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Abstract
We prove the existence of the solutions for the new mixed differential equations,
which is characteristic of the right-sided Caputo and the left-sided Riemann–Liouville
fractional derivatives. There are four major ingredients. The first is composed of some
basic definitions and lemmas. The second is the Green’s function of the new mixed
fractional differential equations. We calculate the corresponding Green’s functions as
well as their properties. The third, which is the main new ingredient of this paper, is
demonstration of the existence of the solutions for fractional equations by the
fixed-point theorem in cone expansion and compression of norm type. The fourth, as
applications, is the example provided to illustrate our main results.
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1 Introduction
In recent years, due to applications in mathematics, physics, biology, neural networks,
and so on, the theory of fractional calculus has become the main focus of many scholars.
At the same time, the theory of fractional differential equations is becoming more and
more extensive and systematic [1–7]. There have been some new definitions of fractional
calculus, having found the connection with the classical definitions of Riemann–Liouville
and Caputo fractional calculus [8–10].

Some authors studied the existence of solutions for a class of mixed fractional differ-
ential equations. In 2006, Agrawal presented the mixed differential equation involving
both the Caputo and the Riemann–Liouville fractional derivatives, concentrated on the
solutions in different cases [11]. Later, Blaszczyk presented the numerical solution of the
mixed boundary value problems [12]. Furthermore, some authors [13–19] have discussed
the existence of solutions for the mixed boundary value problems by different methods,
such as the upper and lower solutions theorem, Krasnoselskii’s fixed-point theorem, the
Leray–Schauder alternation theorem, the coincidence degree theory, the mixed monotone
operator theorem, and so on.
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In this paper, we investigate the mixed fractional boundary value problems defined by
the left-sided Riemann–Liouville and the right-sided Caputo fractional derivatives

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dβ
0+(CDα

1–x(t)) = f (t, x(t), y(t)), 0 ≤ t ≤ 1,

Dγ
0+(CDμ

1–y(t)) = g(t, x(t), y(t)), 0 ≤ t ≤ 1,
CDα

1–x(0) = x′(0) = 0, x′(1) = x(1),
CDμ

1–y(0) = y′(0) = 0, y′(1) = y(1),

(1.1)

where Dβ
0+ is the left-sided Riemann–Liouville fractional derivative, CDμ

1– is the right-sided
Caputo fractional derivative, 1 < α,μ ≤ 2, 0 < β ,γ ≤ 1, f : [0, 1] × [0, +∞) × [0, +∞) →
[0 + ∞), and g : [0, 1] × [0, +∞) × [0, +∞) → [0, +∞) are continuous.

In contrast to previous studies, the mixed fractional derivative in this paper is de-
fined first by Caputo fractional derivatives and secondly by Riemann–Liouville fractional
derivatives. We calculate the corresponding Green’s functions and their properties. By the
classic fixed-point theorem of cone expansion and compression of norm type [20–22], we
obtain the existence of the solution for coupled systems of the mixed differential equa-
tions. One example is presented to demonstrate the applications of the main theorems.

2 Preliminaries
In this part, we present some related definitions, properties, and lemmas.

Definition 2.1 (see (2.1.1) and (2.1.2) in [4]) The left-sided and right-sided Riemann–
Liouville fractional integrals of order α (α > 0) of function f (t) ∈ C[0, 1] are defined, re-
spectively, by

Iα
0+f (t) =

∫ t

0

(t – s)α–1

�(α)
f (s) ds and Iα

1–f (t) =
∫ 1

t

(s – t)α–1

�(α)
f (s) ds,

where �(α) is the Gamma function.

Definition 2.2 (see (2.1.5) in [4]) The left-sided Riemann–Liouville fractional derivative
of order α (α > 0) of function f ∈ Cn[0, 1] is given by

Dα
0+f (t) =

dn

dtn

(
In–α

0+ f
)
(t),

where n – 1 < α < n.

Definition 2.3 (see (2.4.16) in [4]) The right-sided Caputo fractional derivative of order
α (α > 0) of function f ∈ Cn[0, 1] is given by

CDα
1–f (t) = (–1)nIn–α

1– f (n)(t),

where n – 1 < α < n.
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Property 2.1 (see (2.1.39) and (2.4.43) in [4]) Let α > 0 and n = [α] + 1. If f (t) ∈ Cn[0, 1],
then

Iα
0+

(
Dα

0+f (t)
)

= f (t) –
n∑

j=1

Cjtα–j,

Iα
1–

(CDα
1–f (t)

)
= f (t) – (–1)j

n–1∑

j=0

C′
j (1 – t)j,

where Cj, C′
j ∈ R are arbitrary constants.

Property 2.2 (see (2.1.33) in [4]) Let α > 0, k ∈ N and α > k. If f (t) ∈ Cn[0, 1], then

dk

dtk

(
Iα

1–f (t)
)

= (–1)kIα–k
1– f (x).

Lemma 2.1 (see Theorem 2.3.4 in [20]) Suppose X is a Banach space and P ⊂ X is a cone
in X. Let �1 and �2 be two bounded, open subsets in X such that 0 ∈ �1 ⊂ �1 ⊂ �2. Let
S : P → P be completely continuous. Suppose that one of the two conditions

(1) ‖Sw‖ ≤ ‖w‖, w ∈ P ∩ ∂�1 and ‖Sw‖ ≥ ‖w‖, w ∈ P ∩ ∂�2 and
(2) ‖Sw‖ ≥ ‖w‖, w ∈ P ∩ ∂�1 and ‖Sw‖ ≤ ‖w‖, w ∈ P ∩ ∂�2 is satisfied.

Then, S has at least one fixed point in P ∩ (�2��1).

Next, we derive the corresponding Green’s function for boundary value problem (1.1)
and build some properties of the Green’s function.

Lemma 2.2 Assume that y(t) ∈ C[0, 1], 1 < α ≤ 2 and 0 < β ≤ 1 hold. Then, x(t) ∈ C[0, 1]
is the solution of the fractional differential equation

⎧
⎨

⎩

Dβ
0+(CDα

1–x(t)) = y(t), 0 ≤ t ≤ 1,
CDα

1–x(0) = x′(0) = 0, x′(1) = x(1),
(2.1)

if and only if x(t) satisfies the integral equation x(t) =
∫ 1

0 G1(t, s)y(s) ds, t ∈ [0, 1], where

G1(t, s) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
�(α)�(β) [

∫ 1
t (τ – t)α–1(τ – s)β–1 dτ + (α – 1)t

∫ 1
s τα–2(τ – s)β–1 dτ ],

0 ≤ s ≤ t ≤ 1,
1

�(α)�(β) [
∫ 1

s (τ – t)α–1(τ – s)β–1 dτ + (α – 1)t
∫ 1

s τα–2(τ – s)β–1 dτ ],

0 ≤ t ≤ s ≤ 1.

Proof Integrating the equation (2.1) by Property 2.1, we have

CDα
1–x(t) = Iβ

0+y(t) + C1tβ–1.

By CDα
1–x(0) = 0, we obtain C1 = 0. Integrating the equation above, we obtain

x(t) = Iα
1–

(
Iβ

0+y(t)
)

+ C2 – C3(1 – t). (2.2)
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Letting t = 1, we know that x(1) = C2.
Differentiating equation (2.2), by Property 2.2, we have

x′(t) = –Iα–1
1–

(
Iβ

0+y(t)
)

+ C3.

As x′(0) = 0, x′(1) = x(1), we obtain

C3 = Iα–1
1–

(
Iβ

0+y(0)
)

and x′(1) = C3.

Hence,

C2 = x(1) = x′(1) = C3.

Substituting C3 and C2 into equation (2.2), we have

x(t) = Iα
1–

(
Iβ

0+y(t)
)

+ t · Iα–1
1–

(
Iβ

0+y(0)
)

=
1

�(α)�(β)

∫ 1

t
(τ – t)α–1 dτ

∫ τ

0
(τ – s)β–1y(s) ds

+
t

�(α – 1)�(β)

∫ 1

0
τα–2 dτ

∫ τ

0
(τ – s)β–1y(s) ds.

Changing the order of integration, we obtain

x(t) =
1

�(α)�(β)

[∫ t

0
y(s) ds

∫ 1

t
(τ – t)α–1(τ – s)β–1 dτ

+
∫ 1

t
y(s) ds

∫ 1

s
(τ – t)α–1(τ – s)β–1 dτ

]

+
t

�(α – 1)�(β)

∫ 1

0
y(s) ds

∫ 1

s
τα–2(τ – s)β–1 dτ

=
1

�(α)�(β)

{∫ t

0
y(s) ds

[∫ 1

t
(τ – t)α–1(τ – s)β–1 dτ + (α – 1)t

∫ 1

s
τα–2(τ – s)β–1 dτ

]

+
∫ 1

t
y(s) ds

[∫ 1

s
(τ – t)α–1(τ – s)β–1 dτ + (α – 1)t

∫ 1

s
τα–2(τ – s)β–1 dτ

]}

=
∫ 1

0
G1(t, s)y(s) ds.

The proof is completed. �

It is simple to show that G1(t, s) ≥ 0 for any s, t ∈ [0, 1].

Lemma 2.3 The Green’s function G1(t, s) defined by Lemma 2.2 satisfies

(α – 1)tA1(s) ≤ G1(t, s) ≤ A1(s),

where A1(s) = 1
�(α)�(β)

∫ 1
s τα–2(τ – s)β–1 dτ .
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Proof First, for any 0 ≤ t ≤ s ≤ 1,

G1(t, s) =
1

�(α)�(β)

[∫ 1

s
(τ – t)α–1(τ – s)β–1 dτ + (α – 1)t

∫ 1

s
τα–2(τ – s)β–1 dτ

]

≥ 1
�(α)�(β)

(α – 1)t
∫ 1

s
τα–2(τ – s)β–1 dτ = (α – 1)tA1(s),

G1(t, s) =
1

�(α)�(β)

[∫ 1

s
τα–1

(

1 –
t
τ

)α–1

(τ – s)β–1 dτ + (α – 1)t
∫ 1

s
τα–2(τ – s)β–1 dτ

]

≤ 1
�(α)�(β)

∫ 1

s

[
τ (1 – t)α–1 + (α – 1)t

]
τα–2(τ – s)β–1 dτ

≤ 1
�(α)�(β)

[
(1 – t)α–1 + (α – 1)t

]
∫ 1

s
τα–2(τ – s)β–1 dτ ≤ A1(s).

We show that (1 – t)α–1 + (α – 1)t ≤ 1 as follows. Let φ(t) = (1 – t)α–1 + (α – 1)t, we obtain
φ′(t) = –(α – 1)(1 – t)α–2 + (α – 1) = –(α – 1)[ 1

(1–t)2–α – 1] ≤ 0, for t ∈ (0, 1).
Hence, φ(t) is decreasing and φ(t) ≤ φ(0) = 1 for any t ∈ [0, 1].
Next, for any 0 ≤ s ≤ t ≤ 1,

G1(t, s) =
1

�(α)�(β)

[∫ 1

t
(τ – t)α–1(τ – s)β–1 dτ + (α – 1)t

∫ 1

s
τα–2(τ – s)β–1 dτ

]

≥ 1
�(α)�(β)

(α – 1)t
∫ 1

s
τα–2(τ – s)β–1 dτ = (α – 1)tA1(s),

G1(t, s) ≤ 1
�(α)�(β)

[∫ 1

s
(τ – t)α–1(τ – s)β–1 dτ + (α – 1)t

∫ 1

s
τα–2(τ – s)β–1 dτ

]

≤ A1(s).

The proof is completed. �

Remark 2.1 Changing the order of integrating, we have

∫ 1

0
A1(s) ds =

1
�(α)�(β + 1)(α + β – 1)

:= K1.

3 Main results
Now, we consider the space X = C[0, 1] with the usual maximum norm

‖x‖ = max
t∈[0,1]

∣
∣x(t)

∣
∣.

For any (x, y) ∈ X × X, the norm was defined as ‖(x, y)‖ = max{‖x‖,‖y‖}. Hence, (X × X,
‖ · ‖) is a Banach space. We define set P by

P =
{

x ∈ X : x(t) ≥ 0, x(t) ≥ λt‖x‖, t ∈ [0, 1]
}

,

where λ = min{α – 1,μ – 1} > 0. Let U = P × P. Obviously, U is a normal cone.



Liu et al. Boundary Value Problems          (2023) 2023:9 Page 6 of 15

Let integral operator T : U → X × X be defined by

T(x, y) =
(
T1(x, y), T2(x, y)

)
,

where T1(x, y) =
∫ 1

0 G1(t, s)f (s, x(s), y(s)) ds, T2(x, y) =
∫ 1

0 G2(t, s)g(s, x(s), y(s)) ds.
According to the definition of G1(t, s) in Lemma 2.2, it follows that

G2(t, s) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
�(μ)�(γ ) [

∫ 1
t (τ – t)μ–1(τ – s)γ –1 dτ + (μ – 1)t

∫ 1
s τμ–2(τ – s)γ –1 dτ ],

0 ≤ s ≤ t ≤ 1,
1

�(μ)�(γ ) [
∫ 1

s (τ – t)μ–1(τ – s)γ –1 dτ + (μ – 1)t
∫ 1

s τμ–2(τ – s)γ –1 dτ ],

0 ≤ t ≤ s ≤ 1.

Hence, the fixed point of the operator T is the solution of BVPs (1.1).
It is straightforward to show that

G2(t, s) ≥ 0 and (μ – 1)tA2(s) ≤ G2(t, s) ≤ A2(s),

where A2(s) = 1
�(μ)�(γ )

∫ 1
s τμ–2(τ – s)γ –1 dτ , then

∫ 1
0 A2(s) ds = 1

�(μ)�(γ +1)(μ+γ –1) := K2.
In order to prove the main results, we need the following conditions:
(H1) α + β > 2, μ + γ > 2;
(H2) f (t, x, y) ∈ C([0, 1] × [0, +∞) × [0, +∞), [0 + ∞)),

g(t, x, y) ∈ C([0, 1] × [0, +∞) × [0, +∞), [0, +∞)).

Theorem 3.1 If the conditions (H1) and (H2) hold, the operator T : U → U is completely
continuous.

Proof First, for any (x, y) ∈ U ,

∥
∥T1(x, y)

∥
∥ = max

t∈[0,1]

∣
∣
∣
∣

∫ 1

0
G1(t, s)f

(
s, x(s), y(s)

)
ds

∣
∣
∣
∣ ≤

∫ 1

0
A1(s)f

(
s, x(s), y(s)

)
ds,

T1(x, y) =
∫ 1

0
G1(t, s)f

(
s, x(s), y(s)

)
ds ≥ (α – 1)t

∫ 1

0
A1(s)f

(
s, x(s), y(s)

)
ds

≥ (α – 1)t
∥
∥T1(x, y)

∥
∥ ≥ λt

∥
∥T1(x, y)

∥
∥.

Hence, T1(x, y) ∈ U .
Similarly, we can prove that T2(x, y) ∈ U for any (x, y) ∈ U . Obviously, the operator T :

U → U .
Secondly, owing to the definition of G1(t, s) and G2(t, s) and (H2), the operator T is con-

tinuous on U .
Let �L = {(x, y) ∈ U : ‖(x, y)‖ ≤ L} be a nonempty bounded closed set, where L > 0 is a

constant. If (x, y) ∈ �L, there exists M > 0 such that ‖f (t, x, y)‖ ≤ M, ‖g(t, x, y)‖ ≤ M for
any (x, y) ∈ �L, t ∈ [0, 1]. Hence, we have

∥
∥T1(x, y)

∥
∥ = max

0≤t≤1

∣
∣
∣
∣

∫ 1

0
G1(t, s)f

(
s, x(s), y(s)

)
ds

∣
∣
∣
∣ ≤ M

∫ 1

0
A1(s) ds = MK1.
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Similarly, ‖T2(x, y)‖ ≤ MK2. Then, ‖T(x, y)‖ ≤ max{MK1, MK2}. Hence, the operator T is
uniformly bounded.

Thirdly, for any (x, y) ∈ U and t1, t2 ∈ [0, 1], without loss of generality, we suppose t1 < t2.
Now, we prove the operator T is equicontinuous.

∣
∣T1(x, y)(t2) – T1(x, y)(t1)

∣
∣

=
∣
∣
∣
∣

∫ 1

0
G1(t2, s)f

(
s, x(s), y(s)

)
ds –

∫ 1

0
G1(t1, s)f

(
s, x(s), y(s)

)
ds

∣
∣
∣
∣

≤ M
∫ 1

0

∣
∣G1(t2, s) – G1(t1, s)

∣
∣ds

= M
[∫ t1

0

∣
∣G1(t2, s) – G1(t1, s)

∣
∣ds +

∫ t2

t1

∣
∣G1(t2, s) – G1(t1, s)

∣
∣ds

+
∫ 1

t2

∣
∣G1(t2, s) – G1(t1, s)

∣
∣ds

]

=
M

�(α)�(β)

{∫ t1

0

∣
∣
∣
∣

[∫ 1

t2

(τ – t2)α–1(τ – s)β–1 dτ + (α – 1)t2

∫ 1

s
τα–2(τ – s)β–1 dτ

]

–
[∫ 1

t1

(τ – t1)α–1(τ – s)β–1 dτ + (α – 1)t1

∫ 1

s
τα–2(τ – s)β–1 dτ

]∣
∣
∣
∣ds

+
∫ t2

t1

∣
∣
∣
∣

[∫ 1

t2

(τ – t2)α–1(τ – s)β–1 dτ + (α – 1)t2

∫ 1

s
τα–2(τ – s)β–1 dτ

]

–
[∫ 1

s
(τ – t1)α–1(τ – s)β–1 dτ + (α – 1)t1

∫ 1

s
τα–2(τ – s)β–1 dτ

]∣
∣
∣
∣ds

+
∫ 1

t2

∣
∣
∣
∣

[∫ 1

s
(τ – t2)α–1(τ – s)β–1 dτ + (α – 1)t2

∫ 1

s
τα–2(τ – s)β–1 dτ

]

–
[∫ 1

s
(τ – t1)α–1(τ – s)β–1 dτ + (α – 1)t1

∫ 1

s
τα–2(τ – s)β–1 dτ

]∣
∣
∣
∣ds

}

=
M

�(α)�(β)

{∫ 1

0
(α – 1)(t2 – t1)

∫ 1

s
τα–2(τ – s)β–1 dτ ds

+
∫ t1

0

∣
∣
∣
∣

∫ 1

t2

(τ – t2)α–1(τ – s)β–1 dτ –
∫ 1

t1

(τ – t1)α–1(τ – s)β–1 dτ

∣
∣
∣
∣ds

+
∫ t2

t1

∣
∣
∣
∣

∫ 1

t2

(τ – t2)α–1(τ – s)β–1 dτ –
∫ 1

s
(τ – t1)α–1(τ – s)β–1 dτ

∣
∣
∣
∣ds

+
∫ 1

t2

∣
∣
∣
∣

∫ 1

s

[
(τ – t2)α–1 – (τ – t1)α–1](τ – s)β–1 dτ

∣
∣
∣
∣ds

}

≤ M
�(α)�(β)

{

(α – 1)(t2 – t1)
∫ 1

0
ds

∫ 1

s
τα–2(τ – s)β–1 dτ

+
∫ t1

0

[∫ t2

t1
(τ – t1)α–1(τ – s)β–1 dτ

+
∫ 1

t2

(
(τ – t1)α–1 – (τ – t2)α–1)(τ – s)β–1 dτ

]

ds

+
∫ t2

t1

[∫ 1

s
(τ – t1)α–1(τ – s)β–1 dτ –

∫ 1

t2

(τ – t2)α–1(τ – s)β–1 dτ

]

ds
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+
∫ 1

t2

ds
∫ 1

s

[
(α – 1)(τ – ξ1)α–2(t2 – t1)

]
(τ – s)β–1 dτ

}

(
here ξ1 ∈ (t1, t2)

)

≤ M
�(α)�(β)

{

(α – 1)(t2 – t1)
∫ 1

0
dτ

∫ τ

0
τα–2(τ – s)β–1 ds

+
∫ t1

0
ds

∫ t2

t1
(τ – s)β–1 dτ +

∫ t1

0
ds

∫ 1

t2

(α – 1)(t2 – t1)(τ – ξ2)α–2(τ – s)β–1 dτ

+
∫ t2

t1

ds
∫ 1

s
(τ – t1)α–1(τ – s)β–1 dτ +

∫ 1

t2

(α – 1)(t2 – t1) ds
∫ 1

s
(τ – s)α+β–3 dτ

}

(
here ξ2 ∈ (t1, t2)

)

≤ M
�(α)�(β)

{

(α – 1)(t2 – t1)
∫ 1

0
τα–2 τβ

β
dτ

+
∫ t1

0
(t1 – s)β–1(t2 – t1) ds + (α – 1)(t2 – t1)

∫ t1

0
ds

∫ 1

t2

(τ – ξ2)α+β–3 dτ

+
∫ t2

t1

ds
∫ 1

s
(τ – s)β–1 dτ + (α – 1)(t2 – t1)

∫ 1

t2

(1 – s)α+β–2

α + β – 2
ds

}

≤ M
�(α)�(β)

{

(α – 1)(t2 – t1)
1

β(α + β – 1)
+ (t2 – t1)

1
β

+ (α – 1)(t2 – t1)
1

α + β – 2

+
∫ t2

t1

(1 – s)β

β
ds + (t2 – t1)

1
α + β – 2

}

≤ M
�(α)�(β)

(t2 – t1)
{

1
β

+
1
β

+
1

α + β – 2
+

1
β

+
1

α + β – 2

}

= K3(t2 – t1), where K3 =
M

�(α)�(β)

(
3
β

+
2

α + β – 2

)

.

By (H1), K3 is a positive constant.
Similarly, for any (x, y) ∈ U and t1, t2 ∈ [0, 1], we have

∣
∣T2(x, y)(t2) – T2(x, y)(t1)

∣
∣ ≤ K4(t2 – t1), where K4 =

M
�(μ)�(γ )

(
3
γ

+
2

μ + γ – 2

)

.

That is to say, the operator T is equicontinuous. According to Arzela–Ascoli’s theorem,
the operator T is completely continuous.

The proof is completed. �

For convenience, we introduce the following notations

f0 = lim
x+y→0+

{

min
t∈[0,1]

f (t, x, y)
x + y

}

, g0 = lim
x+y→0+

{

min
t∈[0,1]

g(t, x, y)
x + y

}

,

f ∞ = lim
x+y→+∞

{

max
t∈[0,1]

f (t, x, y)
x + y

}

, g∞ = lim
x+y→+∞

{

max
t∈[0,1]

g(t, x, y)
x + y

}

,

f 0 = lim
x+y→0+

{

max
t∈[0,1]

f (t, x, y)
x + y

}

, g0 = lim
x+y→+0

{

max
t∈[0,1]

g(t, x, y)
x + y

}

,

f∞ = lim
x+y→+∞

{

min
t∈[0,1]

f (t, x, y)
x + y

}

, g∞ = lim
x+y→+∞

{

min
t∈[0,1]

g(t, x, y)
x + y

}

.
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Lemma 3.1 Assume that [(α – 1)λK1]–1 < f0 ≤ +∞ and [(μ – 1)λK2]–1 < g0 ≤ +∞ hold, we
have ‖T(x, y)‖ ≥ ‖(x, y)‖.

Proof Case 1. If [(α – 1)λK1]–1 < f0 < +∞ and [(μ – 1)λK2]–1 < g0 < +∞ hold, set 0 < ε1 <
f0 – [(α – 1)λK1]–1 and 0 < ε2 < g0 – [(μ – 1)λK2]–1, there exists δ1 > 0 such that

f (t, x, y)
x + y

≥ f0 – ε1,
g(t, x, y)

x + y
≥ g0 – ε2, for all 0 < x < δ1, 0 < y < δ1.

Then, we have

f (t, x, y) ≥ (f0 – ε1)(x + y) >
[
(α – 1)λK1

]–1(x + y),

g(t, x, y) ≥ (g0 – ε2)(x + y) >
[
(μ – 1)λK2

]–1(x + y).

Case 2. If f0 = +∞ and g0 = +∞, for two given large numbers N1 ≥ [(α – 1)λK1]–1 and
N2 ≥ [(μ – 1)λK2]–1, there exists δ2 > 0 such that

f (t, x, y)
x + y

≥ N1,
g(t, x, y)

x + y
≥ N2, for all 0 < x < δ2, 0 < y < δ2.

Then, we have

f (t, x, y) ≥ N1(x + y) ≥ [
(α – 1)λK1

]–1(x + y),

g(t, x, y) ≥ N2(x + y) ≥ [
(μ – 1)λK2

]–1(x + y).

Letting (x, y) ∈ U ∩ ∂�r1 , where �r1 = {(x, y) ∈ X × X : ‖(x, y)‖ ≤ r1}, 0 < r1 ≤ min{δ1, δ2},
we have

∥
∥T1(x, y)

∥
∥ = max

t∈[0,1]

∣
∣
∣
∣

∫ 1

0
G1(t, s)f

(
s, x(s), y(s)

)
ds

∣
∣
∣
∣

≥ max
t∈[0,1]

∣
∣
∣
∣

∫ 1

0
(α – 1)tA1(s)

[
(α – 1)λK1

]–1(x(s) + y(s)
)

ds
∣
∣
∣
∣

≥ max
t∈[0,1]

∣
∣
∣
∣

∫ 1

0
tA1(s)[λK1]–1λt

(‖x‖ + ‖y‖)ds
∣
∣
∣
∣

≥ K–1
1 max

t∈[0,1]

∣
∣
∣
∣t

2
∫ 1

0
A1(s) ds

∣
∣
∣
∣ · ∥∥(x, y)

∥
∥

=
∥
∥(x, y)

∥
∥.

Similarly, ‖T2(x, y)‖ ≥ ‖(x, y)‖.
No matter which of the above cases holds, we have

∥
∥T(x, y)

∥
∥ = max

t∈[0,1]

{∥
∥T1(x, y)

∥
∥,

∥
∥T2(x, y)

∥
∥
} ≥ ∥

∥(x, y)
∥
∥.

The proof is completed. �

Remark 3.1 Either [(α – 1)λK1]–1 < f0 < +∞ and g0 = +∞ hold or f0 = +∞ and [(μ –
1)λK2]–1 < g0 < +∞ hold, similar to Lemma 3.1, we also have ‖T(x, y)‖ ≥ ‖(x, y)‖.
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Lemma 3.2 Assume that 0 ≤ f ∞ < (2K1)–1 and 0 ≤ g∞ < (2K2)–1 hold, we have ‖T(x, y)‖ ≤
‖(x, y)‖.

Proof Case 1. If 0 < f ∞ < (2K1)–1 and 0 < g∞ < (2K2)–1 hold, setting 0 < δ3 < (2K1)–1 – f ∞

and 0 < δ4 < (2K2)–1 – g∞, there exists N3 > 0 such that

f (t, x, y)
x + y

≤ f ∞ + δ3,
g(t, x, y)

x + y
≤ g∞ + δ4, for all x > N3, y > N3.

Then, we have

f (t, x, y) ≤ (
f ∞ + δ3

)
(x + y) < (2K1)–1(x + y),

g(t, x, y) ≤ (
g∞ + δ4

)
(x + y) < (2K2)–1(x + y).

Case 2. If f ∞ = 0 and g∞ = 0, for ε3 ≤ (2K1)–1 and ε4 ≤ (2K2)–1, there exists N4 > 0 such
that

f (t, x, y)
x + y

≤ ε3,
g(t, x, y)

x + y
≤ ε4, for all x ≥ N4, y ≥ N4.

Then, we have

f (t, x, y) ≤ ε3(x + y) ≤ (2K1)–1(x + y),

g(t, x, y) ≤ ε4(x + y) ≤ (2K2)–1(x + y).

Letting (x, y) ∈ U ∩ ∂�R1 , where �R1 = {(x, y) ∈ X × X : ‖(x, y)‖ ≤ R1}, R1 > max{r1, N3,
N4}, we have

∥
∥T1(x, y)

∥
∥ ≤ max

t∈[0,1]

∣
∣
∣
∣

∫ 1

0
A1(s)(2K1)–1(x(s) + y(s)

)
ds

∣
∣
∣
∣

≤ K–1
1

∫ 1

0
A1(s) ds · ‖x‖ + ‖y‖

2
≤ ∥

∥(x, y)
∥
∥.

Similarly, ‖T2(x, y)‖ ≤ ‖(x, y)‖.
No matter which of the above cases holds, we have

∥
∥T(x, y)

∥
∥ = max

t∈[0,1]

{∥
∥T1(x, y)

∥
∥,

∥
∥T2(x, y)

∥
∥
} ≤ ∥

∥(x, y)
∥
∥.

The proof is completed. �

Remark 3.2 Either 0 < f ∞ < (2K1)–1 and g∞ = 0 hold or f ∞ = 0 and 0 < g∞ < (2K2)–1 hold,
similar to Lemma 3.2, we also have ‖T(x, y)‖ ≤ ‖(x, y)‖.

Lemma 3.3 Assume that 0 ≤ f 0 < (2K1)–1 and 0 ≤ g0 < (2K2)–1 hold, we have ‖T(x, y)‖ ≤
‖(x, y)‖.
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Proof Case 1. If 0 < f 0 < (2K1)–1 and 0 < g0 < (2K2)–1 hold, setting 0 < ε5 < (2K1)–1 – f 0 and
0 < ε6 < (2K2)–1 – g0, there exists δ5 > 0 such that

f (t, x, y)
x + y

≤ f 0 + ε5,
g(t, x, y)

x + y
≤ g0 + ε6, for all 0 < x < δ5, 0 < y < δ5.

Then, we have

f (t, x, y) ≤ (
f 0 + ε5

)
(x + y) < (2K1)–1(x + y),

g(t, x, y) ≤ (
g0 + ε6

)
(x + y) < (2K2)–1(x + y).

Case 2. If f 0 = 0 and g0 = 0, for ε7 ≤ (2K1)–1 and ε8 ≤ (2K2)–1, there exists δ6 > 0 such
that

f (t, x, y)
x + y

≤ ε7,
g(t, x, y)

x + y
≤ ε8, for all 0 < x < δ6, 0 < y < δ6.

Then, we have

f (t, x, y) ≤ ε7(x + y) < (2K1)–1(x + y),

g(t, x, y) ≤ ε8(x + y) < (2K2)–1(x + y).

Letting (x, y) ∈ U ∩ ∂�r2 , where �r2 = {(x, y) ∈ X × X : ‖(x, y)‖ ≤ r2}, 0 < r2 ≤ min{δ5, δ6},
we have

∥
∥T1(x, y)

∥
∥ ≤ max

t∈[0,1]

∣
∣
∣
∣

∫ 1

0
A1(s)(2K1)–1(x(s) + y(s)

)
ds

∣
∣
∣
∣

≤ K–1
1

∫ 1

0
A1(s) ds · ‖x‖ + ‖y‖

2
≤ ∥

∥(x, y)
∥
∥.

Similarly, ‖T2(x, y)‖ ≤ ‖(x, y)‖.
No matter which of the above cases holds, we have

∥
∥T(x, y)

∥
∥ = max

t∈[0,1]

{∥
∥T1(x, y)

∥
∥,

∥
∥T2(x, y)

∥
∥
} ≤ ∥

∥(x, y)
∥
∥.

The proof is completed. �

Remark 3.3 Either 0 < f 0 < (2K1)–1 and g0 = 0 hold or f 0 = 0 and 0 < g0 < (2K2)–1 hold,
similar to Lemma 3.3, we also have ‖T(x, y)‖ ≤ ‖(x, y)‖.

Lemma 3.4 Assume that [(α – 1)λK1]–1 < f∞ ≤ +∞ and [(μ – 1)λK2]–1 < g∞ ≤ +∞ hold,
we have ‖T(x, y)‖ ≥ ‖(x, y)‖.

Proof Case 1. If [(α – 1)λK1]–1 < f∞ < +∞ and [(μ – 1)λK2]–1 < g∞ < +∞ hold, setting
0 < δ7 < f∞ – [(α – 1)λK1]–1 and 0 < δ8 < g∞ – [(μ – 1)λK2]–1, there exists a constant N5 > 0
such that

f (t, x, y)
x + y

≥ f∞ – δ7,
g(t, x, y)

x + y
≥ g∞ – δ8, for any x > N5, y > N5.
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Then, we have

f (t, x, y) ≥ (f∞ – δ7)(x + y) >
[
(α – 1)λK1

]–1(x + y),

g(t, x, y) ≥ (g∞ – δ8)(x + y) >
[
(μ – 1)λK2

]–1(x + y).

Case 2. If f0 = +∞ and g0 = +∞, for two constants N7 ≥ [(α – 1)λK1]–1 and N8 ≥ [(μ –
1)λK2]–1, there exists a constant N6 > 0 such that

f (t, x, y)
x + y

≥ N7,
g(t, x, y)

x + y
≥ N8, for any x > N6, y > N6.

Then, we have

f (t, x, y) ≥ N7(x + y) ≥ [
(α – 1)λK1

]–1(x + y),

g(t, x, y) ≥ N8(x + y) ≥ [
(μ – 1)λK2

]–1(x + y).

Letting (x, y) ∈ U ∩ ∂�R2 , where �R2 = {(x, y) ∈ X × X : ‖(x, y)‖ ≤ R2}, R2 > max{r2, N5,
N6}, we have

∥
∥T1(x, y)

∥
∥ ≥ max

t∈[0,1]

∣
∣
∣
∣

∫ 1

0
(α – 1)tA1(s)

[
(α – 1)λK1

]–1(x(s) + y(s)
)

ds
∣
∣
∣
∣

≥ max
t∈[0,1]

∣
∣
∣
∣

∫ 1

0
tA1(s)[λK1]–1λt

(‖x‖ + ‖y‖)ds
∣
∣
∣
∣

≥ K–1
1 max

t∈[0,1]

∣
∣
∣
∣t

2
∫ 1

0
A1(s) ds

∣
∣
∣
∣ · (‖x‖ + ‖y‖) ≥ ∥

∥(x, y)
∥
∥.

Similarly, ‖T2(x, y)‖ ≥ ‖(x, y)‖.
No matter which of the above cases holds, we have

∥
∥T(x, y)

∥
∥ = max

t∈[0,1]

{∥
∥T1(x, y)

∥
∥,

∥
∥T2(x, y)

∥
∥
} ≥ ∥

∥(x, y)
∥
∥.

The proof is completed. �

Remark 3.4 Either [(α – 1)λK1]–1 < f∞ < +∞ and g∞ = +∞ hold or f∞ = +∞ and [(μ –
1)λK2]–1 < g∞ < +∞ hold, similar to Lemma 3.4, we also have ‖T(x, y)‖ ≥ ‖(x, y)‖.

Theorem 3.2 Supposing that (H1) and (H2) hold, and one of the two following conditions
is satisfied:

(1) [(α – 1)λK1]–1 < f0 ≤ +∞, [(μ – 1)λK2]–1 < g0 ≤ +∞ and 0 ≤ f ∞ < (2K1)–1,
0 ≤ g∞ < (2K2)–1;

(2) 0 ≤ f 0 < (2K1)–1, 0 ≤ g0 < (2K2)–1 and [(α – 1)λK1]–1 < f∞ ≤ +∞,
[(μ – 1)λK2]–1 < g∞ ≤ +∞.

Then, the boundary value problem (1.1) has at least one positive solution.

Proof Case 1. By Lemma 3.1, for any (x, y) ∈ U ∩ ∂�r1 , we have ‖T(x, y)‖ ≥ ‖(x, y)‖. By
Lemma 3.2, for (x, y) ∈ U ∩ ∂�R1 , and r1 < R1, we have ‖T(x, y)‖ ≤ ‖(x, y)‖. According
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to Lemma 2.1, the boundary value problem (1.1) has at least one positive solution for
(x, y) ∈ U ∩ (�R1��r1 ).

Case 2. By Lemma 3.3, for any (x, y) ∈ U ∩ ∂�r2 , we have ‖T(x, y)‖ ≤ ‖(x, y)‖. By
Lemma 3.4, for (x, y) ∈ U ∩ ∂�R2 , and r2 < R2, we have ‖T(x, y)‖ ≥ ‖(x, y)‖. According
to Lemma 2.1, the boundary value problem (1.1) has at least one positive solution for
(x, y) ∈ U ∩ (�R2��r2 ).

The proof is completed. �

4 Application
Now, we present the following example to illustrate our main theorems.

Example Consider the mixed fractional differential equations

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

D
2
3
0+(CD

3
2
1–x(t)) = (x + y) 1

2 + ln(t(x + y)2 + 1), 0 ≤ t ≤ 1,

D
3
4
0+(CD

5
3
1–y(t)) = (x + y) 1

3 + t sin t, 0 ≤ t ≤ 1,
CD

3
2
1–x(0) = x′(0) = 0, x′(1) = x(1),

CD
5
3
1–y(0) = y′(0) = 0, y′(1) = y(1).

(4.1)

Here, α = 3
2 , β = 2

3 , μ = 5
3 , γ = 3

4 .
Therefore,

α + β =
13
6

> 2, μ + γ =
29
12

> 2, λ =
1
2

,

K1 =
1

7
6�( 3

2 )�( 5
3 )

= 1.0714, K2 =
1

17
12�( 5

3 )�( 7
4 )

= 0.8508.

(
1
2

· 1
2

K1
)–1

= 3.7335,
(

2
3

· 1
2

K2
)–1

= 3.5261,

(2K1)–1 = 0.4667, (2K2)–1 = 0.5877,

f0 = lim
(x+y)→0+

{

min
t∈[0,1]

(x + y) 1
2 + ln(t(x + y)2 + 1)

x + y

}

= +∞ > 3.7335,

g0 = lim
(x+y)→0+

{

min
t∈[0,1]

(x + y) 1
3 + t sin t

x + y

}

= +∞ > 3.5261,

f ∞ = lim
(x+y)→+∞

{

max
t∈[0,1]

(x + y) 1
2 + ln(t(x + y)2 + 1)

x + y

}

= 0 < 0.4667,

g∞ = lim
(x+y)→+∞

{

max
t∈[0,1]

(x + y) 1
3 + t sin t

x + y

}

= 0 < 0.5877.

Therefore, it follows from Theorem 3.2 that the fractional differential equation (4.1) has
a nontrivial positive solution.

5 Conclusion
In our review of the literature, the equations of (1.1) were first studied in this paper. We
discuss the coupled boundary value problem of mixed fractional differential equations de-
fined first by the right-sided Caputo fractional derivatives and secondly by the left-sided
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Riemann–Liouville fractional derivatives. These equations are different from the previous
mixed fractional differential equations. We construct the Green’s function, whose proper-
ties are described by a simple inequality. Furthermore, by using the fixed-point theorems
of a cone, we obtain the existence of solution of equation (1.1). With this classic method,
we improve the theory of the existence of solutions for mixed fractional equations.
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