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Abstract
Let (M,g) be an n-dimensional complete Riemannian manifold with nonnegative Ricci
curvature. In this paper, we consider an overdetermined problem of the biharmonic
operator on a bounded smooth domain � inM. We deduce that the overdetermined
problem has a solution only if � is isometric to a ball in R

n. Our method is based on
using a P-function and the maximum principle argument. This result is a
generalization of the overdetermined problem for the biharmonic equation in
Euclidean space.
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1 Introduction and main results
Let (M, g) be an n-dimensional complete Riemannian manifold with nonnegative Ricci
curvature. In this paper, we consider an overdetermined boundary value problem for the
biharmonic operator. The overdetermined problem of partial differential equations usu-
ally contains too many prescribed boundary conditions. In general, these types of prob-
lems are not well posed, and the existence of solutions imposes strong constraints on the
shape of the domain.

When M = R
n, we know that the Ricci curvature is equal to zero. Let � be a bounded

domain in R
n having a smooth boundary ∂�. It is well known that there exists a solution of

Poisson’s equation with the Dirichlet condition or the Neumann condition. However, both
the Dirichlet condition and the Neumann condition cannot be imposed simultaneously.
In general, the resulting problem does not admit a solution unless the domain � has a
special shape. Indeed, in a celebrated paper [14], Serrin proved that there exists a solution
of the following overdetermined problem:

⎧
⎨

⎩

�u = –1 in �,

u = 0, uν = c on ∂�,
(1.1)
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if and only if � is a ball and u = n2c2–r2

2n is a radial function, where ν denotes the unit outer
normal of ∂�, c is a constant, and r is the distance from the center of the ball. The main tool
of Serrin’s proof is a technique known as the moving-planes method. Later, Weinberger
[15] used some integral identities and some basic inequalities to give a very simple proof.
This result has an associated physical model: the associated Dirichlet problem describes
a viscous incompressible fluid moving in straight parallel streamlines through a straight
pipe of given cross-sectional form (see [13] for more detail). The literature about overde-
termined problems of second-order elliptic equations is so wide that it is impossible to
report it exhaustively.

Some authors have extended Serrin’s result to higher-order elliptic equations. In [9],
Payne and Schaefer considered a fourth-order overdetermied problem, that is

⎧
⎨

⎩

�2u = 1 in �,

u = �u = 0, uν = c on ∂�,
(1.2)

where ν and c denote a unit outer normal vector and a constant, respectively. They ob-
tained the following result.

Theorem 1.1 If u satisfies (1.2) for � ⊂ R
2, where � is star-shaped with respect to the

origin and ∂� ∈ C2+ε , then � is a disk.

Remark 1.1 They conjectured that Theorem 1.1 holds for n > 2 and the more general do-
main.

Later, Philippin and Ragoub [10] proved the above conjecture based on Serrin’s reflec-
tion method. Recently, Goyal and Schaefer [5] gave a new proof of n ≥ 2 by using the
P-function and the maximum principle argument.

In 1986, Benett [2] considered another fourth-order overdetermined problem

⎧
⎨

⎩

�2u = 1, in �,

u = uν = 0, �u = c on ∂�.
(1.3)

Bennett modified Weinberger’s method of the maximum principle to show that � must
be an open ball. Later, Dalmasso [3] used Serrin’s method of moving planes to show that
� in (1.3) is a ball. In [1], Barkatou used the method of the shape derivative to provide
another proof. An alternative method for determining the shape of the domain in fourth-
order overdetermined problems was introduced in [8]. The technique in [8] did not use a
maximum principle argument but depended on the establishment of an integral identity
in the proof of the overdetermined problem. This method was applicable to some high-
order elliptic overdetermined problems as well as to some problems involving the Green’s
function for the Laplacian and biharmonic operators.

In [9], Payne and Schaefer also studied the following fourth-order overdetermined prob-
lem

⎧
⎨

⎩

�2u = 1, in �,

u = �u = 0, uν = cx · ν on ∂�.
(1.4)
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They obtained that if the problem (1.4) has a classical solution, then � is a ball. In [4],
Fromm and McDonald studied the boundary condition uν = c in (1.2), which is replaced
by the other boundary condition of uν(�u)ν = –c, that is

⎧
⎨

⎩

�2u = 1, in �,

u = �u = 0, uν(�u)ν = –c on ∂�.
(1.5)

They used the method of moving planes to obtain the same conclusion.
In this paper, we consider the overdetermined problem (1.2) on Riemannian manifolds.

We obtain the following theorem:

Theorem 1.2 Let (M, g) be an n-dimensional complete Riemannian manifold with non-
negative Ricci curvature and � ⊂ M be a smooth bounded domain. Suppose the mean
curvature H of the boundary ∂� is positive. Then, the overdetermined problem (1.2) has a
solution only if � is isometric to a ball in R

n.

There are results involving overdetermined boundary value problems in the context of
constant-curvature space forms (see [6, 7] more detail).

In this paper, we use Weinberger’s argument to solve the Riemannian analog of the
overdetermined problem (1.2). Our method of the proof was mainly motivated by Goyal
and Schaefer’s [5] nice result.

Remark 1.2 It is worth noting that we believe that one can use Weinberger’s argument
to study the overdetermined problems (1.3), (1.4), and (1.5) on Riemannian manifolds.
However, we cannot find some suitable P-functions to these fourth-order overdetermined
problems.

Finally, we recall a well-known result of Reilly (see Lemma 3 of [12]), which is important
in our proof. Our rigidity theorems are based on this result.

Lemma 1.1 ([12]) Let (M, g) be an n-dimensional complete Riemannian manifold with
nonnegative Ricci curvature and � ⊂ M be a smooth bounded domain. Suppose that �

admits a function f : � →R and nonzero constant L such that

⎧
⎨

⎩

∇2f = L · g,

f |∂� is constant,

where ∇2f denotes the Hessian matrix of f and g denotes the Riemannian metric on M.
Then, � is isometric to a ball in R

n.

2 Proof of Theorem 1.2
The fourth-order overdetermined problem (1.2) is equivalent to the following second-
order overdetermined problem:

⎧
⎨

⎩

�u = –ϕ in �,

u = 0, uν = c on ∂�,
(2.1)
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where ϕ is the torsion function satisfying that

⎧
⎨

⎩

�ϕ = –1 in �,

ϕ = 0 on ∂�.
(2.2)

Using the maximum principle, we know that ϕ ≥ 0.

Lemma 2.1 If u satisfies (1.2), then c = – 1
|∂�|

∫

�
ϕ dx, where |∂�| denotes the (n – 1)-

dimensional measure of ∂�.

Proof Using the formula of integration by parts, we have that

∫

�

ϕ dx = –
∫

�

�u dx = –
∫

∂�

uν ds = –c
∫

∂�

ds = –c|∂�|. (2.3)

This completes the proof of this lemma. �

We now consider the function φ defined by

φ =
n + 2

2n
u –

ϕ2

4
. (2.4)

A straightforward computation shows that

�φ =
n + 2

2n
�u –

1
2
|∇ϕ|2 –

1
2
ϕ�ϕ, (2.5)

and

φν =
n + 2

2n
uν –

1
2
ϕϕν . (2.6)

From (2.4), (2.5), and (2.6), we note that φ satisfies the overdetermined problem

⎧
⎨

⎩

�φ = – 1
2 |∇ϕ|2 – ϕ

n in �,

φ = 0, φν = n+2
2n c on ∂�.

(2.7)

By the maximum principle, we know that φ ≥ 0.
We define an auxiliary function P by

P = |∇φ|2 – φ�φ –
n – 2

n
m2ϕ, (2.8)

where m2 = max�(�φ)2. We obtain the following lemma.

Lemma 2.2 If u satisfies (1.2), then

�P = 2
[
∥
∥∇2φ

∥
∥2 –

1
n

(�φ)2
]

+
n – 2

n
[
m2 – (�φ)2] + φ

[
∥
∥∇2ϕ

∥
∥2 –

1
n

(�ϕ)2
]

+ 2 Ric(∇φ,∇φ) + φ Ric(∇ϕ,∇ϕ),
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where ∇2ϕ denotes the Hessian matrix of ϕ and ‖∇2ϕ‖ denotes its Hilbert–Schmidt norm
defined to be

∥
∥∇2ϕ

∥
∥ =

(∑

i,j

|ϕij|2
) 1

2
.

Proof From the Bochner formula, we have that

1
2
�|∇ϕ|2 =

∥
∥∇2ϕ

∥
∥2 + ∇ϕ · ∇�ϕ + Ric(∇ϕ,∇ϕ). (2.9)

Then, we compute the Laplacian of �φ as follows

�2φ =
n + 2

2n
�2u –

1
2
�|∇ϕ|2 –

1
2
�(ϕ�ϕ) (2.10)

=
n + 2

2n
�2u –

∥
∥∇2ϕ

∥
∥2 – ∇ϕ · ∇�ϕ – Ric(∇ϕ,∇ϕ)

–
1
2

(�ϕ)2 – ∇ϕ · ∇�ϕ –
1
2
ϕ�2ϕ

=
1
n

–
∥
∥∇2ϕ

∥
∥2 – Ric(∇ϕ,∇ϕ).

Thus, the Laplacian of P is

�P = �|∇φ|2 – �(φ�φ) –
n – 2

n
m2�ϕ (2.11)

= 2
∥
∥∇2φ

∥
∥2 + 2∇φ · ∇�φ + 2 Ric(∇φ,∇φ) – (�φ)2 – 2∇φ · ∇�φ – φ�2φ

–
n – 2

n
m2�ϕ

= 2
∥
∥∇2φ

∥
∥2 + 2 Ric(∇φ,∇φ) – (�φ)2 – φ�2φ +

n – 2
n

m2.

Substituting (2.10) into (2.11), we obtain that

�P = 2
∥
∥∇2φ

∥
∥2 – (�φ)2 – φ

[
1
n

(�ϕ)2 –
∥
∥∇2ϕ

∥
∥2

]

+
n – 2

n
m2 (2.12)

+ 2 Ric(∇φ,∇φ) + φ Ric(∇ϕ,∇ϕ)

= 2
[
∥
∥∇2φ

∥
∥2 –

1
n

(�φ)2
]

+
n – 2

n
[
m2 – (�φ)2] + φ

[
∥
∥∇2ϕ

∥
∥2 –

1
n

(�ϕ)2
]

+ 2 Ric(∇φ,∇φ) + φ Ric(∇ϕ,∇ϕ).

These complete the proof of this lemma. �

Now, we are ready to prove Theorem 1.2.

Proof Since the Ricci curvature is assumed to be nonnegative, then by the Cauchy–
Schwarz inequality

∥
∥∇2ϕ

∥
∥2 ≥ 1

n
(�ϕ)2, (2.13)

and Lemma 2.2, we obtain that P is subharmonic.
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From the following boundary conditions

φ = 0, ∇φ =
n + 2

2n
∇u, �φ = –

1
2
|∇ϕ|2 and |∇u|2 = c2 on ∂�,

it follows that P satisfies

P =
(

n + 2
2n

c
)2

on ∂�. (2.14)

By the maximum principle, we have that

P ≤
(

n + 2
2n

c
)2

in �. (2.15)

By the Hopf Lemma [11], we know that either

(i) P =
(

n + 2
2n

c
)2

in � or (ii) Pν > 0 on ∂�. (2.16)

Suppose case (i) holds, then the Laplacian of P vanishes, that is, all the equalities of the
above inequalities hold. This implies that the Ricci curvature is equal to zero and ∇2ϕ is
proportional to the metric everywhere. As �ϕ = –1, we conclude that

∇2ϕ =
1
n
�ϕ · g = –

1
n

g. (2.17)

From ϕ = 0 on ∂�, and Lemma 1.1, then � is isometric to a ball in R
n.

Suppose case (ii) holds. As φ|∂� = 0, we can choose the external unit normal on ∂� to
be the following vector field

ν = –
∇φ

|∇φ| . (2.18)

The mean curvature of the regular level sets of φ is given by H = – 1
n–1 div ∇φ

|∇φ| . The Lapla-
cian of φ can be expressed in terms of H as follows

�φ = φνν + (n – 1)Hφν on ∂�, (2.19)

where φνν = ∇2φ(ν,ν). We deduce that

Pν = 2φνφνν +
1
2
|∇ϕ|2φν –

n – 2
n

m2ϕν on ∂�. (2.20)

Substituting (2.5) into (2.19), we have that

φνν = –
1
2
|∇ϕ|2 – (n – 1)Hφν on ∂�. (2.21)

Combining (2.20) and (2.21), we obtain that

1
2
φνϕ

2
ν +

(
n – 2

n
m2

)

ϕν + 2H(n – 1)φ2
ν < 0 on ∂�. (2.22)
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As a quadratic expression for ϕν that holds at each point of the boundary, we have that

0 ≤
(

n – 2
n

m2
)2

< 4H(n – 1)φ3
ν = 4H(n – 1)

(
n + 2

n
c
)3

on ∂�. (2.23)

It follows from Lemma 2.1 that c < 0. Then, we reach a contradiction, which implies that
case (ii) cannot hold. These complete the proof of Theorem 1.2. �
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