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Abstract
This paper is concerned with the existence of periodic solutions for asymptotically
linear second-order delay differential equations. We will establish an index theory for
the linear system directly in the sense that we do not need to change the problem of
the original linear system into the problem of an associated Hamiltonian system. By
using the critical point theory and the index theory, some new existence results are
obtained.
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1 Introduction
In the past few decades, many results on the existence of periodic solutions for delay dif-
ferential equations were obtained by several different approaches, including various fixed
point theorems, Hopf bifurcation theorems, coincidence degree theory, coupled system
methods, Poincaré–Bendixson theorem, and so on. One can refer to [9, 12, 26, 27] for
detailed discussions.

In [28], Kaplan and Yorke introduced a technique studying the existence of periodic
solutions of the first-order delay differential equation

ẋ(t) = –f
(
x(t – τ )

)
(1)

that may reduce the existence problem of periodic solutions of (1) to a problem of find-
ing periodic solutions of an associated plane ordinary differential system. Afterwards,
Kaplan and York’s original idea was used by many authors to study some general dif-
ferential delay equations by transforming them into Hamiltonian systems, for example,
[7, 8, 10, 20–22, 29–31, 33]. Especially, some known results involving various index the-
ories in Hamiltonian systems were generalized to study delay differential equations. For
example, in [29–31], by using Morse–Ekeland index theory for the associated Hamiltonian
system, Li and He firstly studied the periodic solutions of delay differential equations with
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multiple delays via critical point theory. Some multiplicity results on periodic solutions
in delay differential equations were given by Fei [20, 21] using S1-pseudo index theory. In
[32, 42], by relative Fredholm index and spectral flow, Liu and Wang constructed an index
theory for the coupled Hamiltonian system and obtained some interesting existence and
multiplicity results for delay differential equations.

In [24], Guo and Yu firstly applied the critical point theory to (1) directly in the sense
that one does not need to transform the original existence problem of (1) to the existence
problem for an associated Hamiltonian system while allowing a delay in the variational
functional. By using pseudo-index theory introduced by Benci and Rabinowitz [4], they
obtained multiple periodic solutions of (1) with odd nonlinearity that grows asymptoti-
cally linear both at the origin and at infinity. By establishing suitable variational frame-
works for the second-order delay differential equation and high-dimensional case, Guo
and Guo [23], Guo and Yu [25] obtained some sufficient conditions on the existence of
periodic solutions.

Motivated by [23, 32, 42], we consider the existence of 2τ -periodic solutions for the
following nonautonomous second-order delay system:

ẍ(t) = –∇F
(
t, x(t – τ )

)
, (2)

where τ > 0 is a given constant.
Throughout this paper, we make use of the following hypotheses:
(F1) F ∈ C1(R×R

n,R), F(t, 0) = 0.
Furthermore, we assume there exist continuous 2τ periodic symmetric matrix

functions A0(t) and A∞(t) such that
(F0) f (t, x) = A0(t)x + o(x) as |x| → 0,
(F∞) A∞ > A0 and f (t, x) = A∞(t)x + o(x) as |x| → ∞,

where we denote ∇F = f , and for two continuous n × n matrix-valued functions B1(t),
B2(t), we say that B1(t) ≤ B2(t) if and only if maxξ∈Rn ,|ξ |=1(B1(t) – B2(t))ξξ ≤ 0, and B1(t) >
B2(t) if and only if B1(t) ≤ B2(t) does not hold. Furthermore, we write B1 ≤ B2 if B1(t) ≤
B2(t) for a.e. t ∈ S1 and denote by B1 < B2 if B1 ≤ B2 and B1(t) < B2(t) on a subset of S1 with
nonzero measure.

Conditions (F0) and (F∞) are referred to in the literature as asymptotically linear
quadratic for the nonlinearity F . This type of conditions was widely used in the prob-
lems of periodic solutions of Hamiltonian systems. It is well known that the existence and
multiplicity of the periodic solutions are related to the difference between A0 and A∞,
and a quantitative way to measure the difference is the index theory. Ekeland established
an index theory for convex linear Hamiltonian systems in [17–19]. In [11, 34, 35, 37, 39],
Conley et al. introduced an index theory for symplectic paths. In [38, 44], Long and Zhu
defined spectral flows for paths of linear operators, the relative Morse index between two
linear operators, and redefined Maslov index for symplectic paths. Liu [32] defined the
(J ,M)-index and studied the delay Hamiltonian systems. Dong [15] developed an index
theory for abstract operator equations with compact resolvent. We also mention that the
authors in [6, 40, 43] established various index theories when essential spectrum emerges.
We refer to the excellent books of Abbondandolo [1], Ekeland [18], and Long [36] for a
more detailed account of the concept.

In this paper, we establish the existence and multiplicity of periodic solutions for (2) by
combining the index theory with a generalized linking theorem developed by Ding and
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Liu [14]. More precisely, for any 2τ -periodic continuous matrix-valued function B(t), we
consider the following linear delay differential equation:

ẍ(t + τ ) – λ2B(t)x(t) = 0, x(t) = x(t + 2τ ). (3)

Note that the spectrum of the operator A : Ax = ẍ(t + τ ) consists of a sequence of eigenval-
ues with finite multiplicity, which is unbounded from above and below. This implies that
the Morse index of the energy functional corresponding to (3) is infinite. Thus, the main
difficulty is to find the finite representation of the indefinite Morse index. By taking advan-
tage of the spectral properties of A, we will modify the linear system (3) so that the Morse
index of the modified linear system is finite. Then we will define a relative Morse index.
Our approach follows closely that in [16]. Moreover, to combine the relative Morse index
and the generalized linking theorem developed by Ding and Liu [14], we need to make a
suitable choice of the reduction very carefully and overcome some involved issues.

To state our main results, we first introduce some notations. We denote by ν(B) the
dimension of the kernel of (3) and call ν(B) the nullity of B. For any 2τ -periodic continuous
matrix-valued functions B1, B2 with B2 > B1, we define

I(B1, B2) =
1∑

s=0

ν
(
(1 – s)B1 + sB2

)
.

We call I(B1, B2) the relative Morse index between B1 and B2 (see Definition 2). For the
definitions of the relative Morse index, we refer to [15, 18, 43].

Our main results are stated as follows.

Theorem 1 Let (F1), (F0), (F∞) be satisfied. Moreover, we assume that (F0) holds with
ν(A0) = 0 and (F∞) holds with ν(A∞) = 0. Then equation (2) has at least one nonconstant
2τ periodic solution.

Theorem 2 Under the assumption of Theorem 1, if furthermore f is odd, then (2) has at
least I(A0, A∞) pairs of 2τ periodic solutions.

Remark 1 The condition ν(A∞) = 0 implies that the nonlinearity f is nonresonant at infin-
ity. This assumption is crucial for the proof of the Palais–Smale condition (PS condition
for short). We refer to [4, 41] and the references therein for results that allow resonance at
infinity under some additional technical conditions such as Landsmann–Lazer condition,
Rabinowitz resonant condition, strong resonant conditions, etc.

The paper is organized as follows. In Sect. 2, we formulate the variational setting and
develop an index theory to classify the associated linear second-order delay differential
equations and define the relative Morse index. After collection in Sect. 2.3 of the abstract
critical point theorems, which we needed, we prove our theorems in Sect. 3.

2 Variational structure and classification theory
2.1 Variational setting
In this paper, we establish a variational structure that enables us to reduce the existence of
2τ -periodic solutions of (2) to the existence of critical points of corresponding functional
defined on some appropriate function space.



Shan Boundary Value Problems          (2023) 2023:7 Page 4 of 20

Assume that λ = τ
π

, s = π
τ

t. Then equation (2) is transformed to

ẍ(t) = –λ2f
(
x(t – π )

)
, (4)

and we seek 2π periodic solutions of (4), which, of course, correspond to the 2τ periodic
solutions of (2). Define Ax = –ẍ(t + π ). Then A is self-adjoint on H1(S1,Rn) with domain
D(A) = H2(S1,Rn) (see Lemma 2.2 of [23]). Let σ (A), σd(A), σe(A) denote, respectively, the
spectrum, the discrete spectrum, and the essential spectrum of A. It is easy to calculate
that

σ (A) = σd(A). (5)

For any 2π-period continuous matrix-valued function B0(t), we denote B0 as the multi-
plication operator by B0(t) in L2(S1,Rn). Let AB0 = A – B0. By (5), we also have

σ (AB0 ) = σd(AB0 ). (6)

Throughout this paper, we require 0 /∈ σ (AB0 ), which means Ker(A – B0) = ∅. In fact, if 0 ∈
σ (AB0 ), by property (6), there exists ε0 such that, for any ε ∈ (0, ε0), we have 0 /∈ σ (AB0+ε),
and then we can replace B0 by B0 + ε.

Moreover, (4) can be transformed to

–ẍ(t + π ) – λ2B0(t)x(t) = λ2f
(
x(t – π )

)
– λ2B0(t)x(t). (7)

This modification is crucial for the establishment of the linking structure for the problem.
More precisely, in Sect. 3, we may assume that B0 = A0 – ε for some ε small, where A0 is
defined as in condition (f0).

Let |AB0 | be the absolute value of AB0 and EB0 = D(|AB0 |
1
2 ) be the domain of the self-

adjoint operator |AB0 |
1
2 , which is a Hilbert space equipped with the inner product

(z, w)B0 =
(|AB0 |

1
2 z, |AB0 |

1
2 w

)
2

and the induced norm ‖z‖B0 = (z, z)
1
2
B0

. By the spectral properties (6), we have |AB0 |–
1
2 is a

compact operator and it follows that

Lemma 1 EB0 embeds continuously into H1(S1,Rn), and EB0 embeds compactly into
Lp(S1,Rn) for all p ≥ 2.

Let {Gλ}λ∈R denote the spectral family of AB0 . We define the following projections:

P+
β ,B0 =

∫ +∞

0
dGλ, P0

β ,B0 =
∫ 0

–β

dGλ, P–
β ,B0 =

∫ –β

–∞
dGλ.

Here β > 0 is large enough and ±β /∈ σ (AB0 ). This induces an orthogonal decomposition
on EB0 :

EB0 = E+
β ,B0 ⊕ E0

β ,B0 ⊕ E–
β ,B0 , where E±

β ,B0
= P±

β ,B0
EB0 and E0

β ,B0 = P0
β ,B0 EB0 .
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For any x ∈ EB0 , we have x = x+ + x0 + x– ∈ E+
β ,B0

⊕ E0
β ,B0

⊕ E–
β ,B0

and |AB0 |x = AB0 (x+ – x0 –
x–).

On EB0 we define the functional

Iβ ,B0 (x) =
1
2
∥∥x+∥∥2

B0
–

1
2
∥∥x0∥∥2

B0
–

1
2
∥∥x–∥∥2

B0
(8)

– λ2
∫ 2π

0
F
(
x(t)

)
+

1
2
λ2(B0x, x)2.

By a standard argument as in [4, 23], the functional Iβ ,B0 is continuously differentiable on
EB0 and the existence of 2π-periodic solutions x(t) for (2) is equivalent to the existence of
critical points of functional Iβ ,B0 (x).

2.2 Index theory
In this subsection, we investigate the linear second-order delay differential equations

ẍ(t + π ) – λ2B0(t)x(t) = λ2(B(t) – B0(t)
)
x(t),

x(t + π ) = x(t – π ),
(9)

where B0(t), B(t) are 2π-period continuous matrix-valued functions. Recall that we define
(AB0 x)(t) = ẍ(t + π ) – λ2B0(t)x(t) and (Bx)(t) = B(t)x(t). Then (9) can be rewritten as

AB0 x(t) – λ2(B – B0)x(t) = 0. (10)

Let x ∈ EB0 be a solution of (10). Set u = |AB0 |
1
2 x. Then u ∈ L2(S1,Rn). The projections

P+
β ,B0

, P0
β ,B0

, P–
β ,B0

defined as in Sect. 2.1 also induce a decomposition on L2(S1,RN ):

L2(S1,Rn) = L+
β ,B0 ⊕ L0

β ,B0 ⊕ L–
β ,B0 ,

where L±
β ,B0

= P±
β ,B0

L2(S1,Rn) and L0
β ,B0

= P0
β ,B0

L2(S1,Rn). For any u ∈ L2(S1,Rn), we have
u = u+ + u0 + u– ∈ L+

β ,B0
⊕ L0

β ,B0
⊕ L–

β ,B0
. Then (10) is equivalent to

u+ – u0 – u– – |AB0 |–
1
2 λ2(B – B0)|AB0 |–

1
2 u = 0, u ∈ L2(S1,Rn). (11)

Define the associated bilinear form

qβ ,B0,B(u, v) =
1
2
(
u+, v+)

2 –
1
2
(
u0, v0)

2 –
1
2
(
u–, v–)

2

–
1
2
(|AB0 |–

1
2 λ2(B – B0)|AB0 |–

1
2 u, v

)
2

for any u, v ∈ L2(S1,Rn). From (11), it is easy to get

–u– – P–
β ,B0 |AB0 |–

1
2 λ2(B – B0)|AB0 |–

1
2 u = 0

and

–
(
P–

β ,B0 + P–
β ,B0 |AB0 |–

1
2 λ2(B – B0)|AB0 |–

1
2 P–

β ,B0

)
u–
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= P–
β ,B0 |AB0 |–

1
2 λ2(B – B0)|AB0 |–

1
2
(
u+ + u0).

Since P–
β ,B0

|AB0 |–
1
2 =

∫ –β

–∞ |λ|– 1
2 dFλ, we have

∥∥P–
β ,B0 |AB0 |–

1
2
∥∥ ≤ 1√

β
. (12)

Thus, by choosing β > λ2(‖B‖ + ‖B0‖), we have

∥∥P–
β ,B0 |AB0 |–

1
2 λ2(B – B0)|AB0 |–

1
2 P–

β ,B0

∥∥ ≤ λ2(‖B‖ + ‖B0‖)
β

< 1.

It follows that P–
β ,B0

+ P–
β ,B0

|AB0 |–
1
2 λ2(B – B0)|AB0 |–

1
2 P–

β ,B0
is invertible. Let L∗

β ,B0
= L+

β ,B0
⊕

L0
β ,B0

and define Lβ ,B0,B : L∗
β ,B0

→ L–
β ,B0

:

Lβ ,B0,B = –
(
P–

β ,B0 + P–
β ,B0 |AB0 |–

1
2 λ2(B – B0)|AB0 |–

1
2 P–

β ,B0

)–1

× P–
β ,B0 |AB0 |–

1
2 λ2(B – B0)|AB0 |–

1
2
(
u+ + u0).

Then it is easy to calculate that, for fixed u∗ ∈ L∗
β ,B0

, Lβ ,B0,Bu∗ is the unique solution for

–y – P–
β ,B0 |AB0 |–

1
2 λ2(B – B0)|AB0 |–

1
2
(
u∗ + y

)
= 0, y ∈ L–

β ,B0 .

Moreover, for any u∗ ∈ L∗
β ,B0

, we define

ψu∗ (y) = qβ ,B0,B
(
u∗ + y, u∗ + y

)
, ∀y ∈ L–

β ,B0 .

Then ψu∗ (y) is of class C2 on L–
β ,B0

, and for any w ∈ L–
β ,B0

,

D2ψu∗ (y)(w, w) = –‖w‖2
2 –

(|AB0 |–
1
2 λ2(B – B0)|AB0 |–

1
2 w, w

)
2.

And it follows from (12) that D2ψu∗ (y)(w, w) < 0. Thus ψu∗ (y) has unique maximum at the
point Lβ ,B0,Bu∗. This yields

qβ ,B0,B
(
u∗ + y, u∗ + y

) ≤ qβ ,B0,B
(
u∗ + Lβ ,B0,Bu∗, u∗ + Lβ ,B0,Bu∗). (13)

Now we define a quadratic form q̃β ,B0,B on L∗
β ,B0

as

q̃β ,B0,B
(
u∗, v∗) = qβ ,B0,B

(
u∗ + Lβ ,B0,Bu∗, v∗ + Lβ ,B0,Bv∗)

=
1
2
(
u+, v+)

2 –
1
2
(
u0, v0)

2 –
1
2
(
Lβ ,B0,Bu∗, Lβ ,B0,Bv∗)

2

–
(|AB0 |–

1
2 λ2(B – B0)|AB0 |–

1
2
(
u∗ + Lβ ,B0,Bu∗), v∗ + Lβ ,B0,Bv∗)

2.

By the definition of Lβ ,B0,B, we have

Lβ ,B0,Bu∗ = –P–
β ,B0 |AB0 |–

1
2 λ2(B – B0)|AB0 |–

1
2
(
u∗ + Lβ ,B0,Bu∗), ∀u∗ ∈ L∗

β ,B0 ,
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and for any u∗, v∗ ∈ L∗
β ,B0

,

(
Lβ ,B0,Bu∗, Lβ ,B0,Bv∗)

2

= –
(|AB0 |–

1
2 λ2(B – B0)|AB0 |–

1
2
(
u∗ + Lβ ,B0,Bu∗), Lβ ,B0,Bv∗)

2.

This yields

q̃β ,B0,B
(
u∗, v∗) =

1
2
(
u+, v+)

2 –
1
2
(
u0, v0)

2 (14)

–
1
2
(|AB0 |–

1
2 λ2(B – B0)|AB0 |–

1
2 u∗, v∗)

2

–
1
2
(|AB0 |–

1
2 λ2(B – B0)|AB0 |–

1
2 Lβ ,B0,Bu∗, v∗)

2.

Remark 2 In the spirit, the saddle-point reduction process was developed by Amann and
Zehnder [2], Chang [5], and Long [36], although technically our constructions of reduction
are different.

Lemma 2 For any 2π -periodic continuous matrix-valued function B, there is a splitting

L∗
β ,B0 = L+

β ,B0 (B) ⊕ L0
β ,B0 (B) ⊕ L–

β ,B0 (B)

such that
(1) L+

β ,B0
(B), L0

β ,B0
(B), L–

β ,B0
(B) are q̃β ,B0,B-orthogonal, and q̃β ,B0,B is positive definite, neg-

ative definite on L+
β ,B0

(B) and L–
β ,B0

(B), respectively. Moreover, q̃β ,B0,B(u∗, u∗) = 0, ∀u∗ ∈
L0

β ,B0
(B).

(2) L0
β ,B0

(B), L–
β ,B0

(B) are two finite dimensional subspaces.

Proof Define the self-adjoint operator �β ,B0,B on L∗
β ,B0

as follows:

�β ,B0,Bu∗ = 2P0
β ,B0 u∗ + |AB0 |–

1
2 λ2(B – B0)|AB0 |–

1
2 u∗

+ |AB0 |–
1
2 λ2(B – B0)|AB0 |–

1
2 Lβ ,B0,Bu∗.

Then, by (14), we have

q̃β ,B0,B
(
u∗, u∗) =

1
2
(
(Id – �β ,B0,B)u∗, v∗)

2, ∀u∗, v∗ ∈ L∗
β ,B0 ,

where Id denotes the identity map on L∗
β ,B0

. Recalling that |AB0 |–
1
2 is a compact operator,

we have �β ,B0,B : L∗
β ,B0

→ L∗
β ,B0

is self-adjoint and compact. Then there is a basis {ej} ∈ L∗
β ,B0

and a sequence μj → 0 in R such that

�β ,B0,Bej = μjej; (ej, ei)2 = δi,j. (15)

Thus, for any u∗ ∈ L∗
β ,B0

, which can be expressed as u∗ =
∑∞

j=1 cjej, we have

q̃β ,B0,B
(
u∗, u∗) =

1
2
∥∥u∗∥∥2

2 –
1
2
(
�β ,B0,Bu∗, u∗)

2
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=
1
2

∞∑

j=1

(1 – μj)c2
j .

Since μj → 0, all the coefficients (1 – μj) are positive except a finite number. Thus our
lemma follows by

L+
β ,B0 (B) =

{ ∞∑

j=1

cjej|cj = 0, if 1 – μj ≤ 0

}

,

L0
β ,B0 (B) =

{ ∞∑

j=1

cjej|cj = 0, if 1 – μj �= 0

}

,

L–
β ,B0 (B) =

{ ∞∑

j=1

cjej|cj = 0, if 1 – μj ≥ 0

}

.
�

Definition 1 For any 2τ -periodic continuous matrix-valued function B, we define

νβ ,B0 (B) = dim L0
β ,B0 (B); iβ ,B0 (B) = dim L–

β ,B0 (B).

We call iβ ,B0 (B) and νβ ,B0 (B) the index and nullity of B, respectively.

Lemma 3 νβ ,B0 (B) = dim ker(A – B).

Proof For any u∗ ∈ L0
β ,B0

(B), we have

q̃β ,B0,B
(
u∗, v∗) = 0, ∀v∗ ∈ L∗

β ,B0 .

This implies

(
P+

β ,B0 – P0
β ,B0

)
u∗ (16)

–
(
P+

β ,B0 + P0
β ,B0

)|AB0 |–
1
2 λ2(B – B0)|AB0 |–

1
2
(
u∗ + Lβ ,B0,Bu∗) = 0.

By the definition of Lβ ,B0,B, we have

–Lβ ,B0,Bu∗ – P–
β ,B0 |AB0 |–

1
2 λ2(B – B0)|AB0 |–

1
2
(
u∗ + Lβ ,B0,Bu∗) = 0. (17)

Combining (16) and (17), we obtain

(
P+

β ,B0 – P0
β ,B0

)
u∗ – Lβ ,B0,Bu∗

– |AB0 |–
1
2 λ2(B – B0)|AB0 |–

1
2
(
u∗ + Lβ ,B0,Bu∗) = 0.

Let x = |AB0 |–
1
2 (u+ – u0 – Lβ ,B0,Bu∗), where u+ = P+

β ,B0
u∗, u0 = P0

β ,B0
u∗. Then x ∈ EB0 and

Ax – Bx = 0.

Hence, dim L0
β ,B0

(B) = dim ker(A – B). �
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Remark 3 From Lemma 3, we observe that νβ ,B0 (B) is independent of β and B0. Thus, we
will write ν(B) for convenience.

Recall that for a symmetric bilinear form ϕ defined on a Hilbert space X, its Morse index
is defined as m–(φ) = max{dim X1|X1 is a subspace of X such that φ(x, x) < 0 for any x ∈
X1\{0}}.

Lemma 4 iβ ,B0 (B) is the Morse index of q̃β ,B0,B.

Proof Let E1 ⊂ L∗
β ,B0

with dim E1 = k such that

q̃β ,B0,B
(
u∗, u∗) < 0, ∀u∗ ∈ E1\{0}.

Let {ej}k
j=1 be linear independent in E1. We have the following decomposition:

ej = e+
j + e0

j + e–
j , j = 1, . . . , k.

e+
j ∈ L+

β ,B0 (B), e0
j ∈ L0

β ,B0 (B), e–
j ∈ L–

β ,B0 (B).

We claim that e–
1 , . . . , e–

k are linear independent. Arguing indirectly, we assume that there
exist not all zero numbers αj ∈ R such that

k∑

j=1

αje–
j = 0.

Denote e =
∑k

j=1 αjej. On the one hand, we have e ∈ E1 and

q̃β ,B0,B(e, e) < 0.

On the other hand, e =
∑k

j=1 αj(e0
j + e+

j ) ∈ L0
β ,B0

(B) ⊕ L+
β ,B0

(B), we have

q̃β ,B0,B(e, e) ≥ 0.

This is a contradiction. Thus, e–
1 , . . . , e–

k are linear independent, which implies dimL–
β ,B0

≥ k
and iβ ,B0 (B) ≥ m–(q̃β ,B0,B).

In addition, by the definition of L–
β ,B0

, we have

q̃β ,B0,B
(
u∗, u∗) < 0, ∀u∗ ∈ L–

β ,B0\{0}.

Thus, m–(q̃β ,B0,B) ≥ dimL–
β ,B0

= iβ ,B0 (B). This completes the proof. �

For any B1 < B2, let Bs = (1 – s)B1 + sB2, s ∈ (0, 1], and let iβ ,B0 (s) = iβ ,B0 (Bs), ν(s) = ν(Bs).

Lemma 5 For any s0 ∈ [0, 1), there exists δ > 0 such that

iβ ,B0 (s0) + ν(s0) ≤ iβ ,B0 (s), ∀s ∈ (s0, s0 + δ).
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Proof Let CBs = (P–
β ,B0

+ P–
β ,B0

|AB0 |–
1
2 λ2(Bs – B0)|AB0 |–

1
2 P–

β ,B0
)–1. By direct calculation, we

have

CBs = CBs0
– (s – s0)CBs0

P–
β ,B0 |AB0 |–

1
2 λ2(B2 – B1)|AB0 |–

1
2 P–

β ,B0 CBs0
+ o(s – s0)

and

�β ,B0,Bs – �β ,B0,Bs0

= –(s – s0)
(
P∗

β ,B0 |AB0 |–
1
2 – P∗

β ,B0 |AB0 |–
1
2 Bs0 |AB0 |–

1
2 CBs0

P–
β ,B0 |AB0 |–

1
2
)

× λ2(B2 – B1)
(
P∗

β ,B0 |AB0 |–
1
2 – |AB0 |–

1
2 CBs0

|AB0 |–
1
2 Bs0 P∗

β ,B0 |AB0 |–
1
2
)

+ o(s – s0),

where P∗
β ,B0

= P+
β ,B0

+ P0
β ,B0

. Thus, for any u∗ ∈ L∗
β ,B0

(Bs0 ), there exists δ > 0 such that if
0 < s – s0 < δ, we have

q̃β ,B0,Bs

(
u∗, u∗) < 0.

Note that dim L∗
β ,B0

(Bs0 ) < +∞, L∗
β ,B0

(Bs0 ) is compact. It is easy to deduce that there exists
δ0 independent of u∗ such that

q̃β ,B0,Bs

(
u∗, u∗) < 0, u∗ ∈ L∗

β ,B0 (Bs0 )

for all s ∈ (s0, s0 + δ). Thus, by Lemma 4, we have iβ ,B0 (s0) + ν(s0) ≤ iβ ,B0 (s). �

Let iβ ,B0 (s + 0) = limt→s+ iβ ,B0 (t). We have

Lemma 6 iβ ,B0 (s + 0) = iβ ,B0 (s) + ν(s).

Proof From Lemma 5, we have iβ ,B0 (s+0) ≥ iβ ,B0 (s)+ν(s). Thus, it suffices to prove iβ ,B0 (s+
0) ≤ iβ ,B0 (s) + ν(s). Let iβ ,B0 (s + 0) = k. Since iβ ,B0 is a finite integer, there exists s′ > s such
that

iβ ,B0 (p) = iβ ,B0 (s + 0), ν(p) = 0, ∀p ∈ (
s, s′).

Similar to (15), for each p, there is a basis {ep,j}k
j=1 ⊂ L–

β ,B0
(Bp) such that

�β ,B0,Bp ep,j = μp,jep,j; (ep,j, ep,i)2 = δi,j. (18)

Here, 1 – μp,j < 0. Since �β ,B0,Bp is bounded, we obtain that μp,j = (�β ,B0,Bp ep,j, ep,j)2 is
bounded. Then, for any j, there exists {pl}l ⊆ (s, s′) with pl → s + 0 such that

μpl ,j → μj, epl ,j ⇀ ej in L2(S1,Rn) as l → ∞.

Recall that 1 – μpl ,j < 0. We have { 1
μpl ,j

} is bounded. Taking the limit in (18), we have

1 – μj ≤ 0, �β ,B0,Bs ej = μjej, ∀j = 1, 2, . . . , k.
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Moreover, for all i, j = 1, 2, . . . , k,

epl ,j =
1

μpl ,j
�β ,B0,Bpl

epl ,j →
1
μj

�β ,B0,Bs ej = ej and (ej, ei)2 = δi,j.

This means, by Definition 1, that iβ ,B0 (s) + ν(s) ≥ k = iβ ,B0 (s + 0). This completes the
proof. �

By Lemma 5 and Lemma 6, we conclude that the index function iβ ,B0 (s) is integer-valued
and nondecreasing on [0, 1). Its value at any point s must be equal to the sum of the jumps
it incurred in [0, 1). Hence,

Lemma 7 For any B1 < B2, we have

iβ ,B0 (B2) – iβ ,B0 (B1) =
∑

s∈[0,1)

ν
(
B1 + s(B2 – B1)

)
.

By Lemma 7, we observe that the difference between iβ ,B0 (B1) and iβ ,B0 (B2) is indepen-
dent of β and B0. We define

Definition 2 For any 2π periodic continuous matrix-valued functions B1 and B2 with
B1 < B2, we define

I(B1, B2) =
∑

s∈[0,1)

ν
(
B1 + s(B2 – B1)

)
,

and for any B1, B2 we define

I(B1, B2) = I(B1, K id) – I(B2, K id),

where K is a constant and id is the identity map on L∗
B0

, satisfying K id > B1 and K id > B2.
We call I(B1, B2) the relative Morse index between B1 and B2.

Remark 4 If we choose k1, k2 such that k1id, k2id > B1 and B2, we have

I(B2, k1id) – I(B1, k1id) = I(B2, k2id) – I(B1, k2id).

Thus, the relative Morse index I(B1, B2) depends only on B1, B2 and the operator A and is
well defined.

Lemma 8 If ν(B) = 0 for some β large enough, then (q̃β ,B0,B(u∗, u∗)) 1
2 and (–q̃β ,B0,B(u∗, u∗)) 1

2

are equivalent norms on L+
β ,B0

(B) and L–
β ,B0

(B), respectively.

Proof It is sufficient to prove that, for sufficiently large β , there exists δ > 0 independent
of β such that

(1 – δ, 1 + δ) ∩ σ (�β ,B0,B) = ∅.
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Arguing indirectly, there exist βk → ∞, μk → 1 such that

�βk ,B0,Be∗
k = μke∗

k ,

where e∗
k ∈ L∗

βk ,B0
with ‖e∗

k‖2 = 1. This yields

(
2P0

βk ,B0 + |AB0 |–
1
2 λ2(B – B0)|AB0 |–

1
2 (19)

+ |AB0 |–
1
2 λ2(B – B0)|AB0 |–

1
2 Lβk ,B0,B

)
e∗

k = μke∗
k .

Assume that e∗
k = e+

k + e0
k ∈ L+

βk ,B0
(B) ⊕ L0

βk ,B0
(B). Then, up to a subsequence,

e∗
k ⇀ e∗, e+

k ⇀ e+, e–
k ⇀ e–.

From (19) we have

μke+
k =

(
P+

βk ,B0 |AB0 |–
1
2 λ2(B – B0)|AB0 |–

1
2

+ P+
βk ,B0 |AB0 |–

1
2 λ2(B – B0)|AB0 |–

1
2 Lβk ,B0,B

)
e∗

k

and

(μk – 2)e0
k =

(
P0

βk ,B0 |AB0 |–
1
2 λ2(B – B0)|AB0 |–

1
2

+ P0
βk ,B0 |AB0 |–

1
2 λ2(B – B0)|AB0 |–

1
2 Lβk ,B0,B

)
e∗

k .

Recall that |AB0 |–
1
2 is compact and ‖Lβk ,B0,B‖ → 0 as βk → ∞. Taking the limit as k → ∞,

we have

e+ = P+
B0 |AB0 |–

1
2 λ2(B – B0)|AB0 |–

1
2 e∗,

e0 = P–
B0 |AB0 |–

1
2 λ2(B – B0)|AB0 |–

1
2 e∗,

and

e∗ = |AB0 |–
1
2 λ2(B – B0)|AB0 |–

1
2 e∗.

This yields

(
A – λ2B

)
e∗ = 0.

This is a contradiction to ν(B) = 0. �

Note that, for any x ∈ EB0 = D(|AB0 |
1
2 ), we have |AB0 |

1
2 x ∈ L2(S1,Rn). Thus L2(S1,Rn) and

EB0 are isomorphic. Define E∗
β ,B0

= E+
β ,B0

⊕ E0
β ,B0

and L̃β ,B0,B : E∗
β ,B0

→ E–
β ,B0

L̃β ,B0,Bx∗ = |AB0 |–
1
2 Lβ ,B0,B|AB0 |

1
2 x∗.
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Definition 3 For any x, y ∈ EB0 and x∗ = P∗
β ,B0

x, y∗ = P∗
β ,B0

y, we define
• Qβ ,B0,B(x, y) = qβ ,B0,B(|AB0 |

1
2 x, |Aε | 1

2 x) = 1
2 (x+, y+)B0 – 1

2 (x0, y0)B0 – 1
2 (x–, y–)B0 –

1
2 (λ2(B – B0)x, y)2.

• For the reduced functional, we define

Q̃β ,B0,B
(
x∗, y∗) = q̃β ,B0,B

(|AB0 |
1
2 x∗, |AB0 |

1
2 x∗) (20)

=
1
2
(
x+, y+)

B0
–

1
2
(
x0, y0)

B0

–
1
2
(
λ2(B – B0)x∗, y∗)

2 –
1
2
(
λ2(B – B0)L̃β ,B0,Bx∗, y∗)

2.

Also, by (13), for any x∗ ∈ E∗
β ,B0

, we have

Qβ ,B0,B
(
x∗ + y, x∗ + y

) ≤ Q̃β ,B0,B
(
x∗, x∗) for any y ∈ E–

β ,B0 . (21)

Applying Lemma 2, Lemma 7, and Lemma 8 to E∗
B0

and Q̃β ,B, we conclude

Lemma 9 (1) The E∗
B0

has the following decomposition:

E∗
B0 = E+

β ,B0 (B) ⊕ E0
β ,B0 (B) ⊕ E–

β ,B0 (B)

such that Q̃β ,B is positive definite, zero, and negative definite on E+
β ,B0

(B), E0
β ,B0

(B), and
E–

β ,B0
(B), respectively. Furthermore, E0

β ,B0
(B) and E–

β ,B0
(B) are finitely dimensional with

ν(B) = dim E0
β ,B0 (B), iβ ,B0 (B) = dim E–

β ,B0 (B).

(2) For any x∗ ∈ E∗
β ,B0

, (Q̄β ,B(x∗, x∗)) 1
2 and (–Q̄β ,B(x∗, x∗)) 1

2 are equivalent norms on
E+

β ,B0
(B) and E–

β ,B0
(B).

(3) There exists ε0 > 0 such that, for any ε ∈ (0, ε0], we have

ν(B + ε) = 0 = ν(B – ε),

iβ ,B0 (B – ε) = iβ ,B0 (B)

iβ ,B0 (B + ε) = iβ ,B0 (B) + ν(B).

Proof (1) and (2) of Lemma 9 come from Lemma 2 and Lemma 8 directly. By Lemma 7,
(3) follows by the fact that the index function and the relative Morse index are all integer-
valued. �

2.3 Critical point theorem
To prove Theorem 1 and Theorem 2, we use the following critical point theorems.

Let E be a real Hilbert space with E = X ⊕ Y . A sequence (zn) ⊂ E is said to be a (PS)c-
sequence if �(zn) → c and �′(zn) → 0. � is said to satisfy the (PS)c-condition if any (PS)c-
sequence has a convergent subsequence.

Theorem 3 ([14, Theorem 2.5]) Let e ∈ Y\{0} and � = {u = se + v : ‖u‖ < R, s > 0, v ∈ X}.
Suppose that
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(I1) � ∈ C1(E,R) satisfies the (PS)c-condition for any c ∈R;
(I2) there is r ∈ (0, R) such that ρ := inf�(X ∩ ∂Br) > ω := sup�(∂�), where ∂� refers to

the boundary of � relative to span{e} ⊕ X, and Br = {u ∈ E : ‖u‖ < r}.
Then � has a critical value c ≥ ρ with

c = inf
h∈�

sup
u∈�

�
(
h(u)

)
,

where

� =
{

h ∈ C(E, E) : h|∂� = id,�
(
h(u)

) ≤ �(u) for u ∈ �̄
}

.

Theorem 4 ([14, Theorem 2.8]) Assume that φ is even and satisfies (�1). If
(I3) there exists r > 0 with inf�(SrY ) > �(0) = 0, where Sr = ∂Br ;
(I4) there exists a finite dimensional subspace Y0 ⊂ Y and R > r such that, for E∗ = X ⊕Y0,

M∗ = sup�(E∗) < +∞ and σ := sup�(E∗\BR) < ρ ,
then � possesses at least m distinct pairs of critical points, where m = dim Y0.

Remark 5 (1) By using the abstract critical point theorems, we do not need to do the
saddle point reduction procedure for the variational function Iβ ,B0 . Correspondingly, the
nonlinearity f does not need to be C1. For this kind of critical point theorems, we also
refer to [3, 13].

(2) Recall that, in this paper, we only consider the nonresonance case (ν(A∞) = 0). The
PS-condition is sufficient to prove our theorems. Thus we use the PS-condition instead of
the Cerami condition in the theorems.

3 Linking structure and proof of the main results
In view of condition (F0), we assume B0 = A0 – ε for some ε > 0 small enough. By (3) of
Lemma 9, we have ν(A0 –ε) = ν(A0) = 0. Define EA0–ε = D(|AA0–ε | 1

2 ) with the inner product
(·, ·)A0–ε and the norm ‖ ·‖A0–ε . In what follows, we will write (·, ·) and ‖ ·‖ for short. Define
the following projections:

P+
β ,A0–ε =

∫ +∞

0
dFλ, P0

β ,A0–ε =
∫ 0

–β

dFλ, P–
β ,A0–ε =

∫ –β

–∞
dFλ.

Here {Fλ}λ∈R denotes the spectral family of AA0–ε . This deduces the decomposition on
EA0–ε :

EA0–ε = E+
β ,A0–ε ⊕ E0

β ,A0–ε ⊕ E–
β ,A0–ε , x = x+ + x0 + x–. (22)

Substituting A0 – ε for B0 in (8), we define

Iβ ,A0–ε(x) =
1
2
∥∥x+∥∥2 –

1
2
∥∥x0∥∥2 –

1
2
∥∥x–∥∥2 (23)

– λ2
∫

S1
F(x) dt +

1
2
λ2((A0 – ε)x, x

)
2, ∀x ∈ EA0–ε .
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Applying Lemma 9 to E∗
A0–ε = E+

β ,A0–ε ⊕ E0
β ,A0–ε for any B, there is a splitting

E∗
A0–ε = E+

A0–ε(B) ⊕ E0
A0–ε(B) ⊕ E–

A0–ε(B).

To apply the abstract Theorems 3 and 4 to Iβ ,A0–ε , we choose

X = E–
A0–ε ⊕ E0

A0–ε , Y = E+
A0–ε , Y0 = E–

A0–ε(A∞ + 2ε) ∩ E+
A0–ε .

Since Y0 ⊆ E–
A0–ε(A∞ + 2ε), we have Y0 is a finite dimensional subspace with dim Y0 ≤

iβ ,A0–ε(A∞ + 2ε). Moreover

Lemma 10 dim Y0 ≥ I(A0, A∞).

Proof By (20), for any B, we have

Q̃β ,A0–ε,B
(
x∗, x∗)

=
1
2
∥
∥x+∥

∥2 –
1
2
∥
∥x0∥∥2

–
1
2
(
λ2(B – (A0 – ε)

)
x∗, x∗)

2 –
1
2
(
λ2(B – (A0 – ε)

)
L̃β ,(A0–ε),Bx∗, x∗)

2.

Then

Q̃β ,A0–ε,A0–ε

(
x∗, x∗) =

1
2
∥
∥x+∥

∥2 –
1
2
∥
∥x0∥∥2, ∀x∗ ∈ E∗

A0–ε .

It is easy to get E+
β ,A0–ε(A0 – ε) = E+

β ,A0–ε , E–
β ,A0–ε(A0 – ε) = E0

β ,A0–ε . Recall that Y0 ⊆ E∗
A0–ε =

E0
β ,A0–ε ⊕ E+

β ,A0–ε , we have

Y0 = E–
A0–ε(A∞ + 2ε) – E0

A0–ε

= E–
A0–ε(A∞ + 2ε) – E–

β ,A0–ε(A0 – ε)

and

dim Y0 ≥ dim E–
β ,A0–ε(A∞ + 2ε) – dim E–

β ,A0–ε(A0 – ε)

= iβ ,A0–ε(A∞ + 2ε) – iβ ,A0–ε(A0 – ε)

= iβ ,A0–ε(A∞) – iβ ,A0–ε(A0)

= I(A0, A∞). �

Now we are ready to verify the conditions of Theorems 3 and 4 for the functional Iβ ,A0–ε .

Lemma 11 Let (F0) and (F∞) be satisfied. Then there exist r > 0 and ρ > 0 such that

Iβ ,A0–ε(x) ≥ ρ, ∀x ∈ ∂Br ∩ Y .
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Proof Assume that f1(t, x) = f (t, x) – A0(t)x(t). By (F0), we have f1(t, x) = o(x) as |x| → 0 and
f1(t, x) – (A∞ – A0)x = o(x) as |x| → ∞. Then, for any ε > 0, there exist δ, M1, M2 > 0 such
that

∣∣f1(t, x)
∣∣ ≤ ε|x|, ∀|x| < δ, and

∣∣f1(t, x)
∣∣ ≤ M2|x|, ∀|x| > M1.

In conclusion, under (F0) and (F∞), given p > 2, for ε > 0, there is Cε > 0 such that

∣∣f1(t, x)
∣∣ ≤ ε|x| + Cε |x|p–1

and

∣
∣F1(t, x)

∣
∣ ≤ 1

2
ε|x|2 +

Cε

p
|x|p,

where F1(t, x) =
∫

S1 f1(t, θx) dθx. This yields

Iβ ,A0–ε(x) =
1
2
∥
∥x+∥

∥2 –
1
2
∥
∥x0∥∥2 –

1
2
∥
∥x–∥

∥2 – λ2
∫

S1
F(t, x) dt +

1
2
λ2((A0 – ε)x, x

)
2

≥ 1
2
∥
∥x+∥

∥2 –
1
2
∥
∥x0∥∥2 –

1
2
∥
∥x–∥

∥2 – C‖x‖p
p, ∀x ∈ EA0–ε .

Thus, for x ∈ E+
A0–ε with ‖x‖ = r, we have x = x+ and

IA0–ε(x) ≥ 1
2
‖x‖2 – C‖x‖p

p

≥ 1
2
‖x‖2 – C‖x‖p

=
(

1
2

– Crp–2
)

r2.

Thus, if we assume ρ = 1
4 r2, then the lemma follows by choosing r small enough. �

Lemma 12 Let (F0) and (F∞) be satisfied and ε > 0 be given by Lemma 11. We have

Iβ ,A0–ε(x) → –∞ as x ∈ X ⊕ Y0 and ‖x‖ → ∞.

Proof Arguing indirectly, we assume that for some sequence {xj} ∈ X ⊕Y0 with ‖xj‖ → ∞
there is a > 0 such that IA0–ε(xj) > –a for all j. Setting wj = xj/‖xj‖, we have wj ∈ X ⊕ Y0 and
‖wj‖ = 1. And according to (22), we have the decomposition

wj = w–
j + w0

j + w+
j , w–

j ∈ E–
A0–ε , w0

j ∈ E0
A0–ε , w+

j ∈ Y0.

Since Y0 is a finite dimensional subspace, we assume that wj ⇀ w ∈ EA0–ε and

w–
j ⇀ w– ∈ E–

A0–ε , w0
j → w0 ∈ E0

A0–ε , w+
j → w+ ∈ Y0.

Assume that f2(t, x) = f (t, x) – A∞(t)x(t). Under (F0) and (F∞), there is M > 0 such that

∣∣f2(t, x)
∣∣ ≤ ε|x| + M
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and

∣
∣F2(t, x)

∣
∣ ≤ 1

2
ε|x|2 + M|x| ≤ ε|x|2 + M1,

where F2(t, x) =
∫

S1 f2(t, θx) dθx. Thus,

–a
‖xj‖ ≤ IA0–ε(xj)

‖xj‖ (24)

=
1
2
∥∥w+

j
∥∥2 –

1
2
∥∥w0

j
∥∥2 –

1
2
∥∥w–

j
∥∥2

–
1
2
λ2((A∞ – (A0 – ε)

)
wj, wj

)
2 – λ2

∫

S1

F2(t, x)
‖xj‖2 dt

≤ 1
2
∥
∥w+

j
∥
∥2 –

1
2
∥
∥w0

j
∥
∥2 –

1
2
∥
∥w–

j
∥
∥2

–
1
2
λ2((A∞ + 2ε – (A0 – ε)

)
wj, wj

)
2 + λ2

∫

S1

M1

‖xj‖2 dt

= Qβ ,A0–ε,A∞+2ε(wj, wj) + o(1).

Firstly, by the definition of Q̃β ,A0–ε,A∞+2ε and taking the limit in (24), we have

o(1) ≤ Qβ ,A0–ε,A∞+2ε(wj, wj)

≤ Q̃β ,A0–ε,A∞+2ε

(
w∗

j , w∗
j
)

→ Q̃β ,A0–ε,A∞+2ε

(
w∗, w∗).

Here, w∗
j = w+

j + w0
j and w∗ = w+ + w0. Besides, by the definition of Q̃β ,A0–ε,A∞+2ε , we have

Q̃β ,A0–ε,A∞+2ε

(
w0, w0)

= –
1
2
∥∥w0∥∥2 –

1
2
∥∥L̃β ,A0–ε,A∞+2εw0∥∥2

–
1
2
λ2((A∞ – A0 – 3ε)

(
w0 + L̃β ,A0–ε,A∞+2εw0), w0 + L̃β ,A0–ε,A∞+2εw0)

Since A∞ > A0 and w0 �= 0, we have Q̃β ,A0–ε,A∞+2ε(w0, w0) < 0. Thus,

E0
β ,A0–ε ⊂ E–

β ,A0–ε(A∞ + 2ε),

and w∗ ∈ E–
β ,A0–ε(A∞ + 2ε). Moreover, since ν(A∞) = 0, we have ν(A∞ + 2ε) = 0 for ε small

enough. By (2) of Lemma 9, we have
√

–Q̃A0–ε,A∞+2ε(w∗, w∗) is an equivalent norm of w∗

on E–
A0–ε(A∞ + 2ε). Thus, w∗

j → w∗ = 0.
Secondly, define the following projections:

P1 =
∫ –β

–∞
dFλ, P2 =

∫ β

–β

dFλ, P3 =
∫ +∞

β

dFλ.
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We have P1EA0–ε = E–
A0–ε , (P2 + P3)EA0–ε = E∗

A0–ε , and P2EA0–ε is a finite dimensional sub-
space. Recalling that w0

j → 0 and w+
j → 0, we obtain

P2wj → 0, P3wj → 0.

Moreover, by the definition of P1 and P3, we have

‖P1x‖2 ≤ 1√
β

‖P1x‖, ‖P3x‖2 ≤ 1√
β

‖P3x‖, ∀x ∈ EA0–ε .

Suppose that λ‖A0 – A∞ + ε‖ < M3 < β . By (24), we obtain

o(1) ≤ 1
2
∥
∥w+

j
∥
∥2 –

1
2
∥
∥w–

j
∥
∥2 –

1
2
λ2((A∞ + 2ε – (A0 – ε)

)
wj, wj

)
2

= o(1) –
1
2
∥∥w–

j
∥∥2 –

M3

2
‖wj‖2

2

≤ o(1) –
1
2

(
1 –

M3

β

)
‖P1wj‖2.

This implies that P1wj → 0 in EA0–ε . Hence, wj = (P1 + P2 + P3)wj → 0. This is a contradic-
tion to ‖wj‖ = 1. �

Lemma 13 Let (F0) and (F∞) be satisfied. Then any (PS)c-sequence of Iβ ,A0–ε is bounded.

Proof Let {xj} ⊂ E be such that Iβ ,A0–ε(xj) → c and I ′
β ,A0–ε(xj) → 0. To prove that {xj} is

bounded, we develop a contradiction argument. We assume that, up to a subsequence,
‖xj‖ → ∞ and set vj = xj

‖xj‖ . Then ‖vj‖ = 1. Without loss of generality, we assume that

vj ⇀ v in EA0–ε and vj → v in L2(S1,Rn).

Then, up to a subsequence, vj(t) → v(t) a.e. on S1. Since, by (F∞), |f2(t, x)| = |f (t, x) –
A∞(t)x| = o(|x|) as |x| → ∞ and xj(t) → ∞ if v(t) �= 0, it is easy to see that

∫

S1

f (t, xj)ϕ(t)
‖xj‖ →

∫

S1
A∞(t)vϕ

for all ϕ ∈ L2(S1,Rn). From this we deduce that

AA0–εv – A∞v + (A0 – ε)v = 0

and

v̈(t + τ ) – A∞v(t) = 0.

Since i(A∞) = 0, we have v = 0. Thus, vj ⇀ 0 in EA0–ε and vj → 0 in L2(S1,Rn). Note that

o(1) =
I ′
β ,A0–ε(xj)

‖xj‖
(
v+

j – v0
j – v–

j
)
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= 1 –
∫

S1

f (t, xj)
|xj| |vj|

(
v+

j – v0
j – v–

j
)

+
(
(A0 – ε)vj, v+

j – v0
j – v–

j
)

2

≥ 1 – C
∫

S1
|vj|

∣∣v+
j – v0

j – v–
j
∣∣

≥ 1 – C‖vj‖2
2 = 1 – o(1).

This is a contradiction. �

Lemma 14 Any (PS)c-sequence of IA0–ε has a convergence subsequence.

Proof By Lemma 13, the (PS)c-sequence is bounded. Assume that vj ⇀ v and let wj = vj –v.
Then we have w+

j ⇀ 0 in EA0–ε and w+
j → 0 in L2(S1,Rn). To establish strong convergence,

it suffices to prove that ‖wj‖ → 0. Similar to Lemma 13, the proof follows from the proce-

dure in Lemma 13 to
I′
β ,A0–ε

(xj)
‖xj‖ (w+

j – w0
j – w–

j ). �

Proof of Theorems 1 and 2 (Existence) With X = E–
A0–ε ⊕E0

A0–ε , Y = E+
A0–ε , Y0 = E–

A0–ε(A∞ +
2ε) ∩ E+

A0–ε , the condition (I2) of Theorem 3 holds by Lemma 12. Lemma 14 shows that
Iβ ,A0–ε satisfies the (PS)c-condition and (I1) of Theorem 3 is verified. Therefore, Iβ ,A0–ε has
at least one critical point by Theorem 3.

(Multiplicity) Lemma 11 implies that Iβ ,A0–ε satisfies (I3) of Theorem 4. Lemma 10 and
Lemma 12 say that Iβ ,A0–ε satisfies (I4) of Theorem 4 with dimY0 ≥ I(A0, A∞). Moreover,
Iβ ,A0–ε is even if f is odd. Therefore, Iβ ,A0–ε has at least I(A0, A∞) pairs of nontrivial critical
points by Theorem 4. �
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