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Abstract
In this article, we present an iterative transformation method for solving fractional
partial differential equations that combines the Elzaki transform and iterative
methods. By this iterative transformation method, numerical solutions in the form of
series are obtained. When we apply this method to the fractional linear Klein–Gordon
equation, we find that it yields the same results, just like the Homotopy perturbation
method. The procedures and results of this method for solving the new generalized
fractional Hirota–Satsuma coupled KdV equation are given in the paper.
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0 Introduction
In recent decades, fractional-order partial differential equations have been widely used
and developed in physics, engineering, and fluid mechanics. Compared with integer-order
partial differential equations, they are more suitable to portray complex phenomena and
processes. Therefore, the method to solve fractional partial differential equations is also a
relatively important problem. Now, there are methods to solve fractional-order partial dif-
ferential equations. For example, in [1], the finite-difference methods, the Galerkin finite-
element methods, and the spectral methods to solve fractional-order partial differential
equations are mentioned; Gepreel uses the Homotopy perturbation method to obtain the
solution of the fractional Klein–Gordon equation in [2]; Khalid used the Elzaki transform
method to solve the equations [3]; in [4], Ziane used the fractional Elzaki variational it-
eration method to solve the equations; Jafari introduced the Iterative Laplace transform
method in [5–7]; Tarig used the Sumudutrans form of the variational iteration method to
solve linear homogeneous partial differential equations; Thabet [8] introduced a new an-
alytic method to solve partial differential equations with fractional order, and El-Rashidy
[9] used the method to obtain new traveling-wave solutions of the equations. Hosseini
[10] used the modified Kudryashov method to obtain exact solutions of the coupled sine-
Gordon equations. Mohammad Tamsir [11] employed a semianalytical approach to obtain
the approximate analytical solution of the Klein–Gordon equations; The Klein–Gordon
equation [12, 13] is a crucial equation in the study of relativistic quantum mechanics.

Many authors have solved the generalized Hirota–Satsuma coupled KdV equation uti-
lizing various equations in [14–17], including the homotopy analysis approach [18]. This
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is a significant class of equations in mathematics and physics. In this study, we employ
the Elzaki transform [19, 20] in conjunction with an iterative approach [21] to generate
approximations to partial differential equations with fractional order. The results demon-
strate the method’s validity, further, it also may be applied to other fractional-order partial
differential equations.

1 Basic definition
Definition 1 The fractional Riemann–Liouville of operator Dp is as follows

Dpw(x) =

⎧
⎨

⎩

∂mw(x)
∂xm , p = m,

∂
�(m–p)∂xm

∫ x
0

w(x)
(x–ξ )p–m+1 dξ , m – 1 < p < m,

(1)

where m ∈ Z+, p ∈ R+ when 0 < p ≤ 1,

Dpw(x) =
1

�(p)

∫ x

0

w(x)
(x – ξ )1–p dξ .

Definition 2 The Riemann–Liouville integral operator with fractional order is defined as
follows

Ipw(x) =
1

�(p)

∫ x

0
(x – ξ )p–1w(ξ ) dξ , p > 0, ξ > 0. (2)

Definition 3 The Caputo fractional derivative of w(x) is defined as follows, m ∈ N

cDpw(x) =

⎧
⎨

⎩

Im–p[ ∂mw(x)
∂xm ], m – 1 < p < m,

∂mw(x)
∂xm , p = m.

(3)

Definition 4 The Elzaki [22, 23] transform of w(x) is defined as follows

E
[
w(x)

]
= T(v) = v

∫ ∞

0
w(x)e

–x
v dx, x ≥ 0, k1 ≤ v ≤ k2. (4)

Definition 5 The fractional Caputo operator of the Elzaki transform is [24]

E
[
Dα

x w(x)
]

= v–αE
[
w(x)

]
–

m–1∑

k=0

v2–α+kw(k)(0), where m – 1 < α < m. (5)

2 Methodology of the Elzaki transform iterative method
To briefly describe this equation in detail, we consider the following fractional partial dif-
ferential equations

∂αw(x, t)
∂tα

= M
(
w1(x, t), w2(x, t), . . . , wn(x, t)

)
+ N

(
w1(x, t), w2(x, t), . . . , wn(x, t)

)
, (6)

where M and N are the nonlinear and linear operators from Banach space B → B, respec-
tively, α ∈ R+, m – 1 < α ≤ m, m = 0, 1, . . . , n,
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subject to the initial condition

∂kw(x, 0)
∂tk = wk(x, 0), k = 0, 1, . . . , m – 1, m ∈ N . (7)

Then, the Ezaki transformation acts simultaneously on both sides of the equation, and
we obtain

E
[

∂kw(x, 0)
∂tk

]

= E
[
M

(
w1(x, t), w2(x, t), . . . , wn(x, t)

)

+ N
(
w1(x, t), w2(x, t), . . . , wn(x, t)

)]
, (8)

hence,

v–kE
[
w(x, t)

]
–

m–1∑

n=0

v2–k+nw(n)(x, 0) = E
[
M

(
w1(x, t), w2(x, t), . . . , wn(x, t)

)

+ N
(
w1(x, t), w2(x, t), . . . , wn(x, t)

)]
. (9)

Through the use of the inverse Elzaki transform, we obtain

w(x, t) = E–1

[m–1∑

n=0

v2+nw(n)(x, 0)

]

+ E–1[vkE
[
M

(
w1(x, t), w2(x, t), . . . , wn(x, t)

)

+ N
(
w1(x, t), w2(x, t), . . . , wn(x, t)

)]]
. (10)

The following iterative method is utilized

w(x, t) =
∞∑

i=1

wi(x, t). (11)

The nonlinear operator M can be decomposed into

M
(
w1(x, t), w2(x, t), . . . , wn(x, t)

)

= M
(
w10(x, t), w20(x, t), . . . , wn0(x, t)

)

+
∞∑

m=0

[

M

( m∑

i=0

w1i(x, t),
m∑

i=0

w2i(x, t), . . . ,
m∑

i=0

wni(x, t)

)

– M

(m–1∑

i=0

w1i(x, t),
m–1∑

i=0

w2i(x, t), . . . ,
m–1∑

i=0

wni(x, t)

)]

. (12)

Then, we can obtain

∞∑

i=0

wi(x, t) = E–1

[m–1∑

n=0

v2+nw(n)(x, 0)

]

+ E–1vk[E
[
M

(
w10(x, t), w20(x, t), . . . , wn0(x, t)

)

+ N
(
w10(x, t), w20(x, t), . . . , wn0(x, t)

)]]
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+ E–1

[

vkE

[ ∞∑

m=0

[

M

( m∑

i=0

w1i(x, t),
m∑

i=0

w2i(x, t), . . . ,
m∑

i=0

wni(x, t)

)

– M

(m–1∑

i=0

w1i(x, t),
m–1∑

i=0

w2i(x, t), . . . ,
m–1∑

i=0

wni(x, t)

)]]]

+ E–1

[

vkE

[ ∞∑

m=0

[

N

( m∑

i=0

w1i(x, t),
m∑

i=0

w2i(x, t), . . . ,
m∑

i=0

wni(x, t)

)

– N

(m–1∑

i=0

w1i(x, t),
m–1∑

i=0

w2i(x, t), . . . ,
m–1∑

i=0

wni(x, t)

)]]]

. (13)

We make the following settings

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w0 = E–1[
∑m–1

n=0 v2+nw(n)(x, 0)],

w1 = E–1vk[E[M(w10(x, t), w20(x, t), . . . , wn0(x, t))

+ N(w10(x, t), w20(x, t), . . . , wn0(x, t))]],

wi = E–1[vkE[
∑∞

i=0[M(
∑m

i=0 w1i(x, t),
∑m

i=0 w2i(x, t), . . . ,
∑m

i=0 wni(x, t))

– M(
∑m–1

i=0 w1i(x, t),
∑m–1

i=0 w2i(x, t), . . . ,
∑m–1

i=0 wni(x, t))]]]

+ E–1[vkE[
∑∞

i=0[N(
∑m

i=0 w1i(x, t),
∑m

i=0 w2i(x, t), . . . ,
∑m

i=0 wni(x, t))

– N(
∑m–1

i=0 w1i(x, t),
∑m–1

i=0 w2i(x, t), . . . ,
∑m–1

i=0 wni(x, t))]]].

(14)

Finally, we obtain the approximate solution of the fractional-order partial differential
equation

w(x, t) ∼= w0(x, t) + w1(x, t) + · · · + wm(x, t), m = 1, 2, . . . . (15)

Theorem B is the Banach space, if there exists 0 < K < 1, ‖wn‖ ≤ K‖wn–1‖, for ∀x ∈ N ,
then the approximate solution w(x, t) converges to A.

Proof Define the sequence Ai, i = 0, 1, . . . , n

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

A0 = w0,

A1 = w0 + w1,

A2 = w0 + w1 + w2,

. . . ,

An = w0 + w1 + · · · + wn

(16)

and prove that (Ai)i≥0 is a Cauchy sequence, and we consider

‖An – An–1‖ ≤ ‖wn‖ ≤ Knw0 (17)
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for m > n > 0 ∈ N , we have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

‖An – Am‖ = ‖An – An–1 + An–1 – An–2 + · · · + Am+1 – Am‖
≤ ‖An – An–1‖ + ‖An–1 – An–2‖ + · · · + ‖Am+1 – Am‖
≤ (Kn + Kn–1 + · · · + Km+1)A0

≤ ‖Km+1(1–Kn–m)
1–K ‖A0,

(18)

where w0 is bounded, and we have

lim
n,m→∞‖An – Am‖ = 0. (19)

Therefore, the sequence (Ai)i≥0 is a Cauchy sequence in B, so the solution of Eq. (6) is
convergent.

The error estimates are as follows:

sup

∣
∣
∣
∣
∣
w(x, t) –

m∑

i=0

wi(x, t)

∣
∣
∣
∣
∣
≤ Km+1

1 – K
sup

∣
∣w0(x, t)

∣
∣. (20)

�

Remark Similar proofs can be found in [8].

3 Test example
Example 1 Consider the linear fractional Klein–Gordon equation [25]

∂αu
∂tα

–
∂2u
∂x2 – u = 0, 0 < α ≤ 1 (21)

subject to the initial condition:

u(x, 0) = 1 + sin x. (22)

The Elzaki transform of the linear fractional Klein–Gordon equation [26] is

v–αE
[
u(x, t)

]
= v2–αu(x, 0) + E

[
∂2u(x, t)

∂x2 + u(x, t)
]

. (23)

Using the inverse Elzaki transform of the above equation, we obtain

u(x, t) = E–1[v2u(x, 0)
]

+ E–1
[

vαE
[
∂2u(x, t)

∂x2 + u(x, t)
]]

, (24)

then, we use the iterative method above, and we have

u0(x, t) = E–1[v2(1 + sin x)
]
, (25)

u0(x, t) = 1 + sin x, (26)

u1(x, t) = E–1
[

vαE
[
∂2u0(x, t)

∂x2 + u0(x, t)
]]

, (27)



He and Zhang Boundary Value Problems          (2023) 2023:6 Page 6 of 13

u1(x, t) =
tα

�(1 + α)
, (28)

u2(x, t) = vαE
[

∂2u1(x, t) + u0(x, t)
∂x2 + u1(x, t) + u0(x, t)

]

– vαE
[

∂2u0(x, t)
∂x2 + u0(x, t)

]

, (29)

u2(x, t) =
t2α

�(2α + 1)
, (30)

u3(x, t) = vαE
[

∂2(u2(x, t) + u1(x, t) + u0(x, t))
∂x2 + u2(x, t) + u1(x, t) + u0(x, t)

]

– vαE
[

∂2(u1(x, t) + u0(x, t))
∂x2 + u1(x, t) + u0(x, t)

]

(31)

u3(x, t) =
t3α

�(3α + 1)
, (32)

. . .

un(x, t) =
tnα

�(nα + 1)
. (33)

The result is

u(x, t) = 1 + sin x +
tα

�(1 + α)
+

t2α

�(1 + 2α)
+

t3α

�(1 + 3α)
+ · · · +

tnα

�(1 + nα)
+ · · · . (34)

When α = 1, the exact solution of the linear fractional Klein–Gordon equation is as fol-
lows:

u(x, t) = et + sin x. (35)

In Fig. 1, the approximate solution of u is depicted for the case where the value of α is 0.01,
0.002, and 0.1.

Example 2 Consider the new generalized fractional Hirota–Satsuma coupled KdV equa-
tion

∂αu
∂tα

=
1
2

uxxx – 3uux + 3(vw)x,

∂αv
∂tα

= –vxxx + 3uvx, 0 < α ≤ 1,

∂αw
∂tα

= –wxxx + 3uwx

(36)

subject to the initial condition

u(x, 0) =
1
3
(
β – 2k2) + 2k2 tanh2(kx),

v(x, 0) = –
4k2c0(β + k2)

3c2
1

+
4k2(β + k2)

3c1
tanh(kx),

w(x, 0) = c0 + c1 tanh(kx).

(37)
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Figure 1 Graph of u(x, t) at α = 0.01, 0.02, and 0.1 of Example 1

When α = 1, the exact results of the new generalized Hirota–Satsuma coupled KdV
equation is as follows:

u(x, t) =
1
3
(
β – 2k2) + 2k2 tanh2(k(x + βt)

)
,

v(x, t) = –
4k2c0(β + k2)

3c2
1

+
4k2(β + k2)

3c1
tanh

(
k(x + βt)

)
,

w(x, t) = c0 + c1 tanh
(
k(x + βt)

)
.

(38)

The Elzaki transform of the new generalized fractional Hirota–Satsuma coupled KdV
equation is

v–αE
[
u(x, t)

]
= v2–αu(x, 0) + E

[
1
2

uxxx – 3uux + 3(vw)x

]

,

v–αE
[
v(x, t)

]
= v2–αv(x, 0) + E[–vxxx + 3uvx],

v–αE
[
w(x, t)

]
= v2–αw(x, 0) + E[–wxxx + 3uwx].

(39)

Using the inverse Elzaki transform, we obtain

u(x, t) = E–1[v2u(x, 0)
]

+ E–1
[

vαE
[

1
2

uxxx – 3uux + 3(vw)x

]]

,

v(x, t) = E–1[v2v(x, 0)
]

+ E–1[vαE[–vxxx + 3uvx]
]
,

w(x, t) = E–1[v2w(x, 0)
]

+ E–1[vαE[–wxxx + 3uwx]
]
.

(40)

Next, in terms of the iterative method above, we have

u0(x, t) = E–1[v2u(x, 0)
]
,
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v0(x, t) = E–1[v2u(x, 0)
]
, (41)

w0(x, t) = E–1[v2u(x, 0)
]
,

u0(x, t) =
1
3
(
β – 2k2) + 2k2 tanh2(kx),

v0(x, t) = –
4k2c0(β + k2)

3c2
1

+
4k2(β + k2)

3c1
tanh(kx), (42)

w0(x, t) = c0 + c1 tanh(kx),

u1(x, t) = E–1
[

vαE
[

1
2

u0xxx – 3u0u0x + 3(v0w0)x

]]

,

v1(x, t) = E–1[vαE[–v0xxx + 3u0v0x]
]
, (43)

w1(x, t) = E–1[vαE[–w0xxx + 3u0w0x]
]
,

u1(x.t) = 4k3β sech2(kx) tanh(kx)
ttα

�(1 + α)
,

v1(x, t) = 4k3β
(
β + k2) sech2(kx)

tα

�(1 + α)
, (44)

w1(x, t) = c1kβ sech2(kx)
tα

�(1 + α)
,

u2(x, t) = E–1
[

vαE
[

1
2

(u0 + u1)xxx – 3u0(u0 + u1)x + 3
(
(v0 + v1)(w0 + w1)

)

x

]]

,

v2(x, t) = E–1[vαE
[
–(v0 + v1)xxx + 3(u0 + u1)(v0 + v1)x

]]
, (45)

w2(x, t) = E–1[vαE
[
–(w0 + w1)xxx + 3(u0 + u1)(w0 + w1)x

]]
,

u2(x, t) =
[
96k7β sech4(kx) tanh(kx) – 144k7β2 tanh(kx) sech6(kx)

– 16c1k7β2 sech4(kx) tanh(kx) – 16c1k5β3 sech4(kx) tanh(kx)
]

× �(2α + 1)t3α

�(3α + 1)�(1 + α)�(1 + α)

+
[

–48k6β sech4(kx) +
(

c0

3c1
– 8c0

)

k6β tanh(kx) sech2(kx)

+ (12c1 + 72)k6 sech4(kx) +
(

–116
3

+ 8C1

)

k6β sech6(kx)

+ 8β2k4 sech4(kx)(c1 – 1)

+ 8
(

c0k4β2

3c1 +
k2βc1

3
– c0k4β2

)

sech2(kx) tanh(kx)

– 8 sech2(kx)
(

4k4β2 + β2

3
+ β2k4c1

)]

× t2α

�(1 + 2α)
+

[
68
3

k5 tanh(kx) sech2(kx) – 16k5 tanh(kx)

– 4k3β tanh(kx) – 4k3β sech2(kx) tanh(kx)
]

tα

�(1 + α)
, (46)
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v2(x, t) =
(
–96k9β2 sech2(kx) tanh2(kx) – 96k7β3 sech4(kx) tanh2(kx)

)

× �(2α + 1)t3α

�(3α + 1)�(1 + α)�(1 + α)

+
[

16k8

c1
β sech4(kx) tanh(kx) – 144k8β sech4(kx) tanh(kx)

– 152k6β2 sech2(kx) tanh(kx) – 96k6β2 sech4(kx) tanh(kx)

+
16k6β2

c1
sech4(kx) tanh(kx) – 8k4β3 sech2(kx) tanh(kx)

]
t2α

�(2α + 1)

×
[

24k7

c1
–

24k7

c1
sech4(kx) +

8k5β sech4(kx)
3c1

–
8k5β sech2(kx)

3c1

+
32k5β

c1
sech2(kx) tanh2(kx) +

4k3β2

3c1
sech2(kx)

– 4k3β
(
β + k2) sech2(kx)

]
tα

�(1 + α)
, (47)

w2(x, t) =
(
–96k7β2 sech4(kx) tanh(kx) + 144k7β2 sech6(kx) tanh(kx)

)

× �(2α + 1)
�(3α + 1)�(1 + α)�(1 + α)

t3α +
(
16k6β sech3(kx) – 24k6 sech4(kx)

+ 72k6 sech4(kx) tanh2(kx) – 8c1k4β sech2(kx) tanh(kx)

– 24c1k4β sech4(kx) tanh(kx)

– 8β2k4 sech2(kx) + 12β2k4 sech4(kx)
) t2α

�(2α + 1)

× [
–8k5 tanh(kx) + 8c1k3 sech4(kx) – 4c1k3 sech2(kx) + k3β tanh(kx)

– 24k3 tanh(kx) sech2(kx) – c1kβ sech2(kx)
] tα

�(1 + α)
, (48)

. . .

un(x, t) = E–1
[

vαE
[

1
2

(u0 + u1 + · · · + un)xxx – 3u0(u0 + u1 + · · · + un)x

+ 3
(
(v0 + v1 + · · · + vn)(w0 + w1 + · · · + wn)

)

x

]]

– E–1
[

vαE
[

1
2

(u0 + u1 + · · · + un–1)xxx – 3u0(u0 + u1 + · · · + un–1)x

+ 3
(
(v0 + v1 + · · · + vn–1)(w0 + w1 + · · · + wn–1)

)

x

]]

, (49)

vn(x, t) = E–1[vαE
[
–(v0 + v1 + · · · + vn)xxx

+ 3(u0 + u1 + · · · + un)(v0 + v1 + · · · + vn)x
]]

– E–1[vαE
[
–(v0 + v1 + · · · + vn–1)xxx

+ 3(u0 + u1 + · · · + un–1)(v0 + v1 + · · · + vn–1)x
]]

, (50)

wn(x, t) = E–1[vαE
[
–(w0 + w1 + · · · + wn)xxx

+ 3(u0 + u1 + · · · + un)(w0 + w1 + · · · + wn)x
]]

– E–1[vαE
[
–(w0 + w1 + · · · + wn–1)xxx

+ 3(u0 + u1 + · · · + un–1)(w0 + w1 + · · · + wn–1)x
]]

. (51)
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The series-form solution is given as

u(x, t) = u1(x, t) + u2(x, t) + u3(x, t) + · · · + un(x, t),

v(x, t) = v1(x, t) + v2(x, t) + v3(x, t) + · · · + vn(x, t),

w(x, t) = w1(x, t) + w2(x, t) + w3(x, t) + · · · + wn(x, t),

(52)

u(x, t) =
1
3
(
β – 2k2) + 2k2 tanh2(kx) +

[
96k7β sech4(kx) tanh(kx)

– 144k7β2 tanh(kx) sech6(kx) – 16c1k7β2 sech4(kx) tanh(kx)

– 16c1k5β3 sech4(kx) tanh(kx)
]

× �(2α + 1)t3α

�(3α + 1)�(1 + α)�(1 + α)
+

[

–48k6β sech4(kx)

+
(

c0

3c1
– 8c0

)

k6β tanh(kx) sech2(kx)

+ (12c1 + 72)k6 sech4(kx) +
(

–116
3

+ 8C1

)

k6β sech6(kx)

+ 8β2k4 sech4(kx)(c1 – 1)

+ 8
(

c0k4β2

3c1 +
k2βc1

3
– c0k4β2

)

sech2(kx) tanh(kx)

– 8 sech2(kx)
(

4k4β2 + β2

3
+ β2k4c1

)]
t2α

�(1 + 2α)

+
[

68
3

k5 tanh(kx) sech2(kx) – 16k5 tanh(kx)

– 4k3β tanh(kx)
]

tα

�(1 + α)
+ · · · , (53)

v(x, t) = –
4k2c0(β + k2)

3c2
1

+
4k2(β + k2)

3c1
tanh(kx)

× (
–96k9β2 sech2(kx) tanh2(kx) – 96k7β3 sech4(kx) tanh2(kx)

)

× �(2α + 1)t3α

�(3α + 1)�(1 + α)�(1 + α)

+
[

16k8

c1
β sech4(kx) tanh(kx) – 144k8β sech4(kx) tanh(kx)

– 152k6β2 sech2(kx) tanh(kx) – 96k6β2 sech4(kx) tanh(kx)

+
16k6β2

c1
sech4(kx) tanh(kx) – 8k4β3 sech2(kx) tanh(kx)

]
t2α

�(2α + 1)

×
[

24k7

c1
–

24k7

c1
sech4(kx) +

8k5β sech4(kx)
3c1

–
8k5β sech2(kx)

3c1

+
32k5β

c1
sech2(kx) tanh2(kx) +

4k3β2

3c1
sech2(kx)

]
tα

�(1 + α)
+ · · · , (54)
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Figure 2 The graph of u(x, t), v(x, t), andw(x, t) when α = c1 = c0 = 1, k = 0.01 and β = 1

w(x, t) = c0 + c1 tanh(kx) +
(
–96k7β2 sech4(kx) tanh(kx)

+ 144k7β2 sech6(kx) tanh(kx)
) �(2α + 1)
�(3α + 1)�(1 + α)�(1 + α)

t3α

+
(
16k6β sech3(kx) – 24k6 sech4(kx) + 72k6 sech4(kx) tanh2(kx)

– 8c1k4β sech2(kx) tanh(kx) – 24c1k4β sech4(kx) tanh(kx)

– 8β2k4 sech2(kx) + 12β2k4 sech4(kx)
) t2α

�(2α + 1)

× [
–8k5 tanh(kx) + 8c1k3 sech4(kx) – 4c1k3 sech2(kx) + k3β tanh(kx)

– 24k3 tanh(kx) sech2(kx)
] tα

�(1 + α)
+ · · · . (55)

Figure 2 shows the analytic solution of u(x, t), v(x, t), and w(x, t) where α = c1 = c0 = 1,
k = 0.01, and β = 1. We can see the exact solution and the approximate solution of the
Elzaki iterative method for the case of α = 1 from Table 1.

Remark The reasons for the complexity of the solution are as follows:
1. Selection of initial values; 2. More parameters.

4 Conclusion
In this article, we use the Elzaki transform with an iterative method to solve fractional
partial differential equations. We find that the results using the homotopy perturbation
method and the method in this article to the Klein–Gordon problem are the same. We see
that the errors were not significant by picking specific values. Therefore, employing the
Elzaki transform and the iterative method to solve fractional partial differential equations
is effective.
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Table 1 Approximate solutions, exact solutions, and error estimates for the Elzaki iterative
transformation method when α is 1 for Example 2

t x E.S A.S E.E

u v w u v w u v w

0.1 –10 0.33 –1.47E–04 0.901 0.33 –1.47E–04 0.9 3.13E–05 4.39E–09 9.68E–04
0 0.33 –1.33E–04 1.000 0.33 –1.33E–04 1 3.33E–05 1.33E–08 1.00E–03
10 0.33 –1.99E–04 1.100 0.33 –1.20E–04 1.1 3.14E–05 –7.93E–05 1.03E–03

5 –10 0.33 –1.40E–04 0.950 0.33 –1.40E–04 0.9 –3.55E–06 –4.41E–09 4.97E–02
0 0.33 –1.27E–04 1.050 0.33 –1.27E–04 1 1.00E–04 –4.80E–09 5.00E–02
10 0.33 –1.13E–04 1.140 0.33 –1.13E–04 1.1 6.04E–05 –7.05E–08 4.92E–02

50 –10 0.33 –1.33E–04 1.000 0.33 –1.33E–04 0.9 –5.97E–06 2.35E–08 9.97E–02
0 0.33 –1.20E–04 1.100 0.33 1.20E–04 1 1.99E–06 –2.40E–04 9.97E–02
10 0.33 –1.07E–04 1.197 0.33 –1.07E–04 1 9.79E–06 –2.38E–07 9.78E–02

Source: The above data were obtained from the authors through matlab calculations, excel summaries and written in latex.
E.S denotes the exact solution.
A.S denotes the approximate solution.
E.E indicates the error estimate.
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