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Abstract
In this paper, we are concerned with the Neumann problem for a class of quasilinear
stationary Kirchhoff-type potential systems, which involves general variable
exponents elliptic operators with critical growth and real positive parameter. We
show that the problem has at least one solution, which converges to zero in the norm
of the space as the real positive parameter tends to infinity, via combining the
truncation technique, variational method, and the concentration–compactness
principle for variable exponent under suitable assumptions on the nonlinearities.
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1 Introduction
In this article, we are concerned with the existence and asymptotic behavior of nontrivial
solutions for the following class of nonlocal quasilinear elliptic systems:

Mi
(
Ai(ui)

)(
– div

(
B1i (∇ui)

)
+ B2i (ui)

)
= |ui|si(x)–2ui + λFui (x, u) in �,

Mi
(
Ai(ui)

)
B1i (∇ui) ·Ni = |ui|�i(x)–2ui on ∂�,

(1.1)

for i = 1, 2, . . . , n (n ∈ N
∗), where � ⊂ R

N (N ≥ 2) is a bounded domain with smooth
boundary ∂�, Ni is the outward normal vector field on ∂�, λ is a positive parameter,
∇F = (Fu1 , . . . , Fu2 ) is the gradient of a C1-function F : RN × R

n → R, pi, qi, wi, si ∈ C(�),
and �i ∈ C(∂�) are such that

1 < p–
i ≤ pi(x) ≤ p+

i < q–
i ≤ qi(x) ≤ q+

i < N , (1.2)

h–
i ≤ hi(x) ≤ h+

i ≤ w–
i ≤ wi(x) ≤ w+

i ≤ s–
i ≤ si(x) ≤ s+

i ≤ h∗
i (x) < ∞, (1.3)

and

h–
i ≤ hi(x) ≤ h+

i ≤ w–
i ≤ wi(x) ≤ w+

i ≤ �–
i ≤ �i(x) ≤ �+

i ≤ h∂i (x) < ∞, (1.4)
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for all x ∈�, where functions wi are given by condition (F4) below, p–
i := infx∈� pi(x), p+

i :=
supx∈� pi(x), and analogously to w–

i , w+
i , q–

i , q+
i , h–

i , h+
i , s–

i , s+
i , �–

i and �+
i , with hi(x) = (1 –

K(k3
i ))pi(x) + K(k3

i )qi(x), where k3
i is given by condition (A2) below, and

h∗
i (x) =

⎧
⎨

⎩

Nhi(x)
N–hi(x) for hi(x) < N ,

+∞ for hi(x) ≥ N ,
and h∂i (x) =

⎧
⎨

⎩

(N–1)hi(x)
N–hi(x) for hi(x) < N ,

+∞ for hi(x) ≥ N ,

for all x ∈�, and the function K : R+
0 → {0, 1} is defined by

K(ki) =

⎧
⎨

⎩
1 if ki > 0,

0 if ki < 0.

In addition, we consider both C1
hi

and C2
hi

as nonempty disjoint sets, which are respectively
defined by

C1
hi

:=
{

x ∈ ∂�,�i(x) = h∂i (x)
}

and C2
hi

:=
{

x ∈�, si(x) = h∗
i (x)

}
.

The operators Aji : Xi → R
n, for j = 1 or 2, and the operators Bi : Xi → R are respectively

defined by

Bji (ui) = aji
(|ui|pi(x))|ui|pi(x)–2ui and

Ai(ui) =
∫

�

1
pi(x)

(
A1i

(|∇ui|pi(x)) + A2i

(|ui|pi(x)))dx,
(1.5)

for all 1 ≤ i ≤ n, where Xi := W 1,hi(x)(�) ∩ W 1,pi(x)(�) is a Banach space, and functions Aji
are defined by Aji (t) =

∫ t
0 aji (k) dk, where functions aji are described in condition (A1).

In what follows, we shall consider the functions aji satisfying the following assumptions
for all i ∈ {1, 2, . . . , n} and j ∈ {1, 2}:

(A1) aji : R+ →R
+ are of class C1.

(A2) There exist positive constants k0
ji , k1

ji , k2
ji and k3

i for all i ∈ {1, 2, . . . , n}, j ∈ {1, 2} such
that

k0
ji +K

(
k3

i
)
k2

jiξ
qi(x)–pi(x)

pi(x) ≤ aji (ξ ) ≤ k1
ji + k3

i ξ
qi(x)–pi(x)

pi(x) , for all ξ ≥ 0 and a.e. x ∈�.

(A3) There exists ci > 0 for all 1 ≤ i ≤ n such that

min

{
aji
(
ξpi(x))ξpi(x)–2, aji

(
ξpi(x))ξpi(x)–2 + ξ

∂(aji (ξpi(x))ξpi(x)–2)
∂ξ

}
≥ ciξ

pi(x)–2,

for a.e. x ∈� and all ξ ≥ 0.

(A4) There exist positive constants βji and γi for all i ∈ {1, 2, . . . , n}, j ∈ {1, 2} such that

Aji (ξ ) ≥ 1
βji

aji (ξ )ξ with h+
i < γi < s–

i and
q+

i
p+

i
≤ βji <

γi

p+
i

, for all ξ ≥ 0.

(M) Mi : R+ → R are continuous and increasing functions such that Mi(t) ≥ Mi(0) =
M0

i > 0, for all t ≥ 0, i ∈ {1, 2, . . . , n}.
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As it is well known, there are many examples of functions Mi that satisfy assumption (M),
for example,

M1(ξ ) = M
0
1 + B1ξ

θ1 , with M
0
1,B1 ≥ 0,M0

1 + B1 > 0 and θ1 ≥ 1.

In particular, when M0
1 = 0 and B1 > 0, the Kirchhoff equation associated with M1 is said

to be degenerate. On the other hand, when M0
1 > 0 and B1 ≥ 0, the Kirchhoff equation

associated with M1 is said to be nondegenerate. In this case, when B1 = 0, the Kirchhoff
equation associated with M1 (is a constant) reduces to a local quasilinear elliptic problem.

The study of differential equations and variational problems driven by nonhomogeneous
differential operators has received extensive attention and has been extensively investi-
gated, see, e.g., Papageorgiou et al. [42]. This is due to their ability to model many physical
phenomena. It should be noted that the p(x)-Laplacian operator is a special case of the di-
vergence form operator div(Bji (∇ui)). The natural functional framework for this operator
is described by the Sobolev space with a variable exponent W 1,p(x).

In recent decades, there has been a particular focus on variable exponent Lebesgue
and Sobolev spaces, Lp(x) and W 1,p(x), where p is a real function, e.g., Rǎdulescu and Re-
povš [45]. Traditional Lebesgue spaces Lp and Sobolev spaces W 1,p with constant expo-
nents have proven insufficient to tackle the complexities of nonlinear problems in the ap-
plied sciences and engineering. To address these limitations, the use of variable exponent
Lebesgue and Sobolev spaces has been on the rise in recent years.

This area of research reflects a new type of physical phenomena, such as electrorheolog-
ical fluids, or “smart fluids,” which can exhibit dramatic changes in mechanical properties
in response to an electromagnetic field. These and other nonhomogeneous materials re-
quire the use of variable exponent Lebesgue and Sobolev spaces, where the exponent p is
allowed to vary. Moreover, variable exponent Lebesgue and Sobolev spaces have found a
wide range of applications, from image restoration and processing to fields such as ther-
morheological fluids, mathematical biology, flow in porous media, polycrystal plasticity,
heterogeneous sand pile growth, and fluid dynamics. For a comprehensive overview of
these and other applications, see, e.g., Chen et al. [15], Diening et al. [20, 21], Halsey [28],
Rǎdulescu [44], Ružic̆ka [46, 47], and the references therein.

Furthermore, every single equation of the system (1.1) is a generalization of the sta-
tionary problem of the first model introduced by Kirchhoff [33] in 1883 and having the
following form:

ρ∂2
ttu –

(
ρ0

h
+

E
2L

∫ L

0

∣∣∂xu(x)
∣∣2 dx

)
∂2

xxu = 0, (1.6)

where the parameters ρ , h, ρ0, t, L, E are all constants which respectively have some phys-
ical meaning, which is an extension of the classical D’Alembert wave equation, by consid-
ering the effect of the change in the length of a vibrating string.

Nearly a century later, in 1978, Jacques-Louis Lions [35] returned to the equation and
proposed a general Kirchhoff equation in arbitrary dimension with an external force term
which was written as

∂2
ttu –

(
a + b

∫

�

|∇u|2 dx
)
�u = f (x, u) in �,

u = 0 on ∂�.
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Later on, many interesting results have been obtained by Caristi et al. [9], Dai and Hao [19],
Ma [37]; see also the references therein. The main difficulty in studying these equations
appears to be due to the fact that they do not satisfy a pointwise identity any longer. It is
generated by having the term containing Mi in the equations, and it makes (1.1) a nonlo-
cal problem. The nonlocal problem models arise in the description of biological systems
and also various physical phenomena, where u describes a process that depends on the
average of itself, such as population density. For more references on this subject, we refer
the interested reader to Ambrosio et al. [3], Arosio and Pannizi [5], Cavalcanti et al. [10],
Chipot and Lovat [17], He et al. [31], Corrêa and Nascimento [18], Yang and Zhou [50],
Wang et al. [48], and the references therein. On the one hand, the differential equations
with constant or variable critical exponents in bounded or unbounded domains have at-
tracted increasing attention recently. They were first discussed in the seminal paper by
Brezis and Nirenberg [8] in 1983, which treated Laplacian equations. Since then, there
have been extensions of [8] in many directions.

One of the main features of elliptic equations involving critical growth is the lack of
compactness arising in connection with the variational approach. In order to overcome
the lack of compactness, Lions [36] established the method using the so-called concen-
tration compactness principle (CCP, for short) to show that a minimizing sequence or a
Palais–Smale ((PS), for short) sequence is precompact. Afterward, the variable exponent
version of the Lions concentration–compactness principle for a bounded domain was in-
dependently obtained in Bonder et al. [6, 7] and Fu [26], and for an unbounded domain in
Fu [27]. Since then, many authors have applied these results to study critical elliptic prob-
lems involving variable exponents, see, e.g., Alves et al. [1, 2], Chems Eddine et al. [12–14],
Fang and Zhang [24], Hurtado et al. [32], Mingqi et al. [39], Zhang and Fu [51].

When Mi satisfies conditions a1i ≡ 1 (with k1
i = 1, and k2

i > 0 and k3
i = 0), and a2i ≡ 0,

Chems Eddine [12] proved the existence of nontrivial weak solutions for the following
class of Kirchhoff-type potential systems with Dirichlet boundary conditions:

–Mi

(∫

�

1
pi(x)

|∇ui|pi(x)
)
�pi(x)ui = |ui|qi(x)–2ui + λFui (x, u) in �,

ui = 0 on ∂�,

for 1 ≤ i ≤ n (n ∈ N
∗), where pi, qi : � → R are Lipschitz continuous functions such that

1 ≤ qi(x) ≤ p∗
i (x) for all x in � and the potential function F satisfies mixed and subcrit-

ical growth conditions. Following that, Chems Eddine [11] established the existence of
infinitely many solutions for the following system:

–Mi
(
Ai(ui)

)
div

(
Bi(∇ui)

)
= |ui|si(x)–2ui + λFui (x, u) in �,

u = 0 on ∂�,

for i = 1, 2, . . . , n (n ∈ N), where {x ∈ �, si(x) = p∗
i (x)} is nonempty and F ∈ C1(�× R

n,R)
satisfies some mixed and subcritical growth conditions. Next, Chems Eddine and Ragusa
[14] dealt with cases when the above class of Kirchhoff-type potential systems is consid-
ered under Neumann boundary conditions with two critical exponents, and established
the existence and multiplicity of solutions.



Chems Eddine and Repovš Boundary Value Problems         (2023) 2023:19 Page 5 of 33

Our objective in this article is to show the existence of nontrivial solutions for the non-
local problem (1.1). As we shall see in this paper, there are some substantial difficulties
in our situation, which can be summed up in three main problems. First, the assump-
tion (M) provides only a positive lower bound for the Kirchhoff functions Mi near zero,
creating serious mathematical technical difficulties, to overcome which we need to do a
truncation of the Kirchhoff functions Mi to obtain a priori estimates of the boundedness
from above, and thus obtain a new auxiliary problem, thereafter, we do another trunca-
tion to control the energy functional corresponding to the auxiliary problem. The second
difficulty in solving problem (1.1) is the lack of compactness which can be illustrated by
the fact that the embeddings W 1,h(x)(�) ↪→ Lh∗(x)(�) and W 1,h(x)(�) ↪→ Lh∂ (x)(∂�) are no
longer compact and, to overcome this difficulty, we use two versions of Lions’s princi-
ple for the variable exponent, extended by Bonder et al. [6, 7]. Then by combining the
variational method and Mountain Pass Theorem, we obtain the existence of at least one
nontrivial solution to the auxiliary problem, see Theorem 3.1, and by truncating func-
tions Mi, we obtain the existence of at least one nontrivial solution to problem (1.1), see
Theorem 1.2.

Throughout this paper, we shall assume that F satisfies the following conditions:
(F1) F ∈ C1(�×R

n,R) and F(x, 0Rn ) = 0.
(F2) For all (i, j) ∈ {1, 2, . . . , n}2, there exist positive functions bij such that

∣
∣Fξi (x, ξ1, . . . , ξn)

∣
∣≤

n∑

j=1

bij (x)|ξj|rij (x)–1,

where 1 < rij (x) < infx∈� hi(x) for all x ∈�. The weight-functions bii (resp. bij if i �= j)
belong to the generalized Lebesgue spaces Lαii (�) (resp. Lαij (�)), with

αii(x) =
hi(x)

hi(x) – 1
, αij (x) =

h∗
i (x)h∗

j (x)
h∗

i (x)h∗
j (x) – h∗

i (x) – h∗
j (x)

.

(F3) There exist K > 0 and γi ∈ (h+
i , inf{s–

i ,�–
i }) such that for all (x, ξ1, . . . , ξn) ∈ � × R

n

where |ui|γi ≥ K ,

0 < F(x, ξ1, . . . , ξn) <
n∑

i=1

ξi

γi
Fξi (x, ξ1, . . . , ξn).

(F4) There exists a positive constant c such that

∣
∣F(x, ξ1, . . . , ξn)

∣
∣≤ c

( n∑

i=1

|ξi|wi(x)

)

, for all (x, ξ1, . . . , ξn) ∈�×R
n,

where wi ∈ C+(�) and q+
i < w–

i ≤ w+
i < inf{s–

i ,�–
i } ≤ inf{s+

i ,�+
i }, for all 1 ≤ i ≤ n.

Example 1.1 There are many potential functions F satisfying assumptions (F1) and (F2).
For example, when n = 2, take F(x, u1, u2) = b12(x)|u1|r1(x)|u2|r2(x), where r1(x)

h1(x) + r2(x)
h2(x) < 1,

and the positive weight-function b12 ∈ Lα(x)(�) with

α(x) =
h∗

2(x)h∗
1(x)

h∗
2(x)h∗

1(x) – h∗
2(x)r1(x) – h∗

2(x)r2(x)
, for all x ∈�.
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By the standard calculus, we can verify that F satisfies the assumption (F1). Moreover, by
using Young inequality, we can check the assumption (F2).

The main result of our paper is the following.

Theorem 1.2 Assume that conditions (A1)–(A4), (M), and (F1)–(F4) hold. Then there exists
λ� > 0 such that for all λ ≥ λ�, problem (1.1) has at least one nontrivial solution in X.
Moreover, if uλ is a weak solution of problem (1.1), then limλ→+∞ ‖uλ‖ = 0.

The paper is organized as follows: In Sect. 2 we give some preliminary results of the vari-
able exponent spaces. In Sect. 3 we introduce the auxiliary problem and obtain a nontrivial
solution for the auxiliary problem. Section 4 is dedicated to proving the main results. Fi-
nally, in Sect. 5, we illustrate the degree of generality of the kind of problems we studied
in this paper.

2 Preliminaries and basic notations
In this section, we introduce some definitions and results which will be used in the next
section. Throughout our work, let � be a bounded domain of RN (N ≥ 2) with a Lipschitz
boundary ∂�, and let us denote by D either � or its boundary ∂�. Denote

M+(D) :=
{

p : D → R measurable real-valued function : p(x) > 1 for a.a. x ∈D
}

,

C+(D) :=
{

p ∈ C(D) : p(x) > 1 for a.a. x ∈D
}

.

For all p ∈ M+(D), denote p+ := supx∈D p(x) and p– := infx∈D p(x). Also for all p ∈ M+(D)
and for a measure η on D, we define the variable exponent Lebesgue space as

Lp(x)(D) := Lp(x)(D, dη) :=
{

u measurable real-valued function : ρp,D(u) < ∞}
,

where the functional ρp,D : Lp(x)(D) →R is defined as

ρp,D(u) :=
∫

�

∣
∣u(x)

∣
∣p(x) dη.

The functional ρp,D is called the p(x)-modular of the Lp(x)(D) space, it has played an im-
portant role in manipulating the generalized Lebesgue–Sobolev spaces. We endow the
space Lp(x)(D) with the Luxemburg norm

‖u‖Lp(x)(D) := inf

{
τ > 0 : ρp,D

(
u(x)
τ

)
≤ 1

}
.

Then (Lp(x)(D),‖u‖Lp(x)(D)) is a separable and reflexive Banach space (see, e.g., Kováčik and
Rákosník [34, Theorem 2.5, Corollary 2.7]). In the subsequent sections, the Lp(x)-spaces
under consideration will be Lp(x)(�) := Lp(x)(�, dx), and Lp(x)(∂�) := Lp(x)(∂�, dσ ) for an
appropriate measure σ supported on ∂�. Let us now recall more basic properties con-
cerning the Lebesgue spaces.

Proposition 2.1 (Kováčik and Rákosník [34, Theorem 2.8]) Let p and q be variable ex-
ponents in M+(D) such that p ≤ q in D, where 0 < meas(D) < ∞. Then the embedding
Lq(x)(D) ↪→ Lp(x)(D) is continuous.
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Furthermore, the following Hölder-type inequality:

∣∣
∣∣

∫

D
u(x)v(x) dx

∣∣
∣∣≤

(
1

p– +
1

(p′)–

)
‖u‖Lp(x)(D)‖v‖Lp′(x)(D) ≤ 2‖u‖Lp(x)(D)‖v‖Lp′(x)(D) (2.1)

holds for all u ∈ Lp(x)(D) and v ∈ Lp′(x)(D) (see, e.g., Kováčik and Rákosník [34, Theo-
rem 2.1]), where we denoted by Lp′(x)(D) the topological dual space (or the conjugate space)
of Lp(x)(D), obtained by conjugating the exponent pointwise, that is, 1/p(x) + 1/p′(x) = 1
(see, e.g., Kováčik and Rákosník [34, Corollary 2.7]). Moreover, if h1, h2, h3 : D → (1,∞)
are Lipschitz continuous functions such that

1
h1(x)

+
1

h2(x)
+

1
h3(x)

= 1,

then for all u ∈ Lh1(x)(D), v ∈ Lh2(x)(D), w ∈ Lh3(x)(D), the following inequality holds:

∫

D

∣
∣u(x)v(x)w(x)

∣
∣dx ≤

(
1

h–
1

+
1

h–
2

+
1

h–
3

)
‖u‖Lh1(x)(D)‖v‖Lh2(x)(D)‖w‖Lh3(x)(D).

If u ∈ Lp(x)(D) and p < ∞, we have the following properties (see, for example, Fan and Zhao
[23, Theorems 1.3 and 1.4]):

‖u‖Lp(x)(D) < 1 (= 1; > 1) if and only if ρp,D(u) < 1 (= 1; > 1), (2.2)

if ‖u‖Lp(x)(D) > 1 then ‖u‖p–

Lp(x)(D) ≤ ρp,D(u) ≤ ‖u‖p+

Lp(x)(D), (2.3)

if ‖u‖Lp(x)(D) < 1 then ‖u‖p+

Lp(x)(D) ≤ ρp,D(u) ≤ ‖u‖p–

Lp(x)(D). (2.4)

As a consequence, we have the equivalence of modular and norm convergence

‖u‖Lp(x)(D) → 0 (→ ∞) if and only if ρp,D(u) → 0 (→ ∞). (2.5)

Proposition 2.2 (Edmunds and Rakosnik [22]) Let h and � be variable exponents in
M+(D) with 1 ≤ h(x),�(x) ≤ ∞ a.e. x in � and p ∈ L∞(�). Then if u ∈ L�(x)(�), u �= 0,
it follows that

‖u‖Lh(x)�(x)(�) ≤ 1 �⇒ ‖u‖h–

Lh(x)�(x)(�) ≤ ‖|u|h(x)‖L�(x)(�) ≤ ‖u‖h+

Lh(x)�(x)(�),

‖u‖Lh(x)�(x)(�) ≥ 1 �⇒ ‖u‖p+

Lh(x)�(x)(�) ≤ ‖|u|h(x)‖L�(x)(�) ≤ ‖u‖h–

Lh(x)�(x)(�).

When h(x) = h is constant, we obtain ‖|u|h‖L�(x)(�) = ‖u‖h
Lh�(x)(�).

Now, let us pass to the Sobolev space with variable exponent, that is,

W 1,p(x)(�) :=
{

u ∈ Lp(x)(�) : ∂xi u ∈ Lp(x)(�) for i = 1, . . . , N
}

,

where ∂xi u = ∂u
∂xi

represent the partial derivatives of u with respect to xi in the weak sense.
This space has a corresponding modular given by

ρ1,p(x)(u) :=
∫

�

|u|p(x) + |∇u|p(x) dx,
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which yields the norm

‖u‖1,p(x) := ‖u‖W 1,p(x)(�) := inf

{
τ > 0 : ρ1,p

(
u(x)
τ

)
≤ 1

}
.

Another possible choice of norm in W 1,p(x)(�) is ‖u‖Lp(x)(�) + ‖∇u‖Lp(x)(�). Both norms
turn out to be equivalent, but we use the first one for convenience. It is well known that
W 1,p(x)(�) is a separable and reflexive Banach spaces (see, e.g., Kováčik and Rákosník [34,
Theorem 3.1]). As usual, we define by p∗(x) the critical Sobolev exponent and p∂ (x) the
critical Sobolev trace exponent, respectively, by

p∗(x) :=

⎧
⎨

⎩

Np(x)
N–p(x) for p(x) < N ,

+∞ for p(x) ≥ N ,
and p∂ (x) :=

⎧
⎨

⎩

(N–1)p(x)
N–p(x) for p(x) < N ,

+∞ for p(x) ≥ N .

We recall the following crucial embeddings on W 1,p(x)(�).

Proposition 2.3 (Diening et al. [21], Edmunds and Rakosnik [22]) Let p be Lipschitz con-
tinuous and satisfying 1 < p– ≤ p(x) ≤ p+ < N , and let q ∈ C(�) satisfy 1 ≤ q(x) ≤ p∗(x), for
all x ∈ �. Then there exists a continuous embedding W 1,p(x)(�) ↪→ Lq(x)(�). If we assume
in addition that 1 ≤ q(x) < p∗(x) for all x ∈�, then this embedding is compact.

Proposition 2.4 (Diening et al. [21], Edmunds and Rakosnik [22]) Let p ∈ W 1,h(�) with
1 ≤ p– ≤ p+ < N < h. Then for all q ∈ C(∂�) satisfying 1 ≤ q(x) ≤ p∂ (x) for x ∈ ∂�, there is
a continuous boundary trace embedding W 1,p(x)(�) ↪→ Lq(x)(∂�). If we assume in addition
that 1 ≤ q(x) < p∗(x) for all x ∈�, then this embedding is compact.

For detailed properties of the variable exponent Lebesgue–Sobolev spaces, we refer the
reader to Diening et al. [21], Kováčik and Rákosník [34]. As is well known, the use of critical
point theory needs the well-known Palais–Smale condition ((PS)c, for short), which plays
a central role.

Definition 2.5 Consider a function E : X →R of class C1, where X is a real Banach space.
We say that a sequence {um} is a Palais–Smale sequence for the functional E if

E(um) → c and E′(um) → 0 in X ′. (2.6)

We say that {um} is a Palais–Smale sequence with energy level c (or (um) is (PS)c, for short).
Moreover, if every (PS)c sequence for E has a strongly convergent subsequence in X, then
we say that E satisfies the Palais–Smale condition at level c (or E is (PS)c, short).

Our main tool is the following classical Mountain Pass Theorem.

Theorem 2.6 (Rabinowitz [43]) Let X be a real infinite-dimensional Banach space and let
E : X →R be of class C1 and satisfying the (PS)c such that E(0X) = 0. Assume that

(H1) there exist positive constants ρ , R such that E(u) ≥R, for all u ∈ ∂Bρ ∩ X ;
(H2) there exists z ∈ X with ‖z‖X > ρ such that E(z) < 0.
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Then E has a critical value c ≥R, which can be characterized as

c := inf
φ∈� max

δ∈[0,1]
E
(
φ(δ)

)
,

where

� =
{
φ : [0, 1] → X continuous : φ(0) = 0X , E

(
φ(1)

)
< 0

}
.

In the sequel, we shall use the product space X :=
∏n

i=1(W 1,hi(x)(�) ∩ W 1,pi(x)(�)),
equipped with the norm ‖u‖ := max1≤i≤n{‖ui‖i}, for all u = (u1, u2, . . . , un) ∈ X, where
‖ui‖i := ‖ui‖1,pi(x) + K(k3

i )‖ui‖1,qi(x) is the norm of W 1,hi(x)(�) ∩ W 1,pi(x)(�), for all i ∈
{1, 2, . . . , n}.

Definition 2.7 We say that u = (u1, u2, . . . , un) ∈ X is a weak solution of the system (1.1) if

n∑

i=1

Mi
(
Ai(ui)

)∫

�

(
B1i (∇ui)∇vi + B2i (ui)vi

)
dx

–
n∑

i=1

∫

�

|ui|si(x)–2uivi dx –
n∑

i=1

∫

∂�

|ui|�i(x)–2uivi dσx

–
n∑

i=1

∫

�

λFui (x, u)vi dx = 0,

for all v = (v1, v2, . . . , vn) ∈ X =
∏n

i=1(W 1,hi(x)(�) ∩ W 1,pi(x)(�)).

The energy functional Eλ : X → R associated with problem (1.1) is defined as Eλ(·) :=
�(·) –�(·) –ϒ(·) – Fλ(·), where �,� , and Fλ : X →R are given by

�(u) =
n∑

i=1

M̂i
(
Ai
(
ui(x)

))
, �(u) =

n∑

i=1

∫

�

1
si(x)

|ui|si(x) dx,

ϒ(u) =
n∑

i=1

∫

∂�

1
�i(x)

|ui|�i(x) dσx, and Fλ(u) =
∫

�

λF(x, u) dx,

for all u = (u1, . . . , un) in X, where M̂i(τ ) =
∫ τ

0 Mi(s) ds. By standard calculus, one can see
that, under the above assumptions, the energy functional Eλ : X → R

N corresponding to
problem (1.1) is well defined and Eλ ∈ C1(X,R) with

〈
E′
λ(u), v

〉
=

n∑

i=1

Mi
(
Ai(ui)

)∫

�

(
B1i (∇ui)∇vi + B2i (ui)vi

)
dx –

n∑

i=1

∫

�

|ui|si(x)–2uivi dx

–
n∑

i=1

∫

∂�

|ui|ti(x)–2uivi dσx –
n∑

i=1

∫

�

λFui (x, u)vi dx,

for all v = (v1, v2, . . . , vn) ∈ X. So the critical points of functional Eλ are weak solutions of
system (1.1).

To prove our existence result, since we have lost compactness in the inclusions
W 1,hi(x)(�) ↪→ Lh∗

i (x)(�) and W 1,hi(x)(�) ↪→ Lh∂i (x)(∂�), for all i in {1, 2, . . . , n}, we can no
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longer expect the Palais–Smale condition to hold. Nevertheless, we can prove a local
Palais–Smale condition that will hold for the energy functional Eλ below a certain value
of energy, by using the principle of concentration–compactness for the variable exponent
Sobolev space W 1,hi(x)(�). For the reader’s convenience, we state this result in order to
prove Theorem 1.2, see Bonder et al. [6, 7] for its proof.

Now, let O be a different subset of ∂�, a closed set (possibly empty). Set

W 1,h(x)
O (�) :=

{
v ∈ C∞(�) : v vanishes on a neighborhood of O

}
,

where closure is taken with respect to ‖v‖1,h(x). This is the subspace of functions vanishing
on O. Evidently, W 1,h(x)

∅ (�) = W 1,h(x)(�). In general, W 1,h(x)
O (�) = W 1,hi(x)(�) if and only

if the hi(x)-capacity of O equals zero; for more details, we refer the interested readers to
Harjulehto et al. [29]. The best Sobolev trace constant Ti(hi(x),�i(x),O) is defined by

0 < Ti
(
hi(x),�i(x),O

)
:= inf

v∈W 1,hi(x)
O (�)

‖v‖W 1,hi(x)(�)

‖v‖L�i(x)(∂�)
.

Theorem 2.8 (Bonder et al. [6]) Let hi ∈ C+(�), �i ∈ C+(∂�) be such that �i(x) ≤ h∂i (x),
for all x ∈ ∂�, and {um}m∈N be a sequence in W 1,hi(x)(�) such that uim ⇀ ui weakly in
W 1,hi(x)(�). Then there exist a countable index set J1

i , positive numbers {μij}j∈J1
i

and {νij}j∈J1
i

,
and {xj}j∈J1

i
⊂ C1

hi
= {x ∈ ∂� : �i(x) = h∂i (x)} such that

|uim |�i(x) ⇀νi = |ui|�i(x) +
∑

j∈J1
i

νijδxj weakly-* in the sense of measures, (2.7)

|∇uim |hi(x) ⇀μi ≥ |∇ui|hi(x) +
∑

j∈I

μijδxj weakly-* in the sense of measures, (2.8)

Tixjν
1/h∂i (xj)
ij ≤ μ

1/hi(xj)
ij for all j ∈ J1

i , (2.9)

where

Tixj := sup
ε>0

T
(
hi(x),�i(x),�ε,j,�ε,j

)
, (2.10)

is the localized Sobolev trace constant with �ε,j = �∩ Bε(xj) and �ε,j = �∩ ∂Bε(xj).

Theorem 2.9 (Bonder and Silva [7]) Let hi and si be variable exponents ∈ C+(�) such that
si(x) ≤ h∗

i (x), for all x ∈ �, and {um}m∈N be a sequence in W 1,hi(x)(�) such that uim ⇀ ui

weakly in W 1,hi(x)(�). Then there exist a countable set J2
i , positive numbers {μij}j∈J2

i
and

{νij}j∈J2
i

, and {xj}j∈J2
i

⊂ C2
hi

= {x ∈� : si(x) = h∗
i (x)} such that

|uim |si(x) ⇀νi = |ui|si(x) +
∑

j∈I

νijδxj weakly-* in the sense of measures, (2.11)

|∇uim |hi(x) ⇀μi ≥ |∇ui|hi(x) +
∑

j∈I

μijδxj weakly-* in the sense of measures, (2.12)

Siν
1/h∗

i (xj)
ij ≤ μ

1/hi(xj)
ij for all j ∈ J2

i , (2.13)
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where

Si = Siqi
(�) := inf

φ∈C∞
0 (�)

‖|∇v|‖Lpi(x)(�)

‖v‖Lsi(x)(�)
, (2.14)

is the best constant in the Gagliardo–Nirenberg–Sobolev inequality for variable exponents.

Notations. Weak (resp. strong) convergence will be denoted by ⇀ (resp., →), Ci, Cij , cj,
and cij will denote positive constants which may vary from line to line and can be deter-
mined in concrete conditions. Here, X∗ denotes the dual space of X, δxj is the Dirac mass
at xj, for all ρ > 0, x ∈�, where B(x,ρ) denotes the ball of radius ρ centered at x.

3 The auxiliary problem and variational framework
In order to prove Theorem 1.2, we shall introduce the auxiliary problem by defining the
auxiliary functional Eθ ,λ and showing that the energy functional Eθ ,λ has the geometry of
the Mountain Pass Theorem 2.6.

By assumption (M), we see that the functions Mi are bounded only from below and do
not give us enough information about the behavior of Mi at infinity, which makes it difficult
to prove that the functional Eλ has the geometry of the Mountain Pass Theorem and that
the sequence of Palais–Smale is bounded in X. Hence, we truncate functions Mi and study
the associated truncated problem.

Take γi as in assumption (F3) and θi ∈ R, for all i ∈ {1, . . . , N} such that M0
i < θi <

γiM
0
i

p+
i max{β1i ,β2i }

. By assumption (M), there exists τ 0
i > 0 such that Mi(τ 0

i ) = θi. Thus, by set-
ting

Mθi (τi) =

⎧
⎨

⎩
Mi(τi) for 0 ≤ τi ≤ τ 0

i ,

θi for τi ≥ τ 0
i ,

we can introduce the following auxiliary problem:

⎧
⎨

⎩
Mθi (Ai(ui))(– div(B1i (∇ui)) + B2i (ui)) = |ui|si(x)–2ui + λFui (x, u) in �,

N · Mθi (Ai(ui))B1i (∇ui) = |ui|�i(x)–2ui on ∂�;
(3.1)

for 1 ≤ i ≤ n, where Ai, Bi, Fui , and λ are as in Sect. 1. By assumption (M), we also know
that

M
0
i ≤ Mθi (τi) ≤ θi <

γiM
0
i

p+
i max{β1i ,β2i}

, for all τi ≥ 0, 1 ≤ i ≤ n. (3.2)

Now, the next step is to prove that the auxiliary problem (3.1) has a nontrivial weak solu-
tion. We obtain the following result.

Theorem 3.1 Suppose that conditions (A1)–(A4), (M), and (F1)–(F4) hold. Then there ex-
ists a constant λ� > 0, such that if λ ≥ λ�, then problem (3.1) has at least one nontrivial
solution in X.
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For the proof of Theorem 3.1, we shall need some technical results. We observe that
the auxiliary problem (3.1) has a variational structure; indeed, it is the Euler–Lagrange
equation of the functional Eθ ,λ : X → R defined as follows:

Eθ ,λ(u) =
n∑

i=1

M̂θi

(
Ai(ui)

)
–

n∑

i=1

∫

�

1
si(x)

|ui|si(x) dx

–
n∑

i=1

∫

∂�

1
�i(x)

|ui|�i(x) dσx –
∫

�

λF(x, u) dx,

where M̂θi (τ ) =
∫ τ

0 Mθi (s) ds. Moreover, the functional Eθ ,λ is Fréchet differentiable in u ∈ X
and, for all v = (v1, . . . , vn) ∈ X,

〈
E′
θ ,λ(u), v

〉
=

n∑

i=1

Mθi

(
Ai(ui)

)∫

�

(
B1i (∇ui)∇vi + B2i (ui)vi

)
dx

–
n∑

i=1

∫

�

|ui|si(x)–2uivi dx

–
n∑

i=1

∫

∂�

|ui|si(x)–2uivi dσx –
n∑

i=1

∫

�

λFui (x, u)vi dx.

(3.3)

Now we prove that the functional Eθ ,λ has the geometric features required by the Mountain
Pass Theorem 2.6.

Lemma 3.2 Suppose that conditions (A1)–(A4), (M) and (F1)–(F4) hold. Then there exist
positive constants R and ρ such that Eθ ,λ(u) ≥R > 0, for all u ∈ X with ‖u‖ = ρ .

Proof For all u = (u1, . . . , un) ∈ X, we obtain, under the assumptions (A2) and (A4),

n∑

i=1

M̂θi

(
Ai(ui)

)

≥
n∑

i=1

M0
i

p+
i

∫

�

(
A1i

(|∇ui|pi(x)) + A2i

(|ui|pi(x)))dx

≥
n∑

i=1

M0
i

p+
i

∫

RN

[
1
β1i

a1i

(|∇ui|pi(x))|∇ui|pi(x) +
1
β2i

a2i

(|ui|pi(x))|ui|pi(x)
]

dx

≥
n∑

i=1

Mi

p+
i max{β1i ,β2i}

∫

RN

[
a1i

(|∇ui|pi(x))|∇ui|pi(x) + a2i

(|ui|pi(x))|ui|pi(x)]dx

≥
n∑

i=1

M0
i min{min{k0

1i
, k0

2i
}, min{k2

1i
, k2

2i
}}

p+
i max{β1i ,β2i}

(
ρ1,pi(x)(ui) + K

(
k3

i
)
ρ1,qi(x)(ui)

)
.

Hence, by using assumption (F4), and relations (2.2)–(2.3), we have

Eθ ,λ(u)

≥
n∑

i=1

M0
i min{min{k0

1i
, k0

2i
}, min{k2

1i
, k2

2i
}}

p+
i max{β1i ,β2i}

(
min

{‖ui‖p–
i

1,pi(x),‖ui‖p+
i

1,pi(x)
}
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+ K
(
k3

i
)

min
{‖ui‖q–

i
1,qi(x),‖ui‖q+

i
1,qi(x)

})
–

n∑

i=1

1
s–

i
max

{‖ui‖s–
i

Lsi(x)(�)
,‖ui‖s+

i
Lsi(x)(�)

}

–
n∑

i=1

1
�–

i
max

{‖ui‖�
–
i

L�i(x)(∂�)
,‖ui‖�

+
i

L�i(x)(∂�)

}
–

n∑

i=1

λmax
{‖ui‖w–

i
Lwi(x)(�)

,‖ui‖w+
i

Lwi(x)(�)

}
.

By the Sobolev Embedding Theorem and taking 0 < ‖u‖ = max1≤i≤n{‖ui‖1,pi(x) + K(k3
i ) ×

‖ui‖1,qi(x)} = ρ < 1, there exist positive constants c1i , c2i , c3i, c4i, and c5i such that

Eθ ,λ(u) ≥
n∑

i=1

c1i

(‖ui‖q+

1,pi(x) + K
(
k3

i
)‖ui‖q+

1,qi(x)
)

–
n∑

i=1

c2i‖ui‖s–
i

i –
n∑

i=1

c3i‖ui‖�
–
i

i –
n∑

i=1

c4i‖ui‖w–
i

i

≥
n∑

i=1

(
c5i‖ui‖q+

i
i – c2i‖ui‖s–

i
i – c3i‖ui‖�

–
i

i – c4i‖ui‖w–
i

i
)
.

Since q+
i < w–

i < inf{s–
i ,�–

i }, there exists a positive constant R such that Eθ ,λ(u) ≥ R > 0,
with ‖u‖ = ρ . �

Lemma 3.3 Suppose that conditions (A1)–(A4), (M), and (F4) hold. Then for every positive
function λ, there exists a nonnegative function e ∈ X, independent of λ, such that ‖z‖ > R
and Eθ ,λ(z) < 0.

Proof By the assumptions (A1) and (A4), for all δ > 0 and u ∈ X, we have

n∑

i=1

M̂θi

(
Ai(δui)

)

=
n∑

i=1

∫ Ai(δui)

0
Mθ ,i(s) ds ≤

n∑

i=1

θiAi(δui)

≤
n∑

i=1

θi

∫

�

1
pi(x)

(A1i

(∣∣∇(δui)
∣∣pi(x) + A2i

(|δui|pi(x)))dx

≤
n∑

i=1

θi

∫

�

(
max{k1

1i
, k1

2i
}

pi(x)
(∣∣∇(δui)

∣∣pi(x) + |δui|pi(x))

+
k3

i
qi(x)

(∣∣∇(δui)
∣
∣qi(x) + |δui|qi(x))

)
dx

≤
n∑

i=1

θi

(
max{k1

1i
, k1

2i
}

p–
i

max
{‖ui‖p–

i
1,pi(x),‖ui‖p+

i
1,pi(x)

}
+

k3
i

q+
i

max
{‖ui‖q–

i
1,qi(x),‖ui‖q+

i
1,qi(x)

}
)

.

By this inequality and assumption (F4), we have, for e = (e1, . . . , en) ∈ X \ {(0, . . . , 0)} and
each δ > 1,

Eθ ,λ(δe) =
n∑

i=1

M̂i
(
Ai(δei)

)
–

n∑

i=1

∫

�

1
si(x)

|δei|si(x) dx
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–
n∑

i=1

∫

∂�

1
�i(x)

|δei|�i(x) dσx – λ

∫

�

F(x, δe) dx

≤
n∑

i=1

[
θiδ

q+
i

(
max{k1

1i
, k1

2i
}

p–
i

max
{‖ei‖p–

i
1,pi(x),‖ei‖p+

i
1,pi(x)

}

+
k3

i
q+

i
max

{‖ei‖q–
i

1,qi(x),‖ei‖q+
i

1,qi(x)
})

–
δs–

i

s–
i

min
{‖ei‖s–

i
si(x),‖ei‖s+

i
si(x)

}

–
δ�

–
i

�–
i

min
{‖ei‖�

–
i
�i(x),‖ei‖�

+
i
�i(x)

}
– δw–

i min
{‖ei‖w–

i
wi(x),‖ei‖w+

i
wi(x)

}
]

,

which tends to –∞ as δ → +∞ since min{s–
i ,�–

i } > w–
i > q+

i . So, the lemma is proven by
choosing z = δ∗e with δ∗ > 0 sufficiently large. �

Now, by the Mountain Pass Theorem 2.6 without the Palais–Smale condition, we get
a sequence {um}m∈N ⊂ X such that Eθ ,λ(um) → cθ ,λ and E′

θ ,λ(um) → 0, where cθ ,λ :=
infφ∈� maxδ∈[0,1] Eλ(φ(δ)), and

� =
{
φ : [0, 1] → X continuous : φ(0) = (0, . . . , 0), Eθ ,λ

(
φ(1)

)
< 0

}
.

Lemma 3.4 Suppose that conditions (A1)–(A2), (M), and (F4) hold. Then limλ→+∞ cθ ,λ = 0.

Proof Let z = (z1, . . . , zn) ∈ X be the function given by Lemma 3.3. Then limδ→∞ Eθ ,λ(δz) =
–∞, for each λ > 0, so it follows that there exists δλ > 0 such that Eθ ,λ(δλz) = maxδ≥0 Eθ ,λ(δz).
Hence, 〈E′

θ ,λ(δλz), δλz〉 = 0, so it follows by relation (3.3) that

n∑

i=1

Mθi

(
Ai(δλzi)

)∫

�

(
a1i

(∣∣∇(δλzi)
∣
∣pi(x))∣∣∇(δλzi)

∣
∣pi(x) + a2i

(|δλzi|pi(x))|δλzi|pi(x))dx

=
n∑

i=1

∫

�

|δλzi|si(x) dx

+
n∑

i=1

∫

∂�

|δλzi|�i(x) dσx +
n∑

i=1

λδλ

∫

�

Fui (x, δλz)zi dx.

(3.4)

By construction, zi ≥ 0 a.e. in �, for all i ∈ {1, 2, . . . , n}. Therefore, by assumption (F3) and
relation (3.4), we get

n∑

i=1

Mθi

(
Ai(δλzi)

)∫

�

(
a1i

(∣∣∇(δλzi)
∣∣pi(x))∣∣∇(δλzi)

∣∣pi(x) + a2i

(|δλzi|pi(x))|δλzi|pi(x))dx

≥
n∑

i=1

∫

�

|δλzi|si(x) dx +
n∑

i=1

∫

∂�

|δλzi|�i(x) dσx.

(3.5)

On the other hand, by assumption (A2) and inequalities (2.2), (2.3), we get

n∑

i=1

Mθi

(
Ai(δλzi)

)∫

�

(
a1i

(∣∣∇(δλzi)
∣
∣pi(x))∣∣∇(δλzi)

∣
∣pi(x) + a2i

(|δλzi|pi(x))|δλzi|pi(x))dx

≤
n∑

i=1

θi

(∫

�

(
a1i

(∣∣∇(δλzi)
∣∣pi(x))∣∣∇(δλzi)

∣∣pi(x) + a2i

(|δλzi|pi(x))|δλzi|pi(x))dx
)
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≤
n∑

i=1

θi

(
max

{
k1

1i
, k1

2i

}∫

�

(∣∣∇(δλzi)
∣∣pi(x) + |δλzi|pi(x))dx (3.6)

+ k3
i

∫

�

(∣∣∇(δλzi)
∣
∣qi(x) + |δλzi|qi(x))dx

)

≤
n∑

i=1

θi
(
max

{
k1

1i
, k1

2i

}
max

{‖δλzi‖p–
i

1,pi(x),‖δλzi‖p+
i

1,pi(x)
}

+ k3
i max

{‖δλzi‖q–
i

1,qi(x),‖δλzi‖q+
i

1,qi(x)
})

.

Therefore, from relations (3.5), (3.6), and inequalities (2.2), (2.3), we obtain

n∑

i=1

θi
(
max

{
k1

1i
, k1

2i

}
max

{‖δλzi‖p–
i

1,pi(x),‖δλzi‖p+
i

1,pi(x)
}

+ k3
i max

{‖δλzi‖q–
i

1,qi(x),‖δλzi‖q+
i

1,qi(x)
})

≥
n∑

i=1

∫

�

|δλzi|si(x) dx +
n∑

i=1

∫

∂�

|δλzi|si(x) dσx

≥
n∑

i=1

min
{‖δλzi‖s–

i
Lsi(x)(�)

,‖δλzi‖s+
i

Lsi(x)(�)

}

+
n∑

i=1

min
{‖δλzi‖�

–
i

L�i(x)(∂�)
,‖δλzi‖�

+
i

L�i(x)(∂�)

}
.

(3.7)

Next, we shall show that the sequence {δλ} is bounded in R. Indeed, we suppose by con-
tradiction that {δλ} is unbounded. Then there is a subsequence denoted by {δλm}, with
δλm → ∞, as m → +∞. Then by relation (3.7),

n∑

i=1

(
θi max{k1

1i
, k1

2i
}‖zi‖p+

i
1,pi(x)

δ
q+

M–p+
i

λm

+ k3
i θi‖zi‖q+

i
1,qi(x)

)

≥
n∑

i=1

δ
s–
i –q+

M
λ ‖zi‖s–

Lsi(x)(�)
+

n∑

i=1

δ
�–

i –q+
M

λ ‖zi‖�
–
i

L�i(x)(∂�)
,

(3.8)

where q+
M = max1≤i≤n{q+

i }. Therefore, when taking the limit as m → +∞, we get a contra-
diction because p+

i < q+
M < inf{s–

i ,�–
i }. Thus, we can conclude that {δλ} is indeed bounded

in R.
Consider a sequence {λm}m∈N such that λm → +∞ and let δ0 ≥ 0 be such that δλm →

δ0, as m → +∞. Then by continuity of Mθi , {Mθi (Ai(δλm zi))}m∈N is bounded, for all i ∈
{1, 2, . . . , n}. Therefore, there exists C > 0 such that

n∑

i=1

Mθi

(
Ai(δλm zi)

)∫

�

(
a1i

(|∇δλm zi|pi(x))|∇δλm zi|pi(x) + a2i

(|δλm zi|pi(x))|δλm zi|pi(x))dx

≤ C, for all m ∈N,
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so by inequality (3.5), we have

n∑

i=1

∫

�

|δλm zi|si(x) dx +
n∑

i=1

∫

∂�

|δλm zi|�i(x) dσx

+
n∑

i=1

∫

�

λδλm Fui (x, δλm z)zi dx ≤ C, for all m ∈N.

(3.9)

We shall prove that δ0 = 0. Indeed, if δ0 > 0, then by assumption (F2), there exist positive
functions bij (1 ≤ i, j ≤ n), such that

∣∣Fξi (x, ξ1, . . . , ξn)
∣∣≤

n∑

j=1

bij (x)|ξj|�ij –1, where 1 < �ij < inf
x∈�hi(x), for all x ∈�.

Thus, by the Lebesgue Dominated Convergence Theorem, we get

n∑

i=1

∫

�

λδλm Fui (x, δλm z)zi dx →
n∑

i=1

∫

�

λδ0Fui (x, δ0z)zi dx, as m → +∞.

By remembering that λm → +∞, we find

n∑

i=1

∫

�

|δλm zi|si(x) dx +
n∑

i=1

∫

∂�

|δλm zi|�i(x) dσx

+
n∑

i=1

∫

�

λδλm Fui (x, δλm z)zi dx → +∞, as λm → +∞.

This contradicts the fact (3.9), so we can deduce that δ0 = 0.
Next, we consider the following path φ∗(δ) = δz for δ ∈ [0, 1] which belongs to �. By

using assumption (F3), we obtain

0 < cθ ,λm ≤ max
δ∈[0,1]

Eθ ,λm

(
φ∗(δ)

)≤ Eθ ,λ(δλm z) ≤
n∑

i=1

M̂θi

(
Ai(δλm zi)

)
. (3.10)

On the other hand, since Mθi are continuous for all 1 ≤ i ≤ n, and δ0 = 0, we get
limm→+∞ M̂θi (Ai(δλm zi)) = 0, for all i ∈ {1, 2, . . . , n}. Thus, from relation (3.10), we get
limm→+∞ cθ ,λm = 0. Moreover, by using also assumption (F3), we verify that the sequence
{cθ ,λ}λ is monotone. Therefore, we have completed the proof. �

Lemma 3.5 If {um = (u1m , u2m , . . . , unm )}m∈N is a Palais–Smale sequence for Eθ ,λ, then
{um}m is bounded in X.

Proof Let {um = (u1m , u2m , . . . , unm )}m be a (PS)c for Eθ ,λ. Then we have

Eθ ,λ(um) =
n∑

i=1

M̂θi

(
Ai
(
uim (x)

))
–

n∑

i=1

∫

�

1
si(x)

∣∣uim (x)
∣∣si(x) dx
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–
n∑

i=1

∫

∂�

1
�i(x)

∣∣uim (x)
∣∣�i(x) dσx –

∫

�

λF(x, um) dx

= c + om(1).

On the other hand, for all v = (v1, v2, . . . , vn) ∈ X, we have

〈
E′
θ ,λ(um), v

〉
=

n∑

i=1

Mθi

(
Ai(uim )

)∫

�

(
B1i (∇uim )∇uim∇vi + B2i (uim )uim vi

)
dx

–
n∑

i=1

∫

�

|uim |si(x)–2uim vi dx

–
n∑

i=1

∫

∂�

|uim |si(x)–2uim vi dσx –
n∑

i=1

∫

�

λFui (x, um)vi dx

= om(1).

(3.11)

Thus,

Eθ ,λ(um) –
〈
E′
θ ,λ(um),

um

γ

〉

≥
n∑

i=1

(
M̂θi

(
Ai(uim )

)
–

1
γi

Mθi

(
Ai(uim )

)∫

�

(
a1i

(|∇uim |pi(x))|∇uim |pi(x)

+ a2i

(|uim |pi(x))|uim |pi(x))dx
)

+
n∑

i=1

(
1
γi

–
1
s–

i

)∫

�

|uim |si(x) dx

+
n∑

i=1

(
1
γi

–
1
�–

i

)∫

∂�

|uim |�i(x) dσx + λ

∫

�

[ n∑

i=1

uim
γi

Fui (x, um) – F(x, um)

]

dx,

where um
γ

= ( u1m
γ1

, u2m
γ2

, . . . , unm
γn

). Therefore, by using assumptions (A4), (M), and (F3), we
can conclude that

Eθ ,λ(um) –
〈
E′
θ ,λ(um),

um

γ

〉

≥
n∑

i=1

M
0
i

(
θi

p+
i

∫

�

(
A1i

(|∇uim |pi(x)) + A2i

(|uim |pi(x)))dx

–
1
γi

∫

�

(
a1i

(|∇uim |pi(x))|∇uim |pi(x) + a2i

(|uim |pi(x))|uim |pi(x))dx
)

≥
n∑

i=1

(
θiM

0
i

p+
i max{β1i ,β2i}

–
M0

i
γi

)

×
∫

�

(
a1i

(|∇uim |pi(x))|∇uim |pi(x) + a2i

(|uim |pi(x))|uim |pi(x))dx.
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By using assumption (A4), we can find positive constants Ci1 and Ci2 such that

Eθ ,λ(um) –
〈
E′
θ ,λ(um),

um

γ

〉

≥
n∑

i=1

[
Ci1

(∫

�

(|∇uim |pi(x) + |uim |pi(x))dx
)

+ Ci2K
(
k3

i
)
(∫

�

(|∇uim |qi(x) + |uim |qi(x))dx
)]

.

(3.12)

To prove the assertion, we assume by contradiction that ‖uim‖i = ‖ui‖1,pi(x) + K(k3
i ) ×

‖ui‖1,qi(x) → +∞. So, if k3
i = 0, then by using relation (2.2), we have Eθ ,λ(um) – 〈E′

θ ,λ(um),
um
γ

〉 ≥∑n
i=1 Ci‖uim‖p–

i
i . Thus, we can find c + om(1) ≥∑n

i=1 Ci‖uim‖p–
i

i . Since p–
i > 1, we ob-

tain a contradiction. Hence, we deduce that {um} is bounded in X.
When k3

i > 0, we have three cases to analyze:
(i) ‖uim‖1,pi(x) → +∞ and ‖uim‖1,qi(x) → +∞, as m → +∞,

(ii) ‖uim‖1,pi(x) → +∞ and ‖uim‖1,qi(x) is bounded,
(iii) ‖uim‖1,pi(x) is bounded and ‖uim‖1,qi(x) → +∞.

In the case (i), for m sufficiently large, we have ‖uim‖q–

1,qi(x) ≥ ‖uim‖p–

1,qi(x). Hence, by inequal-
ity (3.12), we get

c + om(1) ≥
n∑

i=1

[
C1i‖uim‖p–

i
1,pi(x) + C2iK

(
k3

i
)‖uim‖q–

i
1,qi(x)

]

≥
n∑

i=1

[
C1i‖uim‖p–

i
1,pi(x) + C2iK

(
k3

i
)‖uim‖p–

i
1,qi(x)

]

≥
n∑

i=1

C3i‖uim‖p–
i

i ,

and this is a contradiction. In the case (ii), by using inequality (3.12), we conclude that

c + om(1) ≥
n∑

i=1

C1i‖uim‖p–
i

1,pi(x),

Hence, we also get a contradiction when limit as m → +∞ because p–
i > 1. In the last case

(iii), the proof is similar as in the case (ii), so we shall omit it. Finally, we can deduce that
{um} is a bounded sequence in X. �

Next, we shall prove that the auxiliary problem (3.1) possesses at least one nontrivial
weak solution.

Proof of Theorem 3.1 By Lemmas 3.2 and 3.3, the functional Eθ ,λ satisfies the geomet-
ric structure required by the Mountain Pass Theorem 2.6. Now, it remains to check
the validity of the Palais–Smale condition. Let {um = (u1m , u2m, . . . , unm )}m∈N be a Palais–
Smale sequence at the level cθ ,λ in X. Then Lemma 3.4 implies that there exists λ∗ such
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that

cθ ,λ < min

{
min

1≤i≤n

{(
1
γi

–
1

�i
–
C1

hi

)
inf
j∈J1

i

{
Ti

N
xj

(Di)N/hi(xj)
}
}

,

min
1≤i≤n

{(
1
γi

–
1

si
–
C2

hi

)
inf
j∈J2

i

{
SN

i (Di)N/hi(xj)
}}}

,

where Tixj and Si are respectively given by relations (2.10) and (2.14), and

Di = M
0
i
(
min

{
k0

1i
, k0

2i

}(
1 – K

(
k3

i
)

+ K
(
k3

i
)

min
{

k2
1i

, k2
2i

}))
.

So, there exists a strongly convergent in X subsequence. Indeed, applying Lemma 3.5,
{um}m∈N is bounded in X, so, passing to a weakly convergent in X subsequence, still de-
noted by {um}m, there exist positive bounded measures μi, νi ∈ � and νi ∈ ∂� such that
|∇uim |hi(x) ⇀ μi, |uim |si(x) ⇀ νi, and |uim |�i(x) ⇀ νi. Hence, by Theorems 2.8 and 2.9, if
⋃n

i=1(J1
i ∪ J2

i ) = ∅, then uim ⇀ ui in Lsi(x)(�) and uim ⇀ ui in L�i(x)(∂�), for all 1 ≤ i ≤ n. Let
us prove that if

cθ ,λ < min

{
min

1≤i≤n

{(
1
γi

–
1

�i
–
C1

hi

)
inf
j∈J1

i

{
Ti

N
xj

(Di)N/hi(xj)
}
}

,

min
1≤i≤n

{(
1
γi

–
1

si
–
C2

hi

)
inf
j∈J2

i

{
SN

i (Di)N/hi(xj)
}}}

and {um}m∈N is a Palais–Smale sequence with energy level cθ ,λ, then J1
i ∪ J2

i = ∅, for all
1 ≤ i ≤ n. In fact, suppose there is an i ∈ {1, . . . , n} such that J1

i ∪ J2
i is nonempty, then

J1
i �= ∅ or J2

i �= ∅.
First, we consider the case J1

i �= ∅. Let xj ∈ C1
hi

be a singular point of the measures μi

and νi. Consider ψ ∈ C∞
0 (RN ) such that 0 ≤ ψ(x) ≤ 1, ψ(0) = 1, and suppψ ⊂ B(0, 1). We

consider, for each j ∈ J1
i and any ε > 0, the functions ψj,ε := ψ( x–xj

ε
), for all x ∈ R

N . Notice
that ψj,ε ∈ C∞

0 (RN , [0, 1]), |∇ψj,ε |∞ ≤ 2
ε

, and

ψj,ε(x) =

⎧
⎨

⎩
1, x ∈ B(xj, ε),

0, x ∈R
N \ B(xj, 2ε).

Since {uim}m is bounded in W 1,hi(x)(�)∩W 1,pi(x)(�), the sequence {uimψj,ε} is also bounded
in W 1,hi(x)(�) ∩ W 1,pi(x)(�). So, by relation (3.11), we obtain 〈E′

θ ,λ(u1m , . . . , uim , . . . , unm ),
(0, . . . , uimψj,ε , . . . , 0)〉 → 0 as m → +∞. Therefore, we have, as m → +∞,

〈
E′
θ ,λ(um)(0, . . . , uimψj,ε , . . . , 0)

〉

= Mθi

(
Ai(uim )

)∫

�

(
a1i

(|∇uim |pi(x))|∇uim |pi(x)–2∇uim∇(uimψj,ε)

+ a2i

(|uim |pi(x))|uim |pi(x)–2uim (uimψj,ε)
)

dx –
∫

�

|uim |si(x)–2uim (uimψj,ε) dx
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–
∫

∂�

|uim |�i(x)–2uim (uimψj,ε) dσx –
∫

�

λFui (x, um)uimψj,ε dx

→ 0,

and so

Mθi

(
Ai(uim )

)∫

�

a1i

(|∇uim |pi(x))|∇uim |pi(x)–2∇uim∇ψj,εuim dx

=
∫

�

|uim |si(x)ψj,ε dx +
∫

∂�

|uim |�i(x)ψj,ε dσx

– Mθi

(
Ai(uim )

)∫

�

(
a1i

(|∇uim |pi(x))|∇uim |pi(x)

+ a2i

(|uim |pi(x))|uim |pi(x))ψj,ε dx

+
∫

�

λFui (x, um)uimψj,ε dx + om(1).

(3.13)

Next, we shall prove that

lim
ε→0

{
lim sup
m→+∞

Mθi

(
Ai(uim )

)∫

�

ai
(|∇uim |pi(x))|∇uim |pi(x)–2∇uim∇ψj,εuim dx

}
= 0. (3.14)

Notice that, due to assumption (A2), it suffices to show that

lim
ε→0

{
lim sup
m→+∞

Mθi

(
Ai(uim )

)∫

�

|∇uim |pi(x)–2∇uim∇ψj,εuim dx
}

= 0 (3.15)

and

lim
ε→0

{
lim sup
m→+∞

Mθi

(
Ai(uim )

)∫

�

|∇uim |qi(x)–2∇uim∇ψj,εuim dx
}

= 0. (3.16)

First, by applying Hölder inequality, we obtain

∣∣∣
∣

∫

�

|∇uim |pi(x)–2∇uim∇ψj,εuim dx
∣∣∣
∣≤ 2‖|∇uim |pi(x)–1‖

L
pi(x)

pi(x)–1 (�)
‖∇ψj,εuim‖Lpi(x)(�),

where, since {uim} is bounded, the real-valued sequence ‖|∇uim |pi(x)–1‖
L

pi(x)
pi(x)–1 (�)

is also

bounded, thus there exists a positive constant Ci such that

∣∣
∣∣

∫

�

|∇uim |pi(x)–2∇uim∇ψj,εuim dx
∣∣
∣∣≤ Ci‖∇ψj,εuim‖Lpi(x)(�).

Moreover, the sequence {uim} is bounded in W 1,pi(x)(B(xj, 2ε)), so there is a subsequence,
again denoted by {uim}, converging weakly to ui in Lpi(x)(B(xj, 2ε)). Therefore,

lim sup
m→+∞

∣∣
∣∣

∫

�

|∇uim |pi(x)–2∇uim∇ψj,εuim dx
∣∣
∣∣

≤ Ci‖∇ψj,εui‖Lpi(x)(�)
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≤ 2Ci lim sup
ε→0

∥∥|∇ψj,ε|pi(x)∥∥
L

(
p∗

i (x)
pi(x) )′

(B(xj ,2ε))

∥∥|ui|pi(x)∥∥
L

p∗
i (x)

pi(x) (B(xj ,2ε))

≤ 2Ci lim sup
ε→0

∥∥|∇ψj,ε|pi(x)∥∥
L

N
pi(x) (B(xj ,2ε))

∥∥|ui|pi(x)∥∥
L

N
N–pi(x) (B(xj ,2ε))

.

Note that

∫

B(xj ,2ε)

(|∇ψj,ε|pi(x)) N
pi(x) dx =

∫

B(xj ,2ε)
|∇ψj,ε|N dx ≤

(
2
ε

)N

meas
(
B(xj, 2ε)

)
=

4N

N
ωN ,

where ωN is the surface area of the N-dimensional unit sphere. Since

∫

B(xj ,2ε)

(|ui|pi(x)) N
N–pi(x) dx → 0, when ε → 0,

we obtain that ‖∇ψj,εui‖Lpi(x)(�) → 0, which implies

lim
ε→0

{
lim sup
n→+∞

∣
∣∣∣

∫

�

|∇uim |pi(x)–2∇uim∇ψj,εuim dx
∣
∣∣∣

}
= 0. (3.17)

Since the sequence {uim} is bounded in W 1,hi(x)(�) ∩ W 1,pi(x)(�), we may assume that
Ai(uim ) → ξi ≥ 0, as m → +∞. Note that Mi(ξi) is is continuous, so we have Mi(Ai(uim )) →
Mi(ξi) ≥ M0

i > 0, as m → +∞. Therefore, by relation (3.17), we obtain

lim
ε→0

{
lim sup
m→+∞

Mi
(
Ai(uim )

)∫

�

|∇uim |pi(x)–2∇uim∇ψj,εuim dx
}

= 0. (3.18)

Analogously, we can verify relation (3.16). Hence, we have completed the proof of relation
(3.14). Similarly, we can also obtain

lim
ε→0

∫

�

λFui (x, um)ψj,εuim dx = 0, as m → +∞. (3.19)

By applying Hölder inequality, assumption (F2), and the fact that 0 ≤ψj,ε ≤ 1, we have

lim
ε→0

∫

�

λFui (x, um)ψj,εuim dx

≤ lim
ε→0

λ

∫

�

( n∑

j=1

bij (x)|ujm|rij –1
)

ψj,εuim dx

≤ lim
ε→0

c
∫

�

( n∑

j=1

bij (x)|uj|rij –1
)

|ψj,εuim |dx

≤ lim
ε→0

c1

( n∑

j=1

|bij |αij (x)
∥∥|ujm|rij –1∥∥

L
q∗

j (x)
(�)

‖ψj,εuim‖
Lq∗

i (x)(�)

)

.
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This yields

lim
ε→0

∫

�

λFui (x, um)ψj,εuim dx

≤ lim
ε→0

c1

( n∑

j=1

‖bij‖L
αij (x)

(B(xj ,2ε))
‖ujm‖rij –1

Lqj(x)(B(xj ,2ε))

)

‖uim‖Lqi(x)(B(xj ,2ε)),

and the last term on the right-hand side goes to zero, because

n∑

j=1

‖bij‖L
αij (x)

(B(xj ,2ε))
‖uj‖

rij –1

Lqj(x)(B(xj ,2ε))
< ∞.

Therefore, we have completed the proof of relation (3.19). On the other hand, we have

lim
ε→0

∫

�

ψj,ε dμij = μijψ(0) and lim
ε→0

∫

∂�

ψj,ε dνij = νijψ(0),

and since C1
hi

∩ C2
hi

= ∅, for ε > 0 sufficiently small, we have

∫

�

|uim |pi(x)ψj,ε dx →
∫

�

|ui|pi(x)ψj,ε dx,
∫

�

|uim |qi(x)ψj,ε dx →
∫

�

|ui|qi(x)ψj,ε dx,
∫

�

|uim |si(x)ψj,ε dx →
∫

�

|ui|si(x)ψj,ε dx,

hence, when ε → 0,

∫

�

|ui|pi(x)ψj,ε dx → 0,
∫

�

|ui|qi(x)ψj,ε dx → 0,
∫

�

|ui|si(x)ψj,ε dx → 0.

The function ψj,ε has compact support, so letting m → +∞ and ε → 0 in relation (3.13),
we get from relations (3.14)–(3.19),

0 = – lim
ε→0

[
lim sup
m→+∞

(
Mθi

(
Ai(uim )

)∫

�

(
a1i

(|∇uim |pi(x))|∇uim |pi(x)

+ a2i

(|uim |pi(x))|uim |pi(x))ψj,ε dx
)]

+ νij

≤ –M0
i lim
ε→0

[
lim sup
m→+∞

(∫

�

(
a1i

(|∇uim |pi(x))|∇uim |pi(x)

+ a2i

(|uim |pi(x))|uim |pi(x))ψj,ε dx
)]

+ νij

≤ –M0
i lim
ε→0

[
lim sup
m→+∞

(∫

�

(
min

{
k0

1i
, k0

2i

}(|∇uim |pi(x) + |uim |pi(x))

+ K
(
k3

i
)

min
{

k2
1i

, k2
2i

}(|∇uim |qi(x) + |uim |qi(x)))ψj,ε dx
)]

+ νij .

(3.20)
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Note that, when k3
i = 0, we have hi(x) = pi(x). Hence, by using relation (2.8), we have

0 ≤ –M0
i min

{
k0

1i
, k0

2i

}
lim
ε→0

∫

�

ψj,ε dμi + νij

≤ –M0
i min

{
k0

1i
, k0

2i

}
μij – M

0
i min

{
k0

1i
, k0

2i

}
lim
ε→0

∫

�

|∇ui|pi(x)ψj,ε dx + νij .

By applying the Lebesgue Dominated Convergence Theorem, we get

lim
ε→0

∫

�

|∇ui|pi(x)ψj,ε dx = 0.

Therefore,

M
0
i min

{
k0

1i
, k0

2i

}
μij ≤ νij . (3.21)

On the other hand, if k3
i > 0, then hi(x) = qi(x) Therefore, it follows from relations (2.10)

and (3.20) that

0 ≤ –M0
i lim
ε→0

[
lim sup

m→0

(∫

�

K
(
k3

i
)

min
{

k2
1i

, k2
2i

}|∇uim |qi(x)ψj,ε dx
)]

+ νij

≤ –M0
i K
(
k3

i
)

min
{

k2
1i

, k2
2i

}
lim
ε→0

∫

�

ψj,ε dμi + νij

≤ –M0
i K
(
k3

i
)

min
{

k2
1i

, k2
2i

}
μij – M

0
i K
(
k3

i
)

min
{

k2
1i

, k2
2i

}
lim
ε→0

∫

�

|∇ui|pi(x)ψj,ε dx + νij .

By applying the Lebesgue Dominated Convergence Theorem again, we get

lim
ε→0

∫

�

|∇ui|qi(x)ψj,ε dx = 0.

Hence,

M
0
i K
(
k3

i
)

min
{

k2
1i

, k2
2i

}
μij ≤ νij . (3.22)

By combining relations (3.21) and (3.22), we have M0
i ((1 – K(k3

i )) min{k0
1i

, k0
2i
} + K(k3

i ) ×
min{k2

1i
, k2

2i
})μij ≤ νij . By using relation (2.10), we obtain

Tixjν

1
h∗

i (xj)
ij ≤ μ

1
hi(xj)
ij ≤

(
νij

M0
i ((1 – K(k3

i )) min{k0
1i

, k0
2i
} + K(k3

i ) min{k2
1i

, k2
2i
})
) 1

hi(xj)
.

which implies that νij = 0 or νij ≥ Ti
N
xj

(M0
i (min{k0

1i
, k0

2i
}(1 – K(k3

i ) + K(k3
i ) min{k2

1i
,

k2
2i
})))N/hi(xj), for all j ∈ J1

i . On the other hand, by using assumptions (M) and (F3), we have

cθ ,λ = Eθ ,λ(um) –
〈
E′
θ ,λ(um),

um

γ

〉

=
n∑

i=1

M̂θi

(
Ai(uim )

)
–

n∑

i=1

∫

�

1
si(x)

|uim |si(x) dx
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–
n∑

i=1

∫

∂�

1
�i(x)

|uim |�i(x) dσx –
∫

�

λF(x, um) dx

–
n∑

i=1

Mθi

(
Ai(uim )

)∫

�

1
γi

(
a1i

(|∇uim |pi(x))|∇uim |pi(x) + a2i

(|uim |pi(x))|uim |pi(x))dx

+
n∑

i=1

∫

�

1
γi

|uim |si(x) dx +
n∑

i=1

∫

∂�

1
γi

|uim |�i(x) dσx

+
n∑

i=1

∫

�

λ

γi
Fui (x, um)uim dx + om(1)

≥
n∑

i=1

θiM
0
i

p+
i max{β1i ,β2i}

∫

�

(
a1i

(|∇uim |pi(x))|∇uim |pi(x) + a2i

(|uim |pi(x))|uim |pi(x))dx

–
n∑

i=1

1
s–

i

∫

�

|uim |si(x) dx

–
n∑

i=1

1
�–

i

∫

∂�

|uim |�i(x) dσx –
∫

�

λF(x, um) dx

–
n∑

i=1

M0
i

γi

∫

�

(
a1i

(|∇uim |pi(x))|∇uim |pi(x) + a2i

(|uim |pi(x))|uim |pi(x))dx

+
n∑

i=1

1
γi

∫

�

|uim |si(x) dx +
n∑

i=1

1
γi

∫

∂�

|uim |�i(x) dx

+
n∑

i=1

∫

�

λ

γi
Fui (x, um)uim dx + om(1)

≥
n∑

i=1

M
0
i

(
θi

p+
i max{β1i ,β2i}

–
1
γi

)

×
∫

�

(
a1i

(|∇uim |pi(x))|∇uim |pi(x) + a2i

(|uim |pi(x))|uim |pi(x))dx

+
n∑

i=1

(
1
γi

–
1
s–

i

)∫

�

|uim |si(x) dx +
n∑

i=1

(
1
γi

–
1
�–

i

)∫

∂�

|uim |�i(x) dx

+ λ

∫

�

[ n∑

i=1

uim
γi

Fui (x, um) – F(x, um)

]

dx + om(1).

Hence, we have cθ ,λ ≥∑n
i=1( 1

γi
– 1

�–
i

)
∫
∂�

|uim |�i(x) dσx + om(1). Setting

C1
iκ =

⋃

x∈C1
hi

(
Bκ (x) ∩�

)
=
{

x ∈� : dist
(
x,C1

hi

)
< κ

}
,

as m → +∞, we obtain

cθ ,λ ≥
n∑

i=1

(
1
γi

–
1

�i
–
C1

iκ

)(∫

�

|ui|�i(x) dx +
∑

j∈J1
i

νijδxj

)
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≥
n∑

i=1

(
1
γi

–
1

�i
–
C1

iκ

)(∫

�

|ui|si(x) dx + inf
j∈J1

i

{
Ti

N
xj

(Di)N/hi(xj)
}

Card J1
i

)
,

where Di = M0
i (min{k0

1i
, k0

2i
}(1 –K(k3

i ) +K(k3
i ) min{k2

1i
, k2

2i
})). Since κ > 0 is arbitrary and �i

are continuous functions for all i ∈ {1, 2, . . . , n}, we get

cθ ,λ ≥
n∑

i=1

(
1
γi

–
1

�i
–
C1

hi

)(∫

�

|ui|si(x) dx + inf
j∈J1

i

{
Ti

N
xj

(Di)N/hi(xj)
}

Card J1
i

)
.

Suppose that
⋃n

i=1 J1
i �= ∅, then

cθ ,λ ≥ min
1≤i≤n

{(
1
γi

–
1

�i
–
C1

hi

)
inf
j∈J1

i

{
Ti

N
xj

(Di)N/hi(xj)
}}

.

Therefore, if cθ ,λ < min1≤i≤n{( 1
γi

– 1
�i–
C1

hi

) infj∈J1
i
{Ti

N
xj

(Di)N/hi(xj)}}, the set
⋃n

i=1 J1
i is empty,

which means that for all 1 ≤ i ≤ n, ‖uim‖L�i(x)(∂�) → ‖ui‖L�i(x)(∂�). Since um ⇀ u in X, we
have for all i ∈ {1, 2, . . . , n} that uim → ui strongly in L�i(x)(∂�). Next, consider J2

i �= ∅, by
the same approach for the case J1

i . We have

cθ ,λ ≥ min
1≤i≤n

{(
1
γi

–
1

si
–
C2

hi

)
inf
j∈J2

i

{
SN

i (Di)N/hi(xj)
}
}

,

where Di = M0
i (min{k0

1i
, k0

2i
}(1 – K(k3

i ) + K(k3
i ) min{k2

1i
, k2

2i
})). Hence, we deduce that

⋃n
i=1 J2

i = ∅, which means that for all 1 ≤ i ≤ n, ‖uim‖Lsi(x)(�) → ‖ui‖Lsi(x)(�). Since um ⇀ u
in X, we have uim → ui strongly in Lsi(x)(�), for all i ∈ {1, 2, . . . , n}. On the other hand, we
have

E′
θ ,λ(u1m , . . . , unm ) –

〈
E′
θ ,λ(u1k , . . . , unk ), (u1m – u1k , 0, . . . , 0)

〉

=
〈
�′

θ (u1m , . . . , unm ) –�′
θ (u1k , . . . , unk ), (u1m – u1k , 0, . . . , 0)

〉

–
〈
� ′(u1m , . . . , unm ) –� ′(u1k , . . . , unk ), (u1m – u1k , 0, . . . , 0)

〉

–
〈
ϒ ′(u1m , . . . , unm ) –ϒ ′(u1k , . . . , unk ), (u1m – u1k , 0, . . . , 0)

〉

–
〈
F ′
λ(u1m , . . . , unm ) – F ′

λ(u1k , . . . , unk ), (u1m – u1k , 0, . . . , 0)
〉
,

thus E′
θ ,λ(u1m , . . . , unm ) → 0, i.e., E′

θ ,λ(u1m , . . . , unm ) is a Cauchy sequence in X∗. Further-
more, by using Hölder inequality again, we find

〈
� ′(u1m , . . . , unm ) –� ′(u1k , . . . , unk ), (u1m – u1k , 0, . . . , 0)

〉

=
∫

�

(|u1m |s1(x)–2u1m – |u1k |s1(x)–2u1k

)
(u1m – u1k ) dx

≤ ∥
∥|u1m |s1(x)–2u1m – |u1k |s1(x)–2u1k

∥
∥

Ls′1(x)(�)
‖u1m – u1k ‖Ls1(x)(�).
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Similarly, we also have

〈
ϒ ′(u1m , . . . , unm ) –ϒ ′(u1k , . . . , unk ), (u1m – u1k , 0, . . . , 0)

〉

=
∫

∂�

(|u1m |�1(x)–2u1m – |u1k |�1(x)–2u1k

)
(u1m – u1k ) dσx

≤ ∥
∥|u1m |�1(x)–2u1m – |u1k |�1(x)–2u1k

∥
∥

L�
′
1(x)(∂�)

‖u1m – u1k ‖L�1(x)(∂�).

Since {u1m} is a Cauchy sequence in Ls1(x)(�) and L�1(x)(∂�), it follows that� ′(u1m , . . . , unm )
and ϒ ′(u1m , . . . , unm ) are Cauchy sequences in X�. Moreover, by compactness of F ′

λ, we
have

(u1m , . . . , unm ) ⇀ (u1, . . . , un) ⇒ F ′
λ(u1m , . . . , unm ) →F ′

λ(u1, . . . , un),

which means that F ′
λ(u1m , . . . , unm ) is a Cauchy sequence also in X∗. Therefore, invoking

some elementary inequalities (see, e.g., Hurtado et al. [32, Auxiliary Results]), we conclude
that for all  , ζ ∈R

N ,

⎧
⎨

⎩
| – ζ |pi(x) ≤ cpi (Bji ( ) – Bji (ζ )) · ( – ζ ) if pi(x) ≥ 2,

| – ζ |2 ≤ c(| | + |ζ |)2–pi(x)(Bji ( ) – Bji (ζ )) · ( – ζ ) if 1 < pi(x) < 2,
(3.23)

where · denotes the standard inner product in R
N . Define the subsets of � dependent

on pi by Upi := {x ∈ � : p(x) ≥ 2} and Vpi := {x ∈ � : 1 < p(x) < 2}. For i = 1, respectively
replacing  and ζ by ∇u1m and ∇u1k when j = 1, and by u1m and u1k when j = 2, in the first
line of relation (3.23), and integrating over �, we obtain

c1

∫

Upi

(|∇u1m – ∇u1k |p1(x) + |u1m – u1k |p1(x))dx

≤ 〈
�′

θ (u1m , . . . , unm ) –�′
θ (u1k , . . . , unk ), (u1m – u1k , 0, . . . , 0)

〉
.

On the other hand, by the second line of relation (3.23), we have

c2

∫

Vpi

(
σ1(x)p1(x)–2|∇u1m – ∇u1k |2 + σ2(x)p1(x)–2|u1m – u1k |2

)
dx

≤ 〈
�′

θ (u1m , . . . , unm ) –�′
θ (u1k , . . . , unk ), (u1m – u1k , 0, . . . , 0)

〉
,

where σ1(x) = (|∇u1m | + |∇u1k |) and σ2(x) = (|u1m | + |u1k |). Hence, by Hölder’s inequality
and Lemma 2.2,

∫

Vpi

(|∇u1m – ∇u1k |p1(x) + |u1m – u1k |p1(x))dx

=
∫

Vpi

σ
p1(x)(p1(x)–2)

2
1

(
σ

p1(x)(p1(x)–2)
2

1 |∇u1m – ∇u1k |p1(x))dx

+
∫

Vpi

σ
p1(x)(p1(x)–2)

2
1

(
σ

p1(x)(p1(x)–2)
2

1 |u1m – u1k |p1(x))dx
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≤ C3
∥∥σ

p1(x)(2–p1(x))
2

1
∥∥

L
2

2–p1(x) (Vpi )

∥∥σ
p1(x)(p1(x)–2)

2
1 |∇u1m – ∇u1k |p1(x)∥∥

L
2

p1(x) (Vpi )

+ C4
∥∥σ

p1(x)(2–p1(x))
2

2
∥∥

L
2

2–p1(x) (Vpi )

∥∥σ
p1(x)(p1(x)–2)

2
2 |u1m – u1k |p1(x)∥∥

L
2

p1(x) (Vpi )

≤ C5 max
{‖σ1‖( p1(x)(p1(x)–2)

2 )–

Lp1(x)(Vpi )
,‖σ1‖( p1(x)(p1(x)–2)

2 )+

Lp1(x)(Vpi )

}

× max

{(∫

Vpi

σ
p1(x)–2
1 |∇u1m – ∇u1k |2 dx

) p–
1
2

,

(∫

Vpi

σ
p1(x)–2
1 |∇u1m – ∇u1k |2 dx

) p+
1
2
}

+ C6 max
{‖σ2‖[ p1(x)(p1(x)–2)

2 ]–

Lp1(x)(Vpi )
,‖σ2‖[ p1(x)(p1(x)–2)

2 ]+

Lp1(x)(Vpi )

}

× max

{(∫

Vpi

σ
p1(x)–2
1 |u1m – u1k |2 dx

) p–
1
2

,
(∫

Vpi

σ
p1(x)–2
1 |u1m – u1k |2 dx

) p+
1
2
}

.

Since {u1m} is a bounded sequence in W 1,h1(x)(�) ∩ W 1,p1(x), we have

〈
�′

θ (u1m , . . . , unm ) –�′
θ (u1k , . . . , unk ), (u1m – u1k , 0, . . . , 0)

〉→ 0, as m, k → +∞,

hence {u1m} is a Cauchy sequence in W 1,p1(x) ∩ W 1,h1(x)(�). We argue similarly for {uim},

〈
�′

θ (u1m , . . . , uim , . . . , unm ) –�′
θ (u1k , . . . , uik , . . . , unk ), (0, . . . , uim – uik , 0, . . . , 0)

〉
,

for all i ∈ {2, . . . , n}.

Thus, we can conclude that um = (u1m , . . . , unm ) → u = (u1, . . . , un) strongly in X as m →
+∞. Therefore, we have that Eθ ,λ(u) = cθ ,λ > 0 and E′

θ ,λ(u) = 0 in X ′, i.e., u ∈ X is a weak
solution of problem (3.1). Since Eθ ,λ(u) = cθ ,λ > 0 = Eθ ,λ(0), we can conclude that u �≡ 0. �

4 Proof of the main theorem
Now we are in position to prove Theorem 1.2.

Proof Invoking Theorem 3.1, for all λ ≥ λ∗ let uλ = (u1,λ, u2,λ, . . . , un,λ) be a solution of
system (3.1). We shall prove that

there exists λ∗ ≥ λ∗ such that Ai(ui,λ) ≤ τ 0
i , for all λ≥ λ∗, (4.1)

where τ 0
i is defined as at the beginning of Sect. 3. We argue by contradiction and suppose

that there is a sequence {λm}m∈N ⊂ R such that Ai(ui,λm ) ≥ τ 0
i , for all i ∈ {1, 2, . . . , n}. By

assumption (A1) and the fact Ai(ui,λm ) ≥ τ 0
i , we get

∫

�

(
max

{
k1

1i
, k1

2i

}(|∇ui,λm |pi(x) + |ui,λm |pi(x)) + k3
i
(|∇ui,λm |qi(x) + |ui,λm |qi(x)))dx

≥ τ 0
i for all i = 1, 2, . . . , n.

(4.2)
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Since uλm = (u1,λm , . . . , un,λm ) is a critical point of the functional Eθ ,λm , we can conclude,
using assumptions (M) and (F3), that

cθ ,λm = Eθ ,λ(uλm ) –
〈
E′
θ ,λ(uλm ),

uλm

γ

〉

≥
n∑

i=1

M̂θi

(
Ai(ui,λm )

)

–
n∑

i=1

Mi
(
Ai(ui,λm )

)

×
∫

�

1
γi

(
a1i

(|∇ui,λm |pi(x))|∇ui,λm |pi(x) + a2i

(|ui,λm |pi(x))|ui,λm |pi(x))dx

≥
n∑

i=1

M0
i

p+
i max{β1i ,β2i}

×
∫

�

(
a1i

(|∇ui,λm |pi(x))|∇ui,λm |pi(x) + a2i

(|ui,λm |pi(x))|ui,λm |pi(x))dx

–
n∑

i=1

θi

γi

∫

�

(
a1i

(|∇ui,λm |pi(x))|∇ui,λm |pi(x) + a2i

(|ui,λm |pi(x))|ui,λm |pi(x))dx

≥
n∑

i=1

(
M0

i
p+

i max{β1i ,β2i}
–
θi

γi

)

×
∫

�

(
a1i

(|∇ui,λm |pi(x))|∇ui,λm |pi(x) + a2i

(|ui,λm |pi(x))|ui,λm |pi(x))dx

≥
n∑

i=1

(
M0

i
p+

i max{β1i ,β2i}
–
θi

γi

)

×
[∫

�

max
{

k0
1i

, k0
2i

}(|∇ui,λm |pi(x) + |ui,λm |pi(x))dx

+ K
(
k3

i
)

max
{

k2
1i

, k2
2i

}∫

�

(|∇ui,λm |qi(x) + |ui,λm |qi(x))dx
]

.

(4.3)

If k3
i = 0, then, using relation (4.2), we find

∫
�

(|∇ui|pi(x) + |ui|pi(x)) dx ≥ τ0
i

max{k1
1i

,k1
2i

} , thus we

have

cθ ,λ ≥
n∑

i=1

(
M0

i
p+

i max{β1i ,β2i}
–
θi

γi

)(
max{k0

1i
, k0

2i
}

max{k1
1i

, k1
2i
}
)
τ 0

i > 0.

This contradicts Lemma 3.4, because limm→+∞ cθ ,λm = 0. On the other hand, if k3
i > 0, we

multiplying relation (4.3) by max1≤i≤n{max{k1
1i

, k1
2i
} × k3

i } > 0, and, by using also relation
(4.2), we get

max
1≤i≤n

{
max

{
k1

1i
, k1

2i

}× k3
i
}

Cθ ,λ

≥
n∑

i=1

(
M0

i
p+

i max{β1i ,β2i}
–
θi

γi

)
κi

∫

�

(
max

{
k1

1i
, k1

2i

}(|∇ui,λm |pi(x) + |ui,λm |pi(x))
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+ k3
i
(|∇ui,λm |qi(x) + |ui,λm |qi(x)))dx

≥
n∑

i=1

(
M0

i
p+

i max{β1i ,β2i}
–
θi

γi

)
κiτ

0
i ,

where κi = min{max{k0
1i

, k0
2i
} × k3

i , max{k1
1i

, k1
2i
} × max{k2

1i
, k2

2i
}}. This also contradicts

Lemma 3.4 because limm→+∞ cθ ,λ = 0. Hence, we can conclude in both cases that there
exists λ∗ ≥ λ∗ such that Ai(ui,λ) ≥ τ 0

i , for all λ ≥ λ∗. So, we can find Mθi (Ai(uλ)) =
Mθi (Ai(uλ)), for all λ ≥ λ∗, which implies that Eθ ,λ(uλ) = Eλ(uλ) and E′

θ ,λ(uλ) = E′
λ(uλ),

that is, uλ is a nontrivial weak solution of the problem (1.1), for each λ≥ λ∗.
It now remains to consider the asymptotic behavior of solutions to problem (1.1). By

assumptions (A2), (A4), (M), (F3), and inequalities (2.2)–(2.3) and (3.2), arguing as above,
we obtain

cλ = cθ ,λ

≥
n∑

i=1

(
M0

i
p+

i max{β1i ,β2i}
–
θi

γi

)(
min

{
k0

1i
, k0

2i

}∫

�

(|∇ui,λ|pi(x) + |ui,λ|pi(x))dx

+ K
(
k3

i
)

min
{

k2
1i

, k2
2i

}∫

�

(|∇ui,λ|qi(x) + |ui,λ|qi(x))dx
)

≥
n∑

i=1

(
M0

i
p+

i max{β1i ,β2i}
–
θi

γi

)[
min

{
k0

1i
, k0

2i

}
min

{‖ui,λ‖p–
i

1,pi(x),‖ui,λ‖p+
i

pi(x)
}

+ K
(
k3

i
)

min
{

k2
1i

, k2
2i

}
min

{‖ui,λ‖q–
i

1,qi(x),‖ui,λ‖q+
i

1,qi(x)
}]

.

Hence, by Lemma 3.4, we get limλ→+∞ ‖uλ‖ = limλ→+∞ max1≤i≤n{‖ui‖1,pi(x) + K(k3
i ) ×

‖ui‖1,qi(x)} = 0. �

5 Some examples
In the last section, we shall exhibit some examples which are interesting from the mathe-
matical point of view and have a wide range of applications in physics and other scientific
fields that fall within the general class of systems studied in this paper, under adequate
assumptions on functions aij .

Example 5.1 Taking a1i ≡ 1 and a2i ≡ 1, we see that a1i satisfies the assumptions (A1),
(A2), and (A3), with k0

ji = k1
ji = 1, k2

ji > 0, and k3
i = 0, for all i ∈ {1, 2, . . . , n} and j = 1 or 2.

Hence, system (1.1) becomes

–Mi
(
Ai(ui)

)(
�pi(x)ui – |ui|pi(x)–2ui

)
= |ui|si(x)–2ui + λFui (x, u) in �,

Mi
(
Ai(ui)

)|∇ui|p(x)–2∇ui ·Ni = |ui|�i(x)–2ui on ∂�,
(5.1)

for 1 ≤ i ≤ n (n ∈N
∗), where

Ai(ui) =
∫

�

1
pi(x)

(|∇ui|pi(x) + |ui|pi(x))dx.

The operator �pi(x)ui := div(|∇ui|pi(x)–2∇ui) is the so-called pi(x)-Laplacian, which coin-
cides with the usual pi-Laplacian when pi(x) = pi, and with the Laplacian when pi(x) = 2.
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Example 5.2 Taking aji (ξ ) = 1 + ξ
qi(x)–pi(x)

pi(x) , we see that aji satisfies the assumptions (A1),
(A2), and (A3), with k0

ji = k1
ji = k2

ji = k3
i = 1, for all i ∈ {1, 2, . . . , n} and j = 1 or 2. Hence,

system (1.1) becomes the following (p, q)-Laplacian system

–Mi
(
Ai(ui)

)(
�pi(x)ui +�qi(x)ui –

(|ui|pi(x)–2ui + |ui|qi(x)–2ui
))

= |ui|si(x)–2ui + λFui (x, u) in �,

Mi
(
Ai(ui)

)(|∇ui|pi(x)–2∇ui + |∇ui|qi(x)–2∇ui
) ·Ni = |ui|�i(x)–2ui on ∂�,

(5.2)

for 1 ≤ i ≤ n (n ∈N
∗), where

Ai(ui) =
∫

�

(
1

pi(x)
(|∇ui|pi(x) + wi(x)|ui|pi(x)) +

1
qi(x)

(|∇ui|qi(x) + |ui|qi(x))
)

dx.

As explained in Cherfils and Il’yasov [16], the study of system (5.2) was motivated by the
following more general reaction–diffusion system:

ut = div
[
H(u)∇u

]
+ d(x, u), where H(u) = |∇u|p(x)–2 + |∇u|q(x)–2,

which has applications in biophysics (see, e.g., Fife [25], Murray [40]), plasma physics (see,
e.g., Wilhelmsson [49]), and chemical reactions design (see, e.g., Aris [4]). In these applica-
tions, u represents concentration, div[H(u)∇u] is the diffusion with a diffusion coefficient,
and the reaction term d(x, u) relates to the source and loss processes. For further details,
we refer the interested reader to, e.g., Mahshid and Razani [38], He and Li [30], and the
references therein.

We continue with other examples which are also interesting from the mathematical
point of view.

Example 5.3 Taking aji (ξ ) = 1 + ξ√
1+ξ2 and a2i ≡ 1, we see that aji satisfies the assumptions

(A1), (A2), and (A3), with k0
1i

= k0
2i

= k1
2i

= 1, k1
1i

= 2, and k3
i = 0, k2

1i
> 0, and k2

2i
> 0, for all

i ∈ {1, 2, . . . , n}. Hence, system (1.1) becomes

–Mi
(
Ai(ui)

)(
div

((
1 +

|∇ui|pi(x)
√

1 + |∇ui|2pi(x)

)
|∇ui|pi(x)–2∇ui

)
– wi(x)|ui|pi(x)–2ui

)

= |ui|si(x)–2ui + λFui (x, u) in �,

Mi
(
Ai(ui)

)
(

1 +
|∇ui|pi(x)

√
1 + |∇ui|2pi(x)

)
|∇ui|pi(x)–2∇ui ·Ni = |ui|�i(x)–2ui on ∂�,

(5.3)

for 1 ≤ i ≤ n (n ∈N
∗), where

Ai(ui) =
∫

RN

1
pi(x)

(|∇ui|pi(x) +
√

1 + |∇ui|2pi(x) + |ui|pi(x))dx.

The operator div((1 + |∇u|p(x)
√

1+|∇u|2p(x)
)|∇u|p(x)–2∇u) is said to be pi(x)-Laplacian-like or is called

a generalized capillary operator. The capillarity can be briefly explained by considering the
effects of two opposing forces: adhesion, i.e., the attractive (or repulsive) force between
the molecules of the liquid and those of the container; and cohesion, i.e., the attractive
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force between the molecules of the liquid. The study of the capillary phenomenon has
gained much attention. This increasing interest is motivated not only by the fascination in
naturally occurring phenomena, such as motion of drops, bubbles, and waves, but also by
its importance in applied fields, raging from industrial and biomedical and pharmaceutical
to microfluidic systems; for further details, we refer the interested reader to, e.g., Ni and
Serrin [41], and the references therein.

Example 5.4 Taking a1i (ξ ) = 1+ 1

(1+ξ )
pi(x)–2

pi(x)
and a2i ≡ 1, we see that aji satisfies the assump-

tions (A1), (A2), and (A3), with k0
1i

= k0
2i

= k1
2i

= 1, k1
1i

= 2, k3
i = 0, k2

1i
> 0, and k2

2i
> 0, for all

i ∈ {1, 2, . . . , n}. Hence, system (1.1) becomes

–Mi
(
Ai(ui)

)
(

div

(
|∇ui|p(x)–2∇ui +

|∇ui|p(x)–2∇ui

(1 + |∇ui|p(x))
p(x)–2

p(x)

)
– |ui|pi(x)–2ui

)

= |ui|si(x)–2ui + λFui (x, u) in �,

Mi
(
Ai(ui)

)(|∇ui|p(x)–2∇ui +
|∇ui|p(x)–2∇ui

(1 + |∇ui|p(x))
p(x)–2

p(x)

)
·Ni = |ui|�i(x)–2ui on ∂�,

(5.4)

for 1 ≤ i ≤ n (n ∈N
∗), where

Ai(ui) =
∫

RN

1
pi(x)

(|∇ui|pi(x) +
√

1 + |∇ui|2pi(x) + |ui|pi(x))dx.

Example 5.5 Taking a1i (ξ ) = 1 + ξ
qi(x)–pi(x)

pi(x) + 1

(1+ξ )
pi(x)–2

pi(x)
and a2i (ξ ) = 1 + ξ

qi(x)–pi(x)
pi(x) , we see

that a1i satisfies the assumptions (A1), (A2), (A3), and (H3), with k0
1i

= k0
2i

= k1
2i

= 1, k1
1i

= 2,
and k3

i = k2
1i

= k2
2i

= 1, for all i ∈ {1, 2, . . . , n}. Hence, system (1.1) becomes

–Mi
(
Ai(ui)

)
(
�pi(x)ui +�qi(x)ui + div

( |∇ui|pi(x)–2∇ui

(1 + |∇ui|pi(x))
pi(x)–2

pi(x)

)

–
(|ui|pi(x)–2ui + |ui|qi(x)–2ui

)
)

= |ui|si(x)–2ui + λFui (x, u) in �,

Mi
(
Ai(ui)

)(|∇ui|pi(x)–2∇ui +
|∇ui|p(x)–2∇ui

(1 + |∇ui|p(x))
p(x)–2

p(x)
+ |∇ui|qi(x)–2∇ui

)
·Ni

= |ui|�i(x)–2ui on ∂�,

(5.5)

for 1 ≤ i ≤ n (n ∈N
∗), where

Ai(ui) =
∫

�

(
1

pi(x)
(|∇ui|pi(x) + wi(x)|ui|pi(x)) +

1
qi(x)

(|∇ui|qi(x) + wi(x)|ui|qi(x))

+
1
2
(
1 + |∇ui|pi(x)) 2

pi(x)

)
dx.

On the other hand, the class of systems (1.1) can contain one model of the above diver-
gence operators, as in Examples 5.1–5.5, or many different models of divergence operators
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simultaneously, depending on the phenomenon studied. Moreover, each equation in this
class can also be degenerate or nondegenerate.
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