence considered the best tools for understanding various real-world problems
in applied sciences. Actually, the theory of IDEs is widely explored as compared to clas-
sical order problems. The mentioned area has many applications, for instance, a simple
IDE can present several new phenomena like rhythmic beats, fusion solution, and the ab-
sence of continuity of a solution. For general theory and applications of IDEs, we mention
the book [21]. Impulsive evolution systems were analyzed in [22]. The theory about im-
pulsive differential equations was given in [23]. Impulsive dynamical systems and their
theory and applications were given in [24]. Extremal solutions for first-order impulsive
problems were studied in [25]. The authors of [26] studied existence criteria for impulsive
FODEs.

On the other hand, the impulsive BVPs for nonlinear FODEs have not been addressed as
extensively and many features of them need to be explored. Most of the problems in IDEs
have been studied under two- or at least three-point boundary conditions, since differen-
tial equations under nonlocal boundary conditions have significant applications in engi-
neering disciplines as well as dynamics and fluid mechanics. However, to the best of our
knowledge, IDEs with fractional order under multipoint boundary conditions have not
been properly investigated. Recently, some authors have investigated impulsive FODEs
under initial or two-point boundary conditions. For instance, the authors of [27] studied
hybrid impulsive BVPs of FODEs. Similarly, the authors of [28] established the existence
and uniqueness results for integral BVPs of impulsive FODEs. The existence of mild so-
lutions has been investigated in [29]. Impulsive neutral FODEs have been studied in [30]
by using a fixed-point approach. The upper and lower solution method has been utilized
to investigate impulsive FODEs by some authors [31]. The existence and uniqueness of a
solution to antiperiodic BVPs and nonlocal BVPs of impulsive FODEs were studied in [32]
and [33], respectively. The existence theory for three-point BVPs of impulsive FODEs was
developed in [34].

Motivated by the aforesaid work, we investigate the existence and uniqueness of a four-
point impulsive nonlocal boundary value problem by updating the problem studied in [35]
to the implicit form investigated as

⎧
⎪⎪⎨

⎪⎪⎩

CDβ
xk w(x) = f (x, w(x), CDβ

xk w(x)), 1 < β ≤ 2, x ∈ J1 = J \{x1, x2, . . . , xp},
�w(xk) = Ik(w(x–

k )), �w′(xk) = Īk(w(x–
k )), xk ∈ (0, 1), k = 1, 2, . . . , p,

w′(0) + cw(η) = 0, dw′(1) + w(ζ ) = 0, η, ζ ∈ (0, 1),

(1)

where CDxk is denoted the fractional Caputo derivative at the point xk , J = [0, 1], f :
J × R × R → R and Ik , Īk : R → R are continuous functions. Further, �w(xk) =
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w(x+
k ) – w(x–

k ) with w(x+
k ) = lim h→0+ w(xk + h), w(x–

k ) = lim h→0– w(xk + h), k = 1, 2, . . . , p, for
0 = x0 < x1 < x2 · · · < xp+1 = 1. To inaugurate the essential results, we apply Schaefer’s fixed-
point theorem to develop appropriate conditions for the existence of at least one solution
to the problem under consideration (1). The mentioned theorem has been applied very
well to establish the existence criteria for FODEs in various research work, for instance, see
[36–38]. Additionally, the condition of uniqueness is obtained by using Banach’s contrac-
tion theorem. For the demonstration of our results, we deliver some concrete problems.
The authors of [18, 19] studied some problems of FODEs for analysis. Also, the authors of
[20] studied Hyers–Ulam stability for the almost periodic solution of FODEs with impulse
and fractional Brownian motion under nonlocal conditions.

We organize our work as follows: We give some detailed literature in Sect. 1. Elemen-
tary results are recalled in Sect. 2. In Sect. 3, we provide our main results. Section 4 is
devoted to pertinent examples to demonstrate our results. Finally, Sect. 5 presents a brief
conclusion.

2 Background materials
In this part of our article, we present some valuable results and deliver some fundamen-
tal definitions and lemmas from the existing literature, which we need in this article.
Let J = [0, 1], further, we explain the space of all the piecewise-continuous functions as
PC(J ,R) = {w : J →R; w ∈ C((xk , xk+1],R), k = 0, 1, 2, . . . , p + 1} and w(x+

k ) and w(x–
k ) ex-

ist with w(x–
k ) = w(xk), k = 1, 2, . . . , p, and

PC1(J ,R) =
{

w′ ∈ PC(J ,R); w′(x+
k
)
, w′(x–

k
)

exist and w′ is left continuous at xk ,

for k = 1, 2, . . . , p
}

.

Note that PC1(J ,R) is a Banach space with norm ‖w‖ = supx∈J |w(x)|.

Definition 2.1 ([3]) The integral of the function w ∈ L1([0, T],R+) of order β > 0 is de-
fined by

0Iβ
x w(x) =

∫ x

0

(x – s)β–1

�(β)
w(s) ds, (2)

such that the right-hand side of the above equation is pointwise defined on R+.

Definition 2.2 ([5]) For arbitrary order β > 0, the usual Caputo derivative for the function
w : (0,∞) →R is defined by

C
0 Dβ

x w(x) =
∫ x

0

(x – s)n–β–1

�(n – β)
w(n)(s) ds, (3)

where n = [β] + 1 stands for the integral part of β .

Lemma 2.1 ([36]) Let w ∈ C(0, 1) ∩ L1(0, 1), then the general solution of the problem

C
0 Dβ

x w(x) = 0,
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for β > 0 is given by

w(x) = a0 + a1x + a2x2 + · · · + an–1xn–1,

where ai ∈R, i = 0, 1, 2, . . . , n – 1 (n = [β] + 1).

In view of Lemma 2.1, we recall the following result.

Lemma 2.2 ([36]) For β > 0, w ∈ C(0, 1) ∩ L1(0, 1), and h ∈ L1[0, 1], the solution of the
problem

C
0 Dβ

x w(x) = h(x)

is given by

w(x) = 0Iβ
x h(x) + a0 + a1x + a2x2 + · · · + an–1xn–1, where n = [β] + 1.

3 Main results
To convert the problem (1) into the corresponding integral form, we establish the follow-
ing result.

Lemma 3.1 Let w ∈ PC1(J ,R) be a solution with q ∈ L[0, 1] of the given problem

⎧
⎪⎪⎨

⎪⎪⎩

C
0 Dβ

xk w(x) = q(x), 1 < β ≤ 2, x ∈ J1 = J \{x1, x2, . . . , xp},
�w(xk) = Ik(w(x–

k )), �w′(xk) = Īk(w(x–
k )), xk ∈ (0, 1), k = 1, 2, . . . , p,

w′(0) + cw(η) = 0, dw′(1) + w(ζ ) = 0, η, ζ ∈ (0, 1),

(4)

if and only if w is a solution of the impulsive fractional integral equation as

w(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ x
0

(x–s)β–1

�(β) q(s) ds + c(d+ζ–x)
[1–c(d+ζ–η)]

∫ η

xk
(η–s)β–1

�(β) q(s) ds

– 1+c(η–x)
[1–c(d+ζ–η)] [

∫ ζ

xk
(ζ–s)β–1

�(β) q(s) ds + d
∫ 1

xp
(1–s)β–2

�(β–1) q(s) ds]

– 1–c(d+ζ+x–η)
[1–c(d+ζ–η)]

∑p
i=1 d(

∫ xi
xi–1

(xi–s)β–2

�(β–1) q(s) ds + Īi(w(x–
i )))

–
∑k

i=1(
∫ xi

xi–1
(xi–s)β–1

�(β) q(s) ds + I(w(x–
i )))

–
∑k

i=1( cx(η–ζ )+(ζ–cdη)
[1–c(d+ζ–η)] – xi)(

∫ xi
xi–1

(xi–s)β–2

�(β–1) q(s) ds + Īi(w(x–
i ))),

x ∈ [0, x1],
∫ x

xk
(x–s)β–1

�(β) q(s) ds + c(d+ζ–x)
[1–c(d+ζ–η)]

∫ η

xk
(η–s)β–1

�(β) q(s) ds

– 1+c(η–x)
[1–c(d+ζ–η)] [

∫ ζ

xk
(ζ–s)β–1

�(β) q(s) ds + d
∫ 1

xp
(1–s)β–2

�(β–1) q(s) ds]

– 1–c(d+ζ+x–η)
[1–c(d+ζ–η)]

∑p
i=1 d(

∫ xi
xi–1

(xi–s)β–2

�(β–1) q(s) ds + Īi(w(x–
i )))

+
∑k

i=1( x(1–cd)+cdη–ζ

[1–c(d+ζ–η)] )(
∫ xi

xi–1
(xi–s)β–2

�(β–1) q(s) ds + Īi(w(x–
i ))),

x ∈ (xk , xk+1].

(5)

Proof Suppose w is a solution to problem (4), hence we use Lemmas 2.2 and 2.1, for some
constants a0, a1 ∈R, following the same procedure as was used in [35], we have

w(x) = –a0 – a1x +
∫ x

0

(x – s)β–1

�(β)
q(s) ds, x ∈ [0, x1]. (6)
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Using constants d0, d1 ∈R, we have

w(x) = –d0 – d1(x – x1) +
∫ x

x1

(x – s)β–1

�(β)
q(s) ds, x ∈ (x1, x2]. (7)

First, we take derivatives of (6) and (7) to produce

w′(x) = –a1 +
∫ x

0

(x – s)β–2

�(β – 1)
q(s) ds, x ∈ [0, x1], (8)

w′(x) = –d1 +
∫ x

x1

(x – s)β–2

�(β – 1)
q(s) ds, x ∈ (x1, x2]. (9)

Using the impulsive conditions �w(x1) = w(x+
1 ) – w(x–

1 ) = I1(w(x–
1 )) and �w′(x1) = w′(x+

1 ) –
w′(x–

1 ) = Ī1(w(x–
1 )), we find from (8) and (9)

–d0 =
∫ x1

0

(x1 – s)β–1

�(β)
q(s) ds – a0 – a1x1 + I1

(
w

(
x–

1
))

,

–d1 =
∫ x1

0

(x1 – s)β–2

�(β – 1)
q(s) ds – a1 + Ī1

(
w

(
x–

1
))

.

Thus, putting the values in (7), we have

w(x) =
∫ x

x1

(x – s)β–1

�(β)
q(s) ds +

∫ x1

0

(x1 – s)β–1

�(β)
q(s) ds – a0 – a1x + I1

(
w

(
x–

1
))

+ (x – x1)
[∫ x1

0

(x1 – s)β–2

�(β – 1)
q(s) ds + Ī1

(
w

(
x–

1
))

]

, x ∈ (x1, x2].

Repeating the above process, the obtained solution w(x) for x ∈ (xk , xk+1] has the following
expression

w(x) =
∫ x

xk

(x – s)β–1

�(β)
q(s) ds – a0 – a1x

+
k∑

i=1

(∫ xi

xi–1

(xi – s)β–1

�(β)
q(s) ds + Ii

(
w

(
x–

i
))

)

+
k∑

i=1

[

(x – xi)
(∫ xi

xi–1

(xi – s)β–2

�(β – 1)
q(s) ds + Īi

(
w

(
x–

i
))

)]

, x ∈ (xk , xk+1].

(10)

Now, using the boundary conditions w′(0) + cw(η) = 0, dw′(1) + w(ζ ) = 0, 0 < η ≤ ζ < 1 in
(10), we obtain the values of a0, a1 as

a0 = –
c(d + ζ )

[1 – c(d + ζ – η)]

∫ η

xk

(η – s)β–1

�(β)
q(s) ds

+
k∑

i=1

(∫ xi

xi–1

(xi – s)β–1

�(β)
q(s) ds + Ii

(
w

(
x–

i
))

)

+
1 + cη

[1 – c(d + ζ – η)]

[∫ ζ

xk

(ζ – s)β–1

�(β)
q(s) ds + d

∫ 1

xp

(1 – s)β–2

�(β – 1)
q(s) ds

]
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+
p∑

i=1

(1 + cη)d
[1 – c(d + ζ – η)]

(∫ xi

xi–1

(xi – s)β–2

�(β – 1)
q(s) ds – Īi

(
w

(
x–

i
))

)

+
k∑

i=1

[(
(ζ – cdη)

[1 – c(d + ζ – η)]
– xi

)(∫ xi

xi–1

(xi – s)β–2

�(β – 1)
q(s) ds + Īi

(
w

(
x–

i
))

)]

,

a1 =
(c)

[1 – c(d + ζ – η)]

[∫ η

xk

(η – s)β–1

�(β)
q(s) ds –

∫ ζ

xk

(ζ – s)β–1

�(β)
q(s) ds

– d
∫ 1

xp

(1 – s)β–2

�(β – 1)
q(s) ds –

p∑

i=1

d
(∫ xi

xi–1

(xi – s)β–2

�(β – 1)
q(s) ds – Īi

(
w

(
x–

i
))

)

+
k∑

i=1

(η – ζ )
(∫ xi

xi–1

(xi – s)β–2

�(β – 1)
q(s) ds – Īi

(
w

(
x–

i
))

)]

.

Substituting the values of a0, a1 into (6) and (10), we obtain (5). Conversely, suppose w is
a solution of the impulsive fractional-integral equation (5). It follows from a direct calcu-
lation that (5) satisfies the problem (4). �

For simplicity, we define

σ1 = sup
x∈[0,1]

∣
∣
∣
∣

c(d + ζ – x)
[1 – c(d + ζ – η)]

∣
∣
∣
∣, σ2 = sup

x∈[0,1]

∣
∣
∣
∣

1 + c(η – x)
[1 – c(d + ζ – η)]

∣
∣
∣
∣,

σ3 = sup
x∈[0,1]

∣
∣
∣
∣
1 – c(d + ζ + x – η)
[1 – c(d + ζ – η)]

∣
∣
∣
∣, σ4 = sup

x∈[0,1]

∣
∣
∣
∣
(1 – cd)x + cdη – ζ

[1 – c(d + ζ – η)]

∣
∣
∣
∣.

To derive our main results of the existence and uniqueness of solution, we need to define
an operator T as T : PC(J ,R) → PC(J ,R) by

Tw(x) =
∫ x

xk

(x – s)β–1

�(β)
f
(
s, w(s), C

0 Dβ
sk

w(s)
)

ds

+
c(d + ζ – x)

[1 – c(d + ζ – η)]

∫ η

xk

(η – t)β–1

�(β)
f
(
s, w(s), C

0 Dβ
sk

w(s)
)

ds

–
1 + c(η – x)

[1 – c(d + ζ – η)]

[∫ ζ

xk

(ζ – s)β–1

�(β)
f
(
s, w(s), C

0 Dβ
sk

w(s)
)

ds

+ d
∫ 1

xp

(1 – s)β–2

�(β – 1)
f
(
s, w(s), C

0 Dβ
sk

w(s)
)

ds
]

–
1 – c(d + ζ + x – η)
[1 – c(d + ζ – η)]

×
p∑

i=1

d
(∫ xi

xi–1

(xi – s)β–2

�(β – 1)
f
(
s, w(s), C

0 Dβ
sk

w(s)
)

ds + Īi
(
w

(
x–

i
))

)

+
k∑

i=1

(
x(1 – cd) + cdη – ζ

[1 – c(d + ζ – η)]

)

×
(∫ xi

xi–1

(xi – s)β–2

�(β – 1)
f
(
s, w(s), C

0 Dβ
sk

w(s)
)

ds + Īi
(
w

(
x–

i
))

)

.

(11)
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Using Lemma 3.1 with zw(x) = f (x, w(x), C
0 Dβ

xk w(x)), problem (1) is reduced to a fixed-point
problem Tw(x) = w(x), where T is given by (11). Therefore, problem (1) has a solution if
and only if the operator T has a fixed point, where zw(x) = f (x, w(x), zw(x)) and zw(x) =
C
0 Dβ

xk w(x). We assume that the following hypotheses are satisfied:
(A1) The function f : J ×R×R→R is continuous;
(A2) There exist constant Kf > 0 and 0 < Lf < 1 such that

∣
∣f

(
x, w(x), zw(x)

)
– f

(
x, w̄(x), z̄w(x)

)∣
∣ ≤ Kf

∣
∣w(x) – w̄(x)

∣
∣ + Lf

∣
∣zw(x) – z̄w(x)

∣
∣,

for any w, w̄, zw, z̄w ∈ PC(J ,R), and x ∈ J ;
(A3) There exists a constant M > 0, such that

∣
∣Īi

(
w(x)

)
– Īi

(
w̄(x)

)∣
∣ ≤ M

∣
∣w(x) – w̄(x)

∣
∣,

for each w, w̄ ∈ PC(J ,R) and i = 1, 2, 3, . . . , p.

Theorem 3.1 Under the hypotheses (A1), (A2), and (A3) and if the condition
[

Kf

1 – Lf

(
σ1 + σ2 + 1
�(β + 1)

+
(σ2 + σ3p)|d| + σ4p

�(β)

)

+
(
σ3|d| + σ4

)
pM

]

< 1, (12)

holds, then there exists a unique solution for problem (1) on J .

Proof suppose w, w̄, zw, z̄w ∈ PC(J ,R), for some x ∈ J we have

∣
∣Tw(x) – Tw̄(x)

∣
∣ ≤

∫ x

xk

(x – s)β–1

�(β)
∣
∣zw(s) – z̄w(s)

∣
∣ds

+
∣
∣
∣
∣

c(d + ζ – x)
[1 – c(d + ζ – η)]

∣
∣
∣
∣

∫ η

xk

(η – s)β–1

�(β)
∣
∣zw(s) – z̄w(s)

∣
∣ds

+
∣
∣
∣
∣

1 + c(η – x)
[1 – c(d + ζ – η)]

∣
∣
∣
∣

[∫ ζ

xk

(ζ – s)β–1

�(β)
∣
∣zw(s) – z̄w(s)

∣
∣ds

+ |d|
∫ 1

xp

(1 – s)β–2

�(β – 1)
∣
∣zw(s) – z̄w(s)

∣
∣ds

]

+
∣
∣
∣
∣
1 – c(d + ζ + x – η)
[1 – c(d + ζ – η)]

∣
∣
∣
∣

p∑

i=1

|d|
(∫ xi

xi–1

(xi – s)β–2

�(β – 1)
∣
∣zw(s) – z̄w(s)

∣
∣ds

+
∣
∣Īi

(
w

(
x–

i
))

– Īi
(
w̄

(
x–

i
))∣

∣

)

+
k∑

i=1

∣
∣
∣
∣

(
x(1 – cd) + cdη – ζ

[1 – c(d + ζ – η)]

)∣
∣
∣
∣

(∫ xi

xi–1

(xi – s)β–2

�(β – 1)
∣
∣zw(s) – z̄w(s)

∣
∣ds

+
∣
∣Īi

(
w

(
x–

i
))

– Īi
(
w̄

(
x–

i
))∣

∣

)

,

and by using (A2), we have

∣
∣zw(x) – z̄w(x)

∣
∣ =

∣
∣f

(
x, w(x), zw(x)

)
– f

(
x, w̄(x), z̄w(x)

)∣
∣

≤ Kf
∣
∣w(x) – w̄(x)

∣
∣ + Lf

∣
∣zw(x) – z̄w(x)

∣
∣.
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Repeating this process one has

|zw(x) – z̄w(x))| ≤ Kf

1 – Lf

∣
∣w(x) – w̄(x)

∣
∣.

Therefore, for each x ∈ J , we have

∣
∣Tw(x) – Tw̄(x)

∣
∣

≤ Kf

1 – Lf

∫ x

xk

(x – s)β–1

�(β)
∣
∣w(s) – w̄(s)

∣
∣ds

+
∣
∣
∣
∣

c(d + ζ – x)
[1 – c(d + ζ – η)]

∣
∣
∣
∣

Kf

1 – Lf

∫ η

xk

(η – s)β–1

�(β)
∣
∣w(s) – w̄(s)

∣
∣ds

+
∣
∣
∣
∣

1 + c(η – x)
[1 – c(d + ζ – η)]

∣
∣
∣
∣

Kf

1 – Lf

∫ ζ

xk

(ζ – s)β–1

�(β)
∣
∣w(s) – w̄(s)

∣
∣ds

+
∣
∣
∣
∣

1 + c(η – x)
[1 – c(d + ζ – η)]

∣
∣
∣
∣|d| Kf

1 – Lf

∫ 1

xk

(1 – s)β–2

�(β – 1)
∣
∣w(s) – w̄(s)

∣
∣ds

+
∣
∣
∣
∣
1 – c(d + ζ + x – η)
[1 – c(d + ζ – η)]

∣
∣
∣
∣

p∑

i=1

|d|
[

Kf

1 – Lf

∫ xi

xi–1

(xi – s)β–2

�(β – 1)
∣
∣w(s) – w̄(s)

∣
∣ds

+ M
∣
∣w(s) – w̄(s)

∣
∣

]

+
∣
∣
∣
∣

(
x(1 – cd) + cdη – ζ

[1 – c(d + ζ – η)]

)∣
∣
∣
∣

k∑

i=1

[
Kf

1 – Lf

∫ xi

xi–1

(xi – s)β–2

�(β – 1)
∣
∣w(s) – w̄(s)

∣
∣ds

+ M
∣
∣w(s) – w̄(s)

∣
∣

]

≤ Kf

1 – Lf

(x – xk)β

�(β + 1)
‖w – w̄‖ds + σ1

Kf

1 – Lf

(η – xk)β

�(β + 1)
‖w – w̄‖ds

+ σ2
Kf

1 – Lf

(ζ – xk)β

�(β + 1)
‖w – w̄‖ds + σ2|d| Kf

1 – Lf

(1 – xk)β–1

�(β)
‖w – w̄‖ds

+ σ3p|d|
[

Kf

1 – Lf

(xi – xi–1)β–1

�(β)
‖w – w̄‖ds + M‖w – w̄‖

]

+ σ4p
[

Kf

1 – Lf

(xi – xi–1)β–1

�(β)
‖w – w̄‖ds + M‖w – w̄‖

]

≤
[

Kf

1 – Lf

1
�(β + 1)

+ σ1
Kf

1 – Lf

1
�(β + 1)

+ σ2
Kf

1 – Lf

1
�(β + 1)

+ σ2|d| Kf

1 – Lf

1
�(β)

+ σ3p|d|
(

Kf

1 – Lf

1
�(β)

+ M
)

+ σ4p
(

Kf

1 – Lf

1
�(β)

+ M
)]

‖w – w̄‖.

Hence, we have

‖Tw – Tw̄‖

≤
[

Kf

1 – Lf

(
σ1 + σ2 + 1
�(β + 1)

+
(σ2 + σ3p)|d| + σ4p

�(β)

)

+
(
σ3|d| + σ4

)
pM

]

‖w – w̄‖.
(13)
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From (12), the operator T is a contraction. Therefore, according to Banach’s contraction
principle, T has a unique fixed point that is the unique solution of problem (1). �

Our subsequent result is constructed on the Schaefer fixed-point theorem, consequently
the following assumptions hold true:

(A4) There exist a, b, c ∈ PC(J ,R), with

a∗ = sup
x∈[0,1]

a(x), b∗ = sup
x∈[0,1]

b(x)

and

c∗ = sup
x∈[0,1]

∣
∣c(x)

∣
∣ < 1

such that

∣
∣f (x, w, zw)

∣
∣ ≤ a(x) + b(x)

∣
∣w(x)

∣
∣ + c(x)

∣
∣zw(x)

∣
∣,

for x ∈ J , w, zw ∈ PC(J ,R).
(A5) The function Īk : PC(J ,R) →R is continuous and there exist constants A∗, B∗ > 0,

such that |Īkw(x)| ≤ A∗|w(x)| + B∗ for every w ∈ PC(J ,R), k = 1, . . . , p.

Theorem 3.2 If the hypotheses (A1), (A2), (A4), and (A5) hold, then the problem (1) has at
least one solution.

Proof We will use Schaefer’s theorem to establish our main result. The required proof
consists of the following steps.

Step 1. T is continuous.
Let {wn} be a sequence such that wn → w on PC(J ,R). For x ∈ J , one has

∣
∣Twn(x) – Tw(x)

∣
∣ ≤

∫ x

xk

(x – s)β–1

�(β)
∣
∣z(n)

w (s) – zw(s)
∣
∣ds (14)

+
∣
∣
∣
∣

c(d + ζ – x)
[1 – c(d + ζ – η)]

∣
∣
∣
∣

∫ η

xk

(η – s)β–1

�(β)
∣
∣z(n)

w (s) – zw(s)
∣
∣ds

+
∣
∣
∣
∣

1 + c(η – x)
[1 – c(d + ζ – η)]

∣
∣
∣
∣

[∫ ζ

xk

(ζ – s)β–1

�(β)
∣
∣z(n)

w (s) – zw(s)
∣
∣ds

+ |d|
∫ 1

xp

(1 – s)β–2

�(β – 1)
∣
∣z(n)

w (s) – zw(s)
∣
∣ds

]

+
∣
∣
∣
∣
1 – c(d + ζ + x – η)
[1 – c(d + ζ – η)]

∣
∣
∣
∣

p∑

i=1

|d|
(∫ xi

xi–1

(xi – s)β–2

�(β – 1)
∣
∣z(n)

w (s) – zw(s)
∣
∣ds

+
∣
∣Īi

(
wn

(
x–

i
))

– Īi
(
w

(
x–

i
))∣

∣

)

+
k∑

i=1

∣
∣
∣
∣

(
x(1 – cd) + cdη – ζ

[1 – c(d + ζ – η)]

)∣
∣
∣
∣

(∫ xi

xi–1

(xi – s)β–2

�(β – 1)
∣
∣z(n)

w (s) – zw(s)
∣
∣ds
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+
∣
∣Īi

(
xn

(
x–

i
))

– Īi
(
w

(
x–

i
))∣

∣

)

,

where z(n)
w (x), zw(x)) ∈ PC(J ,R) are given by

z(n)
w (x) = f

(
x, wn(x), z(n)

w (x)
)
.

Now, from assumption (A2), we have

∣
∣z(n)

w (x) – zw(x)
∣
∣ =

∣
∣f

(
x, wn(x), z(n)

w (x)
)

– f (x, w(x), zw(x)
∣
∣

≤ Kf ‖wn – w‖ + Lf
∣
∣z(n)

w (x) – zw(x)
∣
∣.

Repeating this process, |z(n)
w (x) – zw(x)| ≤ Kf

1–Lf
‖wn – w‖, since wn → w, z(n)

w (x) → zw(x) as
n tends to ∞ for each x ∈ J . Since the sequence is convergent and bounded, then there is
ξ > 0 such that for each x ∈ J , we have |z(n)

w (x)| ≤ ξ and |zw(x)| ≤ ξ . Then,

(x – s)β–1∣∣z(n)
w (x) – zw(x)

∣
∣ ≤ (x – s)β–1[∣∣z(n)

w (x)
∣
∣ +

∣
∣zw(x)

∣
∣
] ≤ 2ξ (x – s)β–1

and

(xk – s)β–1∣∣z(n)
w (x) – zw(x)

∣
∣ ≤ (xk – s)β–1[∣∣z(n)

w (x)
∣
∣ +

∣
∣zw(x)

∣
∣
] ≤ 2ξ (xk – s)β–1,

for every x ∈ J the functions s → 2ξ (x – s)β–1 and s → 2ξ (tk – s)β–1 are integrable on [0, 1].
Using these facts and the Lebesgue dominated convergence theorem in (14) and using the
assumptions (A4) and (A5), we see that

∣
∣Twn(x) – Tw(x)

∣
∣ → 0 as n tends to ∞,

and hence

‖Twn – Tw‖ → 0, n tends to ∞.

Therefore, an operator T is continuous.
Step 2. The operator T sends bounded sets into bounded sets of PC(J ,R). We prove

that for any η∗ > 0 there exists a positive constant R∗, such that for every w ∈ B = {w ∈
PC(J ,R),‖w‖ ≤ η∗}, we have ‖Tw‖ ≤ R∗. To derive this result for each x ∈ J , we have

∣
∣Tw(x)

∣
∣ ≤

∫ x

xk

(x – s)β–1

�(β)
∣
∣zw(s)

∣
∣ds (15)

+
∣
∣
∣
∣

c(d + ζ – x)
[1 – c(d + ζ – η)]

∣
∣
∣
∣

∫ η

xk

(η – s)β–1

�(β)
∣
∣zw(s)

∣
∣ds

+
∣
∣
∣
∣

1 + c(η – x)
[1 – c(d + ζ – η)]

∣
∣
∣
∣

[∫ ζ

xk

(ζ – s)β–1

�(β)
∣
∣zw(s)

∣
∣ds

+ |d|
∫ 1

xp

(1 – s)β–2

�(β – 1)
∣
∣zw(s)

∣
∣ds

]



Shah et al. Boundary Value Problems          (2023) 2023:1 Page 11 of 17

+
∣
∣
∣
∣
1 – c(d + ζ + x – η)
[1 – c(d + ζ – η)]

∣
∣
∣
∣

p∑

i=1

|d|
(∫ xi

xi–1

(xi – s)β–2

�(β – 1)
∣
∣zw(s)

∣
∣ds

+
∣
∣Īi

(
w

(
x–

i
))∣

∣

)

+
k∑

i=1

∣
∣
∣
∣

(
x(1 – cd) + cdη – ζ

[1 – c(d + ζ – η)]

)∣
∣
∣
∣

(∫ xi

xi–1

(xi – s)β–2

�(β – 1)
∣
∣zw(s)

∣
∣ds

+
∣
∣Īi

(
w

(
t–
i
))∣

∣

)

.

From (A4), for every x ∈ J , we have

∣
∣zw(x)

∣
∣ =

∣
∣f

(
x, w(x), zw(x)

)∣
∣

≤ a(x) + b(x)
∣
∣w(x)

∣
∣ + c(x)

∣
∣zw(x)

∣
∣

≤ a(x) + b(x)‖w‖ + c(x)
∣
∣zw(x)

∣
∣

≤ a(x) + b(x)η∗ + c(x)
∣
∣zw(x)

∣
∣

≤ a∗ + b∗η∗ + c∗∣∣zw(x)
∣
∣.

Then,

∣
∣zw(x)

∣
∣ ≤ a∗ + b∗η∗

1 – c∗ := M∗. (16)

Thus, (15) implies

∣
∣Tw(x)

∣
∣ ≤ M∗

�(β + 1)
+

σ1M∗

�(β + 1)
+

σ2M∗

�(β + 1)
+

σ2|d|M∗

�(β)

+
σ3p|d|M∗

�(β)
+ σ3|d|(A∗η∗ + B∗) +

pσ4M∗

�(β)
+ pσ4

(
A∗η∗ + B∗).

Hence, one has

‖Tw‖ ≤ M∗(1 + σ1 + σ2)
�(β + 1)

+
|d|M∗(σ2 + σ3p) + σ4pM∗

�(β)
+

(
σ3|d| + σ4p

)(
A∗η∗ + B∗)

:= R∗,

‖Tw‖ ≤ R∗.

Therefore, T is bounded.
Step 3. T assigns bounded sets to equicontinuous sets of PC(J ,R). Let x1, x2 ∈ J , x1 <

x2, and B be a bounded set as in Step 2, and suppose w ∈ B, then

∣
∣Tw(x2) – Tw(x1)

∣
∣ ≤

∣
∣
∣
∣

∫ x2

xk

(x2 – s)β–1

�(β)
zw(s) ds –

∫ x1

xk

(x1 – s)β–1

�(β)
zw(s) ds

∣
∣
∣
∣

+
∣
∣
∣
∣
(c(d + ζ – x2)) – (c(d + ζ – x1))

[1 – c(d + ζ – η)]

∣
∣
∣
∣

∫ η

xk

(η – s)β–1

�(β)
∣
∣zw(s)

∣
∣ds

+
∣
∣
∣
∣
(1 + c(η – x1)) – (1 + c(η – x2))

[1 – c(d + ζ – η)]

∣
∣
∣
∣

[∫ ζ

xk

(ζ – s)β–1

�(β)
∣
∣zw(s)

∣
∣ds
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+ |d|
∫ 1

xp

(1 – s)β–2

�(β – 1)
∣
∣zw(s)

∣
∣ds

]

+
∣
∣
∣
∣
(1 – c(d + ζ + x1 – η)) – (1 – c(d + ζ + x2 – η))

[1 – c(d + ζ – η)]

∣
∣
∣
∣ (17)

×
( p∑

i=1

|d|
(∫ xi

xi–1

(xi – s)β–2

�(β – 1)
∣
∣zw(s)

∣
∣ds +

∣
∣Īi

(
w

(
x–

i
))∣

∣

))

+
k∑

i=1

∣
∣
∣
∣

(
(x2(1 – cd) + cdη – ζ ) – (x1(1 – cd) + cdη – ζ )

[1 – c(d + ζ – η)]

)∣
∣
∣
∣

×
(∫ xi

xi–1

(xi – s)β–2

�(β – 1)
∣
∣zw(s)

∣
∣ds +

∣
∣Īi

(
w

(
x–

i
))∣

∣

)

.

Using (16) in (17), we obtain

∣
∣Tw(x2) – Tw(x1)

∣
∣

≤
[

M∗

�(β + 1)

]
(
(x2 – xk)β – (x1 – xk)β

)
+

[
cM∗(η – xk)β

[1 – c(d + ζ – η)]�(β + 1)

]

(x2 – x1)

+
[

cM∗[(ζ – xk)β + d(1 – xp)β ]
�(β + 1)

]

(x2 – x1) +
[

cM∗(η – xk)β

�(β + 1)

]

(x2 – x1)

+
1

1 – c(d + ζ – η)

[
M∗cd

∑p
i=1(xi – xi–1)β

�(β – 1)
+ c

(
A∗η∗ + B∗)

]

(x2 – x1)

+
(1 – cd)

1 – c(d + ζ – η)

[
M∗ ∑k

i=1(xi – xi–1)β–1

�(β – 1)
+ A∗η∗ + B∗

]

(x2 – x1). (18)

Similarly, we can see that the right-hand side of the inequality (18) tends to 0 when x1 →
x2. Thus, |Tw(x2) – Tw(x1)| → 0 as x1 → x2. As, T is bounded,

∥
∥Tw(x2) – Tw(x1)

∥
∥ → 0 as x1 → x2.

Hence, T is uniformly continuous and is relatively compact. Thus, in view of the Arzelà–
Ascoli theorem, the operator T : PC(J ,R) → PC(J ,R) is completely continuous.

Step 4. Finally, we will show that the set E = {w ∈ PC(J ,R) : w = φT(w), for some 0 <
φ < 1} is bounded. Suppose that w ∈ E; then w = φT(w) for some 0 < φ < 1. Therefore, for
each x ∈ J , we have

∣
∣w(x)

∣
∣ =

∣
∣φT

(
w(x)

)∣
∣

=

∣
∣
∣
∣
∣
φ

∫ x

xk

(x – s)β–1

�(β)
zw(s) ds + φ

(
c(d + ζ – x)

[1 – c(d + ζ – η)]

)∫ η

xk

(η – s)β–1

�(β)
zw(s) ds

– φ

(
1 + c(η – x)

[1 – c(d + ζ – η)]

)[∫ ζ

xk

(ζ – s)β–1

�(β)
zw(s) ds + d

∫ 1

xp

(1 – s)β–2

�(β – 1)
zw(s) ds

]

– φ

(
1 – c(d + ζ + x – η)
[1 – c(d + ζ – η)]

) p∑

i=1

d
(∫ xi

xi–1

(xi – s)β–2

�(β – 1)
zw(s) ds + Īi

(
w

(
x–

i
))

)

+
k∑

i=1

φ

(
x(1 – cd) + cdη – ζ

[1 – c(d + ζ – η)]

)(∫ xi

xi–1

(xi – s)β–2

�(β – 1)
zw(s) ds + Īi

(
w

(
x–

i
))

)∣
∣
∣
∣
∣
. (19)
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Now, using assumptions (A4), (A5), and (16), we have

‖w‖ ≤ M∗(1 + σ1 + σ2)
�(β + 1)

+
|d|M∗(σ2 + σ3p) + σ4pM∗

�(β)
+

(
σ3|d| + σ4p

)(
A∗η∗ + B∗) := Z∗,

‖w‖ ≤ Z∗.

Consequently, set E is bounded. From Schaefer’s theorem, we conclude that an operator
T has a fixed point and hence the resultant problem (1) has at least one solution. �

4 Examples
We verify our results by considering the following examples.

Example 1 Let us consider the four-point impulsive nonlinear FODEs as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

C
0 Dβ

x1 w(x) = sin(|w(x)|)+sin(|C0 Dβ
x1 w(x)|)

60+ex , 1 < β ≤ 2, x1 = 1
3 , x1 
= x ∈ [0, 1],

�w( 1
3 ) = I1(w( 1

3 )) = cos(|w( 1
3 )|)

10 ,

�w′( 1
3 ) = Ī1(w( 1

3 )) = e–|w( 1
3 )|

10 ,

w′(0) + cw( 1
2 ) = 0, dw′(1) + w( 1

3 ) = 0,

(20)

where β = 3
2 , c = 1, d = 2, p = 1, zw(x) = C

0 Dβ
x1 w(x). Now, set

f (x, w, zw) =
sin(|w(x)|) + sin(|zw(x)|)

60 + ex , w, zw ∈ PC(J,R), and x ∈ [0, 1].

Obviously, the function f is a jointly continuous function.
Hence, for each w, w̄, zw, z̄w ∈ PC(J ,R), we have

∣
∣f (x, w, zw) – f (x, w̄, z̄w)

∣
∣ =

∣
∣
∣
∣
sin(|w(x)|) + sin(|zw(x)|)

60 + ex –
sin(|w̄(x)|) + sin(|z̄w(x)|)

60 + ex

∣
∣
∣
∣

=
∣
∣
∣
∣
sin(|w(x)|) – sin(|w̄(x)|) + sin(|zw(x)|) – sin(|z̄w(x)|)

60 + ex

∣
∣
∣
∣

≤
∣
∣
∣
∣
sin |(w(x)|) – sin(|w̄(x)|)

60 + ex

∣
∣
∣
∣ +

∣
∣
∣
∣
sin(|zw(x)|) – sin(|z̄w(x)|)

60 + ex

∣
∣
∣
∣,

∣
∣f (x, w, zw) – f (x, w̄, z̄w)

∣
∣ ≤ 1

60
(|w – w̄| + |zw – z̄w|),

which satisfies condition (A2) with Kf = Lf = 1
60 . Now, set

�w′
(

1
3

)

= Ī1

(

w
(

1
3

))

=
e–|w( 1

3 )|

10
, w ∈ PC(J,R).

Suppose that w, w̄ ∈ PC(J ,R), we have

∣
∣
∣
∣Ī1

(

w
(

1
3

))

– Ī1

(

w̄
(

1
3

))∣
∣
∣
∣ =

∣
∣
∣
∣
e–|w( 1

3 |)

10
–

e–|w̄( 1
3 )|

10

∣
∣
∣
∣

≤ 1
10

|w – w̄|.
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Hence, with M = 1
10 , the condition (A3) satisfies. Also, the condition

[
Kf

1 – Lf

(
σ1 + σ2 + 1
�(β + 1)

+
(σ2 + σ3p)|d| + σ4p

�(β)

)

+
(
σ3|d| + σ4

)
pM

]

=
1

59

(
56

10�(β + 1)
+

7
�(β)

)

+
52

100
< 1

satisfies with σ1 = 2 · 8, σ2 = 1 · 8, σ3 = 2 · 2, σ4 = 0 · 8, and β = 3
2 .

Thanks to theorem 3.1, problem (20) has at most one solution.

Example 2 Take another problem as

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

C
0 Dβ

x1 w(x) =
e–x√|w(x)|+

√

|C0 Dβ
x1 w(x)|

30+x , 1 < β ≤ 2, x1 
= x ∈ [0, 1], x1 = 1
2 ,

�w( 1
2 ) = I1(w( 1

2 )) = sin(|w( 1
2 )|)

20+sin(|w( 1
2 )|) ,

�w′( 1
2 ) = Ī1(w( 1

2 )) = cos(|w( 1
2 )|)

40+cos(|w( 1
2 )|) ,

w′(0) + cw( 2
3 ) = 0, dw′(1) + w( 5

6 ) = 0,

(21)

where c = 1, d = 2, β = 3
2 and zw(x) = C

0 Dβ
x1 w(x). Set

f (x, w, zw) =
e–x

√|w(x)| +
√|zw(x)|

30 + x
, w, zw ∈ PC(J ,R).

It is clear that the mentioned function f is a continuous function.
Also, for every w, w̄, zw, z̄w ∈ PC(J ,R), we have

∣
∣f (x, w, zw) – f (x, w̄, z̄w)

∣
∣ =

∣
∣
∣
∣
e–x

√|w(x)| +
√|z(x)|

30 + x
–

e–x
√|w̄(x)| +

√|z̄(x)|
30 + x

∣
∣
∣
∣

=
∣
∣
∣
∣
e–x

√|w(x)| – e–x
√|w̄(x)| +

√|zw(x)| –
√|z̄w(x)|

30 + x

∣
∣
∣
∣

≤
∣
∣
∣
∣
e–x(

√|w(x)| –
√|w̄(x)|)

30 + x

∣
∣
∣
∣ +

∣
∣
∣
∣

√|zw(x)| –
√|z̄w(x)|

30 + x

∣
∣
∣
∣,

∣
∣f (x, w, zw) – f (x, w̄, z̄w)

∣
∣ ≤ 1

30
(|w – w̄| + |zw – z̄w|),

which satisfies the condition (A2) with Kf = Lf = 1
30 . Now, set

�w′
(

1
2

)

= Ī1

(

w
(

1
2

))

=
cos(|w( 1

2 )|)
40 + cos(|w( 1

2 )|) , w ∈ PC(J,R).

Then, for each w, w̄ ∈ PC(J ,R), we have

∣
∣
∣
∣Ī1

(

w
(

1
2

))

– Ī1

(

w̄
(

1
2

))∣
∣
∣
∣ =

∣
∣
∣
∣

cos(|w( 1
2 )|)

40 + cos(|w( 1
2 )|) –

cos(|w̄( 1
2 )|)

40 + cos(|w̄( 1
2 )|)

∣
∣
∣
∣

≤ 1
40

|w – w̄|.
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Hence, with M = 1
40 , the condition (A3) is clearly satisfied. Also,

∣
∣f (x, w, zw)

∣
∣ =

∣
∣
∣
∣
e–x

√|w(x)| +
√|zw(x)|

30 + x

∣
∣
∣
∣

≤ e–x

30 + x
∣
∣w(x)

∣
∣ +

1
30 + x

∣
∣zw(x)

∣
∣.

Thus, condition (A4) is satisfied with a(x) = 0, b(x) = e–x

30+x , and c(x) = 1
30+x . Let

�w′
(

1
2

)

= Ī1

(

w
(

1
2

))

=
cos(|w( 1

2 )|)
40 + cos(|w( 1

2 )|) , w ∈ PC(J ,R).

Then, for every w ∈ PC(J ,R), we have

∣
∣
∣
∣Ī1

(

w
(

1
2

))∣
∣
∣
∣ =

∣
∣
∣
∣

cos(|w( 1
2 )|)

40 + cos(|w( 1
2 )|)

∣
∣
∣
∣

≤ 1
40

|w| + 1.

Therefore, condition (A5) is satisfied by A∗ = 1
40 and B∗ = 1. By using Theorem 3.2 problem

(21) has at least one solution on J .

5 Concluding remarks
We have obtained some appropriate results corresponding to the existence theory for
nonlinear implicit impulsive FODEs with nonlocal four-point boundary conditions. The
concerned problem has been investigated under a Caputo-type fractional-order deriva-
tive. The considered class is devoted to implicit-type FODEs under impulsive conditions.
Implicit-type problems of FODEs have numerous applications in economics, optimiza-
tion, etc. By the classical fixed-point theory, the respective results have been established.
By proper examples, we have demonstrated the obtained analysis.
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