
Yao Boundary Value Problems         (2023) 2023:15 
https://doi.org/10.1186/s13661-023-01702-9

R E S E A R C H Open Access

Existence and multiplicity of solutions for
three-point boundary value problems with
instantaneous and noninstantaneous
impulses
Wangjin Yao1*

*Correspondence:
13635262963@163.com
1Fujian Key Laboratory of Financial
Information Processing, Putian
University, Putian, 351100, P.R. China

Abstract
In this paper, three-point boundary value problems for second-order p-Laplacian
differential equations with instantaneous and noninstantaneous impulses are studied.
The existence of at least one classical solution and infinitely many classical solutions is
obtained by using variational methods and critical point theory. In addition, some
examples are given to illustrate our main results.
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1 Introduction
In recent years, the study of differential equations with impulses has received much atten-
tion. Impulsive differential equations were used as mathematical models to describe the
phenomena of sudden or discontinuous jumps. Depending on the duration of action, the
impulses can be divided into instantaneous impulses and noninstantaneous impulses.

The instantaneous impulse was first presented in 1960 by Milman and Myshkis [1]. To
date, the differential equations with instantaneous impulses have been studied by many au-
thors. The existence and multiplicity of solutions for impulsive differential equations have
been investigated by many different methods [2–8] such as fixed point theorem, topolog-
ical degree theory, upper and lower solutions method, and variational approach. In [8],
Tian and Ge first studied the existence of positive solutions for a second-order impul-
sive differential equations with Sturm–Liouville boundary conditions by using variational
methods.

The noninstantaneous impulse was first introduced by Hernández and O’Regan [9]. The
existence results for the differential equations with noninstantaneous impulses have been
studied via some approaches [9–14] such as fixed point theory, theory of analytic semi-
group, and variational methods. In [10], Bai and Nieto first studied the existence and
uniqueness of weak solutions for second-order noninstantaneous impulsive differential
equations by means of variational methods.
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However, some dynamical processes involve both instantaneous and noninstantaneous
impulses in real life, such as intravenous injection. Therefore, the study of the differential
equations with instantaneous and noninstantaneous impulses attracts widespread atten-
tion. Especially, in [15], Tian and Zhang first used variational methods to investigate the
existence of solutions for second-order differential equations with instantaneous and non-
instantaneous impulses. Based on [15], many authors studied different types of the differ-
ential equations with instantaneous and noninstantaneous impulses by using variational
methods and obtained some excellent results [16–19].

On the other hand, boundary problems with nonlocal conditions arise in various fields
of applied mathematics, physics, biology, and biotechnology. Recently, many different ap-
proaches, such as upper and lower solutions method, fixed point theory, and variational
approach, have been used to investigate the solutions of nonlocal boundary value prob-
lems, see, for instance, [20–23]. In [20], Lian, Bai, and Du studied the existence of multiple
solutions to the following three-point differential system boundary value problem via vari-
ational methods:

⎧
⎨

⎩

(P(t)y′(t))′ + f (t, y(t)) = 0, a.e. 0 < t < 1,

y(0) = 0, y(1) = ζy(η),
(1.1)

where P : [0, 1] → R
n×n is a continuously symmetric matrix, f : [0, 1] × R

n → R
n is a C1

function and locally Lipschitz continuous. The interesting point of this paper is that the
authors chose an appropriate space instead of functional to contain the boundary con-
ditions. Motivated by the study of [20], Wei and Bai [24] and Wei, Shang, and Bai [25]
considered two different types of impulsive differential equations with nonlocal boundary
conditions. In [24], Wei and Bai first used variational methods and critical point theory
to study a class of nonlinear impulsive differential equations with three-point boundary
conditions:

⎧
⎪⎪⎨

⎪⎪⎩

–(J(t)y′(t))′ = ∇H(t, y(t)), t �= tj, a.e. t ∈ [0, 1],

–�(J(tj)y′(tj)) = Ij(y(tj)), j = 1, 2, . . . , m,

y(0) = 0, y(1) = ζy(η),

(1.2)

where 0 = t0 < t1 < · · · < tm1 < tm1+1 = η < tm1+2 < · · · < tm < tm+1 = 1, ζ > 0, 0 < η < 1, and
�(J(tj)y′(tj)) = J(t+

j )y′(t+
j ) – J(t–

j )y′(t–
j ) for y′(t±

j ) = limt→t±j
y′(t), j = 1, 2, . . . , m. The authors

obtained that BVP (1.2) has at least one classical solution, at least two classical solutions,
and infinitely many classical solutions.

In [25], Wei, Shang, and Bai studied a class of three-point boundary value problems with
instantaneous and noninstantaneous impulses:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

–(μ(t)�p(y′(t)))′ + λ(t)�p(y(t)) = fj(t, y(t)), t ∈ (sj, tj+1], j = 0, 1, . . . , m,

–�(μ(tj)�p(y′(tj))) = Ij(y(tj)), j = 1, 2, . . . , m,

μ(t)�p(y′(t)) = μ(t+
j )�p(y′(t+

j )), t ∈ (tj, sj], j = 1, 2, . . . , m,

μ(s+
j )�p(y′(s+

j )) = μ(s–
j )�p(y′(s–

j )), j = 1, 2, . . . , m,

y(0) = 0, y(1) = ζy(η),

(1.3)
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where p > 1, �p(x) := |x|p–2x,μ(t), λ(t) ∈ Lp[0, 1], 0 = s0 < t1 < s1 < · · · < sm1 = η <
tm1+1 < · · · < sm < tm+1 = 1, ζ > 0, 0 < η < 1, and �(μ(tj)�p(y′(tj))) = μ(t+

j )�p(y′(t+
j )) –

μ(t–
j )�p(y′(t–

j )) for y′(t±
j ) = limt→t±j

y′(t), j = 1, 2, . . . , m, and fj ∈ C((sj, tj+1] × R,R), Ij ∈
C(R,R). The instantaneous impulses occur at the points tj, and the noninstantaneous
impulses continue on the intervals (tj, sj]. The authors obtained the following results by
applying variational methods and critical point theory.

Theorem 1.1 ([25, Theorem 1]) Assume that the following conditions hold:
(A1) 1 ≤ λ(t) ≤ c and μ(t) ≥ 1 for t ∈ (sj, tj+1], μ(t),λ(t) ∈ Lp[0, 1], p > 1, j = 0, 1, . . . , m,

and c is a positive constant.
(A2) There are constants αj,βj ∈R and M ≥ 0 such that for |x| ≥ M,

(i) 0 < αjFj(t, x) ≤ xfj(t, x), t ∈ (sj, tj+1], j ∈ N1;
(ii) 0 < βj

∫ x(t)
0 Ij(s) ds ≤ xIj(x), (t, x) ∈ [0, 1] × R, j ∈ N2, where Fj(t, x) =

∫ x
0 fj(t, s) ds for (t, x) ∈ (sj, tj+1] × R, j ∈ N1, and 1 < p < β = min{infj∈N1 αj,

infj∈N2 βj} as β ∈ R, N1 = {0, 1, . . . , m}, N2 = {1, 2, . . . , m}.
(A3) For p > 1, there are

lim
x→0

Fj(t, x)
|x|p = 0, (t, x) ∈ (sj, tj+1] ×R, j ∈ N1,

lim
x→0

∫ x(t)
0 Ij(s) ds

|x|p = 0, (t, x) ∈ [0, 1] ×R, j ∈ N2.

Then BVP (1.3) has at least two classical solutions.

Proposition 1.2 ([25, Proposition 1]) Under the assumptions of Theorem 1.1, if Fj(t, x),
j = 0, 1, . . . , m, and Ij(x), j = 1, 2, . . . , m, are odd functions with respect to x and p is an odd
number, then BVP (1.3) has infinitely many classical solutions.

To obtain the multiple solutions for BVP (1.3) in [25], the nonlinearities fj and the impul-
sive functions Ij are required to satisfy the superlinear growth conditions (A2). Motivated
by the above fact, in this paper we will revisit BVP (1.3). Under the assumptions that the
nonlinearities fj and the impulsive functions Ij satisfy different growth conditions, we ob-
tain the existence and multiplicity of solutions for BVP (1.3) by using variational methods
and critical point theory. Our results are different from those above and extend the exist-
ing results in [25].

The paper is arranged as follows. Section 2 presents some preliminaries. Section 3
proves our main results via variational methods. Section 4 provides three examples to
show our results.

2 Preliminaries
In this section, we introduce some important definitions, lemmas, and theorems used
throughout this paper.

Let Z = {y ∈ W 1,p([0, 1],R) : y(0) = 0, y(1) = ζy(η)} with the norm

‖y‖Z =
(∫ 1

0

(
μ(t)

∣
∣y′(t)

∣
∣p + λ(t)

∣
∣y(t)

∣
∣p)dt

) 1
p

.
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We also consider the norm

‖y‖ =
(∫ 1

0
μ(t)

∣
∣y′(t)

∣
∣p dt

) 1
p

, ∀y ∈ Z.

In fact, we can obtain that ‖y‖ is equivalent to the norm ‖y‖Z . For all y ∈ Z, there is
y(t) =

∫ t
0 y′(s) ds, by Hölder’s inequality, we have

∫ 1

0

∣
∣y′(t)

∣
∣dt ≤

(∫ 1

0

∣
∣y′(t)

∣
∣p dt

) 1
p

.

Let ( c
μ(t) + 1)

1
p ≤ c0, we obtain

‖y‖ ≤ ‖y‖Z ≤ c0‖y‖.

As shown in [26], Z is a separable and reflexive real Banach space.
Consider the functional

J : Z → R

defined by

J(y) =
1
p
‖y‖p +

m∑

j=0

∫ tj+1

sj

λ(t)�p
(
y(t)

)
y(t) dt –

m∑

j=0

∫ tj+1

sj

Fj
(
t, y(t)

)
dt

–
m∑

j=1

∫ y(tj)

0
Ij(s) ds,

(2.1)

where Fj(t, y) =
∫ y

0 fj(t, s) ds. By using the continuity of fj, j = 0, 1, . . . , m and Ij, j = 1, 2, . . . , m,
we can obtain that J ∈ C1(Z,R) and

〈
J ′(y), w

〉
=

∫ 1

0
μ(t)�p

(
y′(t)

)
w′(t) dt –

m∑

j=0

∫ tj+1

sj

(
fj
(
t, y(t)

)
– λ(t)�p

(
y(t)

))
w(t) dt

–
m∑

j=1

Ij
(
y(tj)

)
w(tj)

(2.2)

for any w ∈ Z.

Lemma 2.1 ([20, Lemma 2.5] and [25, Lemma 1]) The space Z is compactly embedded in
C([0, 1],R).

Lemma 2.2 ([25, Lemma 2]) For each y ∈ Z, there is ‖y‖∞ ≤ ‖y‖.

Lemma 2.3 ([25, Lemma 6]) The weak solution y ∈ Z is the classical solution of problem
(1.3).



Yao Boundary Value Problems         (2023) 2023:15 Page 5 of 13

Definition 2.4 Let Z be a Banach space and J : Z → (–∞, +∞]. Functional J is said to be
weakly lower semicontinuous if lim infk→∞ J(yk) ≥ J(y) as yk ⇀ y in Z.

Lemma 2.5 The functional J : Z →R is weakly lower semicontinuous.

Proof Assume that yk ⇀ y in Z as k → ∞. The continuity and convexity of ‖y‖p

p imply that
‖y‖p

p is weakly lower semicontinuous. Furthermore, it follows from Lemma 2.1 that {yk} is
convergent uniformly to y in C([0, 1],R). Thus, we have

lim inf
k→∞

J(yk) =
1
p
‖yk‖p +

m∑

j=0

∫ tj+1

sj

λ(t)
∣
∣yk(t)

∣
∣p dt –

m∑

j=0

∫ tj+1

sj

Fj
(
t, yk(t)

)
dt

–
m∑

j=1

∫ yk (tj)

0
Ij(s) ds

≥ 1
p
‖y‖p +

m∑

j=0

∫ tj+1

sj

λ(t)
∣
∣y(t)

∣
∣p dt –

m∑

j=0

∫ tj+1

sj

Fj
(
t, y(t)

)
dt

–
m∑

j=1

∫ y(tj)

0
Ij(s) ds

= J(y).

Therefore, J is weakly lower semicontinuous. �

Definition 2.6 ([27, (PS) condition]) Let Z be a real reflexive Banach space. For any se-
quence {yk} ⊂ Z, if {J(yk)} is bounded and J ′(yk) → 0 as k → ∞ possesses a convergent
subsequence, then we say that J satisfies the Palais–Smale condition.

Theorem 2.7 ([27]) Let Z be a reflexive Banach space. If J : Z → (–∞, +∞] is coercive,
then J has a bounded minimizing sequence.

Theorem 2.8 ([27]) Let Z be a reflexive Banach space and let J : Z → (–∞, +∞] be weakly
lower semicontinuous on Z. If J has a bounded minimizing sequence, then J has a minimum
on Z.

Theorem 2.9 ([28, Mountain pass theorem]) Let Z be a real Banach space and suppose
that J ∈ C1(Z,R) satisfies the (PS) condition with J(0) = 0. If J satisfies the following condi-
tions:

(i) There exist constants ρ,α > 0 such that J|∂Bρ ≥ α;
(ii) There exists e ∈ Z\Bρ such that J(e) ≤ 0,

then J possesses a critical value c ≥ α. Moreover, c is given by c = infg∈� maxs∈[0,1] J(g(s)),
where

� =
{

g ∈ C
(
[0, 1], Z

)|g(0) = 0, g(1) = e
}

.

Theorem 2.10 ([28, Symmetric mountain pass theorem]) Let Z be an infinite-dimensional
real Banach space. Let J ∈ C1(Z,R) be an even functional which satisfies the (PS) condition,
and J(0) = 0. Suppose that Z = V ⊕ Y , where V is finite-dimensional, and J satisfies:
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(i) There exist α > 0 and ρ > 0 such that J|∂Bρ∩Y ≥ α;
(ii) For each finite-dimensional subspace W ⊂ Z, there is R = R(W ) such that J(y) ≤ 0 on

W\BR(W ),
then J possesses an unbounded sequence of critical values.

3 Main results
In this paper, we assume the following condition:

(H1) 1 ≤ λ(t) ≤ c and μ(t) ≥ 1 for t ∈ (sj, tj+1], μ(t),λ(t) ∈ Lp[0, 1], p > 1, j = 0, 1, . . . , m,
and c is a positive constant.

Our main results are presented as follows.

Theorem 3.1 Assume that (H1) and the following conditions hold:
(H2) There exist aj, bj > 0 and γj ∈ [0, p – 1), j = 0, 1, . . . , m, such that

∣
∣fj(t, x)

∣
∣ ≤ aj + bj|x|γj for every (t, x) ∈ (sj, tj+1] ×R.

(H3) There exist cj, dj > 0 and σj ∈ [0, p – 1), j = 1, 2, . . . , m, such that

∣
∣Ij(x)

∣
∣ ≤ cj + dj|x|σj for every x ∈R.

Then BVP (1.3) has at least one classical solution.

Proof From (H2), we can get

∣
∣Fj(t, y)

∣
∣ ≤ aj|y| +

bj

γj + 1
|y|γj+1. (3.1)

Then by (2.1), (3.1), (H1), (H3), and Lemma 2.2, we have

J(y) =
1
p
‖y‖p +

m∑

j=0

∫ tj+1

sj

λ(t)�p
(
y(t)

)
y(t) dt –

m∑

j=0

∫ tj+1

sj

Fj
(
t, y(t)

)
dt

–
m∑

j=1

∫ y(tj)

0
Ij(s) ds

≥ 1
p
‖y‖p –

m∑

j=0

∫ tj+1

sj

Fj
(
t, y(t)

)
dt –

m∑

j=1

∫ y(tj)

0
Ij(s) ds

≥ 1
p
‖y‖p –

m∑

j=0

∫ tj+1

sj

(

aj‖y‖∞ +
bj

γj + 1
‖y‖γj+1

∞
)

dt –
m∑

j=1

(

cj‖y‖∞

+
dj

σj + 1
‖y‖σj+1

∞
)

≥ 1
p
‖y‖p –

( m∑

j=0

aj(tj+1 – sj) +
m∑

j=1

cj

)

‖y‖ –
m∑

j=0

bj(tj+1 – sj)‖y‖γj+1

–
m∑

j=1

dj‖y‖σj+1.
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Since γj,σj ∈ [0, p – 1), we can obtain lim‖y‖→+∞ J(y) = +∞, i.e., J is coercive. Now, by
Lemma 2.5 and Theorem 2.7, we know that J satisfies all the conditions of Theorem 2.8.
So J has a minimum on Z, which is a critical point of J . Hence, BVP (1.3) has at least one
classical solution. �

Corollary 3.2 Assume that fj, j = 0, 1, . . . , m, and Ij, j = 1, 2, . . . , m, are bounded. Then BVP
(1.3) has at least one classical solution.

Theorem 3.3 Assume that (H1) and the following conditions hold:
(H4) There exist constants αj > p such that

0 < αjFj(t, x) ≤ xfj(t, x)

for every t ∈ (sj, tj+1] and x ∈R\{0}, where Fj(t, x) =
∫ x

0 fj(t, s) ds, j = 0, 1, . . . , m.
(H5) There exist βj > p, j = 1, 2, . . . , m, such that

0 < βj

∫ x

0
Ij(s) ds ≤ xIj(x) for x ∈R\{0}.

Then BVP (1.3) has at least one classical solution.

Proof Clearly, J ∈ C1(Z,R) and J(0) = 0. In view of Theorem 2.9, we first show that J satis-
fies the (PS) condition. It follows from (H1), (H4), and (H5) that the (PS) condition holds.
The proof of the (PS) condition is similar to [25], so we omit it here.

Next, we verify condition (i) in Theorem 2.9. In fact, by using the same methods as [29],
it follows from (H4) that

Fj(t, x) ≤ Mj|x|αj if |x| ≤ 1, (3.2)

and

Fj(t, x) ≥ mj|x|αj – Aj, ∀(t, x) ∈ (sj, tj+1] ×R, (3.3)

where Mj = maxt∈(sj ,tj+1],|x|=1 Fj(t, x), mj = mint∈(sj ,tj+1],|x|=1 Fj(t, x), and Aj > 0, j = 0, 1, . . . , m.
Similarly, it follows from (H5) that

∫ x

0
Ij(s) ds ≤ Qj|x|βj if |x| ≤ 1, (3.4)

and
∫ x

0
Ij(s) ds ≥ qj|x|βj – Bj, ∀x ∈R, (3.5)

where Qj = max|x|=1
∫ x

0 Ij(s) ds, qj = min|x|=1
∫ x

0 Ij(s) ds, and Bj > 0, j = 1, 2, . . . , m.
For any y ∈ Z, we know that ‖y‖ ≤ 1 implies ‖y‖∞ ≤ 1. By (3.2) and (3.4), we have

J(y) =
1
p
‖y‖p +

m∑

j=0

∫ tj+1

sj

λ(t)�p
(
y(t)

)
y(t) dt –

m∑

j=0

∫ tj+1

sj

Fj
(
t, y(t)

)
dt
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–
m∑

j=1

∫ y(tj)

0
Ij(s) ds

≥ 1
p
‖y‖p –

m∑

j=0

∫ tj+1

sj

Mj
∣
∣y(t)

∣
∣αj dt –

m∑

j=1

Qj
∣
∣y(tj)

∣
∣βj

≥ 1
p
‖y‖p –

m∑

j=0

‖y‖αj
∞

∫ tj+1

sj

Mj dt –
m∑

j=1

Qj‖y‖βj
∞

≥ 1
p
‖y‖p –

m∑

j=0

Mj(tj+1 – sj)‖y‖αj –
m∑

j=1

Qj‖y‖βj , ‖y‖ ≤ 1.

Since αj,βj > p, the above inequality implies that we can choose ρ > 0 small enough such
that J(y) ≥ α > 0 with ‖y‖ = ρ .

Finally, we verify condition (ii) in Theorem 2.9. From (3.3), (3.5), and (H1), we have

J(y) =
1
p
‖y‖p +

m∑

j=0

∫ tj+1

sj

λ(t)�p
(
y(t)

)
y(t) dt –

m∑

j=0

∫ tj+1

sj

Fj
(
t, y(t)

)
dt

–
m∑

j=1

∫ y(tj)

0
Ij(s) ds

≤ 1
p
‖y‖p + c

m∑

j=0

∫ tj+1

sj

∣
∣y(t)

∣
∣p dt –

m∑

j=0

∫ tj+1

sj

(
mj

∣
∣y(t)

∣
∣αj – Aj

)
dt

–
m∑

j=1

(
qj

∣
∣y(t)

∣
∣βj – Bj

)
.

Now, for any given y ∈ Z with ‖y‖ = 1, we have

J(ry) ≤ 1
p
‖ry‖p + c

m∑

j=0

∫ tj+1

sj

∣
∣ry(t)

∣
∣p dt –

m∑

j=0

∫ tj+1

sj

(
mj

∣
∣ry(t)

∣
∣αj – Aj

)
dt

–
m∑

j=1

(
qj

∣
∣ry(t)

∣
∣βj – Bj

)

≤ 1
p
‖ry‖p + c‖ry‖p

m∑

j=0

(tj+1 – sj) –
m∑

j=0

∫ tj+1

sj

mj
∣
∣ry(t)

∣
∣αj dt

+
m∑

j=0

∫ tj+1

sj

Aj dt –
m∑

j=1

qj
∣
∣ry(t)

∣
∣βj +

m∑

j=1

Bj

≤
(

1
p

+ c
)

|r|p –
m∑

j=0

mj|r|αj

∫ tj+1

sj

∣
∣y(t)

∣
∣αj dt +

m∑

j=0

Aj(tj+1 – sj)

–
m∑

j=1

qj|r|βj
∣
∣y(t)

∣
∣βj +

m∑

j=1

Bj.

(3.6)

Noting that αj,βj > p, (3.6) implies that J(ry) → –∞ as r → +∞. Hence, there exists
r0 > ρ such that J(r0y) ≤ 0.
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According to Theorem 2.9, the functional J has at least one critical point, that is, BVP
(1.3) has at least one classical solution. �

Remark 3.4 In this theorem, condition (A3) of Theorem 1.1 is not needed.

Theorem 3.5 Assume that (H1), (H4), (H5), and the following condition hold:
(H6) fj(t, x), j = 0, 1, . . . , m, and Ij(x), j = 1, 2, . . . , m, are odd functions of x.

Then BVP (1.3) has infinitely many classical solutions.

Proof We will use Theorem 2.10 to prove the theorem. By (H6), we obtain J is even.
From the proof of Theorem 3.3, we know that J ∈ C1(Z,R) satisfies the (PS) condition
and J(0) = 0. In the same way as in Theorem 3.3, we can easily prove that conditions (i)
and (ii) of Theorem 2.10 are satisfied. According to Theorem 2.10, the functional J has
infinitely many critical points, that is, BVP (1.3) has infinitely many classical solutions. �

Theorem 3.6 Assume that (H1), (H3), (H4), and (H6) hold. Moreover, Ij(x), j = 1, 2, . . . , m,
are nonincreasing, then BVP (1.3) has infinitely many classical solutions.

Proof Obviously, J ∈ C1(Z,R) is even and J(0) = 0. Firstly, we will prove that J satisfies the
(PS) condition. Let β = min{α0,α1, . . . ,αm}, from (2.1), (2.2), (H3), and (H4), we have

βJ(yk) –
〈
J ′(yk), yk

〉

=
β

p
‖yk‖p + β

m∑

j=0

∫ tj+1

sj

λ(t)�p
(
yk(t)

)
yk(t) dt – β

m∑

j=0

∫ tj+1

sj

Fj
(
t, yk(t)

)
dt

– β

m∑

j=1

∫ yk (tj)

0
Ij(s) ds –

∫ 1

0
μ(t)�p

(
y′

k(t)
)
y′

k(t) dt

+
m∑

j=0

∫ tj+1

sj

fj
(
t, yk(t)

)
yk(t) dt –

m∑

j=0

∫ tj+1

sj

λ(t)�p
(
yk(t)

)
yk(t) dt

+
m∑

j=1

Ij
(
yk(tj)

)
yk(tj)

≥
(

β

p
– 1

)

‖yk‖p + (β – 1)
m∑

j=0

∫ tj+1

sj

λ(t)�p
(
yk(t)

)
yk(t) dt

– β

m∑

j=1

(
cj‖yk‖∞ + dj‖yk‖σj+1

∞
)

–
m∑

j=1

(
cj‖yk‖∞ + dj‖yk‖σj+1

∞
)

≥
(

β

p
– 1

)

‖yk‖p – (β + 1)
m∑

j=1

cj‖yk‖ – (β + 1)
m∑

j=1

dj‖yk‖σj+1,

which implies that {yk} is bounded in Z. In the following, the proof of the (PS) condition
is the same as that in [25], so we omit it.
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Secondly, we will show that J satisfies condition (i) in Theorem 2.10. Since Ij(x) are non-
increasing and odd about x, we obtain

∫ y(tj)

0
Ij(x) dx ≤ 0. (3.7)

It is clear that ‖y‖ ≤ 1 implies ‖y‖∞ ≤ 1. Thanks to (3.2) and (3.7), one has

J(y) =
1
p
‖y‖p +

m∑

j=0

∫ tj+1

sj

λ(t)�p
(
y(t)

)
y(t) dt –

m∑

j=0

∫ tj+1

sj

Fj
(
t, y(t)

)
dt

–
m∑

j=1

∫ y(tj)

0
Ij(s) ds

≥ 1
p
‖y‖p –

m∑

j=0

∫ tj+1

sj

Fj
(
t, y(t)

)
dt

≥ 1
p
‖y‖p –

m∑

j=0

∫ tj+1

sj

Mj
∣
∣y(t)

∣
∣αj dt

≥ 1
p
‖y‖p –

m∑

j=0

Mj(tj+1 – sj)‖y‖αj , ‖y‖ ≤ 1,

which implies that we can choose y with ‖y‖ sufficiently small such that J(y) ≥ α > 0.
Finally, we will show that J satisfies condition (ii) in Theorem 2.10. For every r ∈ R\{0}

and y ∈ W\{0} with ‖y‖ = 1, it follows from (3.3), (H1), and (H3) that

J(ry) =
1
p
‖ry‖p +

m∑

j=0

∫ tj+1

sj

λ(t)�p
(
ry(t)

)
ry(t) dt –

m∑

j=0

∫ tj+1

sj

Fj
(
t, ry(t)

)
dt

–
m∑

j=1

∫ ry(tj)

0
Ij(s) ds

≤ 1
p
‖ry‖p + c

m∑

j=0

∫ tj+1

sj

∣
∣ry(t)

∣
∣p dt –

m∑

j=0

∫ tj+1

sj

(
mj

∣
∣ry(t)

∣
∣αj – Aj

)
dt

+
m∑

j=1

(
cj‖ry‖∞ + dj‖ry‖σj+1

∞
)

≤ 1
p
‖ry‖p + c‖ry‖p –

m∑

j=0

mj|r|αj

∫ tj+1

sj

∣
∣y(t)

∣
∣αj dt +

m∑

j=0

Aj(tj+1 – sj)

+
m∑

j=1

cj|r|‖y‖ +
m∑

j=1

dj|r|σj+1‖y‖σj+1

≤
(

1
p

+ c
)

|r|p –
m∑

j=0

mj|r|αj

∫ tj+1

sj

∣
∣y(t)

∣
∣αj dt +

m∑

j=0

Aj(tj+1 – sj)

+
m∑

j=1

cj|r| +
m∑

j=1

dj|r|σj+1.
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Noting that σj + 1 < p < αj, the above inequality implies that there exists r1 such that
‖ry‖ > ρ and J(ry) < 0 for every r ≥ r1 > 0. Since W is a finite-dimensional subspace, there
exists R = R(W ) such that J(y) ≤ 0 on W\BR(W ).

According to Theorem 2.10, the functional J has infinitely many critical points, that is,
BVP (1.3) has infinitely many classical solutions. �

Remark 3.7 In this theorem, the growth conditions of the nonlinearities fj and the impul-
sive functions Ij are different from those of Proposition 1.2.

4 Examples
In this section, we give three examples to illustrate the application of our main results.

Example 4.1 Consider the following problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

–(|y′(t)|2y′(t))′ + |y(t)|2y(t) = fj(t, y(t)), t ∈ (sj, tj+1], j = 0, 1,

–�(|y′(t1)|2y′(t1)) = I1(y(t1)),

|y′(t)|2y′(t) = |y′(t+
1 )|2y′(t+

1 ), t ∈ (t1, s1],

|y′(s+
1 )|2y′(s+

1 ) = |y′(s–
1 )|2y′(s–

1 ),

y(0) = 0, y(1) = 2y( 7
8 ),

(4.1)

where p = 4, m = 1, 0 = s0 < t1 = 1
8 < s1 = η = 7

8 < t2 = 1, ζ = 2, μ(t) = λ(t) = 1, fj(t, y) = sin y +
ty2 cos y, and I1(y) = 2 cos y + t2y. Obviously, conditions (H1)–(H3) are satisfied. Thus, by
Theorem 3.1, BVP (4.1) has at least one classical solution.

Example 4.2 Consider the following problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

–((1 + 2t)y′(t))′ + (1 + t)y(t) = fj(t, y(t)), t ∈ (sj, tj+1], j = 0, 1,

–�((1 + 2t1)y′(t1)) = I1(y(t1)),

(1 + 2t)y′(t) = (1 + 2t+
1 )y′(t+

1 ), t ∈ (t1, s1],

(1 + 2s+
1 )y′(s+

1 ) = (1 + 2s–
1 )y′(s–

1 ),

y(0) = 0, y(1) = 3y( 3
4 ),

(4.2)

where p = 2, m = 1, 0 = s0 < t1 = 1
4 < s1 = η = 3

4 < t2 = 1, ζ = 3, μ(t) = 1 + 2t, λ(t) = 1 + t,
αj = 5, β1 = 3, δ1 = 1

8 , fj(t, y) = 3y6, and I1(y) = 1
2 y3. Then it is easy to verify that all con-

ditions in Theorem 3.3 are fulfilled. By Theorem 3.3, BVP (4.2) has at least one classical
solution. Furthermore, if we choose fj(t, y) = y7, then condition (H6) is also satisfied. Ap-
plying Theorem 3.5, BVP (4.2) has infinitely many classical solutions.

Example 4.3 Consider the following problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

–((1 + 3t)|y′(t)|y′(t))′ + (1 + t3)|y(t)|y(t) = fj(t, y(t)), t ∈ (sj, tj+1], j = 0, 1,

–�((1 + 3t1)|y′(t1)|y′(t1)) = I1(y(t1)),

(1 + 3t)|y′(t)|y′(t) = (1 + 3t+
1 )|y′(t+

1 )|y′(t+
1 ), t ∈ (t1, s1],

(1 + 3s+
1 )|y′(s+

1 )|y′(s+
1 ) = (1 + 3s–

1 )|y′(s–
1 )|y′(s–

1 ),

y(0) = 0, y(1) = 4y( 5
6 ),

(4.3)
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where p = 3, m = 1, 0 = s0 < t1 = 1
6 < s1 = η = 5

6 < t2 = 1, ζ = 4, μ(t) = 1 + 3t, λ(t) = 1 + t3,
αj = 8, fj(t, y) = y9, and I1(y) = – 1

5 y 1
3 . It is easy to verify that conditions (H1), (H3), (H4),

and (H6) are satisfied. So BVP (4.3) has infinitely many classical solutions by Theorem 3.6.
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