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1 Introduction
During the note, from start to finish, � is a Korányi ball in the Heisenberg groupH

n (n � 1)
with boundary � � ; the functions p,q � C(� ) and the scalar s satisfy the following inequal-
ities:

1 < q– � q(� ) � q+ < s < p– � p(� ) � p+ < Q = 2n + 2.

We consider the following Leray–Lions type problem consisting of a Hardy potential term:
�
�

�
–divHn(a(� , � Hnu)) – div(b(� , � Hnu)) + � (� ) |u|s –2u

|� |s = � f (� ,u) � � � ,

u = 0 � � � � ,
(P )

where the potentials

a,b : � × R
2n � R

2n

are Carathéodory functions satisfying some suitable supplementary conditions:
(H1) a(� , –� ) = –a(� , � ) and b(� , –� ) = –b(� , � ) for a.e. � � � and all � � R

2n.
(H2) There exist nonnegative functions � 1, � 2, 	 1, 	 2 � (L� (� ), | · |� ) such that

�
�a(� , � )

�
� � � 1(� ) + 	 1(� )|� |p(� )–1

and

�
�b(� , � )

�
� � � 2(� ) + 	 2(� )|� |q(� )–1
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for a.e. � � � and all � � R
2n, where | · | denotes the Euclidean norm.

(H3) For all � , � � � R
2n, where � � 	= � , the following inequalities hold:

�
a(� , � ) – a

�
� , � ��� ·

�
� – � �� > 0

and

�
b(� , � ) – b

�
� , � ��� ·

�
� – � �� > 0

for a.e. � � � , where dot is the inner product on R
2n.

(H4) There exist constants c1,c2 � 1 such that

c1|� |p(� ) � min
�
a(� , � ) · � ,pA (� , � )

	

and

c2|� |q(� ) � min
�
b(� , � ) · � ,qB(� , � )

	

for a.e. � � � and all � � R
2n, where

A ,B : � × R
2n � R

are Carathéodory functions that are continuously differentiable with respect to its
second argument, such that A (� , 0) = B(� , 0) = 0 for a.e. � � � and

� Hn,� A (� , � ) = a(� , � ) & � Hn,� B(� , � ) = b(� , � )

for a.e. � � � and all � � R
2n; in other words,

A (� , � ) :=

 1

0
a(� ,s� ) · � ds & B(� , � ) :=


 1

0
b(� ,s� ) · � ds.

� � (L� (� ), | · |� ) is a nonnegative function and � is a positive parameter; the function
f : � × R � R is a Carathéodory function for which the following growth condition holds:

�
�f (� , 
 )

�
� � � 1(� ) + � 2(� )|
 |� (� )–1 (1.1)

for nonnegative functions � 1, � 2 � (L� (� ), | · |� ) and � � C(� ) such that

2 � � – � � (� ) � � + <
�
p–� 
 =

Qp–

Q – p– a.e. in � .

Notice that if a(� , � ) = |� |p(� )–2� and b(� , � ) = |� |q(� )–2� , in fact, problem (P ) is a Dirichlet
(p(·),q(·))-Laplacian problem.

The existence and multiplicity of solutions to the following degenerate p(x)-Laplace
equations with Leray–Lions type operators using direct methods and critical point theory
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were studied by Ho et al. [7]:

�
�

�
–div(a(x, � u)) = � f (x,u) in U ,

u = 0 on � U ,

where U is a bounded domain in R
n with a Lipschitz boundary; a : U × R

n � R
n and

f : U × R � R are Carathéodory functions that have suitable growth conditions. They
proved the uniqueness and nonnegativeness of solutions when the principal operator is
monotone and the nonlinearity is nonincreasing. Interested reader can see some special
case of problem (P ) with distinct boundary conditions in [2, 10].

On the other hand, the existence of solutions for the problems on the Heisenberg groups
has been intensively studied in the last decades. See some examples in [3, 4, 6, 11, 12, 17]
and the references therein. We point out that the authors have probed some problems as
special cases of problem (P ) (see [14, 15, 18–20]).

Taking inspiration from the mentioned works, our aim here is to prove the existence
and multiplicity of weak solutions of problem (P ), applying the following theorem due to
Ricceri [16].

Theorem 1.1 Let X be a re”exive real Banach space, 
 , � : X � R be two Gâteaux dif-

ferentiable functionals such that
 is strongly continuous, sequentially weakly lower semi-

continuous and coercive; and � is sequentially weakly upper-semicontinuous. For every

r > infX 
 , let

� (r) := inf
u� 
 –1(–� ,r)

(supv� 
 –1(–� ,r) � (v)) – � (u)
r – 
 (u)

,

� := lim inf
r� +�

� (r), � := lim inf
r� (infX 
 )+

� (r).

Then the following properties hold:
(a) For every r > infX 
 and every � � (0, 1

� (r) ), the restriction of the functional
I� : 
 – �� to 
 –1(–� , r) admits a global minimum, which is a critical point (local
minimum) of I� in X.

(b) If � < +� , then for each � � (0, 1
� ), the following alternative holds: either

(b1) I� possesses a global minimum or
(b2) There is a sequence {un} of critical points (local minima) of I� such that

limk� +� 
 (uk) = +� .
(c) If � < +� , then for each � � (0, 1

� ), the following alternative holds: either
(c1) there is a global minimum of 
 that is a local minimum of I� or
(c2) there is a sequence {uk} of pairwise distinct critical points of I� that weakly

converges to a global minimum of 
 with limk� +� 
 (uk) = infX 
 .

This work is divided into four sections: In Sect. 2, we present some preliminaries of
Heisenberg groups and notations of the note. Section 3 deals with some remarks that we
make use of to prove our claims. The last section focuses on the proof of the existence and
multiplicity of weak solutions.
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2 Initial facts and notations
Throughout the note, Hn is the Heisenberg Lie group that hasR2n+1 as a background man-
ifold and is endowed with the following noncommutative law of product:

(x,y, t) �
�
x�,y�, t �� =

�
x + x�,y + y�, t + t � + 2

��
y
�
�x�� –

�
x
�
�y���� ,

where x,x�,y,y� � R
n, t , t � � R, and �|
 denotes the standard inner product in R

n. With
respect to this operation, the neutral element is 1 = (0, 0, . . . , 0) and the inverse is given by

(x,y, t)(–1) = (–x, –y, –t).

We denote by | · |Hn the Korányi norm with respect to the parabolic dilation � � � =
(� x, � y, � 2t), i.e.,

|� |Hn =
�
|z|4 + t2� 1

4 =
��

x2 + y2� 2 + t2� 1
4

for z = (x,y) � R
2n and � = (z, t) � H

n. The Korányi distance between � = (z, t) and � � =
(z�, t �) in H

n is as follows:

�
�
z, t ;z�, t �� :=

�
�� z�, t �� –1

� (z, t)
�
�
Hn .

The Heisenberg group is an example of a sub-Riemannian manifold homeomorphic, but
not bi-Lipschitz equivalent to the Euclidean space. The Heisenberg group (and more gen-
erally, stratified groups) is a special case of metric measure spaces with doubling measures.
Its metric is derived from curves that are only allowed to move in so-called horizontal di-
rections. A Korányi ball of center � 0 and radius r is defined by

BHn(� 0, r) :=
�
� :

�
�� –1 � � 0

�
�
Hn � r

	
,

and it satisfies the following equalities:

�
�BHn(� 0, r)

�
� =

�
�BHn(0, r)

�
� = rQ

�
�BHn(0, 1)

�
� ,

where |U| denotes the (2n + 1)-dimensional Lebesgue measure of U and Q = 2n + 2 is
homogeneous dimension of Hn. The Heisenberg gradient is given by

� Hn = (X1, . . . ,Xn,Y1, . . . ,Yn),

where

Xi =
�

� xi
+ 2yi

�
� t

, Yi =
�

� yi
– 2xi

�
� t

, i = 1, 2, 3, . . . , n,

are vector fields that constitute a basis for the real Lie algebra of left-invariant vector fields
on H

n. The key point is that the family

�
X1, . . . ,Xn,Y1, . . . ,Yn, [X1,Y1]
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satisfies the Hörmander condition, which means it spans the whole tangent space TR
2n+1

(by definition, the tangent space to a manifold at a point is the vector space of derivations
at the point).

A left invariant vector field X, which is in the span of {Xi ,Yi}n
i=1, is called horizontal. In

the span of {Xi ,Yi}n
i=1 � R

2n, we consider the natural inner product given by

(X,Y)Hn =
n


i=1

�
xiyi + x�

iy
�
i

�

for each X = {xiXi + x�
iYi }n

i=1 and Y = {yiXi + y�
iYi }n

i=1. The inner product (·, ·)Hn produces a
Hilbertian norm:

|X|Hn =
�

(X,X)Hn

for horizontal vector field X. Moreover, the Cauchy–Schwarz inequality

�
�(X,Y)Hn

�
� � | X|Hn |Y|Hn

holds for any horizontal vector fields X and Y. For any horizontal vector field function
X = X(� ), X = {xiXi + x�

iYi }n
i=1, of the class C1(Hn,R2n), we define the horizontal divergence

of X by

divHn X :=
n


i=1

�
Xi (xi) + Yi

�
x�

i

��
.

The following is the Poincaré inequality.

Theorem 2.1 ([4]) Let U � H
n (n � 1) be a measurable bounded set and u� C�

0 (U). Then
we have




U

�
�u(� )

�
�p

d� � C



U
|� Hnu|p d� .

Definition 2.1 (Horizontal curve) A piecewise smooth curve y : [0, 1] � H
n is called a

horizontal curve if �y(t) belongs to the span of {Xi ,Yi}n
i=1 a.e. in [0, 1]. The horizontal length

of y is defined as follows:

LHn(y) =

 1

0

� �
�y(t), �y(t)

�
Hn dt =


 1

0

�
� �y(t)

�
�
Hn dt ,

where

(X,Y)Hn =
n


i=1

�
xiyi + x�

iy
�
i

�

for each X = {xiXi + x�
iYi }n

i=1 and Y = {yiXi + y�
iYi }n

i=1.

The Carnot–Carathéodory distance of two points � 1, � 2 � H
n is defined by

dcc(� 1, � 2) := inf
�
LHn(y) : y is a horizontal curve joining � 1, � 2 in H

n	
.
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Remark2.1 The absolutely continuous curve

� = (x1, . . . ,xn,y1, . . . ,yn, t) : [0,T ] � H
n

is horizontal if and only if

�t(s) = 2
n


j=1

�
�xj(s)yj(s) – �yj(s)xj(s)

�

for a.e. s� [0,T ]. Then we can conclude that

t(T ) – t(0) = 2
n


j=1


 T

0

�
�xj(s)yj(s) – �yj(s)xj(s)

�
ds.

That is, if we are given a curve � : [0,T ] � R
2n, the horizontal curve � = (x1, . . . ,xn,y1, . . . ,

yn, t) is uniquely determined (up to its starting height t(0)); then the above definition is
well defined.

dcc is left invariant metric on H
n and homogeneous of degree 1 with respect to dilations

� � [8], that is,

dcc
�
� � (� 1), � � (� 2)

�
= � dcc(� 1, � 2)

for all � 1, � 2 � H
n. In the case of the Heisenberg group, it is easy to check that the Lebesgue

measure onR
2n+1 is invariant under left translations; more precisely, the Heisenberg group

is unimodular with the Haar measure dx dydt coinciding with the Lebesgue measure
R

2n+1. Thus, from here on, we denote by d� the Haar measure on H
n since the Haar mea-

sures on Lie groups are unique up to constant multipliers [11].
Here, we recall Hardy’s inequality on the Heisenberg groups established in [21, Theo-

rem 1.1].

Lemma 2.1 Let 1 < s< Q and u � C�
0 (Hn). Then




Hn
|� Hnu|sd� �

�
Q – s

s

� s


Hn

|u(� )|s

ds
cc

d� .

As usual, for any measurable set U � H
n (n � 1), the Lebesgue space Lp(U) is defined as

Lp(U) :=
�

u : � Š� R : u is measurable and



U
|u|p d� < �

�
,

which has the norm

|u|p :=
� 


U

�
�u(� )

�
�p

d�
� 1

p

for 1 � p < � ,

while

|u|� := esssup
U

u = inf
�
M :

�
�u(� )

�
� � M for a.e. � � U

	
.
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Also, the first-order Heisenberg Sobolev space on U is defined as follows:

HW 1,p(U) :=
�
u � Lp(U) : |� Hnu| � Lp(U)

	
,

endowed with the norm

� u� 1,p = |u|p + |� Hnu|p;

and we set HW 1,p
0 (U) = (C�

0 (U), � u� 1,p) equipped with the norm

� u� p = |� Hnu|p.

It is well known that Lp(U), HW 1,p(U), and HW 1,p
0 (U) are separable, reflexive Banach

spaces.

Definition 2.2 (Poincaré–Sobolev domain) An open set U of Hn is said to be a Poincaré–
Sobolev domain if there exist a bounded open set V � H

n with U � U � V , a covering
{B}B� F of U by Carnot–Carathéodory balls B, and the numbers N > 0, � � 1, and � � 1
such that

(i)
�

B� F 1(a+1)B � N1U in U , where 1D is the characteristic function of a Lebesgue
measurable subset D.

(ii) There exists a (central) ball B0 � F such that for all B � F there is a finite chain
B0,B1, . . . ,Bs(B) with Bi � Bi+1 	= � and

|Bi � Bi+1| �
max{|Bi |, |Bi+1|}

N
, i = 0, 1, . . . ,s(B) – 1;

moreover, B � � Bi for i = 0, 1, . . . ,s(B).

This definition is purely metric. There is a multiplicity of Poincaré–Sobolev domains in
H

n, as explained in detail in [6]. The next result is a special case of Theorem 1.3.1 in [8].

Theorem 2.2
(i) Let U be a bounded Poincaré–Sobolev domain in H

n, and let 1 � p � Q. Then the
compact embedding

HW 1,p
0 (U) �� �� L� (U)

holds for all � with 1 � � < p
 , where p
 = pQ
Q–p is the critical Sobolev exponent

related to p.
(ii) The Carnot–Carathéodory balls are Poincaré–Sobolev domains.

Remark2.2 Combining Theorem 2.2 with the fact that the Carnot–Carathéodory distance
and the Korányi distance are equivalent on H

n, we get that the following embedding is
compact:

HW 1,p
0 (� ) �� �� L� (� ) for 1 � � < p
 ,
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when 1 � p � Q and � is a Korányi ball. Furthermore, there exists C� > 0 such that

|u|� � C� � u� p for 1 � � � p
 ,

for all u � HW 1,p
0 (� ).

Remark2.3 From Hardy’s inequality (Lemma 2.1), because the Carnot–Carathéodory dis-
tance and the Korányi distance are equivalent on H

n, we gain the following inequality:




�
|� Hnu|sd� �

�
Q – s

s

� s


�

|u(� )|s

|� |sHn
d�

for 1 < s< Q and u � HW 1,s
0 (� ). For convenience, we set H = ( Q–s

s )s, and so we have




�

|u(� )|s

|� |sHn
d� �

1
H




�
|� Hnu|sd� .

We put

p– = inf
� � �

p(� ) & p+ = sup
� � �

p(� )

for p � C+(� ) = {g � C(� ) : g– > 1}. The generalized Lebesgue space Lp(·)(� ) is the collec-
tion of all measurable functions u on � for which there exists 
 > 0 such that




�

�
u(� )




� p(� )

d� < � ,

and it has the norm

|u|p(·) = inf
�


 > 0 :



�

�
�
�
�
u(� )




�
�
�
�

p(� )

d� � 1
�

.

We know that for any u � Lp(·)(� ) and v � Lp�(·)(� ), i.e., the conjugate space of Lp(·)(� ), the
Hölder type inequality

�
�
�
�




�
uv d�

�
�
�
� �

�
1
p– +

1
p�–

�
|u|p(·)|v|p�(·) (2.1)

holds true. Following the authors of [13], for any � > 0, we put

� �r :=

�
�

�
�r

+
� < 1,

�r
–

� � 1,

and

� �r :=

�
�

�
�r

–
� < 1,

�r
+

� � 1

for each r � C+(� ). Then the well-known Proposition 2.7 of [9] will be rewritten as follows.
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Proposition 2.1 For each u� Lp(·)(� ) and p � C+(� ), we have

|u| �p
p(·) �




�

�
�u(� )

�
�p(� )

d� � | u| �p
p(·).

The next lemma was established in [5].

Lemma 2.2 Assume that p,q � C+(� ). If q(� ) � p(� ) for all � � � , then

Lp(·)(� ) �� Lq(·)(� );

moreover, there exists� q > 0 such that

|u|q(·) � � q(·)|u|p(·).

We denote the Heisenberg–Sobolev space with a variable exponent by

HW 1,p(·)(� ) :=
�
u � Lp(·)(� ) : |� Hnu| � Lp(·)(� )

	
,

equipped with the norm

� u� 1,p(·) = |u|p(·) + |� Hnu|p(·).

We also denote by HW 1,p(·)
0 (� ) the closure of C�

0 (� ) in HW 1,p(·)(� ), which, by the Poincaré
inequality, has the norm

� u� = |� Hnu|p(·).

Here-in-after, for the functions p,q � C(� ) and the constant s satisfying the following
inequalities:

1 < q– � q(� ) � q+ < s < p– � p(� ) � p+ < Q a.e. in � ,

we set

X := HW 1,p(·)
0 (� )

endowed with the norm � u� .

3 Auxiliary remarks
Remark3.1

(i) Let p,q � C+(� ). If q(� ) � p(� ) for all � � � , then from Lemma 2.2 one has

HW 1,p(·)(� ) �� HW 1,q(·)(� ).

In the special case,

X �� HW 1,q(·)
0 (� ) & X �� HW 1,s

0 (� );
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besides, there exist � q(·), � s > 0 such that

|� Hnu|q(·) � � q(·)� u� & |� Hnu|s � � s� u�

for u � X.
(ii) Thanks to part (i) and Remark 2.2, we have the following embedding:

X �� HW 1,p–
(� ) �� L(p–)
 (� ) �� Lr(·)(� )

for r � C(� ) with 1 � r– � r(� ) � r+ � (p–)
 a.e. in � ; and for every bounded
sequence {uk} in X, up to the subsequence, {uk} converges to some ū in Lr(·)(� ) as
1 � r– � r(� ) � r+ < (p–)
 a.e. in � . In the special case,

X �� L1(� ) & X �� L� (·)–1(� ) & X �� L� (·)(� ),

where � � C(� ) is as (1.1); moreover, there exist constants K1,K� –1 = K(� (·) – 1),
K� = K(� (·)) > 0 such that




�
|u| d� � K1� u� & |u|� (·)–1 � K� –1� u� & |u|� (·) � K� � u�

for u � X.

Remark3.2 Suppose that conditions (H1)–(H4) hold, then we have:
• The aforementioned functions A (� , t) and B(� , t) are C1-Carathéodory functions.
• From (H3), thanks to [1, Proposition 1.5.10], the functionals A and B are strictly

convex.
• There exist constants

c � min{c1,c2} & c̄ � max
�

|� 1|� , |� 2|� ,
|	 1|�

p– ,
|	 2|�

q–

�

such that

c
p+ |� |p(� ) �

�
�A (� , � )

�
� � c̄

�
|� | + |� |p(� )� ,

and, in the same way,

c
q+ |� |q(� ) �

�
�B(� , � )

�
� � c̄

�
|� | + |� |q(� )�

for a.e. � � � and all � � R. So, one has the following estimate:

c
p+ � u� �p �




�
A (� , � Hnu)d� +




�
B(� , � Hnu)d�

�



�

�
�A (� , � Hnu)

�
�d� +




�

�
�B(� , � Hnu)

�
�d�

� c̄
�

2



�

�
|� Hnu| + |� Hnu|p(� )� d� + |� Hnu|q(� )

�
d� )
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� c̄
�
2� 1� u� + � u� �p + � �q

q(·)� u� �q�

� C̄
�
� u� + � u� �p�

, (3.1)

where C̄ = 2c̄(� 1 + 1 + � �q
q(·)).

We mean that a weak solution to problem (P ) is as follows.

Definition 3.1 (Weak solution) We say that u � X \ { 0} is a weak solution of problem (P )
if u = 0 on � and




�
a(� , � Hnu) · � Hnv d� +




�
b(� , � Hnu) · � Hnv d�

+



�
� (� )

|u|s–2uv
|� |s

d� – �



�
f (� ,u)v d� = 0

for each v � X.

We define the functional 
 : X � R by


 (u) :=



�
A (� , � Hnu)d� +




�
B(� , � Hnu)d� +

1
s




�
� (� )

|u(� )|s

|� |s
d� .

Remark3.3 The following assertions hold:
(i) There exists C > 0 such that

� 0� u� �p � 
 (u) � C
�
� u� + � u� �p�

. (3.2)

Proof Applying Remark 3.2 and Hardy’s inequality, one has the following estimates:

� 0� u� �p �



�
A (� , � Hnu)d� +




�
B(� , � Hnu)d�

� 
 (u)

=



�
A (� , � Hnu)d� +




�
B(� , � Hnu)d� +

1
s




�
� (� )

|u(� )|s

|� |s
d�

� C̄
�
� u� + � u� �p�

+
|� |�
sH




�
|� Hnu|s d�

� C̄
�
� u� + � u� �p�

+
|� |�
sH

� s
s � u� s

� C
�
� u� + � u� �p�

,

where C = max{C̄, � s
s |� |�

sH }. So, the proof is completed. �

(ii) Inequality (3.2) ensures that 
 is coercive.
(iv) 
 is sequentially weakly lower semicontinuous: if uk � u in X, so, up to a

subsequence, uk(� ) � u(� ) a.e. in � ; by applying Fatou’s lemma, one has

lim inf
k��




�
|� Hnuk|s d� �




�
|� Hnu|s d� ;
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and also we have

lim
k��

A (� , � Hnuk) = lim
k��


 � Hn uk

0
a(� , � )d�

=

 � Hn u

0
a(� , � )d� = A (� , � Hnu) a.e. in � ;

in the same way, we have

lim
k��

B(� , � Hnuk) = B(� , � Hnu) a.e. in � .

On the other side, using Remark 3.2, A ,B � L1(� ). Then, in accordance with
Lebesgue’s dominated convergence theorem, we gain that

lim inf
k��


 (uk) � 
 (u).

(iii) It is known that 
 is continuously Gâteaux differentiable functional; moreover,

�

 �(u),v

�
=




�
a(� , � Hnu) · � Hnv d� +




�
b(� , � Hnu) · � Hnv d�

+



�
� (� )

|u|s–2uv
|� |s

d�

for each v � X.
Now, corresponding to the function f with the growth condition (1.1), we introduce the

functional F : � × R � R by

F(� , 
 ) :=

 |
 |

0
f (� ,s)ds.

And we define the functional � : X � R as follows:

� (u) :=



�
F(� ,u)d� .

Remark3.4
(i) By applying (1.1), F is well defined and one has

�
�F(� , 
 )

�
� � | � 1|� |
 | +

|� 2|�
� – |
 |� (� ).

Then, by simple calculations, we gain

� (u) �



�

�
�F(� ,u)

�
� d� � �C

�
� u� + � u� �� �

,

where �C = max{K1|� 1|� , K ��
�

� – |� 2|� }.
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(ii) Let uk � u in X. So, up to a subsequence, uk(� ) � u(� ) a.e. in � ; since
||x| – |y|| � | x – y| for every x,y � R, then |uk(� )| � | u(� )| a.e. in � as k � � ; then

lim
k��

F(� ,uk) = lim
k��


 |uk|

0
f (� ,s)ds

=

 |u|

0
f (� ,s)ds= F(� ,u) a.e. in � ;

thus,

limsup
k��

� (uk) �



�
limsup

k��
F(� ,uk)d�

=



�
F(� ,u)d� = � (u),

which shows that � is weakly upper semicontinuous.
(iii) As everyone knows, � is Gâteaux derivative and its derivative is given by

�
� �(u),v

�
=




�
f
�
� ,u(� )

�
v(� )d�

for each v � X.

We set

I� (u) = 
 (u) – �� (u) for all u � X.

Clearly, I� is the energy functional corresponding to problem (P ); and so, its critical points
are weak solutions of problem (P ).

4 Existence results
The following is one of the main results of this note.

Theorem 4.1 For given r> 0 and every� � (0, � 
 ) with

� 
 =
r

C(k1( r
� 0

)
1
�p + ( r

� 0
)

�s
�p )

,

problem(P ) admits at least one weak solution u� � X.

Proof For given r > 0, from (3.2), we have


 –1�
] – � , r[

�
: =

�
u � X : 
 (u) < r

	

�
�

u � X :



�
A (� , � Hnu)d� < r

�

�
�
u � X : � 0� u� �p < r

	
.
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So, for r > 0 and all u � X with 
 (u) < r , one has

� u� �
�

r
� 0

� 1
�p
.

Then, from Remark 3.4(i) and because 
 (0) = 0 and � (0) = 0, one has

� (r) = inf
u� 
 –1(–� ,r)

(supv� 
 –1(–� ,r) � (v)) – � (u)
r – 
 (u)

�
supv� 
 –1(–� ,r) � (v)

r

�
C
r

�
k1

�
r
� 0

� 1
�p

+
�

r
� 0

� �s
�p
�

.

So, using the assumption,

� �
�
0, � 
 �

�
�

0,
1

� (r)

�
.

Thus, applying part (a) of Theorem 1.1, the restriction of the functional I� : 
 – �� to

 –1(–� , r) admits a global minimum, which is a critical point (local minimum) of I�

in X. �

In the next theorem, we present enough conditions for having infinitely many solutions
of the problem.

Theorem 4.2 Suppose that f: � × R � R is the aforementioned Carathéodory function

satisfying the following Ambrosetti…Rabinowitz(AR) type condition: there are constants

µ > p+, R > 0 such that

0 < µF(� , � ) � � f (� , � )

for all � � � and |� | > R . Then there exists an unbounded sequence of weak solutions to

problem(P ).

Proof Let {rk} be a sequence such that limk�� rk = +� . For each u � 
 –1(–� , rk), we
have

(supv� 
 –1(–� ,rk) � (v)) – � (u)
rk – 
 (u)

�
supv� 
 –1(–� ,rk)(� (v) – � (u))

rk
. (4.1)

But � is differentiable; so, by definition, we have

� (v) – � (u) = � �(u)(v – u) + o
�
� u – v�

�

�
�
� � �(u)(v – u)

�
� + o

�
� u – v�

�

�
�
� � �(u)

�
� �

� v� + � u�
�

+ o
�
� u – v�

�
< +� ,
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as � u – v� � 0. Then the right-hand side of (4.1) converges to zero. So,

� = lim inf
k��

� (rk) < � .

Now, we show that I� is unbounded from below. To this end, we set

� (� ) = sup
�
� > 0 : B(� , � ) � �

	
& R := sup

x� �
� (� ).

Obviously, there exists � 0 � � such that

B(� 0,R) � � .

Assume that � > 0 and consider the following function:

w(� ) =

�
���

���

0 x � � \ B(� 0,R),

� x � B(� 0, R
2 ),

2�
R (R– |� –1 � � 0|Hn) x � B(� 0,R) \ B(� 0, R

2 ).

(4.2)

On the one hand, for t > 1, one has

� (tw) =



�
F(� , tw)d� �




B(� 0, R
2 )

F(� , t � )d� .

On the other hand, according to the (AR) condition, there exist D1,D2 > 0 such that

F(� , t � ) � D1tµ |� |µ – D2.

Then

� (tw) � D1tµ



B(� 0, R
2 )

|� |µ d� – D2|� |.

Therefore, for t > 1, we deduce that

I� (tw) = 
 (tw) – �� (tw)

=



�
A (� , tw)d� +




�
B(� , tw)d� +

ts

s




�
� (� )

|w(� )|s

|� |s
d� – �� (tw)

� Ctp
+
��

2�
R

�
+

�
2�
R

� �p�
– �




B(� 0, R
2 )

F(� , t � )d�

� Ctp
+
��

2�
R

�
+

�
2�
R

� �p�
– D1tµ




B(� 0, R
2 )

|� |µ d� + D2|� |.

Because µ > p+, so limt� +� I� (tw) = –� , and hence the claim follows.
The alternative of Theorem 1.1 case (b) assures the existence of an unbounded sequence

{wi}i� N of critical points of the functional I� . This completes the proof in view of the rela-
tion between the critical points of I� and the weak solutions of problem (P ). �
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