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Abstract
In this paper, we first introduce the long-time behavior stability of solitary waves for
the weakly damped Korteweg–de Vries equation. More concretely, solutions of the
dissipative system with the initial values near a c0-speed solitary wave, are
approximated by a long curve on the family of solitary waves with the time-varying
speed |c(t) – c0| being small, in the long-time period (i.e., 0 ≤ t ≤ O( 1

ετ )). Meanwhile,
the approximation difference in a suitably weighted space H1

a(R) is of the order of the
damping coefficient and of some kind of exponential weight form. As a comparison,
we also study the long-time behavior stability, i.e., for 0 ≤ t < +∞, the solutions are
approximated by a long curve on the family of solitary waves with the exponential
decay speed c(t) = c0e–βt (0 < β ≤ 1), when the initial values are near a c0-speed
solitary wave. However, here, the approximation difference merely defined in H1(R)
depends on the damping coefficient ε and the exponential decay coefficient β .
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1 Introduction
This work mainly considers the long-time and long-time behavior stability for the weakly
damped one-dimensional Korteweg–de Vries (KdV) equation

⎧
⎨

⎩

ut = –∂x[uxx + 1
2 u2] – εu, t > 0, x ∈R,

u(x, t) = u(x, 0), t = 0, x ∈R,
(1.1)

where 0 < ε � 1 is a small damping parameter.
The authors in [1] first derived the KdV equation as a model for planar, unidirectional

waves propagating in shallow water in 1895. Then, the authors in [2, 3] considered the
KdV equation to feature wave motion for many other physical situations. Meanwhile, the
initial value problems were studied in [4, 5] for the undamped KdV equation (i.e., ε = 0)
and in [6–8] for the damped case (i.e., ε �= 0). They showed that, in both cases, the solution
u(x, t) of the initial problem satisfies, for ∀t > 0, u ∈ C([0, t], H2)∩C1([0, t], H–1) and eaxu ∈
C([0, t], H1) ∩ C1([0, t], H–3).
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To give a more explicit picture, we describe the undamped and damped KdV equations
separately.

Undamped Case: If ε = 0 in equation (1.1), one can define the Hamiltonian

H(u) =
∫

R

1
2
|ux|2 –

1
6

u3 dx, (1.2)

and the impulse functional (see [9, 10])

I(u) =
1
2

∫

R

u2 dx. (1.3)

Obviously, the profiles of traveling-wave solutions of the KdV equation are critical points
of the Hamiltonian H for fixed values of I , namely, relative equilibria (see [4]). The family
of all traveling-wave profiles is called the manifold of relative equilibrium (MRE), which
is the two-dimensional manifold of the form u(x, t) = uc(x – ct + γ ) for all c > 0, γ ∈ R. In
addition, the profile of the solitary wave conforms to uc(y) → 0 as |y| → ∞, i.e.,

uc(y) = αsech2ςy with α = 3c,ς =
1
2
√

c, (1.4)

which uniquely (up to the space translations) satisfies the equation (see [11])

–∂2
y uc + cuc –

1
2

u2
c = 0. (1.5)

A solitary wave has a permanent phase shift or a different speed when a solitary wave
acquires a small perturbation. Therefore, the orbital stability of solitary waves was intro-
duced in [12–14]. Weinstein in [15, 16] and Bona, Souganidis, and Strauss in [17, 18] as-
serted that a solution that is initially close to a solitary wave uc(x – ct) in the Sobolev space
H1(R), will forever remain close to the set of translates uc(x – ct + γ ) of the wave. More
precisely, for sufficiently small δ > 0, one has

inf
γ

∥
∥u(·, t) – uc(· + γ )

∥
∥

H1 ≤ δ, ∀t > 0, (1.6)

if the same quantity is small at the initial time t = 0.
In particular, Pego and Weistein showed the asymptotic stability of the traveling wave in

[9] that if u(x, t) is initially a small perturbation in the weighted norms space H2(R)∩H1
a (R)

of a given solitary wave uc(x – ct + γ ), then

∥
∥u(x, t) – uc+ (x – c+t + γ+)

∥
∥

H2(R)∩H1
a (R) → 0 as t → +∞, (1.7)

for some c+ near c and γ+ near γ . Here, the exponential weights are of the form eay (a > 0)
as follows:

L2
a =

{
v|eayv ∈ L2(R)

}
with ‖v‖L2

a
=

∥
∥eayv

∥
∥

L2 , (1.8)

H1
a =

{
v|eayv ∈ H1(R)

}
with ‖v‖H1

a
=

∥
∥eayv

∥
∥

H1 . (1.9)
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Damped Case: If ε �= 0 in equation (1.1), one can deduce

d
dt

I(u) =
〈
I ′(u), ∂xH(u) – εu

〉
=

〈
I ′(u), ∂xH(u)

〉
–

〈
I ′(u), εu

〉

= –ε

∫

R

u2 dx = –2εI(u), (1.10)

where ∂xH(u) = –∂x[uxx + 1
2 u2]. Clearly, I(u(t)) = I(u(0))e–2εt . This implies that

limt→+∞ I(u(t)) = 0 and limt→+∞ u(t, x) = 0 almost everywhere in R.
The authors in [19, 20] used the symmetry group to reduce the energy momentum and

then obtained the stability of relative equilibria. In [21, 22], the authors analyzed the spec-
trum property of the self-adjoint operator generated by an energy functional, and then
they found sharp conditions for the stability and instability of solitary waves or multisoli-
tons. Specifically, Derks and Groesen in [23] considered the damped KdV equation in the
bounded periodic domain x ∈ [0, 2π ]. By applying the implicit theorem, they constructed
an energy-decaying manifold Mε ∼ O(e–2εt), which is related to the damping coefficient ε,
and then they obtained the long-time behavior stability of solutions near the constructing
manifold Mε , where the approximation difference is O(εe–2εt).

Here, inspired by the ideas about the spectral analysis given in [9] and the construction
of the energy-decaying manifold given in [23], we study the long-time and long-time be-
havior, respectively, for the weakly damped equation (1.1) in the whole space x ∈ R. Our
first result is about the long-time behavior:

Theorem 1.1 Let uc(x – ct + γ ), c > 0, γ ∈ R, be the solitary-wave solutions of the un-
damped KdV equation (1.1) (namely ε = 0). Then, considering the initial problem for the
weakly damped (0 < ε � 1) KdV equation (1.1) with data

u(x, 0) = uc0 (x + γ0) + v0(x), (1.11)

if the perturbation v0 ∈ H2 ∩ H1
a with ‖v0‖H1 + ‖v0‖H1

a
< ε, then for 0 ≤ t ≤ T(= O( 1

ετ )), we
have

∥
∥u(·, t) – e–εtuc(· – ct + γ )

∥
∥

H1 ≤ Cε1–2τ ,
∥
∥u(· + ct – γ , t) – e–εtuc

∥
∥

H1
a
≤ Cεe–εt ,

∥
∥u(· + ct – γ , t) – e–εtuc

∥
∥

H1
a
≤ Cε1–τ e–(ετ +ε)·t ,

∣
∣c(t) – c0

∣
∣ ≤ Cε1–2τ and

∣
∣γ (t) – γ0

∣
∣ ≤ Cε1–2τ ,

(1.12)

where 0 < a <
√

c
3 , τ < 1

2 , C are constants.

Remark 1.1 1. The restriction 0 < a <
√

c
3 is imposed in Theorem 1.1 since the expression

a(c – a2) is maximized at a =
√

c
3 (see Proposition 2.5 in Ref. [9]).

2. It is natural to expect the solution to approximate the initial solitary wave as long
as possible if the initial value has a slight perturbation. However, (1.10) implies that all
solutions will vanish as t → +∞. Hence, it is valid to consider the stability near the initial
solitary wave in the long-time period 0 ≤ t ≤ T = O( 1

ετ ) satisfying that 0 < ε � 1, τ < 1
2 ,
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where T = O( 1
ετ ) means the same order T ≈ 1

ετ and the restraint on the quantity 1
ετ follows

from (2.35).
3. To analyze the property of the damping condition and solitary wave, the solution to

equation (1.1) will be formally expressed in the form

u(x, t) = e–εt · uc(t)
(
x + θ (t)

)
+ v

(
x + θ (t), t

)
, (1.13)

where θ (t) = γ (t) –
∫ t

0 c(s) ds and the leading (dominant) term uc(t)(x + θ (t)) is an exact
solitary-wave solution of (1.1) with ε = 0, when c(t), γ (t) are just near the initial c0,γ0.

4. Substitution of (1.13) into (1.1) yields an equation of the form

∂tv = ∂yLc(t)v – εv – (ċ∂c + γ̇ ∂y)uc(t) + �(uc(t), v), (1.14)

where �(uc(t), v) will be given in (2.6) and

Lc = –∂2
y + c – uc. (1.15)

Meanwhile, differentiating (1.5) with respect to y and c, we know that the operator ∂yLc in
L2 is degenerate, i.e.,

∂yLc∂yuc = 0, ∂yLc∂cuc = –∂yuc. (1.16)

These give rise to solutions ∂yuc and ∂cuc – t∂yuc to the linearized problem

∂tv = ∂yLcv. (1.17)

5. As in References [16, 24], to obtain more exponential decay, it is appropriate to require
that the right-hand side of (1.14) is orthogonal to the 2-dimensional generalized kernel
of the adjoint of ∂yLc. These constraints yield two coupled first-order differential equa-
tions for c(t) and γ (t) (called modulation equations), which are coupled to the infinite-
dimensional dispersive evolution equation for v(·, t).

Next, we discuss the long-time behavior stability of solutions. In contrast to the restric-
tion c(t) near c0 given in Theorem 1.1, we need that c(t) decays exponentially to zero as
t → +∞. This is presented as follows:

Theorem 1.2 Let uc(t)(y), y = x –
∫ t

0 c(s) ds + γ (t), be the solitary-wave solutions with c(t) =
c0e–βt(0 < β ≤ 1), of the undamped KdV equation (1.1) (namely, ε = 0). Then, considering
the initial problem for the weakly damped (0 < ε � 1) KdV equation (1.1) with data

u(x, 0) = uc0 (x + γ0) + v0(x), (1.18)

if the perturbation v0 ∈ H2 ∩ H1
a with ‖v0‖H1 + ‖v0‖H1

a
< ε, then for 0 ≤ t < +∞, we have

∥
∥u(·, t) – e–εtuc(· – ct + γ )

∥
∥

H1 ≤ C
(
ε + m(ε,β , t)

)
e–εt , (1.19)
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where C is a constant and m(ε,β , t) depends on ε, β , and t such that

m(ε,β , t) =

⎧
⎨

⎩

O(ε
√

t), 0 ≤ t ≤ 1,

O( ε

β
√

t ), 1 ≤ t < +∞.
(1.20)

Remark 1.2 Note that here it is impossible to consider the long-time stability of solutions
in weight space H1

a as in Theorem 1.1, since a → 0 as t → +∞ follows from a <
√

c(t)
3 and

c(t) = c0e–βt(0 < β ≤ 1).

Remark 1.3 The approximation exponent given in (1.12) of Theorem 1.1 and (1.19) of
Theorem 1.2 strictly depends on the damping coefficient ε. This is in sharp contrast to the
asymptotic stability (1.7) with the exponent weight e–a(c–a2)t of decay given in Reference
[9]. In other words, the weakly damped term will dominate the exponential decay rate.

The rest of this paper is organized as follows: In Sect. 2, we justify the representation
(1.13) of the solution for nonlinear equations, and derive the equation of motion of the
new variables (c(t),γ (t), w(y, t)). Moreover, we study the long-time behavior to finish the
proof of Theorem 1.1. In Sect. 3, we also justify the new representation (3.1) and prove
Theorem 1.2 for the long-time behavior stability. In the Appendix, we review the spectral
analysis and certain smoothing and exponential decay estimates of the linearized operator
∂yLc in (1.14).

2 The long-time behavior stability
2.1 Decomposition of the solution
Due to the weak damping term, we use time-dependent tubular coordinates in a neigh-
borhood of solitary waves and skillfully represent solutions of the initial value problem
(1.1) in the form (see also (1.13))

u(x, t) = e–εtuc(t)(y) + v(y, t), (2.1)

where

y = y(x, t) = x –
∫ t

0
c(s) ds + γ (t) (2.2)

and uc(t)(y) belongs to the family of traveling waves.
In order to achieve exponential decay for the perturbation v(y, t) in the weighted space

H1
a , we wish to impose the constraint that

w(y, t) = eayv(y, t) ∈ range(Q) = ker(P), (2.3)

where the projections P, Q are given in Proposition A.2 (see the Appendix). This require-
ment corresponds to the two scalar constraints 〈w,ηk〉 = 0, k = 1, 2, cf. (A.14), which fol-
lows the modulation equations, namely, two coupled first-order differential equations for
c(t), γ (t) as t > 0.

As this point, let us begin the proof of Theorem 1.1.
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The solution u(x, t) of the initial problem (1.1) satisfies, for ∀t > 0,

u ∈ C
(
[0, t], H2) ∩ C1([0, t], H–1), eaxu ∈ C

(
[0, t], H1) ∩ C1([0, t], H–3). (2.4)

Moreover, u is a classical solution of (1.1) for t > 0. Given the initial data in (1.11), if the
perturbation ‖v0‖H1

a
is sufficiently small, it is easy to prove decomposition (2.1) exists in

[0,t], with (γ , c) ∈ C1([0, t],R2).
We now derive evolution equations for γ (t), c(t), and v(y, t) that are valid pointwise for

t > 0. Substituting (2.1) into (1.1), we have

0 = ∂tu + ∂3
x u + ∂x

(
1
2

u2
)

+ εu

=
[
∂t +

(
γ̇ – c(t)

)
∂y + ∂3

y
](

e–εtuc(t)(y) + v
)

+ ∂y

[
1
2
(
e–εtuc(t)(y) + v(y, t)

)2
]

+ ε
(
e–εtuc(t)(y) + v(y, t)

)

=
(
∂t +

(
γ̇ – c(t)

)
∂y + ∂3

y
)
v +

(
∂t +

(
γ̇ – c(t)

)
∂y + ∂3

y
)
e–εtuc(t)(y)

+ ∂y

[
1
2
(
e–εtuc(t)(y) + v(y, t)

)2
]

+ ε
[
e–εtuc(t)(y) + v(y, t)

]

=
(
∂t +

(
γ̇ – c(t)

)
∂y + ∂3

y
)
v +

(
∂t +

(
γ̇ – c(t)

)
∂y + ∂3

y
)
e–εtuc(t)(y)

+ ∂y

[
1
2
(
e–εtuc(t)(y) + v(y, t)

)2
]

+ εe–εtuc(t)(y) + εv(y, t)

=
(
∂t +

(
γ̇ – c(t)

)
∂y + ∂3

y
)
v +

{

γ̇ ∂ye–εtuc(t)(y) – εe–εtuc(t)(y) + e–εt ∂u
∂c

ċ + e–εt∂tuc(t)(y)

+ ∂3
y e–εtuc(t)(y)

}

+ ∂y

[
1
2
(
e–εtuc(t)(y) + v(y, t)

)2
]

+ εe–εtuc(t)(y) + εv(y, t)

=
(
∂t +

(
γ̇ – c(t)

)
∂y + ∂3

y
)
v + γ̇ ∂ye–εtuc(t)(y) + e–εt ∂u

∂c
ċ

+ e–εt(∂tuc(t)(y) + ∂3
y uc(t)(y)

)
+ ∂y

[
1
2
(
e–εtuc(t)(y) + v(y, t)

)2
]

+ εv(y, t)

=
(
∂t +

(
γ̇ – c(t)

)
∂y + ∂3

y
)
v + γ̇ ∂ye–εtuc(t)(y) + e–εt ∂u

∂c
ċ

+ e–εt∂y
(
–c(t)uc(t)(y) + ∂2

y uc(t)(y)
)

+ ∂y

[
1
2
(
e–εtuc(t)(y) + v(y, t)

)2
]

+ εv(y, t)

=
(
∂t +

(
γ̇ – c(t)

)
∂y + ∂3

y
)
v + εv(y, t) + γ̇ ∂ye–εtuc(t)(y) + e–εt ∂u

∂c
ċ

+ e–εt
(

–
1
2
∂y

(
uc(t)(y)

)2
)

+ ∂y

[
1
2
(
e–εtuc(t)(y) + v(y, t)

)2
]

=
(
∂t +

(
γ̇ – c(t)

)
∂y + ∂3

y
)
v + εv(y, t) + ∂y(uc0 v) + γ̇ ∂ye–εtuc(t)(y) + e–εt ∂u

∂c
ċ

+ e–εt
(

–
1
2
∂y

(
uc(t)(y)

)2
)

+ ∂y

[
1
2
(
e–εtuc(t)(y) + v(y, t)

)2
]

– ∂y(uc0 v)

=
(
∂t +

(
γ̇ – c(t)

)
∂y + ∂3

y
)
v + εv(y, t) + ∂y(uc0 v) + γ̇ ∂ye–εtuc(t)(y) + e–εt ∂u

∂c
ċ
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+ ∂y

[
1
2

e–2εtu2 + e–εtuv +
1
2

v2 – e–εt 1
2

u2 – uc0 v
]

. (2.5)

Hence,

∂tv = ∂y
[
–∂2

y + c0 – uc0

]
v – εv – e–εt

[

γ̇ ∂yu + ċ
∂u
∂c

]

– ∂y
[(

γ̇ – c(t) + c0
)
v
]

– ∂y

[
1
2

e–2εtu2 + e–εtuv +
1
2

v2 – e–εt 1
2

u2 – uc0 v
]

. (2.6)

Now, w(y, t) = eayv(y, t) satisfies (and set Aa = eay∂yLc0 e–ay with Lc0 = –∂2
y + c0 – uc0 )

∂tw = Aaw – εw + F, (2.7)

where we write

F = –e–εteay(ċ∂c + γ̇ ∂y)uc(t) – γ̇ eay∂ye–ayw + F ,

F = eay∂y
(
c(t) – c0

)
e–ayw – eay∂y

[
1
2

e–2εtu2 – e–εt 1
2

u2
]

– eay∂y

[

e–εtuv +
1
2

v2 – uc0 v
]

= eay∂y
(
c(t) – c0

)
e–ayw – eay∂y

[
1
2

e–2εtu2 – e–εt 1
2

u2
]

– eay∂y

[

e–εtuv +
1
2

v2 – e–εtuc0 v +
(
e–εt – 1

)
uc0 v

]

.

(2.8)

Meanwhile, (2.4) implies that this equation is initially justified in C([0, t], H–3), but also
holds in C([0, t], L2) and moreover is pointwise. The constraint w ∈ range(Q) in (2.3) now
yields the following system of evolution equations for (w,γ , c):

∂tw = Aaw – εw + QF, PF = 0. (2.9)

Written as an integral equation, the initial value problem for (2.9) becomes:

w(t) = e(Aa–ε)tw(0) +
∫ t

0
e(Aa–ε)(t–s)QF(s) ds. (2.10)

The equation PF = 0 yields equations for γ̇ , ċ as follows. Introduce the notation

e1(y, t) = eay(∂yuc(t)(y) – ∂yuc0 (y)
)
,

e2(y, t) = eay(∂cuc(t)(y) – ∂cuc0 (y)
)
,

(2.11)

and note that 〈eay∂ye–ayw,ηk〉 = –〈v, ∂yη̃k〉 for k = 1, 2, by integration by parts. Then, by
(A.14), the condition PF = 0 is equivalent to

0 =
〈
γ̇
[
e–εt(ξ1 + e1) + (∂y – a)w

]
+ ċe–εt(ξ2 + e2) – F ,ηk

〉
, k = 1, 2. (2.12)
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Using the biorthogonality relation 〈ξj,ηk〉 = δjk , we obtain a system of equations for γ (t)
and c(t):

A(t)

(
γ̇

ċ

)

=

(
〈F ,η1〉
〈F ,η2〉

)

(2.13)

and

A(t) =

(
e–εt + e–εt〈e1,η1〉 – e–εt〈v, ∂yη̃1〉, e–εt〈e2,η1〉
e–εt〈e1,η2〉 – e–εt〈v, ∂yη̃2〉, e–εt + e–εt〈e2,η2〉

)

. (2.14)

The matrix A(t) satisfies

A(t) = e–εtI + O
(∣
∣c(t) – c0

∣
∣ + ‖v‖L2

)
as

∣
∣c(t) – c0

∣
∣ + ‖v‖L2 → 0. (2.15)

In order to obtain reversibility of the matrixA(t), in some sense, we need the term e–εtI ≈ I .
In other words, it is possible to consider stability in the long-time period 0 ≤ t ≤ T = O( 1

ετ )
(given in (2.35)) instead of the long time “t → +∞”. Otherwise, e–εtI → 0 as t → +∞.

2.2 The long-time behavior
In order to complete the proof of Theorem 1.1. It remains to establish the priori estimates
from the evolution equations in (2.10)–(2.13). We have

Proposition 2.1 There exist δ∗ > 0, ε0 > 0, C > 0 such that, if the decomposition (2.10),
(2.11), and (2.12) exists for 0 ≤ t ≤ T = O( 1

ετ ) with 0 < ε � 1, τ < 1
2 and satisfies

eεt∥∥w(t)
∥
∥

H1 +
∣
∣c(t) – c0

∣
∣ +

∥
∥v(·, t)

∥
∥

H1 ≤ δ∗, 0 ≤ t ≤ T = O
(

1
ετ

)

, (2.16)

and if the perturbation ‖v0‖H1 + ‖v0‖H1
a

< ε < ε0 in (1.11), then

eεt∥∥w(t)
∥
∥

H1 ≤ Cε, 0 ≤ t ≤ T = O
(

1
ετ

)

,

e(ετ +ε)t∥∥w(t)
∥
∥

H1 ≤ Cε1–τ , 0 ≤ t ≤ T = O
(

1
ετ

)

,

∣
∣c(t) – c0

∣
∣ ≤ Cε1–2τ , 0 ≤ t ≤ T = O

(
1
ετ

)

,

∣
∣γ (t) – γ0

∣
∣ ≤ Cε1–2τ , 0 ≤ t ≤ T = O

(
1
ετ

)

,

∥
∥v(·, t)

∥
∥

H1 ≤ Cε1–2τ , 0 ≤ t ≤ T = O
(

1
ετ

)

.

(2.17)

Proof The proof follows the two stages as given in Proposition 4.1 in Ref. [9] but with
different detailed estimates.

(i) Local energy-decay estimate: Estimates of the weighted perturbation, w(y, t) =
eayv(y, t), in H1, via the integral equation (2.10), the modulation equation (2.13), and the
linear semigroup estimates of Lemma A.2 (see the Appendix).



Zhong and Wu Boundary Value Problems          (2023) 2023:5 Page 9 of 26

If δ∗ is sufficiently small and 0 ≤ t ≤ T = O( 1
ετ ), then A(t) defined in (2.13) has a bounded

inverse, so we may estimate (2.13) to find

|γ̇ | + |ċ| ≤ C‖F‖L2 . (2.18)

From (2.8), using that eay∂ye–ay = ∂y – a and the expression (1.4) (or the following estimate
(3.19)), we obtain the estimates

‖F‖ ≤ C
(|γ̇ |(1 + ‖w‖H1

))
+ |ċ| + ‖F‖L2 ≤ C

(
1 + ‖w‖H1

)‖F‖L2 ,

‖F‖L2 ≤ C
[(∣

∣c(t) – c0
∣
∣ + ‖v‖H1 +

(
1 – e–εt))‖w‖H1 +

(
e–εt – e–2εt)]

≤ C
(
δ∗ +

(
1 – e–εt))‖w‖H1 + C

(
e–εt – e–2εt).

(2.19)

Now, we may choose b, b′ with b + ε < b′ + ε < a(c – a2) + ε, such that b, b′, satisfies the
condition of Lemma A.2. We may then estimate (2.10) as follows, for t > 0:

∥
∥w(t)

∥
∥

H1

≤ Ce–(b′+ε)t∥∥w(0)
∥
∥

H1 + C
∫ t

0
(t – s)–1/2e–(b′+ε)(t–s)‖F‖L2 ds

≤ Ce–(b′+ε)t∥∥w(0)
∥
∥

H1 + C
∫ t

0
(t – s)–1/2e–(b′+ε)(t–s)(1 + δ∗)

× [(
δ∗ +

(
1 – e–εs))∥∥w(s)

∥
∥

H1 +
(
e–εs – e–2εs)]ds. (2.20)

Now, define

Mw,b(t) = sup
0≤s≤t

e(b+ε)s∥∥w(s)
∥
∥

H1 , (2.21)

where the variable b is constrained in Remark A.1 (see the Appendix).
Then, multiplying (2.20) by e(b+ε)t , we find, for t > 0,

e(b+ε)t∥∥w(t)
∥
∥

H1

≤ Ce(b+ε)te–(b′+ε)t∥∥w(0)
∥
∥

H1

+ C
∫ t

0
(t – s)–1/2e–(b′+ε)(t–s)(1 + δ∗)

(
δ∗ +

(
1 – e–εs))e(b+ε)t∥∥w(s)

∥
∥

H1 ds

+ C
∫ t

0
(t – s)–1/2e–(b′+ε)(t–s)e(b+ε)t(e–εs – e–2εs)ds

≤ Ce–(b′–b)t∥∥w(0)
∥
∥

H1

+ C
∫ t

0
(t – s)–1/2e–(b′+ε)(t–s)(1 + δ∗)

(
δ∗ +

(
1 – e–εs))e(b+ε)(t–s)e(b+ε)s∥∥w(s)

∥
∥

H1 ds

+ C
∫ t

0
(t – s)–1/2e–(b′+ε)(t–s)e(b+ε)t(e–εs – e–2εs)ds

≤ C
∥
∥w(0)

∥
∥

H1 + Cδ∗Mw,b(t)
∫ t

0
(t – s)–1/2e–(b′–b))(t–s) ds
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+ C
∫ t

0
(t – s)–1/2e–(b′+ε)(t–s)(1 – e–εs)e(b+ε)(t–s)e(b+ε)s∥∥w(s)

∥
∥

H1 ds

+ C
∫ t

0
(t – s)–1/2e–(b′+ε)(t–s)e(b+ε)t(e–εs – e–2εs)ds

≤ C
∥
∥w(0)

∥
∥

H1 + Cδ∗Mw,b(t)
∫ t

0
(t – s)–1/2e–(b′–b))(t–s) ds

+ CMw,b(t)
∫ t

0
(t – s)–1/2e–(b′–b)(t–s)(1 – e–εs)ds

+ C
∫ t

0
(t – s)–1/2e–(b′+ε)(t–s)e(b+ε)t(e–εs – e–2εs)ds. (2.22)

It is sufficient to estimate the terms A(ε) �
∫ t

0 (t – s)–1/2e–(b′–b)(t–s)(1 – e–εs) ds and Bb(ε) �
∫ t

0 (t – s)–1/2e–(b′+ε)(t–s)e(b+ε)t(e–εs – e–2εs) ds in (2.22) above. We first deal with the latter term
Bb(ε).

Bb(ε) =
∫ t

0
(t – s)– 1

2 e–(b′+ε)(t–s)e(b+ε)t(e–εs – e–2εs)ds

=
∫ t

0
(t – s)– 1

2 e–(b′–b)(t–s)e(b+ε)s(e–εs – e–2εs)ds

=
∫ t

0
(t – s)– 1

2 e–(b′–b)(t–s)ebs(1 – e–εs)ds. (2.23)

If we set b = 0 in (2.23), Bb=0(ε) = A(ε). The substitution t – s = � yields

Bb=0(ε) = A(ε) =
∫ t

0
(t – s)– 1

2 e–(b′–b)(t–s)(1 – e–εs)ds

=
∫ t

0
(t – s)– 1

2 e–(b′–0)(t–s)(1 – e–εs)ds

=
∫ t

0
(t – s)– 1

2 e–b′(t–s)(1 – e–εs)ds

=
∫ t

0
�– 1

2 e–b′�(1 – e–εteε�
)

d�. (2.24)

Considering the long-time point t � T0(= O( τ
ε

)) in the first instance, we have

∫ T0

0
�– 1

2 e–b′�(1 – e–εteε�
)

d�

≈
∫ τ

ε

0
�– 1

2 e–b′�(1 – e–ε· τ
ε eε�

)
d�

=
∫ τ

ε

0
�– 1

2 e–b′�(1 – e–τ eε�
)

d� fix s = ε�

=
∫ τ

0

(
s
ε

)– 1
2

e–b′ s
ε
(
1 – e–τ es)1

ε
ds

=
∫ τ

0
s– 1

2 e– b′
ε s(1 – e–τ es)ε– 1

2 ds. (2.25)
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Due to limε→0+ e– b′
ε τ ε– 1

2 = 0, integrating (2.25) by parts, we have

0 ≤ lim
ε→0+

∫ τ

0
s– 1

2 e– b′
ε s(1 – e–τ es)ε– 1

2 ds

≤ lim
ε→0+

2ε– 1
2

∫ τ

0
s– 1

2 e– b′
ε s ds

= lim
ε→0+

ε– 1
2

{

s
1
2 e– b′

ε s|τ0 +
b′

ε

∫ τ

0
s

1
2 e– b′

ε s ds
}

= lim
ε→0+

b′ε– 3
2

∫ τ

0
s

1
2 e– b′

ε s ds = 0, (2.26)

where the last inequality follows from the monotone theorem and the fact that
limε→0+ s 1

2 e– b′
ε sε– 3

2 = 0,∀s ∈ [0, τ ].
After derivation to ε of Bb=0(ε) defined in (2.24), we have

B′
b=0(ε) =

∫ τ

0
s– 1

2 e– b′
ε s(1 – e–τ es)ε– 3

2 ds –
∫ τ

0
s– 1

2 e– b′
ε s(1 – e–τ es)ε– 5

2 · b′s ds. (2.27)

Similarly, as (2.25) and (2.26), it is easy to deduce

lim
ε→0+

B′
b=0(ε) = 0. (2.28)

Therefore, one can deduce

∣
∣Bb=0(ε)

∣
∣ ≤ C(m)εm, ∀m ∈N. (2.29)

Hence, inserting (2.29) into (2.22), we have for b = 0,

e(b+ε)t∥∥w(t)
∥
∥

H1 = eεt∥∥w(t)
∥
∥

H1 ≤ C
∥
∥w(0)

∥
∥

H1 + C
(
δ∗ + εm)

Mw,b=0(T0) + C(m)εm. (2.30)

Taking the supremum over 0 ≤ t ≤ T0(= O( τ
ε

)), we find that if δ∗ is sufficient small, then

Mw,b=0(T0) = sup
0≤t≤T0

eεt∥∥w(t)
∥
∥

H1 ≤ C
∥
∥w(0)

∥
∥

H1 + C(m)εm. (2.31)

Next, we estimate |c(t) – c0|. Using (2.18) and (2.31), we find that

∣
∣c(t) – c0

∣
∣

≤ ∣
∣c(0) – c0

∣
∣ +

∫ t

0

∣
∣ċ(s)

∣
∣ds

≤ ∣
∣c(0) – c0

∣
∣ +

∫ t

0
C

[(∣
∣c(t) – c0

∣
∣ + ‖v‖H1 +

(
1 – e–εs))‖w‖H1 +

(
e–εs – e–2εs)]ds

≤ ∣
∣c(0) – c0

∣
∣ + C

(

δ∗ +
∫ t

0

(
e–εs – e–2εs)ds

)

Mw,b=0(t) +
∫ t

0

(
e–εs – e–2εs)ds

≤ ∣
∣c(0) – c0

∣
∣ + C

(

δ∗ +
e–2εt – 2e–εt + 1

2ε

)

Mw,b=0(t) +
e–2εt – 2e–εt + 1

2ε
. (2.32)
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For fixed t, we have

lim
ε→0+

e–2εt – 2e–εt + 1
2ε

= 0. (2.33)

However, if we consider (2.33) on the long-time point T0(= O( τ
ε

)), we know that

lim
ε→0+

e–2εT0 – 2e–εT0 + 1
2ε

= lim
ε→0+

e–2τ – 2e–τ + 1
2ε

= ∞. (2.34)

To obtain a small estimate |c(t) – c0|, we need to consider the more appropriate long-time
point t � T(= O( 1

ετ )) (clearly, < T0). Meanwhile, the estimates (2.24)–(2.31) are still valid
in the short long-time period 0 ≤ t ≤ T(= O( 1

ετ )).
By calculating, in the new long-time point t � T(= O( 1

ετ )), one can deduce that

lim
ε→0+

∫ T

0

(
e–εs – e–2εs)ds ≈ lim

ε→0+

∫ 1
ετ

0

(
e–εs – e–2εs)ds

= lim
ε→0+

e–2ε1–τ – 2e–ε1–τ + 1
2ε

= lim
ε→0+

(1 – τ )e–ε1–τ (1 – e–ε1–τ )
ετ

= lim
ε→0+

(1 – τ )(1 – e–ε1–τ )
ετ

= lim
ε→0+

(1 – τ )2(e–ε1–τ )
ε2τ–1

= lim
ε→0+

(1 – τ )2(e–ε1–τ )
ε1–2τ . (2.35)

Obviously, it is sufficient to choose τ < 1
2 such that limε→0+

∫ 1
ετ

0 (e–2εs – e–εs) ds = 0. Simi-
larly, the fourth estimate of (2.17) holds.

Conversely, in the new long-time period 0 ≤ t ≤ T(= O( 1
ετ )), we return to estimate the

term Bb(ε) with choosing b = ετ in (2.23) instead of b = 0 in (2.24). This supplies that the
quantity e(ετ +ε)t‖w(t)‖H1 (i.e., (2.22) with b = ετ ) has more exponential weight decay than
eεt‖w(t)‖H1 , (i.e., (2.22) with b = 0), that is

Bb=ετ (ε) =
∫ t

0
(t – s)– 1

2 e–(b′+ε)(t–s)e(b+ε)t(e–εs – e–2εs)ds

=
∫ t

0
(t – s)– 1

2 e–(b′–b)(t–s)e(b+ε)s(e–εs – e–2εs)ds

=
∫ t

0
(t – s)– 1

2 e–(b′–b)(t–s)ebs(1 – e–εs)ds

=
∫ t

0
(t – s)– 1

2 e–(b′–ετ )(t–s)eετ s(1 – e–εs)ds. (2.36)
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Due to ετ � b′ and 0 ≤ t ≤ T(= O( 1
ετ )), by the Hölder inequality and the mean value

principle, we have

Bb=ετ (ε) =
∫ t

0
(t – s)– 1

2 e–(b′–ετ )(t–s)eετ s(1 – e–εs)ds

=
∫ t

0
(t – s)– 1

2 e–(b′–ετ )(t–s)eετ s(e–ε·0 – e–εs)ds

≤ C
∫ t

0
(t – s)– 1

2 e–(b′–ετ )(t–s) ds · sup
s∈[0,t]

(
e–ε·0 – e–εs)

≤ C
∫ t

0
(t – s)– 1

2 e–(b′–ετ )(t–s) ds · εe–εξ s

≤ C1

∫ t

0
(t – s)– 1

2 e–(b′–ετ )(t–s) ds · εs

= C1

∫ t

0
(t – s)– 1

2 e–(b′–ετ )(t–s) ds · ε1–τ . (2.37)

Also, the substitution t – s = � follows

∫ t

0
(t – s)– 1

2 e–(b′–ετ )(t–s) ds

=
∫ t

0
�– 1

2 e–(b′–ετ )� ds

=
∫ 1

0
�– 1

2 e–(b′–ετ )� ds +
∫ t

1
�– 1

2 e–(b′–ετ )� ds

≤
∫ 1

0
�– 1

2 e–(b′–ετ )� ds +
∫ ∞

1
�– 1

2 e–(b′–ετ )� ds

≤
∫ 1

0
�– 1

2 ds +
∫ ∞

1
e–(b′–ετ )� ds

= 2 +
1

b′ – ετ
e–(b′–ετ ). (2.38)

Hence, by (2.36), (2.37), and (2.38), we have

Bb=ετ (ε) ≤ Cε1–τ . (2.39)

Hence, inserting (2.39) into (2.22), we have, for b = ετ ,

e(ετ +ε)t∥∥w(t)
∥
∥

H1 ≤ C
∥
∥w(0)

∥
∥

H1 + C
(
δ∗ + εm)

Mw,b=ετ (T) + Cε1–τ . (2.40)

Taking the supremum over 0 ≤ t ≤ T(= O( 1
ετ )), we find that if δ∗ is sufficient small, then

Mw,b=ετ (T) = sup
0≤t≤T

e(ετ +ε)t∥∥w(t)
∥
∥

H1 ≤ C
∥
∥w(0)

∥
∥

H1 + Cε1–τ . (2.41)

Remark 2.1 In some sense, there is a balance between the long-time point T = O( 1
ετ ) and

the exponent weight b = ετ . In other words, if the long-time point is smaller, then the
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exponent weight of decay is larger. Here, we cannot obtain the exponent weight of decay
e–a(c–a2)t as in Ref. [9] due to perturbation estimates (2.23) and (2.36) caused by the weakly
damped term.

Proof (ii) H1 estimate: We make use of the damping quantity

E(u) = H(u) + c0I(u) =
∫ ∞

–∞
1
2

(∂xu)2 dx –
∫ ∞

–∞
1
6

u3 dx +
∫ ∞

–∞
1
2

c0u2 dx. (2.42)

Since uc0 is a critical point of the functional E , we have for any z ∈ H1,

E(uc0 + z) – E(uc0 ) =
∫ ∞

–∞
1
2

(∂xz)2 +
1
2

(c0 – uc0 )z2 –
1
6

z3 dx. (2.43)

Now, we take z = u(x, t) – uc0 (y) = e–εtuc(t)(y) + v(y, t) – uc0 (y) above, and observe that δE0 =
E(u) – E(uc0 ) is decaying in time. Indeed,

dδE0

dt
=

d(E(u) – E(u0))
dt

=
dE
dt

=
〈

–∂xxu –
1
2

u2 + c0u, –∂x

(

uxx +
1
2

u2
)

– εu
〉

=
〈

–
(

∂xxu +
1
2

u2
)

, –∂x

(

uxx +
1
2

u2
)〉

+
〈

c0u, –∂x

(

uxx +
1
2

u2
)〉

+
〈

–
(

∂xxu +
1
2

u2
)

, –εu
〉

+ 〈c0u, –εu〉

= –ε

∫

R

|ux|2 dx +
ε

2

∫

R

u3 dx – c0ε

∫

R

u2 dx

= –3εE(u) + ε

(∫

R

1
2

u2
x dx +

1
2

c0

∫

R

u2 dx
)

= –3εE(u) + ε

(∫

R

1
2

u2
x dx +

1
2

c0

∫

R

u2 dx
)

= –3ε
(
E(u) – E(u0)

)
– 3εE(u0) + ε

(∫

R

1
2

u2
x dx +

1
2

c0

∫

R

u2 dx
)

= –3εδE0 – 3εE(u0) + ε

(∫

R

1
2

u2
x dx +

1
2

c0

∫

R

u2 dx
)

= –3εδE0 – 3εC + ε

(∫

R

1
2

u2
x dx +

1
2

c0

∫

R

u2 dx
)

. (2.44)

Moreover, multiplying equation (1.1) by uxx, one has

1
2

d
dt

‖ux‖L2(R) = –ε‖ux‖L2 . (2.45)

Due to decaying estimates about ‖u‖L2 and ‖ux‖L2 given in (1.10) and (2.45), one can de-
duce from (2.44) that for 0 ≤ t ≤ T = O( 1

ετ )

δE0 ≤ e–3εtδE0(0) + C
(
1 – e–3εt)
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≤ e–3εtδE0(0) + C
(
1 – e–3ε1–τ )

. (2.46)

At the same time, we estimate (2.43) as follows. Note that, for δ∗ sufficiently small,

∥
∥e–εtuc(t) – uc0

∥
∥

H1 =
∥
∥e–εtuc(t) – e–εtuc0 + e–εtuc0 – uc0

∥
∥

H1

≤ C
(∣
∣c(t) – c0

∣
∣ +

∣
∣e–εt – 1

∣
∣
)
. (2.47)

Then, for some k1 > 0,

∫ ∞

–∞
1
2

(∂yz)2 +
1
2

c0z2 dy ≤ k1‖v‖2
H1 + C

(∣
∣c(t) – c0

∣
∣2 +

∣
∣e–εt – 1

∣
∣2). (2.48)

Since e–ayuc0 (y) is bounded in y, we may estimate

∫ ∞

–∞
uc0 (y)z2 dy ≤ sup

y

∣
∣e–ayuc0 (y)

∣
∣‖z‖L2

∥
∥eayz

∥
∥

L2

≤ C
(∣
∣c(t) – c0

∣
∣ +

∣
∣e–εt – 1

∣
∣ + ‖v‖L2

)(∣
∣c(t) – c0

∣
∣ +

∣
∣e–εt – 1

∣
∣ + ‖w‖L2

)

≤ 1
4

k1‖v‖2
L2 + C

[∣
∣c(t) – c0

∣
∣2 + ‖w‖2

L2 +
∣
∣e–εt – 1

∣
∣2], (2.49)

where we have used the estimate ab ≤ δa2 + C(δ)b2 for a suitably small δ. Finally, since
‖z‖H1 ≤ C(|c(t) – c0| + ‖v‖H1 + |1 – e–εt|) ≤ C(δ∗ + |1 – e–εt|), we have

∫ ∞

–∞
1
6

z3 dy ≤ C‖z‖3
H1 ≤ C

(
δ∗ +

∣
∣1 – e–εt∣∣

)(∣
∣c(t) – c0

∣
∣2 + ‖v‖2

H1 +
∣
∣e–εt – 1

∣
∣2)

≤ 1
4

k1‖v‖2
L2 + C

[∣
∣c(t) – c0

∣
∣2 +

∣
∣e–εt – 1

∣
∣2]. (2.50)

Hence, if δ∗ is sufficiently small, (2.43) with (2.48), (2.49), and (2.50) yields

1
2

k1‖v‖2
H1 ≤ δE0 + C

[∣
∣c(t) – c0

∣
∣2 +

∣
∣e–εt – 1

∣
∣2]. (2.51)

Due to (2.35) and (2.46), we know that

‖v‖H1 ≤ C
(√

δE0 +
∣
∣c(t) – c0

∣
∣ +

∣
∣e–εt – 1

∣
∣
)

≤ C‖v0‖H1 + Cε1–τ +
∣
∣c(t) – c0

∣
∣

≤ C1ε + C2ε
1–τ + C3ε

1–2τ

≤ Cε1–2τ . (2.52)

This completes the proof of Proposition 2.1, which implies the conclusions of Theo-
rem 1.1. �

3 The long-time behavior stability
3.1 A new decomposition of the solution
Note that, in the long-time stability case, the expression (2.15): A(t) = e–εtI + O(|c(t) – c0|+
‖v‖L2 ) may not be reversible as t → +∞, which is derived by setting the form of solution
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(2.1). Hence, we subtly analyze the following new form of the solution

u(x, t) = e–εt[uc(t)(y) + v(y, t)
]
, (3.1)

where

y = y(x, t) = x –
∫ t

0
c(s) ds + γ (t) (3.2)

and uc(t)(y) belongs to the family of traveling waves with c(t) = c0e–βt(0 < β ≤ 1).
Substituting (3.1) into (1.1), we similarly derive evolution equations for γ (t), c(t), and

v(y, t) as follows:

0 = ∂tu + ∂3
x u + ∂x

(
1
2

u2
)

+ εu

= e–εt[∂t +
(
γ̇ – c(t)

)
∂y + ∂3

y
](

uc(t)(y) + v
)

– εe–εt(uc(t)(y) + v(y, t)
)

+ ∂y

[
1
2

e–2εt(uc(t)(y) + v(y, t)
)2

]

+ εe–εt(uc(t)(y) + v(y, t)
)

= e–εt(∂t +
(
γ̇ – c(t)

)
∂y + ∂3

y
)
v + e–εt(∂t +

(
γ̇ – c(t)

)
∂y + ∂3

y
)
uc(t)(y)

+ ∂y

[
1
2

e–2εt(uc(t)(y) + v(y, t)
)2

]

= e–εt(∂t +
(
γ̇ – c(t)

)
∂y + ∂3

y
)
v + e–εt((γ̇ – c(t)

)
∂y

)
uc(t)(y)

+ e–εt(∂tuc(t)(y) + ∂3
y uc(t)(y)

)
+ ∂y

[
1
2

e–2εt(uc(t)(y) + v(y, t)
)2

]

= e–εt(∂t +
(
γ̇ – c(t)

)
∂y + ∂3

y
)
v + e–εt((γ̇ – c(t)

)
∂y

)
uc(t)(y)

+ e–εt∂y
(
–c(t)uc(t)(y) + ∂2

y uc(t)(y)
)

+ ∂y

[
1
2

e–2εt(uc(t)(y) + v(y, t)
)2

]

= e–εt(∂t +
(
γ̇ – c(t)

)
∂y + ∂3

y
)
v + e–εt((γ̇ – c(t)

)
∂y

)
uc(t)(y)

+ e–εt
(

–
1
2
∂yu2

c(t)(y)
)

+ ∂y

[
1
2

e–2εt(uc(t)(y) + v(y, t)
)2

]

= e–εt(∂t +
(
γ̇ – c(t)

)
∂y + ∂3

y
)
v + e–εt

{

γ̇ ∂yuc(t)(y) +
∂u
∂c

ċ
}

+ e–εt
(

–
1
2
∂yu2

c(t)(y)
)

+ ∂y

[
1
2

e–2εtu2
c(t)(y) + e–2εtuc(t)(y)v(y, t) +

1
2

e–2εtv2(y, t)
]

= e–εt(∂t +
(
γ̇ – c(t)

)
∂y + ∂3

y
)
v + e–εt

{

γ̇ ∂yuc(t)(y) +
∂u
∂c

ċ
}

+ ∂y

[
1
2
(
e–2εt – e–εt)u2

c(t)(y) + e–2εtuc(t)(y)v(y, t) +
1
2

e–2εtv2(y, t)
]

= e–εt(∂t +
(
γ̇ – c(t)

)
∂y + ∂3

y
)
v + e–εt∂y(uc(t)v) + e–εt

{

γ̇ ∂yuc(t)(y) +
∂u
∂c

ċ
}

+ ∂y

[
1
2
(
e–2εt – e–εt)u2

c(t)(y) + e–2εtuc(t)(y)v(y, t) +
1
2

e–2εtv2(y, t)
]

– e–εt∂y(uc(t)v)
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= e–εt(∂t +
(
γ̇ – c(t)

)
∂y + ∂3

y
)
v + e–εt∂y(uc(t)v) + e–εt

{

γ̇ ∂yuc(t)(y) +
∂u
∂c

ċ
}

+ ∂y

[
1
2
(
e–2εt – e–εt)u2

c(t)(y) + e–2εtuc(t)(y)v(y, t)

+
1
2

e–2εtv2(y, t) – e–εt(uc(t)v)
]

. (3.3)

Hence,

e–εt∂tv = e–εt∂y
[
–∂2

y + c(t) – uc(t)
]
v – e–εt

[

γ̇ ∂yu + ċ
∂u
∂c

]

– e–εt∂y[γ̇ v]

– ∂y

[
1
2
(
e–2εt – e–εt)u2

c(t)(y) + e–2εtuc(t)(y)v(y, t)

+
1
2

e–2εtv2(y, t) – e–εt(uc(t)v)
]

. (3.4)

Therefore,

∂tv = ∂y
[
–∂2

y + c(t) – uc(t)
]
v –

[

γ̇ ∂yu + ċ
∂u
∂c

]

– ∂y[γ̇ v]

– eεt∂y

[
1
2
(
e–2εt – e–εt)u2

c(t)(y) + e–2εtuc(t)(y)v(y, t)

+
1
2

e–2εtv2(y, t) – e–εt(uc(t)v)
]

. (3.5)

Since here the speeds c(t) of the traveling wave will decay to zero, the exponential weight
a(<

√
c(t)
3 ) will also decay. On the other hand, due to the fifth item in Remark 1.1, we can-

not initially set the exponential weight a = 0 in H1
a . Otherwise, it may follow more than a

2-dimensional generalized kernel. Hence, in contrast to the long-time stability case by set-
ting (2.3) to prove Theorem 1.1, we need to set w(y, t) = ea(t)yv(y, t), Aa(t) = ea(t)y∂yLc(t)e–a(t)y

and Lc(t) = –∂2
y + c(t) – uc(t). Then, we deduce that

∂tw =
[

Aa(t) +
da
dt

]

w + F, (3.6)

where, for simplicity, writing a = a(t) if there is no risk of confusion,

F = –eay(ċ∂c + γ̇ ∂y)uc(t) – γ̇ eay∂ye–ayw + F ,

F = –eεteay∂y

[
1
2
(
e–2εt – e–εt)u2

c(t)

]

– eεteay∂y

[
(
e–2εt – e–εt)uc(t)v +

1
2

e–2εtv2
]

. (3.7)

Meanwhile, (2.4) implies that this equation is initially justified in C([0, t], H–3), but also
holds in C([0, t], L2) and moreover is pointwise.

As in the long-time behavior case above, we wish to impose the similar projections P, Q
given in Proposition A.2

w(y, t) = eayv(y, t) ∈ range(Q) = ker(P). (3.8)
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However, here, we should denote them by P(t), Q(t). Indeed, the current assumption of
Proposition A.2: 0 < a(t) <

√
c(t)
3 depends on t, from which it follows that the ξj = ξj(t) and

ηk = ηk(t) depend on t for j, k = 1, 2. This requirement corresponds to the two scalar con-
straints 〈w,ηk(t)〉 = 0, k = 1, 2, cf. (A.14), which also generates the modulation equations,
namely, two coupled first-order differential equations for c(t), γ (t) as t > 0. Hence, the
constraint w ∈ range(Q) in (3.8) now yields the following system of evolution equations
for (w,γ , c):

∂tw =
[

Aa +
da
dt

]

w + QF, PF = 0. (3.9)

Written as an integral equation, the initial value problem for (3.9) becomes:

w(t) = e
∫ t

0 [Aa(s)+ da
dt (s)] dsw(0) +

∫ t

0
e
∫ t

s [Aa(s)+ da
dt (s)] dsQF(s) ds. (3.10)

Then, similarly by (A.14), the condition PF = 0 is equivalent to

0 =
〈
γ̇
[
eay∂yuc(t) + (∂y – a)w

]
+ ċeay∂cuc(t) – F ,ηk

〉
, k = 1, 2. (3.11)

Using the biorthogonality relation 〈ξj,ηk〉 = δjk , we obtain a system of equations for γ (t)
and c(t):

A(t)

(
γ̇

ċ

)

=

(
〈F ,η1〉
〈F ,η2〉

)

(3.12)

and

A(t) =

(
〈eay∂yuc(t),η1〉 + 〈(∂y – a)w, η̃1〉, 〈eay∂cuc(t),η1〉
〈eay∂yuc(t),η2〉 + 〈(∂y – a)w, η̃2〉, 〈eay∂cuc(t),η2〉

)

=

(
〈eay∂yuc(t),η1〉 + 〈eay∂ye–ayw, η̃1〉, 〈eay∂cuc(t),η1〉
〈eay∂yuc(t),η2〉 + 〈eay∂ye–ayw, η̃2〉, 〈eay∂cuc(t),η2〉

)

=

(
〈eay∂yuc(t),η1〉, 〈eay∂cuc(t),η1〉
〈eay∂yuc(t),η2〉, 〈eay∂cuc(t),η2〉

)

+

(
〈eay∂ye–ayw, η̃1〉, 〈eay∂cuc(t),η1〉
〈eay∂ye–ayw, η̃2〉, 〈eay∂cuc(t),η2〉

)

. (3.13)

The matrix A(t) satisfies

A(t) = I + O
(‖v‖L2

)
as ‖v‖L2 → 0. (3.14)

3.2 The long-time behavior
Now, we will estimate the weighted perturbation, w(y, t) = eayv(y, t), in H1, via the integral
equation (3.10), the modulation equation (3.12), and the linear semigroup estimates of
Lemma A.2.

Since ‖v‖L2 decays to zero with respect to t, in the expression (3.14), A(t) has a bounded
inverse as 0 ≤ t < +∞. We may estimate (3.12) to find

|γ̇ | + |ċ| ≤ C‖F‖L2 . (3.15)
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From (3.7), using that eay∂ye–ay = ∂y – a, we obtain the estimates

‖F‖ ≤ C
(|γ̇ |(1 + ‖w‖H1

))
+ |ċ| + ‖F‖L2 ≤ C

(
1 + ‖w‖H1

)‖F‖L2 ,

‖F‖L2 =
∥
∥
∥
∥–eεteay∂y

[
1
2
(
e–2εt – e–εt)u2

c(t)

]

– eεteay∂y

[
(
e–2εt – e–εt)uc(t)v +

1
2

e–2εtv2
]∥
∥
∥
∥

L2

=
∥
∥
∥
∥–eay∂y

[
1
2
(
e–εt – 1

)
u2

c(t)

]

– eay∂y

[
(
e–εt – 1

)
uc(t)v +

1
2

e–εtv2
]∥
∥
∥
∥

L2

≤ 1
2
(
1 – e–εt)∥∥eay∂yu2

c(t)
∥
∥

L2 +
(
1 – e–εt)∥∥eay∂y(uc(t)v)

∥
∥

L2

+
1
2

e–εt∥∥eay∂yv2∥∥
L2 .

(3.16)

Now, we may formally choose b′ with b < b′ < a(c – a2), such that b′, as well as b, sat-
isfies the condition of Lemma A.2. Meanwhile, we should note that in (3.10) the term
e
∫ t

0 [ da
dt (s)] ds

∼ O(1) since a <
√

c
3 = 1√

3 e– β
2 s(β > 0). Hence, one can similarly estimate (3.10)

as follows, for t > 0:

∥
∥w(t)

∥
∥

H1 ≤ Ce–b′t∥∥w(0)
∥
∥

H1 + C
∫ t

0
(t – s)–1/2e–b′(t–s)‖F‖L2 ds

≤ Ce–b′t∥∥w(0)
∥
∥

H1 + C
∫ t

0

{

(t – s)–1/2e–b′(t–s)

×
[

1
2
(
1 – e–εs)∥∥eay∂yu2

c(t)
∥
∥

L2 +
(
1 – e–εs)∥∥eay∂y(uc(t)v)

∥
∥

L2

+
1
2

e–εs∥∥∂yv2∥∥
L2

]}

ds. (3.17)

Now, formally define

Mw,b(t) = sup
0≤s≤t

eb(t)s∥∥w(s)
∥
∥

H1 , (3.18)

where the variable b = b(t) is similarly given in Remark A.1.
Moreover, the following crucial estimates follow from (1.4).

Lemma 3.1 Assume that the solitary waves uc(t)(y) have the traveling speed c(t) = c0e–βt

as 0 ≤ t < +∞. Then,

∥
∥uc(t)(y)

∥
∥

L2 ∼ e– 4
3 βt∥∥uc0 (x, 0)

∥
∥

L2 ,
∥
∥uc(t)(y)

∥
∥

L∞ ∼ e–βt∥∥uc0 (x, 0)
∥
∥

L∞ , (3.19)
∥
∥∂yuc(t)(y)

∥
∥

L∞ ∼ e–βt∥∥∂yuc0 (x, 0)
∥
∥

L∞ .

For simplicity, also writing b = b(t) if there is no risk of confusion, and then multiplying
(3.17) by ebt , we find from (3.19) that, for t > 0,

ebt∥∥w(t)
∥
∥

H1
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≤ Cebte–b′t∥∥w(0)
∥
∥

H1

+ C
∫ t

0
(t – s)–1/2e–b′(t–s)ebt(1 – e–εs)∥∥eay∂yu2

c(t)
∥
∥

L2 ds

+ C
∫ t

0
(t – s)–1/2e–b′(t–s)ebt(1 – e–εs)∥∥eay∂y(uc(t)v)

∥
∥

L2 ds

+ C
∫ t

0
(t – s)–1/2e–b′(t–s)ebte–εs∥∥eay∂yv2∥∥

L2 ds

≤ Ce–(b′–b)t∥∥w(0)
∥
∥

H1

+ C
∫ t

0
(t – s)–1/2e–b′(t–s)ebt(1 – e–εs)∥∥eay∂yu2

c(t)
∥
∥

L2 ds

+ C
∫ t

0
(t – s)–1/2e–b′(t–s)ebt(1 – e–εs)[‖∂yuc(t)‖L∞ + ‖uc(t)‖L∞

]∥
∥w(s)

∥
∥

H1 ds

+ C
∫ t

0
(t – s)–1/2e–b′(t–s)ebte–εs‖v‖L∞

∥
∥w(s)

∥
∥

H1 ds

≤ Ce–(b′–b)t∥∥w(0)
∥
∥

H1

+ C
∫ t

0
(t – s)–1/2e–b′(t–s)ebt(1 – e–εs)e– 3

2 βs ds

+ C
∫ t

0
(t – s)–1/2e–b′(t–s)(1 – e–εs)[‖∂yuc(t)‖L∞ + ‖uc(t)‖L∞

]
ebt∥∥w(s)

∥
∥

H1 ds

+ C
∫ t

0
(t – s)–1/2e–b′(t–s)e–εs‖v‖L∞ebt∥∥w(s)

∥
∥

H1 ds

≤ Ce–(b′–b)t∥∥w(0)
∥
∥

H1

+ C
∫ t

0
(t – s)–1/2e–b′(t–s)ebt(1 – e–εs)e– 3

2 βs ds

+ C
∫ t

0
(t – s)–1/2e–b′(t–s)(1 – e–εs)e–βsebt∥∥w(s)

∥
∥

H1 ds

+ C
∫ t

0
(t – s)–1/2e–b′(t–s)e–εs‖v‖L∞ebt∥∥w(s)

∥
∥

H1 ds

≤ Ce–(b′–b)t∥∥w(0)
∥
∥

H1 + I(ε,β , t) + II(ε,β , t) + III(ε, t). (3.20)

We first deal with the term I . For 0 ≤ t ≤ 1 and 0 < β ≤ 1, one can easily deduce that

I(ε,β , t) =
∫ t

0
(t – s)–1/2e–b′(t–s)ebt(1 – e–εs)e– 3

2 βs ds

≤ Cε

∫ t

0
(t – s)–1/2 ds

= Cε
√

t. (3.21)

On the other hand, for 1 ≤ t < ∞, one has

I(ε,β , t) =
∫ t

0
(t – s)–1/2e–b′(t–s)ebt(1 – e–εs)e– 3

2 βs ds
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=
∫ t

0
(t – s)– 1

2 e–(b′–b)(t–s)ebs(1 – e–εs)e– 3
2 βs ds

=
∫ t

0
(t – s)– 1

2 e–(b′–b)(t–s)e–( 3
2 β–b)s(1 – e–εs)ds

≤ ε

∫ t

0
(t – s)– 1

2 e–(β–b)s ds with t – s = �

= ε

∫ t

0
�– 1

2 e–(β–b)(t–�) d�

= ε

∫ t/2

0
�– 1

2 e–(β–b)(t–�) d� + ε

∫ t

t/2
�– 1

2 e–(β–b)(t–�) d�

≤ ε

∫ t/2

0
�– 1

2 d� · e–(β–b)(t– t
2 ) + ε

(
t
2

)– 1
2
∫ t

t/2
e–(β–b)(t–�) d�

≤ ε

∫ t/2

0
�– 1

2 d� · e–(β–b)(t– t
2 ) + ε

(
t
2

)– 1
2
∫ t

t/2
e–(β–b)(t–�) d�

≤ 2ε

(
t
2

) 1
2 · e–(β–b)(t– t

2 ) + ε

(
t
2

)– 1
2 1
β – b

[
e–(β–b)(t– t

2 ) – 1
]
. (3.22)

Since b(t) → 0 as t → +∞, we can choose any β > 0 satisfying β – b > 0. Hence, one can
deduce from (3.22) that I(ε,β , t) ∼ O( ε

β
√

t ) as 1 ≤ t < +∞.
For the term II(ε,β , t) =

∫ t
0 (t – s)–1/2e–b′(t–s)(1 – e–εs)e–βsebt‖w(s)‖H1 ds, as in (3.21) and

(3.22), we have

II(ε,β , t) =
∫ t

0
(t – s)–1/2e–b′(t–s)(1 – e–εs)e–βsebt∥∥w(s)

∥
∥

H1 ds

≤
∫ t

0
(t – s)–1/2e–b′(t–s)(1 – e–εs)e–βseb(t–s) ds · sup

s∈[0,t]
ebs∥∥w(s)

∥
∥

H1

≤
∫ t

0
(t – s)–1/2e–(b–b′)(t–s)(1 – e–εs)e–βs ds · sup

s∈[0,t]
ebs∥∥w(s)

∥
∥

H1

≤
∫ t

0
(t – s)–1/2(1 – e–εs)e–βs ds · sup

s∈[0,t]
ebs∥∥w(s)

∥
∥

H1

≤ Cε · sup
s∈[0,t]

ebs∥∥w(s)
∥
∥

H1 . (3.23)

For the term III(ε, t) =
∫ t

0 (t – s)–1/2e–b′(t–s)e–εs‖v‖L∞ebt‖w(s)‖H1 ds,

III(ε, t) =
∫ t

0
(t – s)–1/2e–b′(t–s)e–εs‖v‖L∞ebt∥∥w(s)

∥
∥

H1 ds

≤
∫ t

0
(t – s)–1/2e–b′(t–s)e–εs‖v‖L∞eb(t–s)ebs∥∥w(s)

∥
∥

H1 ds

≤
∫ t

0
(t – s)–1/2e–b′(t–s)e–εs‖v‖L∞eb(t–s) ds sup

s∈[0,t]
ebs∥∥w(s)

∥
∥

H1

≤
∫ t

0
(t – s)–1/2e–(b′–b)(t–s)e–εs‖v‖L∞ ds sup

s∈[0,t]
ebs∥∥w(s)

∥
∥

H1
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≤
∫ t

0
(t – s)–1/2e–(b′–b)(t–s)e–εs‖v‖L∞ ds sup

s∈[0,t]
ebs∥∥w(s)

∥
∥

H1 with t – s = �

≤
∫ t

0
�–1/2e–(b′–b)�e–ε(t–�)‖v‖L∞ d� sup

s∈[0,t]
ebs∥∥w(s)

∥
∥

H1

≤ C‖v‖L∞ sup
s∈[0,t]

ebs∥∥w(s)
∥
∥

H1

≤ Cε sup
s∈[0,t]

ebs∥∥w(s)
∥
∥

H1 . (3.24)

In sum, (1.19) and (1.20) follows from the inequalities (3.20), (3.21), (3.22), (3.23), (3.24),
and the fact that H1

a = H1 if a = 0. The proof of Theorem 1.2 is finished.

Appendix
For the reader’s convenience, we list out the spectral property and developing analysis
of the operator A0 = ∂yLc given in (1.17) in the space L2 and L2

a. The interested reader is
referred to References [9, 25, 26].

A.1 Spectral theory in L2 and L2
a

The spectrum of the operator A0 = ∂yLc on L2 consists of a discrete spectrum (isolated
eigenvalues of finite multiplicity) and an essential spectrum (everything else in the spec-
trum).

Lemma A.1 (Theorem 2.1 Ref. [9]) A0 has no isolated eigenvalues whose spectrum coin-
cides with the imaginary axis.

In fact, if λ is an eigenvalue of A0 with L2-eigenfunction Y (y), then

A0Y (y) = ∂yLcY (y) = ∂y
[
–∂2

y + c – uc(y)
]
Y (y) = λY (y). (A.1)

Since the solitary wave uc(y) → 0 at an exponential rate as |y| → ∞ (see (1.4)), it follows
that the constant coefficient equation is

∂y
(
–∂2

y + c
)
Y (y) = λY (y). (A.2)

Hence, the essential spectrum of A0 = ∂yLc is the imaginary axis and the corresponding
eigenvalue function Y (y) exponentially decays to zero as y → ∞.

The following functions are also described in [9], in relation to the isolated eigenvalue
λ = 0 of A0 in the space L2

a.

ξ̃1 = ∂yuc, ξ̃2 = ∂cuc, (A.3)

η̃1 = θ1

∫ y

–∞
∂cuc dx + θ2uc, η̃2 = θ3uc. (A.4)
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Here,

θ1 =
(

d
dc

I[uc]
)–1

,

θ2 =
1
2

(
d
dc

∫ +∞

–∞
uc dx

)2( d
dc

I[uc]
)–2

and θ3 = –θ1.

(A.5)

The functions ξ̃1, ξ̃2, and η̃2 decay exponentially as |y| → ∞, at the rate e–
√

c|y|. The func-
tion η̃1 decays like e

√
cy as y → –∞, but is merely bounded as y → +∞. In addition, these

functions have the following properties:

∂yLcξ̃1 = 0, ∂yLcξ̃2 = –ξ̃1,

Lc∂yη̃1 = η̃2, Lc∂yη̃2 = 0,
(A.6)

and

〈η̃j, ξ̃k〉 = δjk , j, k = 1, 2, (A.7)

where 〈u, v〉 =
∫ +∞

–∞ uv̄ dx.
Making a change of variables,

W (y) = eayY (y), (A.8)

the eigenvalue equation (A.1) is transformed into the equation

AaW = eay∂yLce–ayW = (∂y – a)
[
–(∂y – a)2 + c – uc

]
W = λW . (A.9)

Thus, the spectral theory of A0 = ∂yLc in L2
a is equivalent to the spectral theory of Aa in

L2. Since uc(y) and ∂yuc(y) decay to zero at an exponential rate as |y| → ∞, the essential
spectrum of Aa also agrees with the spectrum of the constant coefficient operator

A0
a = (∂y – a)

[
–(∂y – a)2 + c

]
. (A.10)

Hence,

Proposition A.1 (Proposition 2.5 Ref. [9]) For 0 < a <
√

c/3, the essential spectrum of Aa

is a curve parametrized by

τ �→ ϕ(iτ – a) = (iτ – a)
[
–(iτ – a)2 + c

]
(A.11)

= iτ 3 – 3aτ 2 +
(
c – 3a2)iτ – a

(
c – a2),

where lies in the open left half-plane.

Define

ker(A) =
{

w ∈ dom(A)|Aw = 0 in L2}, kerg(A) =
∞⋃

k=1

ker
(
Ak). (A.12)
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For the generalized eigenspaces of Aa and its adjoint A∗
a = –e–ayLc∂yeay, one has:

Proposition A.2 (Proposition 2.8 Ref. [9]) Assume dI[uc]
dc �= 0 and 0 < a <

√
c/3. Then,

λ = 0 is the only eigenvalue for Aa with algebraic multiplicity two, and

kerg(Aa) = ker
(
A2

a
)

= span{ξ1, ξ2}, kerg
(
A∗

a
)

= ker
(
A∗2

a
)

= span{η1,η2}, (A.13)

where ξj = eayξ̃j and ηj = e–ayη̃j for j = 1, 2, i.e.,

ξ1 = eay∂yuc, ξ2 = eay∂cuc, (A.14)

η1 = e–ay
(

θ1

∫ y

–∞
∂cuc dx + θ2uc

)

, η2 = e–ayθ3uc, (A.15)

where θ1, θ2, and θ3 are as in (A.5). In addition, the ξj and ηk are biorthogonal, with 〈ξj,ηk〉 =
δjk for j, k = 1, 2. Thus, the spectral projection P for Aa, associated with the eigenvalue λ = 0,
and the complementary spectral projection Q, are given by

Pw =
2∑

k=1

〈w,ηk〉ξk , Qw = (I – P)w = w –
2∑

k=1

〈w,ηk〉ξk , (A.16)

for w ∈ L2. These projections satisfy PAaw = AaPw, QAaw = AaQw, for w ∈ dom Aa.

A.2 Decay of smoothing estimates
After the substitution

w(y, t) = eayv(y, t), a > 0, (A.17)

the linearized undamped evolution equation (1.1) becomes

∂tw = Aaw with Aa = eay∂yLce–ay. (A.18)

Denote Aa = A0
a + (∂y – a)uc with

A0
a = (∂y – a)

(
–(∂y – a)2 + c

)
= –∂3

y + 3a∂2
y +

(
c – 3a2)∂y – a

(
c – a2). (A.19)

Since uc exponentially decays to zero as |y| → ∞, the coefficients in (A.18) converge to
those of the free evolution equation

∂tw = A0
aw. (A.20)

Using the Fourier transform, one obtains:

Proposition A.3 (Proposition 4.1 Ref. [9]) For any integer n ≥ 0, and 0 < a <
√

c/3, there
exists C = C(n, a) such that, for any w ∈ L2 and for all t > 0,

∥
∥∂n

y eA0
atw

∥
∥

L2 ≤ Ct–n/2e–a(c–a2)t‖w‖L2 . (A.21)
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For the semigroup eAat , by restraint on the invariant subspace range Q (see (A.16)) com-
plementary to the generalized kernel of Aa, a decay and smoothing estimate is also valid:

Lemma A.2 (Theorem 4.2 Ref. [9]) Let the assumptions of Proposition A.2 hold. Then, Aa

is the generator of a C0 semigroup on Hs for any real s, and, for any b > 0 such that the
L2-spectrum σ (Aa) ⊂ {λ|Reλ < –b} ∪ {0}, there exists C such that for all w ∈ L2 and t > 0,

∥
∥eAatQw

∥
∥

H1 ≤ Ct–1/2e–bt‖w‖L2 . (A.22)

Remark A.1 The smoothing-decay estimate (A.22) will be used in the proofs of Theo-
rem 1.1 and Theorem 1.2. Also, Lemma A.2 implies that for 0 < a <

√
c/3, Aa has no eigen-

values in the open left half-plane. Therefore, –b, the exponential rate of local energy decay,
can be taken to satisfy –a(c – a2) < –b ≤ 0.
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