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Abstract
In this paper, we consider fractional neutral differential equations with multipoint
boundary value conditions involving Hadamard derivatives and integrals. We obtain
the existence and uniqueness of the solution of the equation by using several fixed
point theorems, and we also consider the Ulam–Hyers stability of the solution. In
addition, we study the differential inclusion problem with multipoint boundary value
conditions and prove the existence of the solution of the boundary value problem
when the multivalued map has convex values. We also give several examples to
illustrate the feasibility of the results.
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1 Introduction
Fractional calculus is a generalization of integer calculus. Its order can be any real or com-
plex number. As an important branch of mathematics, fractional calculus has been widely
used in many fields, such as engineering, biology, neural networks, economics, control
theory, and so on. Compared with integer-order differential equations, fractional-order
differential equations can describe some problems more accurately. For applications of
fractional differential equations and details, we refer to [8, 11, 12, 14–16, 18] and refer-
ences therein.

The Hadamard fractional derivative and integral are an important part of fractional cal-
culus. For some recent results on the Hadamard fractional derivative, we refer the reader
to [1, 2] and references therein. Many researchers consider the boundary value prob-
lems of fractional differential equations with Hadamard derivative. For example, in 2016,
Tariboon [20] used the Leggett–Williams and Guo–Krasnoselskii fixed point theorems to
study the existence of nonnegative multiple solutions of Hadamard fractional differential
equations on infinite domain; in 2021, Zhang [22] used the generalized Avery–Henderson
fixed point theorem to study nonlinear Hadamard fractional differential equations with
nonlocal boundary conditions.
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In recent years, the stability analysis of solutions of fractional differential equations has
attracted extensive attention of researchers. The concept of Ulam–Hyers stability is very
important in numerical analysis, economics, and other disciplines. For applications of
Ulam–Hyers stability in fractional calculus, we refer to [3, 5]. Fractional differential in-
clusions are considered as a generalization of differential equations and inequalities. They
are very useful in the study of dynamic systems, optimal control theory, and stochastic
processes. Many results have been obtained about this kind of equations. In 2016, Ah-
mad [4] studied mixed initial value problems involving Hadamard and Riemann–Liouville
fractional integro-differential inclusions. In 2020, Ntouyas [21] introduced the boundary
value problem of Hilfer-type pantograph fractional inclusions and proved the existence of
solutions when the multivalued map has convex and nonconvex values.

Based on the above research results, we consider the following multipoint boundary
value problems for higher-order Hadamard fractional neutral differential equation:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(HDαZ)(t) = χ (t, u(t)), t ∈ [1, e2],

Z(1) = Z′(1) = · · · = Z(n–3)(1) = 0,

Z(
√

e) = HIαχ (t, u(t))|t=
√

e,

HIpu(t)|t=e2 =
∑r

j=1 ωjHIqu(t)|t=ξj ,

(1.1)

where HDα is the Hadamard derivative operator of order α, and H Iα , HIp, and HIq represent
the Hadamard integral operators of orders α, p, and q respectively, α ∈ (n–1, n], n ∈ N , n ≥
3, p ∈ [1, n – 2], q ∈ [0, p], ωj ∈R (j = 1, 2, . . . , r), 1 < ξ1 < · · · < ξr ≤ e2, χ ∈ C([1, e2] ×R,R),
Z(t) = u(t) –

∑m
k=1 gk(t, u(t)), Z ∈ L1(1, e2), gk ∈ C([1, e2] ×R,R), (HIn–αZ)(t) ∈ ACn

δ [1, e2] =
{HIn–αZ : [1, e2] → R : δn–1(HIn–αZ) ∈ AC[1, e2]}, δ = t d

dt .
Using the Banach contraction mapping principle, Boyd and Wong fixed point theorem,

and the Leray–Schauder nonlinear alternative, we obtain the existence and uniqueness of
the solution of problem (1.1). Then we consider the Ulam–Hyers stability and generalized
Ulam–Hyers stability of problem (1.1).

Next, we study the following fractional inclusion equation:

⎧
⎪⎪⎨

⎪⎪⎩

(HDαZ)(t) ∈ G(t, u(t)), t ∈ [1, e2],

Z(1) = Z′(1) = · · · = Z(n–2)(1) = 0,

HIpu(t)|t=e2 =
∑r

j=1 ωjHIqu(t)|t=ξj ,

(1.2)

where Z(t) = u(t) –
∑m

k=1 gk(t, u(t)), G : [1, e2] ×R →P(R), P(R) represents all families of
nonempty subsets of R, and G has convex values.

WhenG is a multivalued map with convex values, we obtain the existence of the solution
of problem (1.2) by using several fixed point theorems.

The structure of this paper is as follows. In Sect. 2, we give some useful definitions, lem-
mas, and properties. In Sect. 3, we consider the existence and uniqueness of the solution of
problem (1.1) by using three fixed point theorems and give examples illustrating the feasi-
bility of the results. In addition, we prove that the solution of problem (1.1) is Ulam–Hyers
stable and generalized Ulam–Hyers stable. Finally, in Sect. 4, we consider the existence of
solutions of multivalued problem (1.2) and give an example.
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2 Preliminaries
In this section, we introduce basic concepts of fractional calculus together with some im-
portant preliminary results.

Definition 2.1 ([13]) The Hadamard fractional integral of order α ∈ C (R(α) > 0) for a
function u : [a,∞) →R (a ≥ 0) is given by

(
HIαu

)
(t) =

1
�(α)

∫ t

a

(

ln
t
θ

)α–1 u(θ )
θ

dθ .

Definition 2.2 ([13]) The Hadamard fractional derivative of order α ∈C (R(α) > 0) for a
function u is given by

(
HDαu

)
(t) = δn(

HIn–αu
)
(t)

=
(

t
d
dt

)n 1
�(n – α)

∫ t

a

(

ln
t
θ

)n–α–1 u(θ )
θ

dθ ,

where n = [R(α)] + 1.

Lemma 2.3 ([13]) Let R(α) > 0, n = [R(α)] + 1, u ∈ C[a,∞) ∩ L1[a,∞), and (HIn–αu)(t) ∈
ACn

δ [a,∞). Then we have

(
HIα

(
HDαu

))
(t) = u(t) –

n∑

i=1

ai

(

ln
t
a

)α–i

, i = 1, 2, . . . , n, ai ∈R.

Property 2.4 ([13]) Assume that R(α) > 0, R(β) > 0, and u ∈ C[a,∞) ∩ L1[a,∞). Then
we have

(
HIβ

(
HIαu

))
(t) =

(
H Iα+βu

)
(t).

Property 2.5 ([13]) Assume that R(α) > 0 and R(β) > 0. Then we have

(

HIα

(

ln
t
a

)β–1)

(x) =
�(β)

�(α + β)

(

ln
x
a

)α+β–1

.

Definition 2.6 ([7]) Let U be a Banach space. A mapping A : U → U is said to be a non-
linear contraction if there exists a continuous nondecreasing function 
 : R+ → R

+ such
that 
(0) = 0, and 
(ι) < ι for all ι > 0, and ‖Au – Av‖ ≤ 
(‖u – v‖) for all u, v ∈ U .

Lemma 2.7 (Boyd and Wong [7]) Let U be a Banach space, and let A : U → U be a non-
linear contraction. Then A has a unique fixed point in U .

Lemma 2.8 (Leray–Schauder’s nonlinear alternative [10]) Let U be a Banach space, let E
be a convex closed subset of U , and let C be an open subset of E such that 0 ∈ C . Suppose
that A : C → E is a continuous compact map. Then either

(i) A has a fixed point in C , or
(ii) there are u ∈ ∂C (the boundary of C in E) and ε ∈ (0, 1) such that u = εA(u).
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3 Main results
First, we give a very important lemma for obtaining our results.

Lemma 3.1 Let χ̂ ∈ C([1, e2],R), gk ∈ C([1, e2] × R,R), Z ∈ L1(1, e2), (HIn–αZ)(t) ∈
ACn

δ [1, e2], and

ϒ =
�(α)

�(α + p)
2α+p–1 –

�(α – 1)
�(α + p – 1)

2α+p–3

–
�(α)

�(α + q)

r∑

j=1

ωj(ln ξj)α+q–1 –
�(α – 1)

2�(α + q – 1)

r∑

j=1

ωj(ln ξj)α+q–2

�= 0.

Then the function u is a solution of

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(HDαZ)(t) = χ̂ (t), t ∈ [1, e2],

Z(1) = Z′(1) = · · · = Z(n–3)(1) = 0,

Z(
√

e) = HIαχ̂ (t)|t=
√

e,

HIpu(t)|t=e2 =
∑r

j=1 ωjHIqu(t)|t=ξj ,

(3.1)

if and only if

u(t) = HIαχ̂ (t) +
m∑

k=1

gk
(
t, u(t)

)
+

(
(ln t)α–1

ϒ
–

(ln t)α–2

2ϒ

)

·
[ r∑

j=1

ωjHIα+qχ̂ (ξj) – HIα+pχ̂
(
e2)

+
r∑

j=1

ωjHIq

( m∑

k=1

gk
(
ξj, u(ξj)

)
)

– HIp

( m∑

k=1

gk
(
e2, u

(
e2))

)]

,

where

Z(t) = u(t) –
m∑

k=1

gk
(
t, u(t)

)
.

Proof Applying the Hadamard fractional integral of order α to both sides of (HDαZ)(t) =
χ̂ (t) and using Lemma 2.3, we obtain

Z(t) = HIαχ̂ (t) + a1(ln t)α–1 + a2(ln t)α–2 + · · · + an(ln t)α–n.

From the boundary condition Z(1) = Z′(1) = · · · = Z(n–3)(1) = 0 we obtain a3 = a4 = · · · =
an–1 = an = 0.

Then we get

Z(t) = HIαχ̂ (t) + a1(ln t)α–1 + a2(ln t)α–2
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and

Z(
√

e) = HIαχ̂ (
√

e) + a1

(
1
2

)α–1

+ a2

(
1
2

)α–2

.

From Z(
√

e) = H Iαχ̂ (t)|t=
√

e we have a2 = – 1
2 a1 and

u(t) = HIαχ̂ (t) +
m∑

k=1

gk
(
t, u(t)

)
+ a1(ln t)α–1 –

1
2

a1(ln t)α–2. (3.2)

Using equation (3.2) and Properties 2.4, and 2.5, we obtain

HIpu(t)|t=e2 = H Iα+pχ̂
(
e2) + HIp

( m∑

k=1

gk
(
e2, u

(
e2))

)

+
a1�(α)2α+p–1

�(α + p)
–

a1�(α – 1)2α+p–2

2�(α + p – 1)
,

r∑

j=1

ωjHIqu(t)
∣
∣
∣
∣
t=ξj

=
r∑

j=1

ωjHIα+qχ̂ (ξj) +
r∑

j=1

ωjHIq

( m∑

k=1

gk
(
t, u(t)

)
)∣

∣
∣
∣
t=ξj

+
a1�(α)
�(α + q)

r∑

j=1

ωj(ln ξj)α+q–1 –
a1�(α – 1)

2�(α + q – 1)

r∑

j=1

ωj(ln ξj)α+q–2.

From the boundary condition HIpu(t)|t=e2 =
∑r

j=1 ωjHIqu(t)|t=ξj we obtain

a1 =
1
ϒ

[ r∑

j=1

ωjHIα+qχ̂ (ξj) – HIα+pχ̂
(
e2)

+
r∑

j=1

ωjHIq

( m∑

k=1

gk
(
ξj, u(ξj)

)
)

– HIp

( m∑

k=1

gk
(
e2, u

(
e2))

)]

.

Substituting the value of a1 into (3.2), we obtain

u(t) = HIαχ̂ (t) +
m∑

k=1

gk
(
t, u(t)

)
+

(
(ln t)α–1

ϒ
–

(ln t)α–2

2ϒ

)

·
[ r∑

j=1

ωjHIα+qχ̂ (ξj) – HIα+pχ̂
(
e2)

+
r∑

j=1

ωjHIq

( m∑

k=1

gk
(
ξj, u(ξj)

)
)

– HIp

( m∑

k=1

gk
(
e2, u

(
e2))

)]

.

This completes the proof. �
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Let U = C([1, e2],R) denote the Banach space of all continuous functions with norm
‖u‖ := maxt∈[1,e2] |u(t)|. Define the operator A : U → U by

A(u)(t)

= H Iαχ
(
t, u(t)

)
+

m∑

k=1

gk
(
t, u(t)

)
+

(
(ln t)α–1

ϒ
–

(ln t)α–2

2ϒ

)

·
[ r∑

j=1

ωjHIα+qχ
(
θ , u(θ )

)
∣
∣
∣
∣
θ=ξj

– HIα+pχ
(
θ , u(θ )

)
∣
∣
∣
∣
θ=e2

+
r∑

j=1

ωjHIq

( m∑

k=1

gk
(
θ , u(θ )

)
)∣

∣
∣
∣
θ=ξj

– HIp

( m∑

k=1

gk
(
θ , u(θ )

)
)∣

∣
∣
∣
θ=e2

]

. (3.3)

We notice that problem (1.1) has a solution which is equivalent to a fixed point of the
operator A.

For convenience, we introduce the constants

�1 =
2α

�(α + 1)
+

(
2α–1 + 2α–3

|ϒ |
)

·
( r∑

j=1

|ωj|
�(α + q + 1)

(ln ξj)α+q +
2α+p

�(α + p + 1)

)

, (3.4)

�2 = m +
(

2α–1 + 2α–3

|ϒ |
)( r∑

j=1

m · |ωj|
�(q + 1)

(ln ξj)q +
m · 2p

�(p + 1)

)

. (3.5)

3.1 Existence and uniqueness of solutions
Theorem 3.2 Assume that:

(H1) there exist constants l1, l2 > 0 such that for all t ∈ [1, e2], xi ∈R, i = 1, 2,

∣
∣χ (t, x1) – χ (t, x2)

∣
∣ ≤ l1|x1 – x2|,

∣
∣gk(t, x1) – gk(t, x2)

∣
∣ ≤ l2|x1 – x2|, k = 1, 2, . . . , m.

Then problem (1.1) has a unique solution on [1, e2] if �1l1 + �2l2 < 1.

Proof Let M1 = maxt∈[1,e2] |χ (t, 0)| < ∞ and M2 = max1≤k≤m{maxt∈[1,e2] |gk(t, 0)|} < ∞.
Using condition (H1), we obtain

∣
∣χ

(
t, u(t)

)∣
∣ ≤ l1‖u‖ + M1,

∣
∣gk

(
t, u(t)

)∣
∣ ≤ l2‖u‖ + M2.

First, we prove that A(Br) ⊂ Br , where Br = {u ∈ U : ‖u‖ ≤ r}, r ≥ �1M1+�2M2
1–�1l1–�2l2

. Indeed, for
u ∈ Br , we have

∣
∣A(u)(t)

∣
∣

≤ H Iα
∣
∣χ

(
t, u(t)

)∣
∣ +

m∑

k=1

∣
∣gk

(
t, u(t)

)∣
∣ +

∣
∣
∣
∣
(ln t)α–1

ϒ
+

(ln t)α–2

2ϒ

∣
∣
∣
∣
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·
[ r∑

j=1

|ωj|HIα+q(∣∣χ
(
θ , u(θ )

)∣
∣
)
∣
∣
∣
∣
θ=ξj

+ HIα+p(∣∣χ
(
θ , u(θ )

)∣
∣
)
∣
∣
∣
∣
θ=e2

+
r∑

j=1

|ωj|H Iq

( m∑

k=1

∣
∣gk

(
θ , u(θ )

)∣
∣

)∣
∣
∣
∣
θ=ξj

+ HIp

( m∑

k=1

∣
∣gk

(
θ , u(θ )

)∣
∣

)∣
∣
∣
∣
θ=e2

]

≤ 1
�(α)

(
l1‖u‖ + M1

)
∫ t

1

(

ln
t
θ

)α–1 1
θ

dθ + m
(
l2‖u‖ + M2

)
+

(
2α–1 + 2α–3

|ϒ |
)

·
{

(
l1‖u‖ + M1

)

·
( r∑

j=1

|ωj|
�(α + q)

∫ ξj

1

(

ln
ξj

θ

)α+q–1 1
θ

dθ +
1

�(α + p)

∫ e2

1

(

ln
e2

θ

)α+p–1 1
θ

dθ

)

+
(
l2‖u‖ + M2

)

·
( r∑

j=1

|ωj|
�(q)

( m∑

k=1

∫ ξj

1

(

ln
ξj

θ

)q–1 1
θ

dθ

)

+
1

�(p)

m∑

k=1

∫ e2

1

(

ln
e2

θ

)p–1 1
θ

dθ

)}

≤
{

2α

�(α + 1)
+

(
2α–1 + 2α–3

|ϒ |
)( r∑

j=1

|ωj|(ln ξj)α+q

�(α + q + 1)
+

2α+p

�(α + p + 1)

)}

· (l1‖u‖ + M1
)

+

{

m +
(

2α–1 + 2α–3

|ϒ |
)( r∑

j=1

m · |ωj|
�(q + 1)

(ln ξj)q +
m · 2p

�(p + 1)

)}

· (l2‖u‖ + M2
)

= �1
(
l1‖u‖ + M1

)
+ �2

(
l2‖u‖ + M2

)

≤ �1(l1r + M1) + �2(l2r + M2)

≤ r.

This shows that ‖A(u)‖ = maxt∈[1,e2] |A(u)(t)| ≤ r. Thus A(Br) ⊂ Br .
Now we prove that the operator A is a contraction. Let u1, u2 ∈ U . Then, for each t ∈

[1, e2], we have

∣
∣A(u2)(t) – A(u1)(t)

∣
∣

≤ H Iα
∣
∣χ

(
t, u2(t)

)
– χ

(
t, u1(t)

)∣
∣ +

m∑

k=1

∣
∣gk

(
t, u2(t)

)
– gk

(
t, u1(t)

)∣
∣

+
∣
∣
∣
∣
(ln t)α–1

ϒ
+

(ln t)α–2

2ϒ

∣
∣
∣
∣ ·

[ r∑

j=1

|ωj|HIα+q(∣∣χ
(
θ , u2(θ )

)
– χ

(
θ , u1(θ )

)∣
∣
)
∣
∣
∣
∣
θ=ξj

+ HIα+p(∣∣χ
(
θ , u2(θ )

)
– χ

(
θ , u1(θ )

)∣
∣
)
∣
∣
∣
∣
θ=e2

+
r∑

j=1

|ωj|H Iq

( m∑

k=1

∣
∣gk

(
θ , u2(θ )

)
– gk

(
θ , u1(θ )

)∣
∣

)∣
∣
∣
∣
θ=ξj
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+ HIp

( m∑

k=1

∣
∣gk

(
θ , u2(θ )

)
– gk

(
θ , u1(θ )

)∣
∣

)∣
∣
∣
∣
θ=e2

]

≤
{

2α

�(α + 1)
+

(
2α–1 + 2α–3

|ϒ |
)( r∑

j=1

|ωj|(ln ξj)α+q

�(α + q + 1)
+

2α+p

�(α + p + 1)

)}

· l1‖u2 – u1‖

+

{

m +
(

2α–1 + 2α–3

|ϒ |
)( r∑

j=1

m · |ωj|
�(q + 1)

(ln ξj)q +
m · 2p

�(p + 1)

)}

· l2‖u2 – u1‖
= �1l1‖u2 – u1‖ + �2l2‖u2 – u1‖
= (�1l1 + �2l2)‖u2 – u1‖.

Thus

∥
∥A(u2) – A(u1)

∥
∥ = max

t∈[1,e2]

∣
∣A(u2)(t) – A(u1)(t)

∣
∣ ≤ (�1l1 + �2l2)‖u2 – u1‖.

From the condition �1l1 + �2l2 < 1 we get that the operator A is a contraction. By the
principle of Banach contraction mapping, A has a unique fixed point, so problem (1.1)
has a unique solution on [1, e2]. This completes the proof. �

Theorem 3.3 Assume that:
(H2)

∣
∣χ (t, x1) – χ (t, x2)

∣
∣ ≤ ζ1(t)

|x1 – x2|
W ∗ + |x1 – x2| ,

∣
∣gk(t, x1) – gk(t, x2)

∣
∣ ≤ ζ2(t)

|x1 – x2|
W ∗ + |x1 – x2| , k = 1, 2, . . . , m,

for all t ∈ [1, e2], where xi ∈ R, i = 1, 2, ζi(t) : [1, e2] → R
+, i = 1, 2, are continuous nonde-

creasing functions, and the positive constant is defined as

W ∗ = HIαζ1
(
e2) + m · ζ2

(
e2) +

(
2α–1 + 2α–3

|ϒ |
)

·
( r∑

j=1

|ωj|HIα+qζ1(ξj) + HIα+pζ1
(
e2) + m ·

r∑

j=1

|ωj|HIqζ2(ξj) + m · HIpζ2
(
e2)

)

.

Then the boundary value problem (1.1) has a unique solution on [1, e2].

Proof Define the operatorA : U → U by (3.3) and the continuous nondecreasing function

 : R+ →R

+ by 
(ι) = W∗ι
W∗+ι

.
Note that 
(0) = 0 and 
(ι) < ι for all ι > 0. For all u1, u2 ∈ U , t ∈ [1, e2], we have

∣
∣A(u1)(t) – A(u2)(t)

∣
∣

≤ H Iα
∣
∣χ

(
t, u1(t)

)
– χ

(
t, u2(t)

)∣
∣ +

m∑

k=1

∣
∣gk

(
t, u1(t)

)
– gk

(
t, u2(t)

)∣
∣
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+
∣
∣
∣
∣
(ln t)α–1

ϒ
+

(ln t)α–2

2ϒ

∣
∣
∣
∣ ·

[ r∑

j=1

|ωj|HIα+q(∣∣χ
(
θ , u1(θ )

)
– χ

(
θ , u2(θ )

)∣
∣
)
∣
∣
∣
∣
θ=ξj

+ HIα+p(∣∣χ
(
θ , u1(θ )

)
– χ

(
θ , u2(θ )

)∣
∣
)
∣
∣
∣
∣
θ=e2

+
r∑

j=1

|ωj|H Iq

( m∑

k=1

∣
∣gk

(
θ , u1(θ )

)
– gk

(
θ , u2(θ )

)∣
∣

)∣
∣
∣
∣
θ=ξj

+ HIp

( m∑

k=1

∣
∣gk

(
θ , u1(θ )

)
– gk

(
θ , u2(θ )

)∣
∣

)∣
∣
∣
∣
θ=e2

]

≤ H Iα

(

ζ1(θ )
|u1 – u2|

W ∗ + |u1 – u2|
)∣

∣
∣
∣
θ=e2

+
m∑

k=1

(

ζ2(θ )
|u1 – u2|

W ∗ + |u1 – u2|
)∣

∣
∣
∣
θ=e2

+
(

2α–1 + 2α–3

|ϒ |
)

·
[ r∑

j=1

|ωj|HIα+q
(

ζ1(θ )
|u1 – u2|

W ∗ + |u1 – u2|
)∣

∣
∣
∣
θ=ξj

+ HIα+p
(

ζ1(θ )
|u1 – u2|

W ∗ + |u1 – u2|
)∣

∣
∣
∣
θ=e2

+
r∑

j=1

|ωj|H Iq

( m∑

k=1

(
ζ2(θ ) · |u1 – u2|
W ∗ + |u1 – u2|

))∣
∣
∣
∣
θ=ξj

+ HIp

( m∑

k=1

(
ζ2(θ ) · |u1 – u2|
W ∗ + |u1 – u2|

))∣
∣
∣
∣
θ=e2

]

≤ 
(‖u1 – u2‖)
W ∗ ·

[

HIαζ1
(
e2) + m · ζ2

(
e2) +

(
2α–1 + 2α–3

|ϒ |
)

·
( r∑

j=1

|ωj|HIα+qζ1(ξj) + HIα+pζ1
(
e2)

+ m
r∑

j=1

|ωj|HIqζ2(ξj) + m · HIpζ2
(
e2)

)]

=

(‖u1 – u2‖)

W ∗ · W ∗

= 

(‖u1 – u2‖

)
,

that is, ‖Au1 –Au2‖ ≤ 
(‖u1 –u2‖). ThereforeA is a nonlinear contraction. By Lemma 2.7
the operator A has a unique fixed point, which is the solution of boundary value problem
(1.1), and hence the proof is completed. �

Theorem 3.4 Assume that:
(H3) there exist nondecreasing function � ∈ C([0,∞),R+) and κi ∈ C([1, e2],R+), i = 1, 2,

such that
∣
∣χ (t, u)

∣
∣ ≤ κ1(t)�

(‖u‖),
∣
∣gk(t, u)

∣
∣ ≤ κ2(t)�

(‖u‖), k = 1, 2, . . . , m,

for all (t, u) ∈ [1, e2] ×R;
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(H4) there exists a constant L > 0, such that L
�(L)(‖κ1‖�1+‖κ2‖�2) > 1.

Then the boundary value problem (1.1) has a solution on [1, e2].

Proof Let A : U → U be the operator defined by (3.3). First, we prove that A maps
bounded sets in U to bounded sets.

For r > 0, let Br = {u ∈ U : ‖u‖ ≤ r}. Then for all t ∈ [1, e2], we have

∣
∣A(u)(t)

∣
∣

≤ H Iα
∣
∣χ

(
t, u(t)

)∣
∣ +

m∑

k=1

∣
∣gk

(
t, u(t)

)∣
∣ +

∣
∣
∣
∣
(ln t)α–1

ϒ
+

(ln t)α–2

2ϒ

∣
∣
∣
∣

·
[ r∑

j=1

|ωj|HIα+q(∣∣χ
(
θ , u(θ )

)∣
∣
)
∣
∣
∣
∣
θ=ξj

+ HIα+p(∣∣χ
(
θ , u(θ )

)∣
∣
)
∣
∣
∣
∣
θ=e2

+
r∑

j=1

|ωj|H Iq

( m∑

k=1

∣
∣gk

(
θ , u(θ )

)∣
∣

)∣
∣
∣
∣
θ=ξj

+ HIp

( m∑

k=1

∣
∣gk

(
θ , u(θ )

)∣
∣

)∣
∣
∣
∣
θ=e2

]

≤ �
(‖u‖)HIακ1

(
e2) + �

(‖u‖)
m∑

k=1

κ2(t) + �
(‖u‖)

(
2α–1 + 2α–3

|ϒ |
)

·
[ r∑

j=1

|ωj|HIα+qκ1(ξj) + H Iα+pκ1
(
e2)

+
r∑

j=1

|ωj|H Iq

( m∑

k=1

κ2(ξj)

)

+ H Ip

( m∑

k=1

κ2
(
e2)

)]

≤ �
(‖u‖)‖κ1‖

{
2α

�(α + 1)
+

(
2α–1 + 2α–3

|ϒ |
)( r∑

j=1

|ωj|(ln ξj)α+q

�(α + q + 1)
+

2α+p

�(α + p + 1)

)}

+ �
(‖u‖)‖κ2‖

{

m +
(

2α–1 + 2α–3

|ϒ |
)( r∑

j=1

m · |ωj|
�(q + 1)

(ln ξj)q +
m · 2p

�(p + 1)

)}

= �
(‖u‖)‖κ1‖�1 + �

(‖u‖)‖κ2‖�2.

In other words, ‖Au‖ ≤ �(r)(‖κ1‖�1 + ‖κ2‖�2).
Next, we prove that A is equicontinuous. Let t1, t2 ∈ [1, e2], t1 < t2, u ∈ Br . Then

∣
∣A(u)(t2) – A(u)(t1)

∣
∣

≤ 1
�(α)

∫ t1

1

((

ln
t2

θ

)α–1

–
(

ln
t1

θ

)α–1) |χ (θ , u(θ ))|
θ

dθ

+
1

�(α)

∫ t2

t1

(

ln
t2

θ

)α–1 |χ (θ , u(θ ))|
θ

dθ

+
m∑

k=1

∣
∣gk

(
t2, u(t2)

)
– gk

(
t1, u(t1)

)∣
∣
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+
∣
∣
∣
∣
(ln t2)α–1

ϒ
–

(ln t2)α–2

2ϒ
–

(ln t1)α–1

ϒ
+

(ln t1)α–2

2ϒ

∣
∣
∣
∣

·
[ r∑

j=1

|ωj|HIα+q(∣∣χ
(
θ , u(θ )

)∣
∣
)
∣
∣
∣
∣
θ=ξj

+ HIα+p(∣∣χ
(
θ , u(θ )

)∣
∣
)
∣
∣
∣
∣
θ=e2

+
r∑

j=1

|ωj|H Iq

( m∑

k=1

∣
∣gk

(
θ , u(θ )

)∣
∣

)∣
∣
∣
∣
θ=ξj

+ HIp

( m∑

k=1

∣
∣gk

(
θ , u(θ )

)∣
∣

)∣
∣
∣
∣
θ=e2

]

≤ ‖κ1‖�(r)
�(α + 1)

∣
∣(ln t2)α – (ln t1)α

∣
∣ +

m∑

k=1

∣
∣gk

(
t2, u(t2)

)
– gk

(
t1, u(t1)

)∣
∣

+
( |(ln t2)α–1 – (ln t1)α–1|

|ϒ | +
|(ln t1)α–2 – (ln t2)α–2|

2|ϒ |
)

·
[

‖κ1‖�(r)

( r∑

j=1

|ωj|
�(α + q + 1)

(ln ξj)α+q +
2α+p

�(α + p + 1)

)

+ ‖κ2‖�(r)

( r∑

j=1

m · |ωj|
�(q + 1)

(ln ξj)q +
m · 2p

�(p + 1)

)]

.

By the continuity of gk we get |A(u)(t2) – A(u)(t1)| → 0 as t2 → t1. It follows that A is
equicontinuous. So by the Arzelà–Ascoli theorem we get that A : U → U is completely
continuous.

For ε ∈ (0, 1), let u satisfy u = εA(u). Then

‖u‖ = ε
∥
∥A(u)

∥
∥ ≤ ∥

∥A(u)
∥
∥ ≤ �

(‖u‖)(‖κ1‖�1 + ‖κ2‖�2
)
,

i.e.,

‖u‖
�(‖u‖)(‖κ1‖�1 + ‖κ2‖�2)

≤ 1.

By hypothesis (H4) there exists L such that ‖u‖ �= L. Let

C =
{

u ∈ C
([

1, e2],R
)

: ‖u‖ < L
}

.

The operator A : C → U is a continuous compact map. By the choice of C , for ε ∈ (0, 1),
there is no u ∈ ∂C such that u = εA(u). Therefore by Lemma 2.8 the operator A has a
fixed point u ∈ C , which is a solution of boundary value problem (1.1). This completes the
proof. �

Example 3.5 Consider

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(HD 10
3 Z)(t) = e1–t

8 sin u(t), t ∈ [1, e2],

Z(1) = Z′(1) = · · · = Z(n–3)(1) = 0,

Z(
√

e) = HI 10
3 ( e1–t

8 sin u(t))|t=
√

e,

HI 4
3 u(e2) = 3

5 HI 2
3 u(2) + 1

2 HI 2
3 u( 10

3 ),

(3.6)
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where

Z(t) = u(t) –
[

e1–t

8(5t2 + 3)2

(
2u2(t) + 2|u(t)|

1 + |u(t)|
)

+ e2t + t2 + 1
]

,

n = 4, α = 10
3 , p = 4

3 , q = 2
3 , m = 1, r = 2, ω1 = 3

5 , ω2 = 1
2 , ξ1 = 2, ξ2 = 10

3 .
By calculation we get ϒ = 0.6579, �1 ≈ 5.1052, �2 ≈ 32.252.
Let χ (t, u) = e1–t

8 sin u and g1(t, u) = e1–t

8(5t2+3)2 ( 2u2(t)+2|u(t)|
1+|u(t)| ) + e2t + t2 + 1. Then

∣
∣χ (t, x1) – χ (t, x2)

∣
∣ ≤ e1–t

8
| sin x1 – sin x2| ≤ 1

8
|x1 – x2|,

∣
∣g1(t, x1) – g1(t, x2)

∣
∣ ≤ e1–t

4(5t2 + 3)2 |x1 – x2| ≤ 1
256

|x1 – x2|.

That is, we have found l1 = 1
8 and l2 = 1

256 such that χ (t, u) and g1(t, u) satisfy hypothe-
sis (H1) and �1l1 + �2l2 ≈ 0.7641343750 < 1. Therefore by Theorem 3.2 boundary value
problem (3.6) has a unique solution on [1, e2].

Example 3.6 Consider

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(HD 17
4 Z)(t) = (e2t + t2)( |u(t)|

2100+|u(t)| ) + 1
2 t – 1, t ∈ [1, e2],

Z(1) = Z′(1) = · · · = Z(n–3)(1) = 0,

Z(
√

e) = HI 17
4 [(e2t + t2)( |u(t)|

2100+|u(t)| ) + 1
2 t – 1]|t=

√
e,

HI 9
4 u(e2) = 1

10 HI 7
4 u( 3

2 ) + 3
5 HI 7

4 u( 7
3 ) + 1

2 HI 7
4 u(5),

(3.7)

where

Z(t) = u(t) – g1
(
t, u(t)

)
= u(t) – 2t

( |u(t)|
2100 + |u(t)|

)

,

n = 5, α = 17
4 , p = 9

4 , q = 7
4 , m = 1, r = 3, ω1 = 1

10 , ω2 = 3
5 , ω3 = 1

2 , ξ1 = 3
2 , ξ2 = 7

3 , ξ3 = 5.
We choose ζ1(t) = e2t + t2 and ζ2(t) = 2t . By calculation we get ϒ = 0.1139, W ∗ ≈

2098.586239. Let χ (t, u) = (e2t + t2)( |u|
2100+|u| ) + 1

2 t – 1 and g1(t, u) = 2t( |u|
2100+|u| ). Then

∣
∣χ (t, x1) – χ (t, x2)

∣
∣ ≤ (

e2t + t2)
(

2100(|x1| – |x2|)
21002 + 2100|x1| + 2100|x2| + |x1||x2|

)

≤ (
e2t + t2) |x1 – x2|

2098.586239 + |x1 – x2| ,

∣
∣g1(t, x1) – g1(t, x2)

∣
∣ ≤ 2t

(
2100(|x1| – |x2|)

21002 + 2100|x1| + 2100|x2| + |x1||x2|
)

≤ 2t |x1 – x2|
2098.586239 + |x1 – x2| .

Therefore by Theorem 3.3 the boundary value problem (3.7) has a unique solution on
[1, e2].
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Example 3.7 Consider

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(HD 7
2 Z)(t) = e1–t√

t2+5t+7
( 1

100
|u5(t)|

1+|u4(t)| + 1
100 |u(t)| cos(|u(t)| + 1) + 1

2 ), t ∈ [1, e2],

Z(1) = Z′(1) = · · · = Z(n–3)(1) = 0,

Z(
√

e) = HI 7
2 [ e1–t√

t2+5t+7
( 1

100
|u5(t)|

1+|u4(t)| + 1
100 |u(t)| cos(|u(t)| + 1) + 1

2 )]|t=
√

e,

HI
11
6 u(e2) = 2HI

7
6 u( 7

3 ),

(3.8)

where

Z(t) = u(t) –
[

1
t2 + 4t + 3

(
1

100
|u5(t)|

1 + |u4(t)| +
1

100
∣
∣u(t)

∣
∣ cos

(∣
∣u(t)

∣
∣ + 1

)
+

1
2

)]

,

n = 4, α = 7
2 , p = 11

6 , q = 7
6 , m = 1, r = 1, ω1 = 2, ξ1 = 7

3 .
Let

χ (t, u) =
e1–t

√
t2 + 5t + 7

(
1

100
|u5|

1 + |u4| +
1

100
|u| cos

(|u| + 1
)

+
1
2

)

,

g1(t, u) =
1

t2 + 4t + 3

(
1

100
|u5|

1 + |u4| +
1

100
|u| cos

(|u| + 1
)

+
1
2

)

.

Obviously,

∣
∣χ (t, u)

∣
∣ ≤ e1–t

√
t2 + 5t + 7

( |u|
50

+
1
2

)

,
∣
∣g1(t, u)

∣
∣ ≤ 1

t2 + 4t + 3

( |u|
50

+
1
2

)

.

We choose κ1(t) = e1–t√
t2+5t+7

, κ2(t) = 1
t2+4t+3 , and �(u) = u

50 + 1
2 . By calculation we get ‖κ1‖ =

1√
13 , ‖κ2‖ = 1

8 , ϒ ≈ 0.487, �1 ≈ 3.9031, �2 ≈ 53.1174, and there is L > 4.566344512 such
that L

�(L)(‖κ1‖�1+‖κ2‖�2) > 1. Therefore by Theorem 3.4 the boundary value problem (3.8)
has at least one solution on [1, e2].

3.2 Ulam–Hyers stability
For ε > 0, consider the following inequality:

∣
∣
∣
∣
∣
HDα

(

uπ (t) –
m∑

k=1

gk
(
t, uπ (t)

)
)

– χ
(
t, uπ (t)

)
∣
∣
∣
∣
∣
≤ ε, t ∈ [

1, e2]. (3.9)

Definition 3.8 ([19]) Problem (1.1) is said to be Ulam–Hyers stable if there exists a real
number c > 0 such that for each ε > 0 and for each solution uπ ∈ C([1, e2],R) of inequality
(3.9), there exists a solution u ∈ C([1, e2],R) of problem (1.1) such that ‖uπ – u‖ ≤ c · ε.

Definition 3.9 ([19]) Problem (1.1) is said to be generalized Ulam–Hyers stable if there
exists φχ ,c ∈ C(R+,R+), φχ ,c(0) = 0, such that for each ε > 0 and for each solution uπ ∈
C([1, e2],R) of inequality (3.9), there exists a solution u ∈ C([1, e2],R) of problem (1.1)
such that ‖uπ – u‖ ≤ φχ ,c(ε).

Theorem 3.10 Assume that (H1) holds. If for any t ∈ [1, e2] and ε > 0, a function uπ :
[1, e2] → R satisfies inequality (3.9), then there exists a solution u : [1, e2] → R of problem
(1.1) such that ‖uπ – u‖ ≤ �1

1–�1l1–�2l2
ε, that is, problem (1.1) is Ulam–Hyers stable.



Zhang et al. Boundary Value Problems         (2023) 2023:11 Page 14 of 26

Proof Since u is a solution of the boundary value problem (1.1), we have

u(t) = HIαχ
(
t, u(t)

)
+

m∑

k=1

gk
(
t, u(t)

)
+

(
(ln t)α–1

ϒ
–

(ln t)α–2

2ϒ

)

·
[ r∑

j=1

ωjHIα+qχ
(
θ , u(θ )

)
∣
∣
∣
∣
θ=ξj

– H Iα+pχ
(
θ , u(θ )

)
∣
∣
∣
∣
θ=e2

+
r∑

j=1

ωjHIq

( m∑

k=1

gk
(
θ , u(θ )

)
)∣

∣
∣
∣
θ=ξj

– HIp

( m∑

k=1

gk
(
θ , u(θ )

)
)∣

∣
∣
∣
θ=e2

]

.

Suppose that there exists a function χ̃ satisfying the fractional equation

HDα

(

uπ (t) –
m∑

k=1

gk
(
t, uπ (t)

)
)

= χ̃
(
t, uπ (t)

)
.

Then

uπ (t) = HIαχ̃
(
t, uπ (t)

)
+

m∑

k=1

gk
(
t, uπ (t)

)
+

(
(ln t)α–1

ϒ
–

(ln t)α–2

2ϒ

)

·
[ r∑

j=1

ωjHIα+qχ̃
(
θ , uπ (θ )

)
∣
∣
∣
∣
θ=ξj

– H Iα+pχ̃
(
θ , uπ (θ )

)
∣
∣
∣
∣
θ=e2

+
r∑

j=1

ωjHIq

( m∑

k=1

gk
(
θ , uπ (θ )

)
)∣

∣
∣
∣
θ=ξj

– HIp

( m∑

k=1

gk
(
θ , uπ (θ )

)
)∣

∣
∣
∣
θ=e2

]

.

Let

v(t) = HIαχ
(
t, uπ (t)

)
+

m∑

k=1

gk
(
t, uπ (t)

)
+

(
(ln t)α–1

ϒ
–

(ln t)α–2

2ϒ

)

·
[ r∑

j=1

ωjHIα+qχ
(
θ , uπ (θ )

)
∣
∣
∣
∣
θ=ξj

– HIα+pχ
(
θ , uπ (θ )

)
∣
∣
∣
∣
θ=e2

+
r∑

j=1

ωjHIq

( m∑

k=1

gk
(
θ , uπ (θ )

)
)∣

∣
∣
∣
θ=ξj

– HIp

( m∑

k=1

gk
(
θ , uπ (θ )

)
)∣

∣
∣
∣
θ=e2

]

.

By (3.9) we have

∣
∣uπ (t) – v(t)

∣
∣

≤ H Iα
∣
∣χ̃

(
t, uπ (t)

)
– χ

(
t, uπ (t)

)∣
∣ +

∣
∣
∣
∣
(ln t)α–1

ϒ
+

(ln t)α–2

2ϒ

∣
∣
∣
∣

·
[ r∑

j=1

|ωj|HIα+q(∣∣χ̃
(
θ , uπ (θ )

)
– χ

(
θ , uπ (θ )

)∣
∣
)
∣
∣
∣
∣
θ=ξj

+ HIα+p(∣∣χ̃
(
θ , uπ (θ )

)
– χ

(
θ , uπ (θ )

)∣
∣
)
∣
∣
∣
∣
θ=e2

]
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= H Iα

∣
∣
∣
∣
∣
HDα

(

uπ (t) –
m∑

k=1

gk
(
t, uπ (t)

)
)

– χ
(
t, uπ (t)

)
∣
∣
∣
∣
∣

+
∣
∣
∣
∣
(ln t)α–1

ϒ
+

(ln t)α–2

2ϒ

∣
∣
∣
∣

·
[ r∑

j=1

|ωj|HIα+q

(∣
∣
∣
∣
∣
HDα

(

uπ (θ ) –
m∑

k=1

gk
(
θ , uπ (θ )

)
)

– χ
(
θ , uπ (θ )

)
∣
∣
∣
∣
∣

)∣
∣
∣
∣
θ=ξj

+ HIα+p

(∣
∣
∣
∣
∣
H Dα

(

uπ (θ ) –
m∑

k=1

gk
(
θ , uπ (θ )

)
)

– χ
(
θ , uπ (θ )

)
∣
∣
∣
∣
∣

)∣
∣
∣
∣
θ=e2

]

≤
{

2α

�(α + 1)
+

(
2α–1 + 2α–3

|ϒ |
)( r∑

j=1

|ωj|
�(α + q + 1)

(ln ξj)α+q +
2α+p

�(α + p + 1)

)}

ε.

= �1ε.

Then

∣
∣uπ (t) – u(t)

∣
∣

≤ ∣
∣uπ (t) – v(t)

∣
∣ +

∣
∣v(t) – u(t)

∣
∣

≤ �1ε + HIα
∣
∣χ

(
t, uπ (t)

)
– χ

(
t, u(t)

)∣
∣ +

m∑

k=1

∣
∣gk

(
t, uπ (t)

)
– gk

(
t, u(t)

)∣
∣

+
∣
∣
∣
∣
(ln t)α–1

ϒ
+

(ln t)α–2

2ϒ

∣
∣
∣
∣ ·

[ r∑

j=1

|ωj|HIα+q(∣∣χ
(
θ , uπ (θ )

)
– χ

(
θ , u(θ )

)∣
∣
)
∣
∣
∣
∣
θ=ξj

+ HIα+p(∣∣χ
(
θ , uπ (θ )

)
– χ

(
θ , u(θ )

)∣
∣
)
∣
∣
∣
∣
θ=e2

+
r∑

j=1

|ωj|H Iq

( m∑

k=1

∣
∣gk

(
θ , uπ (θ )

)
– gk

(
θ , u(θ )

)∣
∣

)∣
∣
∣
∣
θ=ξj

+ HIp

( m∑

k=1

∣
∣gk

(
θ , uπ (θ )

)
– gk

(
θ , u(θ )

)∣
∣

)∣
∣
∣
∣
θ=e2

]

≤ �1ε + �1l1‖uπ – u‖ + �2l2‖uπ – u‖.

Hence ‖uπ – u‖ ≤ �1ε + �1l1‖uπ – u‖ + �2l2‖uπ – u‖. As a result,

‖uπ – u‖ ≤ �1

1 – �1l1 – �2l2
· ε := c · ε. (3.10)

Therefore problem (1.1) is Ulam–Hyers stable. This completes the proof. �

Remark 3.11 By setting φχ ,c(ε) = c · ε, φχ ,c(0) = 0 in (3.10). So by Definition 3.9 we get that
problem (1.1) is generalized Ulam–Hyers stable.
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4 Existence of solutions for multivalued problems
To obtain the existence of the solution of the multivalued problem (1.2), we first consider
the equation

⎧
⎪⎪⎨

⎪⎪⎩

(HDαZ)(t) = χ (t, u(t)), t ∈ [1, e2],

Z(1) = Z′(1) = · · · = Z(n–2)(1) = 0,

HIpu(t)|t=e2 =
∑r

j=1 ωjHIqu(t)|t=ξj ,

(4.1)

where Z(t) = u(t) –
∑m

k=1 gk(t, u(t)), and other conditions are the same as in problem (1.1).
Similarly to Lemma 3.1, we can easily draw the following conclusions.

Lemma 4.1 Let χ ∈ C([1, e2],R), gk ∈ C([1, e2] × R,R), Z ∈ L1(1, e2), (HIn–αZ)(t) ∈
ACn

δ [1, e2], and

ϒ =
�(α)

�(α + p)
2α+p–1 –

�(α)
�(α + q)

r∑

j=1

ωj(ln ξj)α+q–1 �= 0.

Then the function u is a solution of

⎧
⎪⎪⎨

⎪⎪⎩

(HDαZ)(t) = χ (t), t ∈ [1, e2],

Z(1) = Z′(1) = · · · = Z(n–2)(1) = 0,

HIpu(t)|t=e2 =
∑r

j=1 ωjHIqu(t)|t=ξj ,

(4.2)

if and only if

u(t) = HIαχ (t) +
m∑

k=1

gk
(
t, u(t)

)
+

(ln t)α–1

ϒ

·
[ r∑

j=1

ωjHIα+qχ(ξj) – HIα+pχ
(
e2)

+
r∑

j=1

ωjHIq

( m∑

k=1

gk
(
ξj, u(ξj)

)
)

– HIp

( m∑

k=1

gk
(
e2, u

(
e2))

)]

,

where

Z(t) = u(t) –
m∑

k=1

gk
(
t, u(t)

)
.

For convenience, we introduce the constants

�1 =
2α

�(α + 1)
+

2α–1

|ϒ |

( r∑

j=1

|ωj|
�(α + q + 1)

(ln ξj)α+q +
2α+p

�(α + p + 1)

)

, (4.3)

�2 = m +
2α–1

|ϒ |

( r∑

j=1

m · |ωj|
�(q + 1)

(ln ξj)q +
m · 2p

�(p + 1)

)

. (4.4)
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For a normed space (U ,‖ · ‖), define P(U) = {Y ⊂ U : Y �= ∅}, Pc,cp(U) = {Y ⊂ P(U) :
Y is compact and convex}, and Pb,cl,c(U) = {Y ⊂P(U) : Y is bounded, closed and convex}.

Take SG,u := {ω ∈ L1([1, e2],R) : ω(t) ∈G(t, u(t)), a.e. t ∈ [1, e2]} as the selection set of G.
We define the solution of problem (1.2) as follows.

Definition 4.2 A function u ∈ C([1, e2],R) is called a solution of multivalued problem
(1.2) if there is a function h ∈ L1([1, e2],R) with h(t) ∈G(t, u) almost everywhere on [1, e2]
such that

u(t) = HIαh(t) +
m∑

k=1

gk
(
t, u(t)

)
+

(ln t)α–1

ϒ

[ r∑

j=1

ωjHIα+qh(ξj) – HIα+ph
(
e2)

+
r∑

j=1

ωjHIq

( m∑

k=1

gk
(
θ , u(θ )

)
)∣

∣
∣
∣
θ=ξj

– HIp

( m∑

k=1

gk
(
θ , u(θ )

)
)∣

∣
∣
∣
θ=e2

]

.

Definition 4.3 ([9]) Let F : U →P(U) be a multivalued map. Then:
(i) F is called upper semicontinuous if for each u0 ∈ U , the set F(u0) is a nonempty

closed subset of U , and for each open set G of U containing F(u0), there exists an open
neighborhood G0 of u0 such that F(G0) ⊆ G;

(ii) If the multivalued map F is completely continuous with nonempty compact values,
then F is upper semicontinuous if and only if F has a closed graph, that is, un → u∗, vn →
v∗, vn ∈ F(un) imply that v∗ ∈ F(u∗).

Definition 4.4 ([9]) A multivalued map F : [1, e2] ×R →P(R) is said to be Carathéodory
if

(i) for each u ∈R, t �→ F(t, u) is measurable;
(ii) for almost all t ∈ [1, e2], u �→ F(t, u) is upper semicontinuous.
In addition, a Carathéodory multivalued map F is called L1-Carathéodory if
(iii) for all z > 0 and u ∈ R with ‖u‖ ≤ z, there exists ηz ∈ L1([1, e2],R+) such that

‖F(t, u)‖ = sup{|ω| : ω ∈ F(t, u)} ≤ ηz(t) for a.e. t ∈ [1, e2].

Lemma 4.5 ([21]) Let U be a separable Banach space, let F : [1, e2] × U → Pc,cp(U) be
an L1-Carathéodory multivalued map, and let B : L1([1, e2], U) → C([1, e2], U) be a linear
continuous operator. Then the operator B ◦ SF,u : C([1, e2], U) → Pc,cp(C([1, e2], U)) is a
closed graph operator on C([1, e2], U) × C([1, e2], U).

Lemma 4.6 (Bohnenblust–Karlin fixed point theorem [6]) Let U be a Banach space, and
let Q be a nonempty bounded closed convex subset of U . Suppose T : [1, e2] × R → P(R)
is upper semicontinuous with closed convex values, T (Q) ⊂ Q, and T (Q) is compact. Then
T has a fixed point.

Lemma 4.7 (Martelli’s fixed point theorem [17]) Let U be a Banach space, and let T :
U → Pb,cl,c(U) be a completely continuous multivalued map. If the set � = {u ∈ U : �u ∈
T (u),� > 1} is bounded, then T has a fixed point.

Lemma 4.8 (Nonlinear alternative for Kakutani maps [10]) Let U be a Banach space, let
Q be a closed convex subset of U , and let H be an open subset of Q such that 0 ∈ H . Suppose
T : H →Pc,cp(Q) is an upper semicontinuous compact map. Then either



Zhang et al. Boundary Value Problems         (2023) 2023:11 Page 18 of 26

(i) T has a fixed point on H , or
(ii) there exist u ∈ ∂H and λ ∈ (0, 1) such that u ∈ λT (u).

Theorem 4.9 Assume that:
(O1) G : [1, e2]×R→Pc,cp(R) is L1-Carathéodory, that is, for each z > 0, there exists ηz ∈

L1([1, e2],R+) such that for all u ∈ R with ‖u‖ ≤ z, ‖G(t, u)‖ = sup{|ω| : ω ∈G(t, u)} ≤ ηz(t)
for a.e. t ∈ [1, e2];

(O2) there exists a constant G > 0 such that ‖gk(t, u)‖ = sup{|gk(t, u)|} ≤ G for all (t, u) ∈
[1, e2] ×R (k = 1, 2, . . . , m).

Then the boundary value problem (1.2) has a solution on [1, e2].

Proof Define the operator T : C([1, e2],R) →P(C([1, e2],R)) by

T (u) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ ∈ C([1, e2],R),

μ(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

HIαh(t) +
∑m

k=1 gk(t,μ(t)) + (ln t)α–1

ϒ

· [
∑r

j=1 ωjHIα+qh(ξj) – HIα+ph(e2)

+
∑r

j=1 ωjHIq(
∑m

k=1 gk(θ ,μ(θ )))|θ=ξj – HIp(
∑m

k=1 gk(θ ,μ(θ )))|θ=e2 ],

h ∈ SG,u.

Obviously, the fixed point of the operator T is the solution of the boundary value problem
(1.2). Next, we prove that the operator T satisfies the conditions of Lemma 4.6 in several
steps.

In the first step, T maps bounded sets into bounded sets in C([1, e2],R).
Let Bz = {u ∈ C([1, e2],R) : ‖u‖ ≤ z} be a bounded set on C([1, e2],R). For all μ ∈ T (u)

and u ∈ Bz, there exists h ∈ SG,u such that

μ(t)

= H Iαh(t) +
m∑

k=1

gk
(
t,μ(t)

)
+

(ln t)α–1

ϒ

[ r∑

j=1

ωjHIα+qh(ξj) – HIα+ph
(
e2)

+
r∑

j=1

ωjHIq

( m∑

k=1

gk
(
θ ,μ(θ )

)
)∣

∣
∣
∣
θ=ξj

– HIp

( m∑

k=1

gk
(
θ ,μ(θ )

)
)∣

∣
∣
∣
θ=e2

]

.

From assumptions (O1) and (O2) we get

∣
∣μ(t)

∣
∣

≤ H Iα
∣
∣h(t)

∣
∣ +

m∑

k=1

∣
∣gk

(
t,μ(t)

)∣
∣ +

∣
∣
∣
∣
(ln t)α–1

ϒ

∣
∣
∣
∣

·
[ r∑

j=1

|ωj|HIα+q∣∣h(ξj)
∣
∣ + HIα+p∣∣h

(
e2)∣∣

+
r∑

j=1

|ωj|H Iq

( m∑

k=1

∣
∣gk

(
θ ,μ(θ )

)∣
∣

)∣
∣
∣
∣
θ=ξj

+ HIp

( m∑

k=1

∣
∣gk

(
θ ,μ(θ )

)∣
∣

)∣
∣
∣
∣
θ=e2

]
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≤
(

2α

�(α + 1)
+

2α–1

|ϒ |

( r∑

j=1

|ωj|
�(α + q + 1)

(ln ξj)α+q +
2α+p

�(α + p + 1)

))

· ‖ηz‖

+

(

m +
2α–1

|ϒ |

( r∑

j=1

m · |ωj|
�(q + 1)

(ln ξj)q +
m · 2p

�(p + 1)

))

· G

= �1‖ηz‖ + �2G.

Then

‖μ‖ ≤ �1‖ηz‖ + �2G.

In the second step, we prove that T is equicontinuous.
Let μ ∈ T (u), u ∈ Bz . Then there exists h ∈ SG,u such that

μ(t)

= H Iαh(t) +
m∑

k=1

gk
(
t,μ(t)

)
+

(ln t)α–1

ϒ

[ r∑

j=1

ωjHIα+qh(ξj) – HIα+ph
(
e2)

+
r∑

j=1

ωjHIq

( m∑

k=1

gk
(
θ ,μ(θ )

)
)∣

∣
∣
∣
θ=ξj

– HIp

( m∑

k=1

gk
(
θ ,μ(θ )

)
)∣

∣
∣
∣
θ=e2

]

.

Let t1, t2 ∈ [1, e2], t1 < t2. We have

∣
∣μ(t2) – μ(t1)

∣
∣

≤ 1
�(α)

∫ t1

1

((

ln
t2

θ

)α–1

–
(

ln
t1

θ

)α–1) |h(θ )|
θ

dθ +
1

�(α)

∫ t2

t1

(

ln
t2

θ

)α–1 |h(θ )|
θ

dθ

+
m∑

k=1

∣
∣gk

(
t2,μ(t2)

)
– gk

(
t1,μ(t1)

)∣
∣ +

∣
∣
∣
∣
(ln t2)α–1

ϒ
–

(ln t1)α–1

ϒ

∣
∣
∣
∣

·
[ r∑

j=1

|ωj|HIα+q∣∣h(ξj)
∣
∣ + HIα+p∣∣h

(
e2)∣∣

+
r∑

j=1

|ωj|H Iq

( m∑

k=1

∣
∣gk

(
θ ,μ(θ )

)∣
∣

)∣
∣
∣
∣
θ=ξj

+ HIp

( m∑

k=1

∣
∣gk

(
θ ,μ(θ )

)∣
∣

)∣
∣
∣
∣
θ=e2

]

≤ ‖ηz‖
�(α + 1)

∣
∣(ln t2)α – (ln t1)α

∣
∣ +

m∑

k=1

∣
∣gk

(
t2,μ(t2)

)
– gk

(
t1,μ(t1)

)∣
∣

+
|(ln t2)α–1 – (ln t1)α–1|

|ϒ | ·
[

‖ηz‖
( r∑

j=1

|ωj|(ln ξj)α+q

�(α + q + 1)
+

2α+p

�(α + p + 1)

)

+ G

( r∑

j=1

m · |ωj|
�(q + 1)

(ln ξj)q +
m · 2p

�(p + 1)

)]

.

By the continuity of gk , |μ(t2) – μ(t1)| → 0 as t2 → t1. Therefore, by the Arzelà–Ascoli
theorem, T : C([1, e2],R) →P(C([1, e2],R)) is completely continuous.
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In the third step, we prove that for each u ∈ C([1, e2],R), T (u) is closed.
In C([1, e2],R), let {μn}n≥0 ∈ T (u) and μn → μ(n → ∞). Let us prove that μ ∈ T (u). It

is easy to get that μ ∈ C([1, e2],R), and there exist hn ∈ SG,un such that for each t ∈ [1, e2],

μn(t)

= H Iαhn(t) +
m∑

k=1

gk
(
t,μn(t)

)
+

(ln t)α–1

ϒ

[ r∑

j=1

ωjHIα+qhn(ξj) – HIα+phn
(
e2)

+
r∑

j=1

ωjHIq

( m∑

k=1

gk
(
θ ,μn(θ )

)
)∣

∣
∣
∣
θ=ξj

– HIp

( m∑

k=1

gk
(
θ ,μn(θ )

)
)∣

∣
∣
∣
θ=e2

]

.

Since G has convex values, let hn → h ∈ L1([1, e2],R) (otherwise, we could find a subse-
quence converging to h), so h ∈ SG,u, and for each t ∈ [1, e2], we have

μn(t) → μ(t)

= HIαh(t) +
m∑

k=1

gk
(
t,μ(t)

)
+

(ln t)α–1

ϒ

[ r∑

j=1

ωjHIα+qh(ξj) – H Iα+ph
(
e2)

+
r∑

j=1

ωjHIq

( m∑

k=1

gk
(
θ ,μ(θ )

)
)∣

∣
∣
∣
θ=ξj

– HIp

( m∑

k=1

gk
(
θ ,μ(θ )

)
)∣

∣
∣
∣
θ=e2

]

.

Hence μ ∈ T (u).
In the fourth step, we prove that for each u ∈ C([1, e2],R), T (u) is convex.
If μ1,μ2 ∈ T (u), then there exist h1, h2 ∈ SG,u such that for each t ∈ [1, e2],

μρ(t)

= H Iαhρ(t) +
m∑

k=1

gk
(
t,μρ(t)

)
+

(ln t)α–1

ϒ

[ r∑

j=1

ωjHIα+qhρ(ξj) – H Iα+phρ

(
e2)

+
r∑

j=1

ωjHIq

( m∑

k=1

gk
(
θ ,μρ(θ )

)
)∣

∣
∣
∣
θ=ξj

– HIp

( m∑

k=1

gk
(
θ ,μρ(θ )

)
)∣

∣
∣
∣
θ=e2

]

, ρ = 1, 2.

Let 0 ≤ β ≤ 1. Then, for each t ∈ [1, e2], we have

[
βμ1 + (1 – β)μ2

]
(t)

= H Iα
[
βh1 + (1 – β)h2

]
(t) +

m∑

k=1

[
βgk

(
t,μ1(t)

)
+ (1 – β)gk

(
t,μ2(t)

)]

+
(ln t)α–1

ϒ
·
[ r∑

j=1

ωjHIα+q([βh1(θ ) + (1 – β)h2(θ )
])

∣
∣
∣
∣
θ=ξj

– HIα+p([βh1(θ ) + (1 – β)h2(θ )
])

∣
∣
∣
∣
θ=e2

+
r∑

j=1

ωjHIq

( m∑

k=1

[
βgk

(
θ ,μ1(θ )

)
+ (1 – β)gk

(
θ ,μ2(θ )

)]
)∣

∣
∣
∣
θ=ξj
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– HIp

( m∑

k=1

[
βgk

(
θ ,μ1(θ )

)
+ (1 – β)gk

(
θ ,μ2(θ )

)]
)∣

∣
∣
∣
θ=e2

]

.

Because G has convex values, SG,u is convex, and βμ1 + (1 – β)μ2 ∈ T (u). So T (u) is
convex.

In the fifth step, we prove that the operator T is upper semicontinuous. By Definition 4.3
a completely continuous operator with a closed graph is upper semicontinuous. From the
first and second steps we have that the operator T is completely continuous, so it is only
necessary to prove that T has a closed graph.

Let un → u∗, μn → μ∗, and μn ∈ T (un). Since μn ∈ T (un), there exists hn ∈ SG,un such
that for each t ∈ [1, e2],

μn(t)

= H Iαhn(t) +
m∑

k=1

gk
(
t,μn(t)

)
+

(ln t)α–1

ϒ

[ r∑

j=1

ωjHIα+qhn(ξj) – HIα+phn
(
e2)

+
r∑

j=1

ωjHIq

( m∑

k=1

gk
(
θ ,μn(θ )

)
)∣

∣
∣
∣
θ=ξj

– HIp

( m∑

k=1

gk
(
θ ,μn(θ )

)
)∣

∣
∣
∣
θ=e2

]

.

We show that there is h∗ ∈ SG,u∗ such that for each t ∈ [1, e2],

μ∗(t)

= H Iαh∗(t) +
m∑

k=1

gk
(
t,μ∗(t)

)
+

(ln t)α–1

ϒ

[ r∑

j=1

ωjHIα+qh∗(ξj) – HIα+ph∗
(
e2)

+
r∑

j=1

ωjHIq

( m∑

k=1

gk
(
θ ,μ∗(θ )

)
)∣

∣
∣
∣
θ=ξj

– HIp

( m∑

k=1

gk
(
θ ,μ∗(θ )

)
)∣

∣
∣
∣
θ=e2

]

.

Consider the linear operator B : L1([1, e2],R) → C([1, e2],R) defined by

h �→ B(h)(t)

= HIαh(t) +
m∑

k=1

gk
(
t, h(t)

)
+

(ln t)α–1

ϒ

[ r∑

j=1

ωjH Iα+qh(ξj) – HIα+ph
(
e2)

+
r∑

j=1

ωjH Iq

( m∑

k=1

gk
(
θ , h(θ )

)
)∣

∣
∣
∣
θ=ξj

– HIp

( m∑

k=1

gk
(
θ , h(θ )

)
)∣

∣
∣
∣
θ=e2

]

.

Obviously, ‖μn – μ∗‖ → 0 as n → ∞.
Therefore, by Lemma 4.5, B ◦ SG,u is a closed graph operator, and μn(t) ∈ B(SG,un ).
Since un → u∗, there exists h∗ ∈ SG,u∗ such that

μ∗(t)

= H Iαh∗(t) +
m∑

k=1

gk
(
t,μ∗(t)

)
+

(ln t)α–1

ϒ

[ r∑

j=1

ωjHIα+qh∗(ξj) – HIα+ph∗
(
e2)
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+
r∑

j=1

ωjHIq

( m∑

k=1

gk
(
θ ,μ∗(θ )

)
)∣

∣
∣
∣
θ=ξj

– HIp

( m∑

k=1

gk
(
θ ,μ∗(θ )

)
)∣

∣
∣
∣
θ=e2

]

.

From the above proof we can see that μ∗ ∈ T (u∗), that is, T has a closed graph, so T is
upper semicontinuous.

To sum up, we obtain that the operator T is an upper semicontinuous compact multi-
valued map with convex closed values. It is known from Lemma 4.6 that the operator T
has a fixed point, which is a solution of the boundary value problem (1.2). This completes
the proof. �

Theorem 4.10 On the basis of (O2), we assume that:
(O3) G : [1, e2] ×R →Pb,c,cp(R) is L1-Carathéodory;
(O4) there exists function φ(t) such that for each u ∈R, ‖G(t, u)‖ ≤ φ(t) for a.e. t ∈ [1, e2].
Then the boundary value problem (1.2) has a solution on [1, e2].

Proof Considering the operator T defined in Theorem 4.9, from the proof of the latter we
obtain that the operator T is a convex completely continuous multivalued mapping. So
we only need to prove that the set � = {u ∈ U : �u ∈ T (u),� > 1} is bounded.

Let u ∈ �. Then �u ∈ T (u), � > 1, and there exists a function h ∈ SG,u such that

�u(t)

= H Iαh(t) +
m∑

k=1

gk
(
t,�u(t)

)
+

(ln t)α–1

ϒ

[ r∑

j=1

ωjHIα+qh(ξj) – HIα+ph
(
e2)

+
r∑

j=1

ωjHIq

( m∑

k=1

gk
(
θ ,�u(θ )

)
)∣

∣
∣
∣
θ=ξj

– HIp

( m∑

k=1

gk
(
θ ,�u(θ )

)
)∣

∣
∣
∣
θ=e2

]

.

Because � > 1, we have

∣
∣u(t)

∣
∣ ≤ ∣

∣�u(t)
∣
∣

≤ HIα
∣
∣h(t)

∣
∣ +

m∑

k=1

∣
∣gk

(
t,�u(t)

)∣
∣ +

∣
∣
∣
∣
(ln t)α–1

ϒ

∣
∣
∣
∣

·
[ r∑

j=1

|ωj|H Iα+q∣∣h(ξj)
∣
∣ + HIα+p∣∣h

(
e2)∣∣

+
r∑

j=1

|ωj|HIq

( m∑

k=1

∣
∣gk

(
θ ,�u(θ )

)∣
∣

)∣
∣
∣
∣
θ=ξj

+ HIp

( m∑

k=1

∣
∣gk

(
θ ,�u(θ )

)∣
∣

)∣
∣
∣
∣
θ=e2

]

≤
(

2α

�(α + 1)
+

2α–1

|ϒ |

( r∑

j=1

|ωj|
�(α + q + 1)

(ln ξj)α+q +
2α+p

�(α + p + 1)

))

· ‖φ‖

+

(

m +
2α–1

|ϒ |

( r∑

j=1

m · |ωj|
�(q + 1)

(ln ξj)q +
m · 2p

�(p + 1)

))

· G

= �1‖φ‖ + �2G,
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that is,

‖u‖ ≤ �1‖φ‖ + �2G < ∞.

Therefore the set � = {u ∈ U : �u ∈ T (u),� > 1} is bounded. By Lemma 4.7 the operator T
has at least one fixed point, so the boundary value problem (1.2) has at least one solution
on [1, e2]. This completes the proof. �

Theorem 4.11 On the basis of (O1) and (O2), we assume that:
(O5) there exist a continuous nondecreasing function ϕ : [0,∞) → (0,∞) and a function

τ ∈ C([1, e2],R+) such that for each (t, u) ∈ [1, e2]×R, ‖G(t, u)‖ = sup{|ω| : ω ∈ G(t, u(t))} ≤
τ (t)ϕ(‖u‖);

(O6) there exists a constant K > 0 satisfying K
�1‖τ‖ϕ(K )+�2G > 1.

Then the boundary value problem (1.2) has at least one solution on [1, e2].

Proof Considering the operator T defined in Theorem 4.9, from the proof of the latter we
just need to prove that there exists an open set H ⊆ C([1, e2],R) such that for all λ ∈ (0, 1)
and u ∈ ∂H , u /∈ λT (u).

Let u ∈ λT (u) and λ ∈ (0, 1). Then there exists h ∈ L1([1, e2],R), h ∈ SG,u, such that for
t ∈ [1, e2],

u(t)

= λ
(

HIαh(t)
)

+ λ

m∑

k=1

gk
(
t, u(t)

)
+

λ(ln t)α–1

ϒ

[ r∑

j=1

ωjHIα+qh(ξj) – HIα+ph
(
e2)

+
r∑

j=1

ωjHIq

( m∑

k=1

gk
(
θ , u(θ )

)
)∣

∣
∣
∣
θ=ξj

– HIp

( m∑

k=1

gk
(
θ , u(θ )

)
)∣

∣
∣
∣
θ=e2

]

.

Since λ ∈ (0, 1), for all t ∈ [1, e2], we have

∣
∣u(t)

∣
∣

≤ H Iα
∣
∣h(t)

∣
∣ +

m∑

k=1

∣
∣gk

(
t, u(t)

)∣
∣ +

∣
∣
∣
∣
(ln t)α–1

ϒ

∣
∣
∣
∣

·
[ r∑

j=1

|ωj|HIα+q∣∣h(ξj)
∣
∣ + HIα+p∣∣h

(
e2)∣∣

+
r∑

j=1

|ωj|H Iq

( m∑

k=1

∣
∣gk

(
θ , u(θ )

)∣
∣

)∣
∣
∣
∣
θ=ξj

+ HIp

( m∑

k=1

∣
∣gk

(
θ , u(θ )

)∣
∣

)∣
∣
∣
∣
θ=e2

]

≤ 2α

�(α + 1)
‖τ‖ϕ(‖u‖) +

2α–1

|ϒ | ·
{

‖τ‖ϕ(‖u‖) ·
( r∑

j=1

|ωj|(ln ξj)α+q

�(α + q + 1)
+

2α+p

�(α + p + 1)

)

+ G ·
( r∑

j=1

m · |ωj|
�(q + 1)

(ln ξj)q +
m · 2p

�(p + 1)

)}

+ mG

= �1‖τ‖ϕ(‖u‖) + �2G.
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Therefore

‖u‖ ≤ �1‖τ‖ϕ(‖u‖) + �2G,

that is,

‖u‖
�1‖τ‖ϕ(‖u‖) + �2G

≤ 1.

By assuming (O6) there exists K such that ‖u‖ �= K . Let H = {u ∈ C(I,R) : ‖u‖ < K}, and let
T : H → P(C([1, e2],R)) be a compact multivalued mapping with convex closed values.
By the choice of H , for λ ∈ (0, 1), there is no u ∈ ∂H such that u ∈ λT (u). Therefore, by
Lemma 4.8, T has a fixed point u ∈ H , which is also a solution of problem (1.2). This
completes the proof. �

Example 4.12 Consider

⎧
⎪⎪⎨

⎪⎪⎩

(HD 9
2 Z)(t) ∈G(t, u(t)), t ∈ [1, e2],

Z(1) = Z′(1) = · · · = Z(n–2)(1) = 0,

HI 8
3 u(e2) = 3

2 HI 7
3 u( 4

3 ) + 6
7 HI 7

3 u( 9
4 ) + 5

8 HI 7
3 u( 11

2 ),

(4.5)

where

Z(t) = u(t) –
(
g1

(
t, u(t)

)
+ g2

(
t, u(t)

))

= u(t) –
[
(
2t cos u(t) + 1

)
+

(

2e–(1–t)2 |u(t)|
1 + |u(t)|

)]

,

n = 5, α = 9
2 , p = 8

3 , q = 7
3 , m = 2, r = 3, ω1 = 3

2 , ω2 = 6
7 , ω3 = 5

8 , ξ1 = 4
3 , ξ2 = 9

4 , ξ3 = 11
2 .

Define

G(t, u) =
[

cos t
(3 + t)2

(

|u| +
1
2

)

,
e1–t

150

( |u|3
1 + |u|2 +

1
4

)]

.

So for all u ∈R with ‖u‖ ≤ z and for a.e. t ∈ [1, e2], we obviously obtain

∥
∥G(t, u)

∥
∥ ≤ 1

(3 + t)2 ·
(

z +
1
2

)

,

∥
∥g1(t, u)

∥
∥ = sup

t∈[1,e2]
{2t cos u + 1} ≤ 2e2 + 1,

∥
∥g2(t, u)

∥
∥ = sup

t∈[1,e2]

{

2e–(1–t)2 |u|
1 + |u|

}

≤ 2.

Choose ηz(t) = 1
(3+t)2 · (z + 1

2 ) and G = 2e2 + 1. Then all conditions of Theorem 4.9 are
satisfied. Therefore there is at least one solution of the boundary value problem (4.5) on
[1, e2].
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5 Conclusion
Using different types of fixed point theorems described in Sect. 2, we have established the
existence and uniqueness of solutions of Hadamard fractional neutral differential equa-
tions with multipoint boundary value conditions and considered some suitable conditions
for the system to be Ulam–Hyers stable and generalized Ulam–Hyers stable (see Theo-
rem 3.10 and Remark 3.11, respectively). In addition, in Sect. 4, using the Bohnenblust–
Karlin fixed point theorem, the Martelli fixed point theorem, and the nonlinear alternative
for Kakutani maps, we have obtained the corresponding conditions for the existence of
solutions to fractional differential inclusion problems when multivalued mappings have
convex values. We also give some examples to show the applicability of the results. The
mentioned existence of solutions is rarely investigated for Hadamard fractional differential
inclusions and is very important.
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