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Abstract
In this paper we study the von Karman plate model with long range memory. By
using the assumptions on the relaxation function due to Tatar (J. Math. Phys.
52:013502, 2011), we show an arbitrary rate of decay, which is not necessarily of an
exponential or polynomial decay. Our result is obtained without imposing the usual
relation between the relaxation function h and its derivative.
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1 Introduction
Let � be an open bounded set of R2 with a sufficiently smooth boundary � = �0 ∪ �1, �0

and �1 are closed and disjoint. Denote by ν = (ν1,ν2) the external unit normal to �, and
by η = (–ν2,ν1) the unitary tangent positively oriented on �. In this paper we consider the
following von Karman system with memory:

wtt – k�wtt + �2w –
∫ t

0
h(t – s)�2w(s) ds = [w, v] in � × (0,∞), (1.1)

�2v = –[w, w] in � × (0,∞), (1.2)

v =
∂v
∂ν

= 0 on � × (0,∞), (1.3)

w =
∂w
∂ν

= 0 on �0 × (0,∞), (1.4)

B1w – B1

{∫ t

0
h(t – s)w(s) ds

}
= 0 on �1 × (0,∞), (1.5)

B2w – k
∂wtt

∂ν
– B2

{∫ t

0
h(t – s)w(s) ds

}
= 0 on �1 × (0,∞), (1.6)

w(x, y, 0) = w0(x, y), wt(x, y, 0) = w1(x, y) in �, (1.7)

where the function h satisfies some conditions to be specified later and von Karman
bracket is given by

[w, v] = wxxvyy – 2wxyvxy + wyyvxx.
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Here

B1w = �w + (1 – μ)B1w and B2w =
∂�w
∂ν

+ (1 – μ)B2w,

where constant μ(0 < μ < 1
2 ) is Poisson’s ratio and

B1w = 2ν1ν2wxy – ν2
1 wyy – ν2

2 wxx, B2w =
∂

∂η

[(
ν2

1 – ν2
2
)
wxy + ν1ν2(wyy – wxx)

]
.

The equations describe small vibrations of a thin plate of uniform thickness. The second
term in (1.1) represents rotational inertia.

Munoz Rivera and Menzala [2] discussed the exponential decay of the energy for prob-
lem (1.1)–(1.7) under the usual condition

–c0h(t) ≤ h′(t) ≤ –c1h(t), 0 ≤ h′′(t) ≤ c2h(t) (1.8)

for some ci, i = 0, 1, 2. Moreover, they showed that when the kernel h decays polynomially,
the energy also decays with the same rate. Raposo and Santos [3] generalized the decay
result of [2]. They investigated the general decay of the solutions for problem (1.1)–(1.7)
under a more general condition on h such as

h′(t) ≤ –ξ (t)h(t), ξ (t) > 0, ξ ′(t) ≤ 0, ∀t ≥ 0, (1.9)

where ξ is a nonincreasing and positive function. Kang [4] proved that the solutions for
problem (1.1)–(1.7) decay exponentially to zero as time goes to infinity in case

h′(t) + γ h(t) ≥ 0,
[
h′(t) + γ h(t)

]
eαt ∈ L1(0,∞), ∀t ≥ 0,

for some γ ,α > 0. Lately, Kang [5] improved the decay result of [3] without imposing any
restrictive assumptions on the behavior of the relaxation function at infinity. The author
considered the general stability result for problem (1.1)–(1.7) under a relaxation function
satisfying

h′(t) ≤ –H
(
h(t)

)
, (1.10)

where H is a nonnegative function, with H(0) = 0, and H is linear or strictly increasing
and strictly convex on (0, r] for some r > 0. Recently, Balegh et al. [6] studied the general
decay rate of the energy for problem (1.1)–(1.7) with nonlinear boundary delay term. The
relaxation function h satisfies

h′(t) ≤ –ξ (t)H
(
h(t)

)
, (1.11)

where ξ is a positive nonincreasing differentiable function and H satisfies the same con-
ditions as (1.10) for some 0 < r < 1.

For the case h = 0 in (1.1) with nonlinear boundary dissipation, Horn and Lasiecka [7]
and Bradley and Lasiecka [8] proved the uniform decay rates for the solution when t goes
to infinity.
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Moreover, Cavalcanti et al. [9] considered the following problem (1.1) with the rotational
inertia coefficient k = 0:

⎧⎪⎪⎨
⎪⎪⎩

utt + �2u –
∫ t

0 h(t – s)�2u(s) ds = [u, v] in � × (0,∞),

�2v = –[u, u] in � × (0,∞),

u = ∂u
∂ν

= 0, v = ∂v
∂ν

= 0 on � × (0,∞),

(1.12)

where the relaxation kernel h satisfies (1.10) and H is a positive, strictly increasing, and
convex function with H(0) = 0. The rotational inertia ensures the regularity of solutions
that is needed in the estimates. They proved the global existence of weak and regular so-
lutions and provided sharp and general decay rate estimates without accounting for reg-
ularizing effects of rotational inertia by using the method introduced in [10]. Park [11]
established an arbitrary rate of decay for problem (1.12) using the assumptions on the
relaxation function due to Tatar [1].

When k = h = 0 in (1.1) with nonlinear boundary dissipation, Favini et al. [12] and Horn
and Lasiecka [13] proved global existence, uniqueness, and regularity of solutions and
uniform decay rates of weak solutions, respectively.

For the case k = h = 0 in (1.1) with memory-type boundary condition, Feng and Soufyane
[14] obtained an optimal explicit and general energy decay result. For more results on von
Karman plate equation with memory-type boundary condition, we refer to [15, 16].

On the other hand, for the viscoelastic wave equation, Cavalcanti et al. [17] proved ex-
ponential and polynomial decay under the usual condition (1.8). Later, this assumption
was relaxed by several authors [18–20]. Messaoudi [21] considered general stability for
the viscoelastic equation

utt – �u +
∫ t

0
h(t – s)�u(s) ds = 0 in � × (0,∞), (1.13)

where the relaxation function h satisfies

h′(t) ≤ –ξ (t)h(t),
|ξ ′(t)|
|ξ (t)| ≤ k0, ξ (t) > 0, ξ ′(t) ≤ 0, ∀t ≥ 0. (1.14)

Tatar [22] investigated polynomial asymptotic stability of solutions for problem (1.13) un-
der the condition

h′(t) ≤ 0 for almost all t > 0. (1.15)

Moreover, Tatar [1] established an arbitrary decay rate for problem (1.13) with assump-
tions as follows:

∫ ∞

0
h(s)γ (s) ds < +∞, (1.16)

where a nondecreasing function γ (t) > 0 such that γ ′(t)
γ (t) = η(t) is a decreasing function. As

for problem of decay of the solutions for a viscoelastic system under condition (1.16), we
also refer the reader to [11, 23] and the references therein. Later, Mustafa and Messaoudi
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[24] showed a general decay rate result for problem (1.13) with condition (1.10) on a re-
laxation function. The stability of the solutions to a viscoelastic system under condition
(1.9) was studied in [25–28] and the references therein.

Motivated by these works, we study an arbitrary decay of solutions for problem
(1.1)–(1.7) for relaxation functions satisfying condition (1.16). This result improves earlier
ones concerning exponential and polynomial decay for problem (1.1)–(1.7).

The plan of the paper is as follows: in Sect. 2, we prepare some notation and material
needed for our work. In Sect. 3, we show an arbitrary decay result of the solutions for
problem (1.1)–(1.7).

2 Preliminaries
We define

V =
{

w ∈ H1(�); w = 0 on �0
}

, W =
{

w ∈ H2(�); w =
∂w
∂ν

= 0 on �0

}
.

Integration by parts formula yields

(
�2w, v

)
= a(w, v) + (B2w, v)� –

(
B1w,

∂v
∂ν

)
�

, (2.1)

where the bilinear symmetric form a(w, v) is given by

a(w, v) =
∫

�

{
wxxvxx + wyyvyy + μ(wxxvyy + wyyvxx) + 2(1 – μ)wxyvxy

}
d�,

where d� = dx dy. Because �0 	= ∅, we see that for c0 > 0 and c1 > 0,

c0‖w‖2
H2(�) ≤ a(w, w) ≤ c1‖w‖2

H2(�). (2.2)

The Sobolev imbedding theorem implies that for positive constants Cp and Cs,

‖w‖2 ≤ Cpa(w, w), ‖∇w‖2 ≤ Csa(w, w), ∀w ∈ W . (2.3)

By the symmetry of a(·, ·), we get that for any w ∈ C1(0, T ; H2(�)),

a(h ∗ w, wt) = –
1
2

h(t)a(w, w) +
1
2
(
h′�∂2w

)
(t)

–
1
2

d
dt

{(
h�∂2w

)
(t) –

(∫ t

0
h(s) ds

)
a(w, w)

}
, (2.4)

where

(h ∗ w)(t) :=
∫ t

0
h(t – s)w(s) ds,

(
h�∂2w

)
(t) :=

∫ t

0
h(t – s)a

(
w(·, t) – w(·, s), w(·, t) – w(·, s)

)
ds.

We introduce relative results of the Airy stress function and von Karman bracket.
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Lemma 2.1 ([2, 29]) Let w, u ∈ H2(�) and v ∈ H2
0 (�). Then

∫
�

w[v, u] d� =
∫

�

v[w, u] d�. (2.5)

Lemma 2.2 ([12]) If w, v ∈ H2(�), then [w, v] ∈ L2(�) and satisfies

‖v‖W 2,∞(�) ≤ c‖w‖2
H2(�) and

∥∥[w, v]
∥∥ ≤ c‖w‖H2(�)‖v‖W 2,∞(�), (2.6)

where c > 0.

As in [1], we consider the following hypotheses on the relaxation function h(t):
(H1) h(t) ≥ 0 for all t ≥ 0 and

0 < l :=
∫ ∞

0
h(s) ds < 1. (2.7)

(H2) h′(t) ≤ 0 for almost all t > 0.
(H3) There exists a nondecreasing function γ (t) > 0 such that

γ ′(t)
γ (t)

:= η(t) is a decreasing function and
∫ ∞

0
h(s)γ (s) ds < +∞. (2.8)

By using Galerkin’s approximation, we get the following result for the solution (see [2]).
For (w0, w1) ∈ W × V , k > 0, and T > 0, system (1.1)–(1.7) has a unique weak solution. For
(w0, w1) is 2-regular, the weak solution satisfies

w ∈ C
(
[0, T]; W ∩ H4(�)

)
, wt ∈ C

(
[0, T]; V ∩ H3(�)

)
.

We define the energy of problem (1.1)–(1.7) by

E(t) =
1
2
∥∥wt(t)

∥∥2 +
k
2
∥∥∇wt(t)

∥∥2 +
1
2

a
(
w(t), w(t)

)
+

1
4
‖�v‖2. (2.9)

3 Arbitrary decay of the energy
To obtain the stability of problem (1.1)–(1.7), we introduce the following notations as in
[1, 30]. For every measurable set M⊂R

+, we denote the probability measure ĥ by

ĥ(M) =
1
l

∫
M

h(s) ds. (3.1)

The flatness set of h is defined by

Fh =
{

s ∈ R
+ : h(s) > 0 and h′(s) = 0

}
. (3.2)

Let t0 > 0 be a number such that
∫ t0

0 h(s) ds := h0 > 0. We define the modified energy by

E(t) =
1
2
∥∥wt(t)

∥∥2 +
k
2
∥∥∇wt(t)

∥∥2 +
1
4
‖�v‖2

+
1
2

(
1 –

∫ t

0
h(s) ds

)
a
(
w(t), w(t)

)
+

1
2
(
h�∂2w

)
(t).
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Multiplying (1.1) by wt(t) and using (2.4), we have

E ′(t) = –
1
2

h(t)a
(
w(t), w(t)

)
+

1
2
(
h′�∂2w

)
(t). (3.3)

From (2.7) one sees that

E(t) ≤ 1
1 – l

E(t), ∀t ≥ 0. (3.4)

First, we define the standard functionals

�(t) =
∫

�

wt(t)w(t) d� + k
∫

�

∇wt(t)∇w(t) d�,

�(t) =
∫

�

(
k�wt(t) – wt(t)

)∫ t

0
h(t – s)

(
w(t) – w(s)

)
ds d�,

and the new one


(t) =
∫ t

0
Gγ (t – s)a

(
w(s), w(s)

)
ds,

where

Gγ (t) = γ (t)–1
∫ ∞

t
h(s)γ (s) ds.

Now let us define the perturbed modified energy by

F (t) = ME(t) + ξ1�(t) + ξ2�(t) + ξ3
(t), (3.5)

where M and ξi(i = 1, 2, 3) are positive constants to be specified later. Using the methods
presented in [1, 4, 5], we get the following lemmas.

Lemma 3.1 Assume that (H1) holds. Then, for M > 0 large, there exist α0 > 0 and α1 > 0
such that

α0
(
E(t) + 
(t)

) ≤F (t) ≤ α1
(
E(t) + 
(t)

)
, ∀t ≥ 0. (3.6)

Proof From Young’s inequality, (2.3), and (2.7), we obtain

∣∣�(t)
∣∣ ≤ 1

2
∥∥wt(t)

∥∥2 +
k
2
∥∥∇wt(t)

∥∥2 +
Cp + Csk

2
a
(
w(t), w(t)

) ≤ C1E(t) (3.7)

and

∣∣�(t)
∣∣ ≤ 1

2
∥∥wt(t)

∥∥2 +
k
2
∥∥∇wt(t)

∥∥2 +
(Cp + Csk)l

2
(
h�∂2w

)
(t) ≤ C2E(t), (3.8)

where C1 = max{1, Cp+Csk
1–l } and C2 = max{1, (Cp + Csk)l}. By (3.7) and (3.8), we find that

∣∣F(t) – ME(t) – ξ3
(t)
∣∣ ≤ C3E(t),
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where C3 = ξ1C1 + ξ2C2. Setting α0 = min{M – C3, ξ3}, α1 = max{M + C3, ξ3} and taking
M > 0 large, we complete the proof of Lemma 3.1. �

Lemma 3.2 Assume that (H1)–(H3) hold. Then, for each t0 > 0 and all measurable sets
M and N with M = R

+ \N , it is satisfied that

F ′(t) ≤ {
ξ1 + ξ2(δ2 – h0)

}∥∥wt(t)
∥∥2 + k

{
ξ1 + ξ2(δ2 – g0)

}∥∥∇wt(t)
∥∥2

+
[
ξ2

{
(1 – h0)

(
δ1 +

3lĥ(N )
2

)
+ δ3C∗E2(0)

}

– ξ1

(
1 –

l
2

)
+ ξ3Gγ (0)

]
a
(
w(t), w(t)

)

+ ξ2l
(

1 – h0

4δ1
+ 1 +

1
δ1

+
Cp

2δ3

)∫
Mt

h(t – s)a
(
w(t) – w(s), w(t) – w(s)

)
ds

+ ξ2lĥ(N )
(

1 + δ1 +
Cp

2δ3

)∫
Nt

h(t – s)a
(
w(t) – w(s), w(t) – w(s)

)
ds

–
ξ1

2
(
h�∂2w

)
(t) +

ξ2(1 – h0)
2

∫
Nt

h(t – s)a
(
w(s), w(s)

)
ds

+
(

M
2

–
ξ2h(0)(Csh + Cp)

4δ2

)(
h′�∂2w

)
(t)

+
(

ξ1

2
– ξ3

)∫ t

0
h(t – s)a

(
w(s), w(s)

)
ds

– ξ3η(t)
(t) – ξ1‖�v‖2, ∀t ≥ t0, (3.9)

where C∗ is a positive constant.

Proof From (1.1)–(1.6), (2.1), (2.5), and (2.7), we have

�′(t) =
∥∥wt(t)

∥∥2 + k
∥∥∇wt(t)

∥∥2 – a
(
w(t), w(t)

)
+

1
2

(∫ t

0
h(s) ds

)
a
(
w(t), w(t)

)

+
1
2

∫ t

0
h(t – s)a

(
w(s), w(s)

)
ds –

1
2
(
h�∂2w

)
(t) – ‖�v‖2

≤ ∥∥wt(t)
∥∥2 + k

∥∥∇wt(t)
∥∥2 –

(
1 –

l
2

)
a
(
w(t), w(t)

)

+
1
2

∫ t

0
h(t – s)a

(
w(s), w(s)

)
ds –

1
2
(
h�∂2w

)
(t) – ‖�v‖2. (3.10)

Similarly, we conclude that

� ′(t) =
(

1 –
∫ t

0
h(s) ds

)∫ t

0
h(t – s)a

(
w(t) – w(s), w(t)

)
ds

+
∫ t

0
h(t – s)a

(
w(t) – w(s),

∫ t

0
h(t – τ )

(
w(t) – w(τ )

)
dτ

)
ds

– k
∫ t

0
h′(t – s)

(∇w(t) – ∇w(s),∇wt(t)
)

ds
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–
∫ t

0
h′(t – s)

(
w(t) – w(s), wt(t)

)
ds

–
∫ t

0
h(t – s)

(
w(t) – w(s), [w, v]

)
ds –

(∫ t

0
h(s) ds

)∥∥wt(t)
∥∥2

– k
(∫ t

0
h(s) ds

)∥∥∇wt(t)
∥∥2

:=
(

1 –
∫ t

0
h(s) ds

)
I1 + I2 + · · · + I5

–
(∫ t

0
h(s) ds

)∥∥wt(t)
∥∥2 – k

(∫ t

0
h(s) ds

)∥∥∇wt(t)
∥∥2. (3.11)

For all measurable sets M and N such that M = R
+ \N , using Young’s inequality, (2.7),

and (3.1), we obtain that for δ1 > 0,

I1 =
∫
Mt

h(t – s)a
(
w(t) – w(s), w(t)

)
ds +

(∫
Nt

h(s) ds
)

a
(
w(t), w(t)

)

–
∫
Nt

h(t – s)a
(
w(s), w(t)

)
ds

≤
(

δ1 +
3lĥ(N )

2

)
a
(
w(t), w(t)

)
+

l
4δ1

∫
Mt

h(t – s)a
(
w(t) – w(s), w(t) – w(s)

)
ds

+
1
2

∫
Nt

h(t – s)a
(
w(s), w(s)

)
ds, (3.12)

where Mt := M∩ [0, t] and Nt := N ∩ [0, t]. Similarly, we have that for δ1 > 0,

I2 = a
(∫ t

0
h(t – s)

(
w(t) – w(s)

)
ds,

∫ t

0
h(t – s)

(
w(t) – w(s)

)
ds

)

= a
(∫

Mt

h(t – s)
(
w(t) – w(s)

)
ds,

∫
Mt

h(t – s)
(
w(t) – w(s)

)
ds

)

+ 2a
(∫

Mt

h(t – s)
(
w(t) – w(s)

)
ds,

∫
Nt

h(t – s)
(
w(t) – w(s)

)
ds

)

+ a
(∫

Nt

h(t – s)
(
w(t) – w(s)

)
ds,

∫
Nt

h(t – s)
(
w(t) – w(s)

)
ds

)

≤
(

1 +
1
δ1

)
l
∫
Mt

h(t – s)a
(
w(t) – w(s), w(t) – w(s)

)
ds

+ (1 + δ1)lĥ(N )
∫
Nt

h(t – s)a
(
w(t) – w(s), w(t) – w(s)

)
ds. (3.13)

Applying Young’s inequality and (2.3), we get that for δ2 > 0,

|I3| ≤ kδ2
∥∥∇wt(t)

∥∥2 +
k

4δ2

∫
�

(∫ t

0
h′(t – s)

∣∣∇w(t) – ∇w(s)
∣∣ds

)2

d�

≤ kδ2
∥∥∇wt(t)

∥∥2 –
h(0)Csk

4δ2

(
h′�∂2w

)
(t), (3.14)

|I4| ≤ δ2
∥∥wt(t)

∥∥2 –
h(0)Cp

4δ2

(
h′�∂2w

)
(t). (3.15)
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By Young’s inequality, we find that for δ3 > 0,

|I5| ≤ δ3
∥∥[w, v]

∥∥2 +
1

4δ3

∥∥∥∥
∫ t

0
h(t – s)

(
w(t) – w(s)

)
ds

∥∥∥∥
2

. (3.16)

Using (2.2), (2.6), (2.9), (3.4) and the fact E(t) ≤ E(0) = E(0), we see that

∥∥[w, v]
∥∥2 ≤ c4∥∥w(t)

∥∥2
H2(�)

∥∥w(t)
∥∥4

H2(�) ≤ c4

c0
a
(
w(t), w(t)

)( 2
c0

E(t)
)2

≤ c4

c0
a
(
w(t), w(t)

)( 2
c0(1 – l)

E(t)
)2

≤ C∗E2(0)a
(
w(t), w(t)

)
,

where C∗ = 4c4

c3
0(1–l)2 . From Young’s inequality, (2.3), and (3.1), we obtain

∥∥∥∥
∫ t

0
h(t – s)

(
w(t) – w(s)

)
ds

∥∥∥∥
2

=
∥∥∥∥
∫
Mt

h(t – s)
(
w(t) – w(s)

)
ds +

∫
Nt

h(t – s)
(
w(t) – w(s)

)
ds

∥∥∥∥
2

≤ 2l
∫
Mt

h(t – s)
∥∥w(t) – w(s)

∥∥2 ds + 2lĥ(N )
∫
Nt

h(t – s)
∥∥w(t) – w(s)

∥∥2 ds

≤ 2lCp

∫
Mt

h(t – s)a
(
w(t) – w(s), w(t) – w(s)

)
ds

+ 2lĥ(N )Cp

∫
Nt

h(t – s)a
(
w(t) – w(s), w(t) – w(s)

)
ds.

Inserting these estimates into (3.16), we have

|I5| ≤ δ3C∗E2(0)a
(
w(t), w(t)

)
+

lCp

2δ3

∫
Mt

h(t – s)a
(
w(t) – w(s), w(t) – w(s)

)
ds

+
lĥ(N )Cp

2δ3

∫
Nt

h(t – s)a
(
w(t) – w(s), w(t) – w(s)

)
ds. (3.17)

Substituting (3.12)–(3.15) and (3.17) into (3.11), we arrive at

� ′(t) ≤ k
(

δ2 –
∫ t

0
h(s) ds

)∥∥∇wt(t)
∥∥2 +

(
δ2 –

∫ t

0
h(s) ds

)∥∥wt(t)
∥∥2

+
{(

1 –
∫ t

0
h(s) ds

)(
δ1 +

3lĥ(N )
2

)
+ δ3C∗E2(0)

}
a
(
w(t), w(t)

)

+ l
{(

1 –
∫ t

0
h(s) ds

)
1

4δ1
+ 1 +

1
δ1

+
Cp

2δ3

}

×
∫
Mt

h(t – s)a
(
w(t) – w(s), w(t) – w(s)

)
ds

+ lĥ(N )
(

1 + δ1 +
Cp

2δ3

)∫
Nt

h(t – s)a
(
w(t) – w(s), w(t) – w(s)

)
ds
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+
1
2

(
1 –

∫ t

0
h(s) ds

)∫
Nt

h(t – s)a
(
w(s), w(s)

)
ds

–
h(0)(Csk + Cp)

4δ2

(
h′�∂2w

)
(t). (3.18)

A differentiation of 
(t) yields


′(t) = Gγ (0)a
(
w(t), w(t)

)
–

∫ t

0

γ ′(t – s)
γ (t – s)

Gγ (t – s)a
(
w(s), w(s)

)
ds

–
∫ t

0
h(t – s)a

(
w(s), w(s)

)
ds

≤ Gγ (0)a
(
w(t), w(t)

)
– η(t)
(t) –

∫ t

0
h(t – s)a

(
w(s), w(s)

)
ds, (3.19)

where we have used the fact that γ ′(t)
γ (t) = η(t) is a nonincreasing function. Since h is positive,

we get
∫ t

0 h(s) ds ≥ h0 for all t ≥ t0, and combining (3.3), (3.5), (3.10), (3.18), and (3.19), we
obtain the desired estimate (3.9). �

Now, we are ready to prove the following arbitrary decay result.

Theorem 3.1 Assume that (H1)–(H3), E(0) < l√
C∗Cp

, and ĥ(Fh) < 1
8 hold. If h0 > 3l

8–l and

Gγ (0) < (8–l)h0–3l
16 , then there exist positive constants t0, ω, and C such that

E(t) ≤ C
γ (t)ω

for t ≥ t0.

Proof As in [1, 30], we introduce the sets

Mn =
{

s ∈ R
+ : nh′(s) + h(s) ≤ 0

}
and Nn = R

+ \Mn, n ∈N.

Observe that

∞⋃
n=1

Mn = R
+ \ {Fh ∪ Nh},

where Nh is the null set where h′ is not defined and Fh is given in (3.2). Because Nn+1 ⊂Nn

for all n and ∩∞
n=1Nn = Fh ∪ Nh, we have

lim
n→∞ ĥ(Nn) = ĥ(Fh). (3.20)

Choosing M = Mn, N = Nn, and δ3 = (2–l)ξ1
4C∗E2(0)ξ2

in (3.9), we find that

F ′(t) ≤ {
ξ1 + ξ2(δ2 – h0)

}∥∥wt(t)
∥∥2 + k

{
ξ1 + ξ2(δ2 – h0)

}∥∥∇wt(t)
∥∥2

+
{
ξ2(1 – h0)

(
δ1 +

3lĥ(Nn)
2

)
–

ξ1

2

(
1 –

l
2

)
+ ξ3Gγ (0)

}
a
(
w(t), w(t)

)

+
{
ξ2l

(
1 – h0

4δ1
+ 1 +

1
δ1

+
2C∗CpE2(0)ξ2

(2 – l)ξ1

)
–

1
n

(
M
2

–
ξ2h(0)(Csk + Cp)

4δ2

)}
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×
∫
Mnt

h(t – s)a
(
w(t) – w(s), w(t) – w(s)

)
ds

+
{
ξ2lĥ(Nn)

(
1 + δ1 +

2C∗CpE2(0)ξ2

(2 – l)ξ1

)
–

ξ1

2

}(
h�∂2w

)
(t) – ξ3η(t)
(t)

+
{

ξ2(1 – h0)
2

+
ξ1

2
– ξ3

}∫ t

0
h(t – s)a

(
w(s), w(s)

)
ds

– ξ1‖�v‖2, ∀t ≥ t0, (3.21)

where Mnt = Mn ∩ [0, t]. For small 0 < ε < h0, by taking ξ1 = (h0 – ε)ξ2, (3.21) yields

F ′(t) ≤ ξ2(δ2 – ε)
∥∥wt(t)

∥∥2 + kξ2(δ2 – ε)
∥∥∇wt(t)

∥∥2

+
{
ξ2(1 – h0)

(
δ1 +

3lĥ(Nn)
2

)
– (h0 – ε)ξ2

(
β + (1 – β)

)(2 – l
4

)

+ ξ3Gγ (0)
}

a
(
w(t), w(t)

)

+
{
ξ2l

(
1 – h0

4δ1
+ 1 +

1
δ1

+
2C∗CpE2(0)

(2 – l)(h0 – ε)

)
–

1
n

(
M
2

–
ξ2h(0)(Csk + Cp)

4δ2

)}

×
∫
Mnt

h(t – s)a
(
w(t) – w(s), w(t) – w(s)

)
ds

+ ξ2

{
lĥ(Bn)

(
1 + δ1 +

2C∗CpE2(0)
(2 – l)(h0 – ε)

)
–

h0 – ε

2

}(
h�∂2w

)
(t) – ξ3η(t)
(t)

+
{

ξ2(1 – ε)
2

– ξ3

}∫ t

0
h(t – s)a

(
w(s), w(s)

)
ds

– (h0 – ε)ξ2‖�v‖2, ∀t ≥ t0, (3.22)

where β = 3l(1–h0)
4(2–l)h0

. From (3.20) and ĥ(Fh) < 1
8 , there exists n0 ∈ N large such that

ĥ(Nn) <
1
8

(3.23)

for n ≥ n0. By (3.23), we get that for n ≥ n0,

(1 – h0)
(

3lĥ(Nn)
2

)
< βh0

(
2 – l

4

)
.

Then we can take a constant ε1 > 0 such that

(1 – h0)
(

3lĥ(Nn)
2

)
< β(h0 – ε)

(
2 – l

4

)
for n ≥ n0 and 0 < ε ≤ ε1. (3.24)

Because l =
∫ ∞

0 h(s) ds and E(0) < l√
C∗Cp

, there exists t1 > 0 large such that

l
2

< h0 and
√

C∗CpE(0) < h0 < l for t0 ≥ t1,



Kang Boundary Value Problems         (2023) 2023:16 Page 12 of 14

and then there exists a positive constant ε2 > 0 with ε2 ≤ ε1 small such that

l
2

< h0 – ε and
√

C∗CpE(0) < h0 – ε < l for t0 ≥ t1 and 0 < ε ≤ ε2. (3.25)

By (3.23) and (3.25), we have that for t0 ≥ t1, n ≥ n0, and 0 < ε ≤ ε2,

lĥ(Nn)
(

1 +
2C∗CpE2(0)

(2 – l)(h0 – ε)

)
–

h0 – ε

2
< lĥ(Nn) + ĥ(Nn)

2C∗CpE2(0)
h0 – ε

–
h0 – ε

2

<
l
8

–
h0 – ε

4
< 0. (3.26)

Then, from (3.24) and (3.26), we can choose δ1 > 0 small enough such that for t0 ≥ t1,
n ≥ n0, and 0 < ε ≤ ε2,

(1 – h0)
(

δ1 +
3lĥ(Nn)

2

)
– β(h0 – ε)

(
2 – l

4

)
< 0, (3.27)

lĥ(Nn)
(

1 + δ1 +
2C∗CpE2(0)

(2 – l)(h0 – ε)

)
–

h0 – ε

2
< 0. (3.28)

From the fact 3l
8–l < h0 < l, we see that 1 – β = (8–l)h0–3l

4(2–l)h0
> 0. Once n0, ε2, and t1 are fixed, we

choose n = n0, ε = ε2, and t0 = t1. Next we take ξ2 and ξ3 satisfying

ξ2

2
< ξ3 <

(8 – l)h0 – 3l
32Gγ (0)

ξ2. (3.29)

This is possible if Gγ (0) < (8–l)h0–3l
16 . Using (3.25) and (3.29), we obtain

ξ2(1 – ε)
2

– ξ3 < 0 (3.30)

and

ξ3Gγ (0) – ξ2(1 – β)(h0 – ε)
(

2 – l
4

)
<

(8 – l)h0 – 3l
16

(
1
2

–
h0 – ε

h0

)
ξ2 < 0. (3.31)

Finally, we select δ2 > 0 small enough and M > 0 large enough so that

δ2 – ε < 0 (3.32)

and

ξ2l
(

1 – h0

4δ1
+ 1 +

1
δ1

+
2C∗CpE2(0)

(2 – l)(h0 – ε)

)
–

1
n

(
M
2

–
ξ2h(0)(Csk + Cp)

4δ2

)
< 0, (3.33)

respectively. Combining (3.22), (3.27), (3.28), (3.30)–(3.32), and (3.33), we deduce that

F ′(t) ≤ –C4E(t) – ξ3η(t)
(t), t ≥ t0,
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for some positive constant C4. Using the fact that η(t) is decreasing and Lemma 3.1, we
find that

F ′(t) ≤ –C4
η(t)
η(t0)

E(t) – ξ3η(t)
(t) ≤ –C5η(t)
(
E(t) + 
(t)

)

≤ –ωη(t)F (t), t ≥ t0, (3.34)

where C5 = min{ C4
η(t0) , ξ3} and ω = C5

α1
. From (2.8), (3.6), and (3.34), we conclude that

α0
(
E(t) + 
(t)

) ≤ F (t) ≤F (t0)e–ω
∫ t

t0
η(s) ds = F (t0)e–ω

∫ t
t0

γ ′(s)
γ (s) ds

= F (t0)γ (t0)ωγ (t)–ω, t ≥ t0.

By the fact 
(t) ≥ 0 and (3.4), we infer that

E(t) ≤ C
γ (t)ω

, t ≥ t0,

where C = F (t0)γ (t0)ω
α0(1–l) . �

Remark We give some examples to illustrate the decay of energy given by Theorem 3.1
(see [1, 11]).

(1) γ (t) = eαt , α > 0, gives η(t) = α and E(t) ≤ C
eωαt for some positive constants C and ω.

(2) γ (t) = (1 + t)α , α > 0, leads to η(t) = α(1 + t)–1 and E(t) ≤ C
(1+t)ω for some positive

constants C and ω.

4 Conclusions
In this paper, we study the von Karman plate model with long range memory. Our result
is obtained without imposing the usual relation between the relaxation function h and
its derivative. Assume that (H1)–(H3), E(0) < l√

C∗Cp
, and ĥ(Fh) < 1

8 hold. If h0 > 3l
8–l and

Gγ (0) < (8–l)h0–3l
16 , then there exist positive constants t0, ω, and C such that

E(t) ≤ C
γ (t)ω

for t ≥ t0.
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