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1 Introduction

It is known that the difference equations involving quantum calculus play an important
role in modeling many problems in engineering, physics, and mathematics, for further in-
formation the reader can address the following works [1-3]. In recent years, differential
equations with fractional quantum calculus have been extensively studied by several scien-
tific researchers, see for instance [4—7]. In this sense, several interesting topics concern-
ing research for differential equations involving fractional quantum calculus have been
devoted to the existence and the Ulam—Hyers stability of the solutions. Recently, many
interesting results concerning the existence and Ulam-type stability of solutions for dif-
ferential equations with fractional g-calculus have been obtained, see [8—11] and the ref-
erences therein. In [12, 13], the existence and uniqueness of solutions were investigated
for sequential differential equations with g-fractional calculus.

In the 1960s, British Railways wanted to make the electric locomotive faster and to de-
velop a new type of electric locomotive. The goal was to make the trains faster. An im-
portant component for the new high-speed electric locomotive was the pantograph. The
purpose of the pantograph is to collect current from an overhead wire, which is necessary
for the locomotive to be able to move; see Fig. 1.
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Figure 1 Physical application: Collection pantograph system

To make sure that the electric locomotive can move smoothly with high speed, it is
necessary that there are no interruptions in the current-collection system. Therefore, the
pantograph should stay in contact with the overhead wire for the whole time, particularly
when the pantograph passes the supports of the overhead wire, which is a critical passage.
Therefore, Ockendon and Tayler studied the motion of the pantograph head on an electric
locomotive in [14] and developed a special delay differential equation of the form

@' (p) = 19(p) + 20(1p),

for p > 0, where y; is a real constant and 0 < A < 1 for A € R. In [15] the authors described
different classes of exact solutions to nonlinear pantograph-type reaction—diffusion equa-
tions of the form

?p(00) = [@)@y], + 5(0, D),

where @ = @(y, p) and @ = @(py,qp), p,q > 0 such that p and g cannot be equal to 1 at the
same time.

The authors in [16] considered the following initial value problem for the fractional pan-
tograph equation in quantum form

“Dio(p) = 8o, @(p), 9(1p)), p €(0,1),
(p(l)(o) = @Qo,
where 0,1 € (0,1), g: [0,6] x R x R — R is a continuous function. Abdo et al. in [17]

investigated two AB-Caputo-type implicit fractional differential equations with nonlinear

integral conditions described by

ABCDE o(p) = g(p, 9(p),*ECDY), 6 €(0,1],
0@ - ¢'@ = [ uln, em)dn,
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and

ABCDE (p) = g(p, @(p), A DE,), 6 €(1,2],
e@=0,  o(T)= [ un, ¢(n)dn,

for p € [a, T], where AB¢DY, is the AB-Caputo-type fractional differential of order 6, while
g€ C([a, T] x R?) and u € C([a, T] x R). In 2021, Ali et al. studied the given class of frac-

tional order of pantograph differential equations under multipoint boundary conditions

D 9(p) = g(p, 9(p), @(1p)),  p €[0,1],
¢9(0) =0, i=0,1,2,...,m-2,

e(1) = Zﬁl Yoi (Y1) ;> 0,v0 €R,

where Dg+ represents the Riemann-Liouville derivative with arbitrary order (m — 1, m],
m > 2and 0 < yo;, Y1; €< 1 with Zfﬁ;z YoiYii<landg:[0,1] x R x R — R is a continuous
function [18]. Also, Alzabut et al. investigated the following nonlinear discrete fractional

pantograph equation

“Dio(p)=glp+ B, oo +B),e(p+8), peNigpe(01],
¢(0) = p(o),

where “DU is the Caputo fractional derivative, Nig={p,p+Lp+2,...},A€(0,1),p:
C([0,00),C) - R, and g: [0,8] x R x R — R is a Lipschitz continuous function with
respect to @ [19]. Derbazi et al. determined the existence criteria of extremal solutions
for the following 6-Caputo-type fractional differential equations in a Caputo sense with

nonlinear boundary conditions

D2 9(p) = g(p, 9(p)), p €la,b],
u(e(a), 9(b) =0,

where CD;’f is the 6-fractional operator of order 0 < v < 1 in the Caputo sense and this
was investigated and g € C([a, b] x R), u € C(R?) [20]. For more information related to
this topics see [21-27].

Motivated by the aforementioned works, we investigated the existence and Ulam-
stability analysis for the following class of fractional pantograph g-difference equation

(FPg—DE) with nonlocal boundary conditions

“Dio(p) = g(p, 9(p), @(1p)), 0 €(m-1,m,m>2,
9?(0) =0, i=0,1,2,...,m-2, 1)

) = X5 volZ o(yi) - I @(v2)), 9 >0,vo €R,
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where CDEI') , I;') are the Caputo fractional g-derivative and Riemann-Liouville fractional
q-integral, respectively, g € (0,1), p € [0,8], m € N, A € (0,1),

0<'Y2,'<'Y1l‘<'-'<'Y2k<'Y1k<8, i=1,2,...,k,
and g:[0,8] x R x R — R is a given continuous function.

In Sect. 2, we recall some essential definitions of fractional quantum calculus. Section 3
contains our main results in this work, while an example is presented to support the va-
lidity of our obtained results. An application, together with some needed algorithms for

the problems, are given in Sect. 4. In Sect. 5, some conclusions are presented.

2 Preliminary notions
We recall some basic definitions and necessary lemmas related to fractional g-calculus
and nonlinear analysis that will be used in the following.

Let ¥ = [0,8], and consider the Banach spaces C(X,R) and L}(Z,R) of Lebesgue inte-
grable functions ¢ : ¥ — R with the norm ||@|| = sup{|@(p)|: p € X}, and

ol = /Z (o) do,

respectively. Let g € (0,1). Then, the g-number is defined by

l—qb

1-¢g

[b], = , beR.

The g-analog of the power (p — )" is

1 sz)

(P - r)(Wl) = ’ m—1 .
[l w-rg), meNpreR

The g-gamma function is defined by [28]

1-g®"

g PERO-L=2. .

Iy(b) =
Note that the g-gamma function satisfies I'y(1 + b) = [b],I";(b). The 1st-g-derivative of a
function ¢ : ] — R is given by

Dyo)p) = LE=TI, 520, (D)0 = lim(Dye)(o),

and for the higher orders, it becomes ng)(p) =o(p), D;”(p(,o) = Dqu”"l(p(p), for p e %,
me{l,2,...}.Set X, := {pg™ : n € N}JU{0} [28]. The 1st-g-integral of a function ¢ : ¥, —
R is defined by

p oo
(T,0)(p) = /O (@) dym =3 o1l - "0 (pd"),

n=0
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provided that the series absolutely converges [28]. We note that (D,Z,®)(p) = ¢(p), while
@ is continuous at 0, then (Z,D,¢)(p) = @(p) — ©(0). The ¥ th Riemann-Liouville frac-
tional g-integral of a function ¢ : ¥ — R is defined by [29], (Ig(p)(p) = @(p) and

P _ (9-1)
13<P(p)=/0 %@(w)dqw, p € [0,00).

The 6th Caputo fractional g-derivative of a function ¢ : ¥ — R is given by [30],

(“D3o)(p)=9(p) & Dlo(p)=T""DP (o), pex.
For more details about the fractional g-operators, see [22].

Lemma 2.1 ([22, 28]) Let 61,0, > 0. Then, we have the following relations
(i) Zg' 7 o(p) = I3 @(p);
(i) “DFZg @(p) = @(p);

(iii) Zg's” = FZ{’S;’;L)SW", p € (~1,00),5>0.

Lemma 2.2 ([30]) Let 6 € (m — 1,m). Then, the following equality holds

m-1

ZDig(p) = @(p) = Y
j=0

6
TS R

In view of Lemma 2.2, the general series solution of the following equation Ig CDgcp(,o) =0
is

(P(,O) =8 +51p+ §2p2 PR ;‘m—lpm_l, é‘/’ ER,&m=[0]+1.
Hence, we have
I‘?C,DZ(P(:O) =@(p)+L+iip+ g‘zpz I §m—1,0m_1.

Theorem 2.3 (Banach fixed-point theorem [31]) Let Q # @} be a closed subset of a Banach
space (X, ||- ). If Z : Q@ — Q is a contraction mapping, then ® admits a unique fixed point.

Theorem 2.4 (Schaefer fixed-point theorem [31]) Let Z be a continuous compact opera-
tor of a Banach space X into itself, such that the set

{peX:p=ArZpforsome0 <X <1},
is bounded. Then, Z has a fixed point.
3 Existence and uniqueness results
In what follows, we apply some fixed-point theorems to demonstrate the existence and

uniqueness results for problem (1). To obtain the existence results for problem (1), the
following auxiliary lemma is needed.



Lachouri et al. Boundary Value Problems (2023) 2023:2 Page 6 of 20

Lemma 3.1 For any w € C(X,R), the FPq—DE with nonlocal boundary conditions

“Dio(p) = w(p), 0em—-1,ml,m=>2,
0?(0) =0, i=0,1,2,...,m—2, )
) = XX voal@) o(y1) - I @(y2)), 9 >0,v0 €R,

forqe(0,1), p€[0,8], meN,

O0<yau<yu<---<Yu<ywu<s i=12..,k

has a unique solution given by

m-1 k
@(p) =T w(p) + ,OA [ZYOi(Igi+9w(yli) -0 w(ya)) —Igw(é)], 3
i=1
where
Yoi q(m) z9+m—1 ;+m—1 m—-1
A= Z (m+l9) Y 4 amt A0, (4)

Proof Assume @ satisfies problem (1). First, we write this equation as
0C 0 _ 78
Z,"D,9(p) = L,w(p).
In view of Lemma 2.2, we have
@(p) =Tyw(p) = Lo —G1p = £ap” =+ = Lmap™ ®)

Applying the BCs, we obtain

By substituting (6) into (5), we obtain

©(p) =T (p) = L1 p™ 7)
Applying the integrator operator Ig " to both sides of equation (7), we obtain

L)ip(p) = L) w(p) = L L) p™

Using the condition

k
@(8) = ZYOi(Igi(P(Yli) - I o(ya),

i=1
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we have

K
I3 () = §ma8™ ' = ZYO;‘ [Z;”gl e(v1) - L o (ya)

i=1

Fq(m) 9+m-1 Yj+m-1
_ KA i -y . 8
+ é-m 1 Fq(m - 191‘) (S’YZL ylt ) ( )
By solving (8), we find that

1 k

Gm1 = & (I;’w(S) > valZV olvi) - I};"*%(Vzi)]). ©)
i=1

By inserting (9) into (7), we obtain (3). O

To obtain our findings, we need the following assumptions.
(Asl) There is a constant /5 > 0 such that

l9(0, @, 9) — 30, @, ®)| < lg(lo — D1 + 0 - §I),

for p € ¥ and @, @ € R.
(As2) There exist constants D, hg), h(gz) > 0 such that

(0, ©(p), ©(1p))| <D +h{|@(p)] + h |@(1p)],  V(p,9) € T x R.

3.1 Existence and uniqueness results via Banach'’s fixed-point theorem
Theorem 3.2 Let (Asl) be valid, then FPq—DE (1) has a unique mild solution on X, when-
ever

kKly <1, (10)
where

2(8% + §m+0-1) k 4§m+0i+6-1
ST Z IYoil -
0 +1) Y AT, (9 +6 +1)

*

(11)

Proof We switch problem (1) into a fixed-point problem and we consider the operator
Z:C(Z,R) > C(Z,R) as

(Z)(p) =Tig(p, 0(p), 9(p))

m-1

k
+ pA |:ZV0L'(I;;"+OE(VU, (P(Yu), (p()\’yh))

i=1

—Z)* g(yai @(var), <P(M/2i))):|

m-1

E—T30(5,0(0), 9(:9)). (12)
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Clearly, the solution of (1) is as a fixed point of the operator Z. By (Asl), for any @, ¢ €
C(X,R) and p € X, we obtain

[(Z9)(p) - (Z28)(p)|

<T3la (0, @(0), 9(10)) - 8(0: ®(p), $(10)) |

m-1

k
+ /0|A| |:Z Yol (Z* |9 (Vi @ (Y1), @ (Wy11))
i=1

= 9(v1 @(v12), @Gov10)) | + Z)% |6 (vair @ (vai), @(Av21))

— 8(v20 ®(v2), ®(y20)) )

+1;]9(8, 0(8), @(18)) - 9(5, B (9), @(M))@

pelg
A R T L
< rq(0+1)(”(p Pl +llo-oll)
N 8" Uyl - @l + o —@l)
[Al
k 0;+6 9;+0 )
Yii Yo 8
X i + +
[21: o |<Fq(ﬁi +0+1) T (0+6+ 1)) T,(0 + 1)}
259 k 46m+§i+9—1
T Z Yoil =77
Ty0+1) " =" AT, (0 +6 + 1)

25m+9—1
— I -@|.
+ CESY glle - @l

Thus,
[(Zo) - (Z0)| <Kl - 1.

From (10), Z is a contraction. As an outcome of Banach’s FPT, Z has a unique fixed point

that is a unique mild solution of (1) on X. O

3.2 Existence results via Schaefer’s fixed-point theorem
Theorem 3.3 Suppose that the hypothesis (As2) is satisfied. Then, FPq—DE (1) has at least

one solution on X, whenever N; < 1, where

_ 3y +hg) (g +h?)st o 2yl Zy

N; = +
LT T,0+) Al Ty (0 +0 +1)

Smo-1 h(l) h(2)

M (13)
[A|T4(6 +1)

Proof We shall use Schaefer’s fixed-point theorem to demonstrate that Z defined in (12)

has a fixed point. The proof will be given in the following steps.
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Step 1. Z is continuous. Let a sequence @, — @ in C(X,R). Since g is continuous, we

have

|a(0, @a(p), @u(10)) = 8(p5 ©(p), @(hp))| = 0,

as n — 00. Thus, for any p € ¥, we write
(Zo)(p) - (Z0)(p)]

? (p—qw)®V
< /0 oy o @) 0a0)

—Q(W»@(W),@(Aar)ﬂdqw

Vi (yi - qw)?Y
'/ T T,0

|A| l9(=, 0u(@), 0, (02))

—Q(W»@(W),@(Aar)ﬂdqw

Y (yq — qZU)
'/ T 1,0

—g(w,@(W),(P()»w))|dqw

pm—l § (5 _qw_)(ﬁ—l)
+
Al Jo ['4(0)

l0(=, (), @ (0)
-9(@, (@), p(h))| dyem.
Hence, we obtain
|(Zow) —(Z)| >0 asn— cc.

Consequently, Z is continuous.

Step 2. The image of a bounded set under Z is bounded in C(Z, R). Indeed, it is enough
to show that for any w > 0, there exists a positive constant ¢ such that for each

0eQ,={peCZR): o] <o}
we have | Z¢|| < ¢. In fact, we have

[(Ze)(0)| = Z0]a(0, (p), @(hp))]

m

|A| |:Z h/()l Iﬂﬁa |g(YIzr ( ): (P()w))|

+ 20 |9 (v ©(vai), @ (hy2) |)i|

219(5, 0(8), 0(2.8))|

IAI
_ 8D+ (h<;> +h?)w)
- ry0+1)
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(D + () + hP)w)s" ! &

|A]

2lyil 87+
L (0:+6+1)

i=1
871D + (hY +h§)w)
[AIT,(6 +1)

’

and consequently

- 8(D + hyw)
Z < e
|| cpn_( OPST

(D + (hg) + h§)w)s™ T I~ 2fyqifo*?

[A| — Fy(0:+6+1)

14

8" (D +hgw) |
[AIT,(6 +1) T

where hy =h{" + h{?.
Step 3. Z sends bounded sets of C (2, R) into equicontinuous sets. For p1, 02 € I, p1 < o2
and for @ € ,, we have

[(Z0)(p2) = (Z0)(p1)]

/,}2 (02~ q)* ™"
0 Fq(g)

<

lo(m, (@), p(h0))| g

P (py — qoo) D
_/0 Tb(m,q}(m),(p(kw))!dqw

m-1

Pyt = pl
|A]

+

)

1i _ (0 1
x ZIYOZI/ %Ig(w,@(w),@(kw))ldqw
q

oyt = pit!

(5 - qw)(g_l) |
[A]

0 Fq(e)

As p; — pa, we obtain

(Z0)(p2) - (Z0)(p1)| = 0.

Consequently, Z(Q,) is equicontinuous. From the previous steps, together with the
Arzelé—Ascoli theorem, we deduce that Z is completely continuous.
Step 4. A priori bounds. Now, it remains to prove that the set

U={peC(Z,R):¢= 0Z @, for some ¢ € (0, 1},
is bounded. Let @ € U and for each p € ¥, we have

l0(0)| =02 (¢(0))]
<Z'a(p, @(p), 9(10))|
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m—1 k
* p|T| [Z Yoil (277 |9 (v @(v1), @(Av1)) |
i=1

+ 207 |9 (vai 0(v2i), @ (1v21) I)]

pm—l

Al
_ 8"+ (hg’ +h)lel)
- r,0+1)

+

Z7|9(8, (8), @(18))|

D + (b’ + h?) [ pl)sm! &

[A]

2ly;(87+
L (0 +6+1)

i=1

801D + (b + hY) [ ol))

|AIT,(6 +1) (14

. . . N
From inequality (14), we obtain [|@|| < m, where

59D D(Sm—l k 2|.Y0i|8195+9 8m+6—1D

TTO+D Al AT, 6+1)  [ATG+D)

N, (15)

This means that the set I/ is bounded. We infer from Schaefer’s fixed-point theorem that
Z possesses at least one fixed point. Consequently, there is at least one solution to the
problem (1). a

4 Ulam-Hyers stability
In this section, we discuss two types of Ulam stability for solutions of problem (1).

Theorem 4.1 Suppose that the hypothesis (Asl) and condition (10) are satisfied. Then, the
problem (1) is Ulam—Hyers stable. Moreover, it is also generalized Ulam—Hyers stable.

Proof Let € > 0. Let $ € C(Z,R) be any solution of the inequality

“DI(p) - 9(p D(p), @(hp))| <&, pe X
Then, there exists Q € C(X, R) such that

“Dy0(0) = (0, @(0), §(h0)) + Qlp), p€Z, (16)
and |Q(p)| <&, p € Z. This gives

®(p) = Iqeg(p: ®(p), (f?()»ﬂ))

k

pm , . .

t 1 |: Yot(Igl+09(Y1i,(P(Yli)y@()ﬂ/u))
i1

_ I;9i+eg('\/2ir P (v2i), ((3()\1’21’))):|
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pm—l
- T9(5,6(), 6(9)) + T{Q(p). (17)

On the other hand, let ¢ € C(X,R) be a unique solution of the FPg-DE (1). From
Lemma 3.1, we have

©(0) =T 3(p 0(p), @ (hp))

m-1 k

0 ,

t A |: Yot(Igl+eg(Y1i, ©(v1), @(Ay1)
i=1

_ I;”%(Yzi, @(v21), (P(M’Zi))):|

m-1

- Z79(8, 9(8), 9(13)). (18)

From (17), (18), and assumption (As1), we obtain

|®(0) - 0(p)| =Z, Q)| + Z; |5 (0> @(p), @(Ap))

- 9(0, ®(p), p(10))|

m-1

0
[A]

+

k
[ Yol (Z)7*[a(vai @ (v12), @ Wy 1))
i=1

- g(v1o ®(v12), ®(v1)) |

+ IZ,’“Q |9 (v2i ©(v2:)s @(1y2:))

= 9(v2i (v2), §(1y21))|)

+ If,’ |9(8, 9(8), 9(18)) — g(8, P(5), P(19)) |:|

0

& ~
=< m + k*lg”(P -l
q
Hence,
TOe
p(p) — <——+k¥l -,
[9(0) - @(p)| < ROES) il - @l

where k* is defined in (11). Consequently,

89

L0+ DA -kl (19)

|&(0) - @(0)| < r

Consequently, the problem (1) is Ulam—Hyers stable. By setting

50
(6 +1)(1 -k,

#e) =
q

g,
)
we obtain

|&(0) - ()| < d(e). (20)

Page 12 of 20
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Clearly in (20), ¢(¢) = 0. Therefore, the problem (1) is also generalized Ulam—Hyers sta-
ble. O

5 lllustrative examples with a numerical approach
In this section, we provide two examples to validate the obtained results.

Example 5.1 Consider the following nonlocal boundary value problem of FPg—DE as

“D7*¢(p) = 8(p, ©(0), 9(50)),

9(0) = ¢'(0) = 9"(0) =0,

e(1) = 3(T)P0(3) -1, 0(3))
+ {TP(h) - T e(L)),

(21)

for p € £ =[0,1] with§ = 1> 0. Here, 0 = € (3, 4]withm 4>2 A= le(o 1),i=0,1,2,

k=2y0n=3€RYn=7€R 01=5>0,0,=7>0,y1=5€(01),y12=7€(01)and
Va1 = £ €(0,1), v22 = & €(0,1). We consider three cases
319
w2 w0/

for the problem. With Eq. (4) and these data we find that
d Y
Ot 19 +m-1 Bj+m—1 -1
A= of -V + 8™
; (m+ z? v

Y01Fq(4) 01+3 D143
k=2) =—21"" (v 17—yt
(k=2) T4+ o) ( i)

I?/ozf‘q(él) ( 9943 ngm) L83
q(4 + 192)

i M((z)é”_ (1)%”)
S r,a+H\\4 2
() () )
Fq(4+ 1) 8 6

09728, gq=3,
~ 109746, g=13, t<1 (22)
09777, q= %

One can see these results in Table 1 and the graphical representation of A for three cases
of g in Fig. 2. Consider the function

g(p (o) (p(lp)) _ cos(p)|@(p)] , &Pl sin(p))@(3p)
T 2 (exp(p?) +5)([p(P) +1) ~ (6+p)(l@(3p) +1)

Now, for every @, ® € R and p € X, one has

bowore())-smma(s)
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Table 1 Numerical results of I'q(m) and A of FDg - DP (21) with g € {% 5

(2023) 2023:2

%} in Example 5.1

_3
n a=+

9=1

9=

0 0
I'y(m) A I'y(m) A I'y(m) A
1 1.9243 0.9728 3.6571 0.9749 203.8694 0.9836
2 1.8769 0.9728 33032 0.9748 134.9140 0.9828
3 1.8630 09728 3.1459 0.9747 99.0204 09821
4 1.8589 0.9728 3.0716 0.9746 77.7259 0.9816
5 1.8577 09728 3.0355 0.9746 63.9457 09811
26 1.8571 09728 3.0000 0.9746 21.0403 09779
27 1.8571 0.9728 3.0000 0.9746 20.8218 09779
28 1.8571 09728 3.0000 0.9746 20.6281 09778
29 1.8571 0.9728 3.0000 0.9746 204560 0.9778
30 1.8571 09728 3.0000 0.9746 20.3030 09778
31 1.8571 0.9728 3.0000 0.9746 20.1668 0.9778
32 1.8571 09728 3.0000 0.9746 20.0453 09778
33 1.8571 0.9728 3.0000 0.9746 19.9370 09777
34 1.8571 09728 3.0000 0.9746 19.8402 09777
0.984 T T
q=3/10
g=12 | |
0.982 4=9/10
0.98 i
< 0978 1
0.976 i
\
0.974 J
0.972 L L
0 5 10 15
n
Figure 2 Graphical representation of A forg e {% 5,75} in Example 5.1 according to Eq. (4)

(exp(p

m“@(ﬂ)—@(ﬂ”

cos(p) ( o)l 19(p)l )‘
(exp(p?) +5) \(lo(p)[ +1)  (I9(p)] +1)
eXp(—sin(p))< eiGp)  B(3p) )’
6+p) \(eGoI+1) (®Gp)+1)
cos(p) ‘ ‘ o(p) - ¢(p)
~ [(exp(p?) +5) [| (@) + (P ()| + 1)
exp(-sin() || @(3p) - @(1p)
6+p) H(I(p(ép)H1)(I¢>(%p)|+1)‘
cos(p)
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exp(—sin(p)) 1 1
S o L CORUED)|
5%(|<o(p)—¢)(p)|+ @(i ) (b(lp))

thus, the assumption (Asl) is satisfied for [; = and by using Eq. (11) we obtain

N |

) 2(89 +8m+0—1) k 48m+0,+9 1
Kilg= "ot Zlm T T
r,60+1) [AIT(9;+6 +1)
4 1 4
(k=2) =—— +H —
Fq(§+1) 3 |A|Fq(§+§+1)
4
4[|AIT (3 +5+1)
04716, gq=3,
~102558, g=3, ¢ <1l
0.0315, ¢q=3;

Table 2 shows these results and the graphical representation of k* for three cases of g
can be seen in Fig. 3. Hence, inequality (10) holds. Hence, all hypotheses of Theorem 3.2
hold, and so the problem (21) has at most one solution on X. Further, it follows from Theo-
rem 4.1 that the problem (21) is Ulam—Hyers stable and consequently it is also generalized
Ulam—Hyers stable.

Table 2 Numerical results of I'4(0 + 1) and k* of FDg - DP (21) with g € {%, % %} in Example 5.1

3 1 9

n 9= a=3 9= 10
o6+ 1) K T, +1) K T, +1) K
1 2.2631 04544 4.8692 0.2054 515.9756 0.0017
2 2.2049 0.4664 43568 0.2299 317.9299 0.0028
3 2.1879 04701 41301 0.2427 220.5109 0.0041
4 2.1829 04712 40233 0.2492 1653122 0.0055
5 2.1813 04715 39714 0.2525 130.9255 0.0070
6 2.1809 04716 3.9458 0.2541 107.9976 0.0086
7 2.1808 04716 3.9331 0.2550 91.9110 0.0101
8 2.1807 04716 3.9268 0.2554 80.1699 0.0116
9 2.1807 04716 3.9237 0.2556 713277 0.0131
10 2.1807 04716 3.9221 0.2557 64.4973 0.0145
11 2.1807 04716 39213 0.2558 59.1099 0.0159
12 2.1807 04716 3.9209 0.2558 54.7861 0.0172
45 2.1807 047 3.9205 0.2558 30.6949 0.0312

16

46 2.1807 04716 3.9205 0.2558 30.6444 0.0313
47 2.1807 04716 3.9205 0.2558 30.5990 0.0313
48 2.1807 04716 3.9205 0.2558 30.5583 0.0314
49 2.1807 04716 3.9205 0.2558 30.5217 0.0314
50 2.1807 04716 3.9205 0.2558 30.4888 0.0314
51 2.1807 04716 3.9205 0.2558 304592 0.0315
52 2.1807 04716 3.9205 0.2558 304326 0.0315
53 2.1807 04716 3.9205 0.2558 30.4087 0.0315
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03[

q=3/10
q=1/2
q=9/10

i025F
0.2
015
01

0.05

n

Figure 3 Graphical representation of k* for g € {%, % %} in Example 5.1 according to Eq. (10)

Example 5.2 Consider problem (21) with the function

oowe(3e)) -2+ syl 3o (3r)

Now, for any ¢ € R and p € X, we have

o(rv0re(z0))

1 1
§2+ﬂ@mﬂ+%@<

510

)

’

thus, the assumption (As2) is satisfied for D = 2, hg) = i and hg) = % and

_8°(hy’ +hy)

(hy’ +h§)s"!

k

2ly|s"?

N, =
e N

srm+o-1 (h(gl) " h(92))
|AIT4(61 +1)

2|

1
4

P [ (0 +6+1)

A
+1) [A|

~ 103041, gq= <1

0.0376, q=

o = 5o

1

o

Table 3 shows these results and the graphical representation of N; for three cases of g

can be seen in Fig. 4. Hence, all items of Theorem 3.3 are satisfied. Hence, the problem (21)

possesses at least one solution on X.

T (3+2+1)

+
r4§+i+n}
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Table 3 Numerical results of Ny of FDg - DPP (21) with g € {%, % %} in Example 5.2

9

_ _1 _
n a=1s a=3 9=10
N, Ny N,
1 0.5404 0.2441 0.0020
2 0.5547 0.2732 0.0034
3 0.5590 0.2885 0.0049
4 0.5603 0.2962 0.0066
5 0.5607 0.3001 0.0083
6 0.5609 0.3021 0.0102
7 0.5609 0.3031 0.0120
8 0.5609 0.3036 0.0138
9 0.5609 0.3039 0.0156
10 0.5609 0.3040 0.0172
11 0.5609 0.3040 0.0189
12 0.5609 0.3041 0.0204
13 0.5609 0.3041 00218
49 0.5609 0.3041 0.0373
50 0.5609 0.3041 0.0373
51 0.5609 0.3041 0.0374
52 0.5609 0.3041 0.0374
53 0.5609 0.3041 0.0374
54 0.5609 0.3041 0.0375
55 0.5609 0.3041 0.0375
56 0.5609 0.3041 0.0375
57 0.5609 0.3041 0.0375
58 0.5609 0.3041 0.0376
59 0.5609 0.3041 0.0376
60 0.5609 0.3041 0.0376
61 0.5609 0.3041 0.0376
0.6 T T
/
05 —=310| ]|
—g=1/2
q=9/10
0.4 1
Zz 031 /
02 1
0.1 4
0 L |
0 5 10 15
n
Figure 4 Graphical representation of Nj for g € {%, % %} in Example 5.2 according to Eqg. (13)

6 Conclusion
The FPg—-DE has been investigated in this work in detail. The investigation of this partic-
ular equation provides us with a powerful tool in modeling most scientific phenomena

without the need to remove most parameters that have an essential role in the physi-
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cal interpretation of the studied phenomena. For the first time, we have described the
existence and uniqueness of solutions of various classes of nonlinear pantograph-type
FPg-DE (1) on a time scale under some BCs. Also, the two types of Ulam stability of the
problem (1) are considered. We presented a few examples of FPg — DE (1) that describe

our outcomes.

Appendix
Algorithm 1 (MATLAB function for calculation g-gamma function)

1 function p = gGamma(q, kappa,n)

2 s=1;

3  for k=0:n

4 s=s*(1-q~(k+1))/(1-q~(x+k-1));
5 end;

6 p=sx(l-q)"1-x);

7 end

Algorithm 2 (MATLAB function for calculation the fractional g-integral of the Riemann—

Liouville type)
1 function g=Iq_sigma(q,sigma,tau,n,fun)
2 p=0;
3 for k=0:n
4 s=1;
5 for i=0:n
6 s=s*x(l-q~(sigma+i-1))*(1-q*(k+i)) ...
7 /((1-q~(i+1))*(1-q"(sigma+k+i-1)));
8 end
9 p=p+s*q”kxeval (subs (fun, tauxq”k));
10 end;
11 g=round(p*(tau’sigma)=*(l-q)”sigma,6);
12 end

Algorithm 3 (MATLAB lines for calculation of all variables in Example 5.1)

1 clear;

2 format long;

3 syms v e;

4 q=[3/10 1/2 8/9];

5 [xq yql=size(q);

6 k=120;

7 theta =exp(1l)/2; vartheta=sqrt(11)/6; lambda=3/5;
8 delta= sqrt(exp(1l))/25"2; mu=1/4; eta= 5/4;

9 vargamma=2/5; beta=3xexp(1)/13; alpha_1= sqrt(7)/3; alpha_2=sin(7)/5;
10 t 0 =0;T-=1;

11  varpi_1=1/(50%sqrt(pi*(2+v"2)));

12 varpi_last=eval (subs(varpi_1, {v}, {t_0}));

13 varpi_2=1/(25%(exp (1))~ (v"2+2));

14 varpi_2ast=eval (subs(varpi_2, {v}, {t_0}));

15  varphi=(log(v)+2)/(3+v"2);

16 varphiast=eval (subs(varphi, {v}, {T}));

17 column=1;

18 for s=1:yq

19 for n=1:k

20 paramsmatrix (n, column)=n;

21 GO=braketq (q(s),theta);

22 Gl=qGamma(q(s) ,theta+vartheta+lambda+1,n);
23 paramsmatrix (n, column+1)=Gl;

24 G2=qGamma(q(s) ,theta+vartheta+lambda,n);
25 paramsmatrix (n, column+2)=G2;

26 G3=qGamma(q(s) ,lambda+1,n);

27 paramsmatrix (n, column+3)=G3;

28 G4=qGamma(q(s) ,theta+vartheta+1,n);

29 paramsmatrix (n, column+4)=G4;

30 G5=qGamma(q(s) ,theta+vartheta ,n);

31 paramsmatrix (n, column+5)=G5;

32 aleph_1=1/G1+1/(G2%GO) ...
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33 + (abs(alpha_1)%vargamma”(theta+vartheta)+ abs(alpha_2))...
34 /(abs(beta -(alpha_1l+alpha_2))+G3xG4) ...

35 +(abs(alpha_1)xvargamma”(theta+vartheta -1)+abs(alpha_2)) ...
36 /(abs(beta -(alpha_1l+alpha_2))*G3xG5+G0) ;

37 paramsmatrix (n, column+6)=aleph_1;

38 G6=qGamma(q(s) ,theta+vartheta+lambda-mu+1,n);

39 paramsmatrix (n, column+7)=G6;

40 G7=qGamma(q(s) ,theta+vartheta+lambda-mu,n);

41 paramsmatrix (n, column+8)=G7;

42 G8=qGamma(q(s) ,lambda-mu+1,n);

43 paramsmatrix (n, column+9)=G8;

44 aleph_2=1/G6+1/(G7%G2+G0) +(abs (alpha_1) ...

45 svargamma” (theta+vartheta)+abs(alpha_2)) ...

46 /(G8xabs (beta -(alpha_l+alpha_2))%G3xG4) ...

47 +(abs(alpha_1)#vargamma”(theta+vartheta -1)+abs(alpha_2)) ...
48 /(G8xabs (beta —(alpha_l+alpha_2))xG3xG5%G0) ;

49 paramsmatrix (n, column+10)=aleph_2;

50 paramsmatrix (n,column+11)=1/(aleph_1+aleph_2);

51 G9=qGamma(q(s) ,eta+1,n);

52 paramsmatrix (n, column+12)=G9;

53 Delta=((deltaxvarpi_last+varpi_2ast)*G9+varpi_2ast)/G9;

54 paramsmatrix (n, column+13)=Delta;

55 paramsmatrix (n, column+14)=varphiast;

56 paramsmatrix (n, column+15)=varphiast «(theta+2) ...

57 /(1/(aleph_l+aleph_2)-Delta);

58 acuteDelta=(deltaxvarpi_last+varpi_2ast)*G9+varpi_2ast;

59 paramsmatrix (n, column+16)=acuteDelta;

60 paramsmatrix (n, column+17)=G1xG9;

61 paramsmatrix (n, column+18)=1/(G1l-Delta) ;

62 G10=qGamma(q(s) ,sqrt (3)/2+1,n);

63 paramsmatrix (n, column+19)=G10;

64 paramsmatrix (n, column+20)=G10/G1;

65 paramsmatrix (n, column+21)=(G10/G1) /(1 -acuteDelta /(G9xG2) ) ;
66 end;

67 column=column +22;

68 end;
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