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1 Introduction

In recent years, due to applications in mathematics, physics, biology, neural networks,
and so on, the theory of fractional calculus has become the main focus of many scholars.
At the same time, the theory of fractional differential equations is becoming more and
more extensive and systematic [1-7]. There have been some new definitions of fractional
calculus, having found the connection with the classical definitions of Riemann—Liouville
and Caputo fractional calculus [8-10].

Some authors studied the existence of solutions for a class of mixed fractional differ-
ential equations. In 2006, Agrawal presented the mixed differential equation involving
both the Caputo and the Riemann-Liouville fractional derivatives, concentrated on the
solutions in different cases [11]. Later, Blaszczyk presented the numerical solution of the
mixed boundary value problems [12]. Furthermore, some authors [13-19] have discussed
the existence of solutions for the mixed boundary value problems by different methods,
such as the upper and lower solutions theorem, Krasnoselskii’s fixed-point theorem, the
Leray—Schauder alternation theorem, the coincidence degree theory, the mixed monotone
operator theorem, and so on.
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In this paper, we investigate the mixed fractional boundary value problems defined by

the left-sided Riemann-Liouville and the right-sided Caputo fractional derivatives

Db, (CDY_x(®) = f(tx(2), 5(1)), 0=<t<]1,
D}, (CDY y(1)) = g(t,x(1),5(1)), 0<t<1,
D x(0) =x'(0) = 0, X/ (1) = x(1),
DI y0)=y(0)=0,  y(1)=x(1),

(1.1)

where Df, is the left-sided Riemann-Liouville fractional derivative, D" is the right-sided
Caputo fractional derivative, 1 <o, 0 <2,0< 8,y <1, f:[0,1] x [0,+00) x [0,+00) —
[0+ 00),and g: [0,1] x [0, +00) x [0, +00) — [0, +00) are continuous.

In contrast to previous studies, the mixed fractional derivative in this paper is de-
fined first by Caputo fractional derivatives and secondly by Riemann-Liouville fractional
derivatives. We calculate the corresponding Green’s functions and their properties. By the
classic fixed-point theorem of cone expansion and compression of norm type [20-22], we
obtain the existence of the solution for coupled systems of the mixed differential equa-

tions. One example is presented to demonstrate the applications of the main theorems.

2 Preliminaries

In this part, we present some related definitions, properties, and lemmas.

Definition 2.1 (see (2.1.1) and (2.1.2) in [4]) The left-sided and right-sided Riemann-—
Liouville fractional integrals of order o (o > 0) of function f(¢) € C[0, 1] are defined, re-
spectively, by

t t— a-1 1 _ta—l
() = /0 %f(s) ds and I°f(t) = /t %f(s) ds,
where I' () is the Gamma function.

Definition 2.2 (see (2.1.5) in [4]) The left-sided Riemann—Liouville fractional derivative
of order o (« > 0) of function f € C"[0,1] is given by

d}’l
DEFO = 3z ()0,

wheren-1<a <n.

Definition 2.3 (see (2.4.16) in [4]) The right-sided Caputo fractional derivative of order
a (« > 0) of function f € C”[0, 1] is given by

DY () = (1" @),

wheren—-1<a <n.
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Property 2.1 (see (2.1.39) and (2.4.43) in [4]) Let ¢ >0 and n = [«] + 1. If f(£) € C"[0, 1],
then

[ng (Dngf(t)) :f(t) - Z Cita_j’
j=1

n—1
E(DLf0) =f©) - (1Y Y -1y,

j=0
where Cj, C; € R are arbitrary constants.

Property 2.2 (see (2.1.33) in [4]) Leta >0, k € N and « > k. If f(£) € C"[0, 1], then

k

3 S0) = (O R ).

Lemma 2.1 (see Theorem 2.3.4in [20]) Suppose X is a Banach space and P C X is a cone
in X. Let Q, and Q0 be two bounded, open subsets in X such that 0 € Q1 C Q1 C Q9. Let
S: P — P be completely continuous. Suppose that one of the two conditions

(@) 1Sw| < wll, we PN O and ||Sw| = ||w], w € PN 3Ry and

(2) ISw|| = |lwll, we PNy and ||Sw|| < ||w|, w € PN 3R, is satisfied.
Then, S has at least one fixed point in PN (Qy\21).

Next, we derive the corresponding Green’s function for boundary value problem (1.1)
and build some properties of the Green’s function.

Lemma 2.2 Assume that y(t) € C[0,1], 1 <o <2 and 0< B <1 hold. Then, x(t) € C[0,1]
is the solution of the fractional differential equation

Db (CD% x(0) = y(t), 0<t<1,

(2.1)
DY x(0)=x'(0)=0, (1) =x(1),

if and only if x(¢t) satisfies the integral equation x(t) = fol G1(t,8)y(s)ds, t € [0, 1], where

s U @ =0 @ =) dr + (= 1)t [ T2 —5)P 1 de,
0<s<t<l,
Gi(ts) = 1 1 1 B-1 I _a-2 B-1
W[/; (t-t)* N —s)fTdr + (@ - Dt [, 197%(r —5)P 1 d1],

0<t<s<l.
Proof Integrating the equation (2.1) by Property 2.1, we have
DY x(t) = IL y(t) + C1 P,
By “D% x(0) = 0, we obtain C; = 0. Integrating the equation above, we obtain

x(t) = I (I5,5(t)) + Co — C3(1 - 1). (2.2)
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Letting ¢ = 1, we know that x(1) = C,.
Differentiating equation (2.2), by Property 2.2, we have

K () = ~I7H(I, y(0)) + Cs.
As x'(0) = 0, x'(1) = x(1), we obtain
C3 =144 (10, 9(0)) and /(1) = Cs.
Hence,
Cy=x(1)=4'(1) = Cs.
Substituting C3 and C, into equation (2.2), we have
#(t) = B (15, (0)) + £ - 11 (15,%(0))

_é ! _ pa-1 i _ B-1
_F(a)l“(ﬁ)_/t. (t-1) dr/o (t -5 y(s)ds

t U [T
+m/0 i d’/O (z =) y(s) ds.

Changing the order of integration, we obtain

x(

f) = m[ /0 (5 ds / r— (e -5 dr
" / ' y(s)ds / (e — e g dr}
@ /oly 0 | A
- m Uoty(s) ds[[(r — 1z —s)Pldr + (o - 1)t/slt“2(r _g)ft dr]

1 1 1
+ / y(s) ds[/ (=8 =9’ Tdr + (o - l)t/ 972 (r —5)f1 dt“

1
= /0 G1(¢,5)y(s) ds.

The proof is completed. O
It is simple to show that G (¢,s) > 0 for any s, ¢ € [0, 1].

Lemma 2.3 The Green’s function G1(t,s) defined by Lemma 2.2 satisfies

(o — 1)tA1(s) < Gi(t,5) < A1(s),

1 o _
where A1(s) = l'(oz)ll"(ﬂ) [ 2 (r —s)ftdr.
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Proof First, forany0 <t <s<1,

Gi(t,s) = m [/Sl(t - N -5 M dr + (o - 1)1,‘/;1 972 (¢ —5)P! dr:|
1

- r(%r(ﬁ)(“ 1 [ o e (- D)
1 a-1 1
G- m[/s TH(I - ;) (r-9)fdr + (@~ l)t/s %2z _S)ﬁ—ld{l
1
= m/ [tQ -0+ (@-Dt]r* 2 (r —9)Pde
1 a-1 ! -2 B-1
= W[(l—t) + (oe—l)t]/ 972 (r = )P dr < Ay (s).

We show that (1 —£)*! + (o — 1)¢ < 1 as follows. Let ¢(¢) = (1 —£)*~! + (o — 1)¢, we obtain
) =—(-1DA-0)2+(a-1)=—(a - 1)[@ -1]<0,forte(0,1).
Hence, ¢(t) is decreasing and ¢(£) < ¢(0) = 1 for any ¢ € [0, 1].

Next, forany 0 <s <t <1,

! 1
Gilt,s) = m [/t (t -t e -s)fdr + (o - l)t/S 9727 —5)P ! dr:|

> (1) 1 “2(r—5)’Hdr = (@ — 1)tA(s)
! 1
Git,s) = m |:/S. (-0 e -s)fdr +(a - l)t/s %2 (7 —5)P1 dr]
<A(s).
The proof is completed. 0

Remark 2.1 Changing the order of integrating, we have

1 1
/0 A ds = e T BT D po

3 Main results

Now, we consider the space X = C[0, 1] with the usual maximum norm
[[¢]| = max |x(t)|.
te[0,1]

For any (x,7) € X x X, the norm was defined as ||(x,y)|| = max{||x||, |y|l}. Hence, (X x X,
Il - II) is a Banach space. We define set P by

P={xeX:x(t) = 0,x(t) > Atllx|, £ € [0,1]},

where A = min{o — 1,4 — 1} > 0. Let U = P x P. Obviously, U is a normal cone.

Page 5 of 15
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Let integral operator T : U — X x X be defined by

T(x,9) = (T1(x,9), Ta(x,9)),

where T1(x,9) = [} G1(t,5)f(s,x(s), () ds, To(x,9) = fiy Ga(t,8)g(s,x(s), (s)) ds.
According to the definition of G (Z,s) in Lemma 2.2, it follows that

ft —t)* N =) tdr + (u - ltf #72(7 —s)7"1dr],
Ofsftf 1,
m[[sl(r Yz =) + (u — l)tfs1 h2(r —5)¥1dr],

0<t<s<l.

Ga(t, S) =

Hence, the fixed point of the operator T is the solution of BVPs (1.1).
It is straightforward to show that

GZ(t) S) Z 0 and (/J/ - l)tAZ(S) S GZ(t»S) S AZ(S)>

where A,(s) = f H=2(7 —s)7~1dr, then fo Ay(s)ds = m = K.
In order to prove the main results we need the following conditions:
HI) a+B8>2,u+y>2;
(H2) f(t,x,9) € C([0,1] x [0, +00) x [0, +00), [0 + 00)),
g(t,x,y) € C([0,1] x [0, +00) x [0, +00), [0, +00)).

Theorem 3.1 Ifthe conditions (H1) and (H2) hold, the operator T : U — U is completely

continuous.

Proof First, for any (x,y) € U,

1
S/ Al(s)f(s,x(s),y(s)) ds,
0

1
/0 Gi(t, s)f(s, x(s),y(s)) ds

| T1(xp)| = oo

1 1
Ti(x,y) = /0 Gi(t, s)f(s,x(s),y(s)) ds> (o - l)t/0 Al(s)f(s,x(s),y(s)) ds

> (o« = Dt Ti(x,9) | = 2| Ta(x,9)]-

Hence, T1(x,y) € U.
Similarly, we can prove that T5(x,y) € U for any (x,y) € U. Obviously, the operator T :

u—u.
Secondly, owing to the definition of G;(¢,s) and Gx(¢,s) and (H2), the operator 7' is con-

tinuous on U.
Let 2, ={(x,y) € U: ||(x,y)|| <L} be a nonempty bounded closed set, where L >0 is a

constant. If (x,y) € ©;, there exists M > 0 such that ||f(¢,x,y)|| <M, |lg(t,x,y)|| <M for
any (x,y) € Qr, t € [0,1]. Hence, we have

1
SM/ Ai(s)ds = MK;.
0

1
/0 Gi(t, s)f(s,x(s),y(s)) ds

| Tax )] = max
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Similarly, || T2(x,y)|| < MK;. Then, || T (x,y)|| < max{MK;, MK,}. Hence, the operator 7 is
uniformly bounded.

Thirdly, for any (x,y) € U and t3, t; € [0, 1], without loss of generality, we suppose t; < t;.
Now, we prove the operator T is equicontinuous.

| T1(x,p)(t2) — T1(x,p)(81)]

1 1
/o G (t2,5)f (5,2(s), y(s)) ds - /0 Gi(t1,5)f (5,(5), 9(5)) ds

1
§M/ |G (t2,5) - Ga(t1,5)| ds
0
t 2
=M[/ |G1(t2,5)—G1(t1,S)|dS+f |G1(t2,5) — Gi(t1,9)| ds
0 51
1
+/ |G1(t2,S)—G1(t1,S)|dS}
t2

M o
" T(@Tr(B) {/o

! 1
B [./ (r—0)* e -9 dr + (o - l)tlf %72 (7 — )P df}

1)
/
5]

! 1
_U (r-t)(r -9 dr+ (@- Dt / T“_Z(t—s)ﬁ_ldt}

1
+/
1)

1 1
- [/ (t-t)* N -s)fdr + (@ -1y / 7972(7 —5)f1 dt:|

1 1
|:/ (t=0)* Nz -5)"Mdr + (o - 1)'52/ % 2(r —s)P! dr]

ds

1

1
[/ (t-)* M (r-9)"dr +(a - 1)t2/ %2 (r —5)P! df]

ds

! 1
|:] (t-1) -5 dr + (@ - 1)t2/ %72 (r — )P df}

‘|

1 1
Far@ |, v [ e

9
t2 1 )
+ / / (t —1)* Yz —s)ﬂ—l dr —/ (t —t1)* Yz —S)ﬂ_l dr
1
+/ ds}
1 1

' /Otl U:(t -t) (-

1
+ / (t-t)*" = (r =) ) (r =) dt] ds

ty 1 1
o 1 [ GRS / (r =) (x - 5)! df] s

ds

1 1
/ (r - ) Nz -s)f dr - / (=) Yz —s)fldr

ds

/1[(r S R tl)“_l](t —s)Plde
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1 1
+/ ds/ [(oz—1)(r—51)0"2(1,‘2—1,‘1)](1—s)ﬁ’1 dr}

(here & € (t1,5))
1 c
) #F(ﬁ) {(“ D= tl)/o df/O 2z~ ) ds
3] ty f 1
+ /0 ds /ﬂ (t —s)P1dr + /0 ds /tz (@ =1)(ts — 1)(T = )2z — )1 dr
2 1 ) X
+ / ds/ (t-t)* Yz -s)ftdr + / (o = 1)(ty — L‘1)ds/ (r — 5)h3 dr}

(here %‘2 (S (lfl, tz))

M ! a—ZIﬂ
SW{(‘X—U(Q—Q)/T —drt

+/0 (t—8)P Uty —t1)ds+ (@ - 1)(ta — 1) / ds/ — &) 3 dr

a+pf—
/ ds/ (r-s)ftdr + (@ - 1)(t2—t1)/ A-977 S) - s}

1 1 1
<“>F<ﬂ>{(“ D =t) g oy t -y r - D -h) g

L (1-s)P 1
+£1 ﬂ dS+(t2—t1)a7+ﬁ_2}

- M t){ 1 1+#}
STr@ 2 B B avp-2" B arp-2
M

3 2
=Ks(t, —t1), where K3 = F@)T(B) (E + Y 2).

By (H1), K3 is a positive constant.
Similarly, for any (x,y) € U and #;,t; € [0, 1], we have

[Tal0 )0 = Talw )] < Kilts =), where K = = (; r— 2).

That is to say, the operator T is equicontinuous. According to Arzela—Ascoli’s theorem,

the operator T is completely continuous.
The proof is completed.

For convenience, we introduce the following notations

fo= Jim {minM}, 2= lim {min g—(t’x’y)},

ary—>0+ | e[01] X+ x+y—>0+ (2€[01] X+

f*= lim {max AULY) g¥ = lim {max gt.x,y)
xry—ioo|ef01] x+y | wy—voo|eelon) x+y |

fo - lim max f(t,x,y) ) go - lim max g(t;x,y) ,
x4y—0+ | te[01] X+ x+y—>+0te[01] X +y

Joo = Jim {minJM}, go=_lim {min g—(t’x’y)}.

xty—>+00 [ te[01] X+ Y xty—>+oo | €[01] X + Y

Page 8 of 15
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Lemma 3.1 Assume that [(a — 1)AK;]™ < fy < +00 and [(u—1)AK,] ™! < gy < +00 hold, we
have || T (x,y)| = ().

Proof Case 1. If [(@ — 1)AK;]™! < fy < +00 and [(1 — 1)AK,] ™ < gy < +00 hold, set 0 < €; <
fo—[la=1DAK;] and 0 < €5 < go — [(0 — 1)AK,] 7, there exists §; > 0 such that

f(t,x,9) - g(t,x,9)
—= >fo—e,
x+y x+y

>go—€, forallO<x<8;,0<y<é;.

Then, we have

ftx9) = (fo—e)x+y) > [(@ - DAK ] (x +),

2(6,%,9) > (g - €2)(x +9) > [(1n - DAK] " (x + ).

Case 2. If fy = +00 and gy = +00, for two given large numbers N; > [(@ — 1)AK;]™! and
Ny > [( — 1)AK,]7L, there exists 8, > 0 such that

fexy) N, g(t,x,y)

xX+Yy xX+Yy

>N;, forall0<x<8y,0<y<és.

Then, we have

ftx,9) = Ni(x+9) > [(@ - DAK ] (x+9),

26,%9) = No(x+9) = [(n - DAK] " (x+ ).

Letting (x,y) € UN3LQ,,, where Q,, ={(x,y) € X x X : |(%, )|l <r1},0<r <min{8;,8,},
we have

1
/0 Gi(t, s)f(s,x(s),y(s)) ds

| 72662 = max

> max
te[0,1]

/1(01 - 1)tA1(s)[(a - 1))\1(1]_1 (x(s) +y(s)) ds
0
1

= max | [ ek ae(lsl + 1) s
1

szltrell[(ai)f] t2/0 Aq(s)ds ~||(x,y)||

=@y

Similarly, | T ()|l = [1(x, )]I.
No matter which of the above cases holds, we have

TZ(x»y) H } = ” (x’y) ”

|76 = ma (1 i),

The proof is completed. O

Remark 3.1 Either [(@ — 1)AK;]™ < fy < +00 and gy = +00 hold or f; = +o0 and [(u —
1)AK5]™! < gy < +00 hold, similar to Lemma 3.1, we also have || T'(x, y)[| > [|(x, )|
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Lemma 3.2 Assumethat0 < f* < (2K1)™' and 0 < g* < (2K,)™! hold, we have || T (x, y)|| <
IGe M.

Proof Case 1. 1f 0 < f* < (2K;)™! and 0 < g < (2K;)7! hold, setting 0 < 83 < (2K;)™! — f*
and 0 < 84 < (2K,)™! — g*, there exists N3 > 0 such that

t) )
Msfowg,
x+y x+y

g(t,x,) -

g% +384, forallx>Ns,y>Ns.

Then, we have

ft,x,y) < (f°° + 83)(x +7) < (2K)Hx + ),

g(t,x,y) < (€% +84) (v +y) < 2K) (2 +).

Case 2. If f*° = 0 and g* = 0, for €3 < (2K7)™! and €4 < (2K;)7!, there exists Ny > 0 such
that

f(&xy) - gtxy)
— <€

xX+Yy xX+Yy

<e, forallx> Ny,y> N,
Then, we have

ft,x,y) <eslx+y) < (2K;) N« +9),

gt x,y) <elx+y) < (2K,)(x +9).

Letting (x,y) € U N 0K2g,, where Qp, = {(x,y) € X x X : [|(x,»)|| < R}, Ry > max{r;, N3,
N,}, we have

1
/ A1(8)K) ™ (x(5) + 5(5)) ds
0

| T1(x)| < max

1
=i [ as FU < ).
0

Similarly, || T2 @, y)II < [I(x, 9)]l.
No matter which of the above cases holds, we have

|76 = max {| 1@y, [ oo} < |G-

The proof is completed. d

Remark 3.2 Either 0 < f*® < (2K;)™! and g® = 0 hold or f* = 0 and 0 < g < (2K5)~! hold,
similar to Lemma 3.2, we also have || T(x,y)| < ||(x,»)]l-

Lemma 3.3 Assume that 0 < f° < (2K1)™ and 0 < g° < (2K,) ™! hold, we have || T (x,)| <
[l Cx, )1
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Proof Case 1.1f0 < f° < (2K;)™! and 0 < g° < (2K3)7! hold, setting 0 < €5 < (2K7)™' —f© and
0 < €6 < (2K,)™! - g%, there exists 85 > 0 such that

t,%, L,
f( xy)§f0+65, M§g0+e6, forallO<x<85,0<y<55-
xX+y Xty

Then, we have

ft,xy) < (fo + 65)(x +9) < (2K) M x + ),

g(t,%,9) < (&% + &) (x +) < (2K3) " (x + ).

Case 2. If f =0 and g° = 0, for €; < (2K;)™! and €5 < (2K;)7}, there exists 85 > 0 such
that

fexy) _ g(t,x,y)
——= <e¢y,

xX+Yy xX+Yy

<eg, forallO<x<dg0<y<de.

Then, we have

flt,xy) <e(x+y) < (2K) (x +y),

g(t,x,y) < es(x+y) < (2K)  (x +).

Letting (x,y) € UN3RQ,,, where Q,, = {(x,y) € X x X : ||(%, )|l < ra}, 0 < ry < min{8s, 38},
we have

|T26e )] = max

1
/ A1(s)(2K;) ™t (x(s) + y(s)) ds

0

1
= [ e PP < ).
0
Similarly, || T>(x, y)II < ().

No matter which of the above cases holds, we have

|76 = max {| 1@y, [ oo} < |G-

The proof is completed. O

Remark 3.3 Either 0 < f° < (2K;)™! and g° = 0 hold or f° = 0 and 0 < g° < (2K;)™! hold,
similar to Lemma 3.3, we also have || T(x,y)| < ||(x,»)]l-

Lemma 3.4 Assume that [(a@ — 1)AK] ™! < foo < +00 and [(1 — 1)AK,] ™! < goo < +00 hold,

we have | T (x,9) || = [|(x,9)].

Proof Case 1. If [(« — 1)AK;]™! < fi < +00 and [(u — 1)AK,] ™! < goo < +00 hold, setting
0<87 <foo— [(@ = 1)AK;] ™t and 0 < 85 < goo — [(11 — 1)AK;] 7L, there exists a constant N > 0
such that

VACLIS) ISP U (L5

> go —8s, foranyx > Ns,y> Ns.
x+y x+y

Page 11 of 15
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Then, we have
2,9 > (fro —87)(x +3) > [(@ = DAK ] (& +9),
2(6,%,9) > (@0 — )@ +) > [(1 = DAK] (& +9).

Case 2. If fy = +00 and gy = +00, for two constants N7 > [(@ — 1)AK;] ™! and Ng > [(10 —
1)AK,]71, there exists a constant Ng > 0 such that

f(t,x,y) SN, 2t,x,y)
x+y x+y

> Ng, foranyx>Ng,y> Np.

Then, we have

Ft,x,9) > Na(x +9) > [(@ - DAK; ] (x + ),
g(tx,9) = Na(x +3) > [(n - DAKs] " (x+ ).
Letting (x,y) € U N 0Q2p,, where Qp, = {(x,5) € X x X : [|(x,9)|| < Rz}, Ry > max{ry, N5,

N}, we have

|72 = max

/1(05 — DA (s)[ (e - 1))»[(1]_1 (%(s) + ¥(s)) ds
0

> max
te[0,1]

1

/0 tA1(S)[)»K1]_1M(||x|| + ||y||)d5’
1

2| Ays)d

t/o 1(s)ds

Similarly, | T2(x, )1l = [|(x, 9.

> Kl_1 max
te[0,1]

(Ul + IyM) = [ G |-

No matter which of the above cases holds, we have

|76y = max ([ 7250,

te[0,1]

Tox )|} = |-

The proof is completed. g

Remark 3.4 Either [(a — 1)AK;]™ < fo < +00 and go = +00 hold or f,, = +00 and [( —
1)AK;] ™! < g < +00 hold, similar to Lemma 3.4, we also have || T(x, )|l > ||(x, )]

Theorem 3.2 Supposing that (H1) and (H2) hold, and one of the two following conditions
is satisfied:
(1) o -DAK]™ <fy < +00, [(n = DAK,] ™! < go < +00 and 0 < f* < (2K7)7L,
0<g%<(2Ky)™
(2) 0<f0<(2K1)™L 0<g% < 2Ky) ™ and [(@ - DAK ] < foo < +00,
(= DAL, < goo < +00.
Then, the boundary value problem (1.1) has at least one positive solution.

Proof Case 1. By Lemma 3.1, for any (x,y) € U N 3$2,,, we have || T(x,9)[ > [[(x,9)]. By
Lemma 3.2, for (x,y) € U N 0Qp,, and r; < Ry, we have || T(x, )|l < [[(x,»)]l. According
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to Lemma 2.1, the boundary value problem (1.1) has at least one positive solution for
(x7y) eln (ﬁRl\er)'

Case 2. By Lemma 3.3, for any (x,y) € U N 9L,,, we have |T(x,y)| < |[(x)|. By
Lemma 3.4, for (x,y) € U N 0Qg,, and ry < Ry, we have || T(x,y)]l = [(x,9)|l. According
to Lemma 2.1, the boundary value problem (1.1) has at least one positive solution for
(x»y) eun (ﬁRz\Qrz)'

The proof is completed. O

4 Application
Now, we present the following example to illustrate our main theorems.

Example Consider the mixed fractional differential equations

IS}

2 3
DZ.CD2 x(t) = (x+)? +In(tx+y)? +1), 0<t<1,
5

DE(CD} y() = (x +y)3 +tsint, 0<t<I,
DI x(0)=#(0)=0,  #(1)=x(1),
“Diy0)=y(0)=0,  y(1)=y(1).

w

(4.1)

3
Here, o = 5,/3 =

Therefore,

W
wlu

» M= ,J/=%~

13 29 1
a+B=—>2, w+y=—>2, A=5,

6 12
K1 —1 1.0714 K2 71 0.8508
T Tr3\(5y ’ T T\ 7y :
sL(r(3) GG
1 1_\" 2 1\
— . =K1 =3.7335, - =K2 =3.5261,
2 2 3 2

(2K1)! = 0.4667, (2K2)7! = 0.5877,

1
fo= lim | min &*2) +InC DN L3385
07 way)—or | telol] xX+y ’ ’
1 .
= lim min w = +00 > 3.5261
& (e4y)—0+ | t€[0,1] x+y ’ ’
1
o dim | may BRI ACEE P D e
(x+y)—+o0 | te[0,1] xX+Yy ’ ’
1 .
g¥= lim { max ()3 +tsint =0<0.5877
(x+y)—+o0 | te[0,1] xX+Yy ) )

Therefore, it follows from Theorem 3.2 that the fractional differential equation (4.1) has

a nontrivial positive solution.

5 Conclusion

In our review of the literature, the equations of (1.1) were first studied in this paper. We
discuss the coupled boundary value problem of mixed fractional differential equations de-
fined first by the right-sided Caputo fractional derivatives and secondly by the left-sided

Page 13 0of 15



Liu et al. Boundary Value Problems (2023) 2023:9 Page 14 of 15

Riemann-Liouville fractional derivatives. These equations are different from the previous
mixed fractional differential equations. We construct the Green’s function, whose proper-
ties are described by a simple inequality. Furthermore, by using the fixed-point theorems
of a cone, we obtain the existence of solution of equation (1.1). With this classic method,
we improve the theory of the existence of solutions for mixed fractional equations.
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