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Abstract
This paper introduces size-dependent modeling and investigation of the transverse
vibrational behavior of rotating thermoelastic nanobeams by means of nonlocal
elasticity theory. In the formulation, a model of thermal conductivity with two-phase
delays (DPL) was utilized. By incorporating the interactions between phonons and
electrons, this model took into account microstructural influences. Also, we have
employed the state-space approach and Laplace transform approach to solve the
governing equations, which were developed in the context of the nonlocal Eringen
model. The nanobeammaterial is subjected to a changeable temperature field
produced by the graphene tape attached to the nanobeam and connected to an
electrical source. In addition, the nanobeammaterial is fully encompassed by an
axially applied magnetic field. It has been revealed how coefficients such as the
rotational angular velocity of the nanobeam, nonlocal coefficient, voltage, electrical
resistance, and applied magnetic field influence its behavior.

Keywords: Rotating nanobeams; Thermoelasticity DPL model; Electrical source;
Graphene tape

1 Introduction
As nanofabrication technology has advanced, nano-electro-mechanical systems (NEMS)
have become more valuable in a wide range of technical fields. Because of this, it is ben-
eficial to investigate the mechanical performance of different NEMS parts [1] taking into
account its use in nanoturbines, nanomotors, rotating nanoactuators, etc. Since the advent
of nanotechnology, spinning beams have been integrated into more miniaturized and pre-
cise instruments. As rotary nanomotors with regulated ultrahigh speeds, these structures
have been designed and investigated experimentally to show how mechanical rotations
may be used to precisely modify the releasing rate of biochemicals on nanoparticles [2].
Because of its significance in rotary nanodevices and molecular motors, the unidirectional
rotation of nanobeams has been represented as nanoblades in nanoturbines [3]. This has
allowed researchers to examine the nanoscale water flow and the drag force on a rotating
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nanoscale beam. Experimental analysis may provide a more precise answer; however, it is
extremely difficult to standardize the lab conditions needed for every potential combina-
tion of tests, boundary conditions, environment, etc. [4].

Academics and engineers have shown great interest in spinning beam structures of var-
ious sizes in recent decades. In addition to their employment as rotors, blades, turbines,
etc., rotating beams have also found application in other contexts [5, 6]. Researchers have
examined the mechanical and physical properties of rotating beams, specifically their vi-
bration patterns, utilizing experimental data, theoretical foundations, modal-based fa-
tigue analysis, etc., so that these structures may be used suitably in a wide variety of
systems. Ebrahimi et al. [7] studied the wave dispersion behavior of a spinning FGMs
nanobeam using the nonlocal elasticity framework of Eringen. Through the use of the
nonlocal theory of flexibility, Narendar and Gopalakrishnan [8] demonstrated the wave
dispersion conduct of a spinning nanotube. Hoshina et al. [9] presented a method that can
rotate nanoobjects and switch the direction in which they are rotating in both macroscopic
and nanoscopic regions. Nan et al. [10] demonstrated a worldwide method for the out-of-
plane rotation of various objects, including spherical symmetry and isotropic things, by
use of an arbitrary low-energy laser. Within the nonlocal thermoelasticity concept frame-
work, Abouelregal [11] et al. demonstrated the effect that heat transfer has on the dy-
namics of a spinning nanobeam. On the framework of the Euler–Bernoulli beam idea,
the system of equations was constructed to accomplish this goal by employing extended
conduction of heat, including phase delays. Using nonlocal and nonclassical continuous
mechanics, Narendar [12] established a rotating single-walled nanotube (SWCNT) model
by simulating it as an Euler–Bernoulli beam. Rahmani et al. [13] created a GNT and RBT-
based vibrational analysis for 2D-FG spinning nanobeams with pore sizes. Further, the
2D-FG porous model and a unique hybrid approach utilizing long-range interatomic re-
sponses were created. Tho et al. [14] presented a research study of rotating beam con-
structs based on the existing literature, considering elementary geometrical defects and
electrical and magnetic influence via higher-order shear deformation concepts that have
not been thoroughly explored.

The point’s state is defined as a function of strain at that point, but interatomic re-
gions are ignored entirely in the traditional continuum theories. Due to the lack of a well-
established scientific assumption that strain is a function of size, research on nanosys-
tems based on these assumptions provides inaccurate findings. In the absence of solid
scientific assumptions, research on nanosystems provides inaccurate conclusions due to
the use of unrealistic assumptions. Because traditional continuum mechanics concepts
are not good enough for figuring out how micro- and nanostructured materials behave
mechanically, people have come up with revised elasticity models like the couple stress
(CS) [15, 16], strain gradient (SG) [17], general nonlocal (GN) [18], and Eringen’s nonlocal
(EN) [19–21] concepts as a way to fix the problem. As Eringen’s nonlocal elasticity concept
[19–21] treats a point as reliant on the state of the complete body, it provides a powerful
and accurate framework for investigating nanobeams. Eringen’s hypothesis also takes into
account the small-scale parameter, which is not inconsequential when compared to the
size of the nanostructured materials.

Various models have been proposed to explain heat transfer in elastic bodies. One of
the most famous models is the traditional parabolic diffusion model, which focuses on
the Fourier equation for heat transfer. When applying this model to some problems, it is
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expected that the increase in temperature and the vector of heat flux will occur through
a volume of matter simultaneously. This means that applying a heat flux vector to a small
portion of the material results in an infinite rate of heat diffusion throughout the medium
[22]. This model is not good enough because transient flows often happen over very short
periods. On length scales that are many orders of magnitude more considerable than mi-
cro, we can see that the thermal field has wave-like properties. The Cattaneo–Vernotte
(CV) heat transfer model was independently published by Cattaneo [23] and Vernotte
[24] in 1958. It involves a lag between the heat transfer rate and the temperature gradient.
In contrast to the Fourier transport rule, which assumes immediate heat transmission, the
CV concept does not consider this.

There have been modifications and extensions to the traditional thermoelastic concept
to account for the peculiarities of modern thermal models, such as the use of a hyperbolic
equation for heat transfer. The models put forth by Lord and Shulman (LS) [25], Green
and Lindsay (GL) [26], and Green and Naghdi (GN) [27, 28] are a few examples of these
models. Additionally, to get beyond the limitations of the Fourier law and the CV theory,
Tzou [29–31] came up with the dual-phase-lag (DPL) model. This model is based on the
time required to complete the reaction mechanisms at the micro- or nanoscale.

Blade-like structures that conduct rotational motions can be described as rotating
beams and can be found in both large practical mechanical systems (such as helicopter
blades, airplanes, and ship propellers) and nanoscale devices (such as microturbines). As
a result, it is interesting to examine the mechanical response of rotating nanobeam assem-
blies. The results of the experimental analysis may be more accurate, but standardization
of the lab conditions required for each test, including boundary conditions, surroundings,
and so on, is extremely difficult. Because of this problem, structural analysis has come to
rely on mathematical models.

It is a significant and tough endeavor to precisely predict and understand spinning
nanobeams because of their essential function in numerous nanodevices. For this study,
we modeled the thermal vibrational response of spinning nanobeams by means of the
differential form of the nonlocal theory of elasticity [19–21]. This work employs the non-
local Eringen framework to shed light on the size-dependent thermal excitation behavior
of nanobeams, as there has been no previous systematic analysis of nanobeam rotation.
Also, the impact of electric and magnetic and thermal fields on the thermomechanical
behavior of nanospinning systems under Coriolis effects will be studied and highlighted
using the thermoelasticity theory with phase delays (DPL). Maxwell’s equations are uti-
lized to compute the transverse Lorentz force that is produced by an external magnetic
field. The numerical results give an analysis of how the behavior of rotating nanobeams
is affected by small nonlocal parameters, the angular velocity of rotation, hub radius, and
thermal effects. This research may contribute to a more in-depth understanding of rotat-
ing nanobeams’ thermomechanical patterns and processes.

The developed framework was utilized to analyze the behavior of a thermoelastic rotat-
ing nanobeam that undergoes a temperature gradient induced by a sinusoidal heat source
and a uniform axial magnetic field. Moreover, a graphene ribbon that is superimposed on
the nanobeam and embedded in an electric source generates a variable temperature field.
The Laplace transform procedure has been applied to convert the time domain of differ-
ential equations into a space domain, in which the system of equations can be solved and
analytical solutions produced. It involves a numerical interpretation, allowing investiga-
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tion of the effects of spin, a nonlocal thermoelasticity model, and a magnetic field on the
performance of nanobeams. Next, we present graphical representations of the numerical
data and provide an in-depth physics analysis and interpretation.

2 Thermal nonlocal mathematical modeling
Due to the overprediction of outcomes in local theory-based analyses of tiny sizes, taking
the small-scale effect into account is essential for making accurate predictions of micro-
and nanostructures. The nonlocal Eringen model is one of the most well-known formu-
lations of continuity mechanics, and it accurately accounts for effects on smaller scales.
This allows for the prediction of the behavior of substantial nanosized objects, as opposed
to the many equations required by the conventional continuum mechanic concept. The
nonlocal stress tensor, denoted by τij, can be represented as follows, according to Eringen’s
concept of nonlocal elasticity [19–21]:

[
τij(r)

]nonlocal =
∫

V
K

(|r, r0|, ξ
)[

σij
(

r′)]local d�(r0), (1)

where σij is the conventional local stress tensor, which can be defined using the following
formula:

σij(r0) = 2μεij(r0) +
(
λεkk(r0) – γ θ (r0)

)
δij, (2)

where r0 and r are adjacent places and the stress tensor εij at these two locations is repre-
sented by

2εij =
∂ui

∂xj
+

∂uj

∂xi
. (3)

In Eqs. (1)–(3), K(|r, r0|, ξ ) is known as the kernel function or nonlocal modulus, Eu-
clidean form of the distance (neighborhood distance) is denoted by the variable |r – r0|,
ξ = e0a/l is a constant of the material that varies according to the internal and external
characteristic lengths (a and l), which is called the nonlocal scale coefficient, and the value
of the parameter e0 was found by experimentation. Also, θ = T – T0, T0 is the environmen-
tal temperature and � represents the space that the body takes up. It is possible to express
the Lamé elastic coefficients as λ = νE/(1 – 2ν)(1 + ν) and μ = E/(2 + 2ν).

Since it was difficult to use the integral constitutive connection, Eringen [20] came up
with the following solution:

τij(r) – ξ 2∇2τij(r) = σij(r0). (4)

After plugging Eq. (2) into Eq. (4), the nonlocal constitutive equations that follow are
obtained:

σij – (e0a)2∇2σij = λεkkδij + 2μεij – γ θδij. (5)

For the case where θ = 0, where no effect of temperature variation is present, we revert
to the constitutive relation for nonlocal elasticity.
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Tzou [29–31] came up with the idea of dual-phase-lag (DPL) heat conduction to account
for the fact that heat can only spread at a specific rate. According to the prediction made
using the classical Fourier heat transfer model, the thermal signal can travel at an infinitely
high speed. The following is a mathematical representation of this:

q + τq
∂q
∂t

+
τ 2

q

2
∂2q
∂t2 = –K∇θ – Kτθ

∂

∂t
(∇θ ), (6)

where τq is the phase lag of the heat flux (q) and τθ is the phase lag of the temperature
gradient (∇θ ). In addition to this, the equation for energy can be presented as

ρCE
∂θ

∂t
+ γ T0

∂e
∂t

= –∇ · q + Q. (7)

By removing the heat flux q from Eqs. (5) and (7), we can get the DPL heat transport
equation, which is given as

(
1 + τq

∂

∂t
+

τ 2
q

2
∂2

∂t2

)[
ρCe

∂θ

∂t
+ γ T0

∂e
∂t

– Q
]

= K∇2θ + Kτθ

∂

∂t
(∇2θ

)
. (8)

When τθ and τq are set equal to zero in Eq. (8), the traditional parabolic equation for heat
transfer is produced. When τθ equals 0 and τq is greater than 0, one derives the hyperbolic
equation that describes a single-phase delay.

Nano- and micro-electromechanical systems (NEMS) and MEMS, nanodevices, bot-
tom electronics, and nanostructured materials are just a few of the many fields where the
magnetic field effect can be used. Recent years have seen an increase in research on the
magnetic properties of nanobeams and how they function when exposed to a magnetic
field.

The Maxwell equations in the differential form are presented as follows under the con-
ventional electromagnetic theory [32, 33]:

J = ∇ × h, ∇ × E = –μ0
∂h
∂t

, E = –μ0

(
∂u
∂t

× H
)

, (9)

h = ∇ × (u × H), ∇ · h = 0. (10)

Current density (J), induced magnetic field (h), and the strength of electric field (E) are
all variables in Eqs. (9) and (10). Also, H is the total magnetic field, and the magnetic field
permeability is denoted by μ0.

3 Nonlocal rotating nanobeam Euler–Bernoulli problem
The studied thermoelastic nanobeam illustrated in graph 1 has these dimensions: length
L, width b, and thickness h. The nanobeam is completely immersed in a longitudinal mag-
netic field and continuously heated by convection, which is presented as a rectified sine
wave. We will proceed further with the assumption that the nanobeam rotates about an
axis parallel to the z-axis with a constant angular velocity � at a suitable distance from its
first end, as is shown in Fig. 1. In addition, we supposed that the rotating nanobeam was
sufficiently thin. As a result, the beam theory was taken from Euler–Bernoulli as an illus-
tration of the thermomechanical behavior of a nanobeam. Cartesian coordinates (x, y, z)



Abouelregal et al. Boundary Value Problems         (2023) 2023:21 Page 6 of 26

Figure 1 A schematic representation of the revolving thermoelastic nanobeam

will be applied to study the proposed problem. Also, the graphene tape that is linked to
the nanobeam and connected to an electrical source produces a variable temperature field,
which is then applied to the material of the nanobeam. This causes the temperature of the
field to change over time.

Based on the Euler–Bernoulli beam theory, which operates under the assumption of
relatively minor deformations, the displacement components can be defined as

u1 = u = –z
∂w
∂x

, u2 = v = 0, u3 = w = w(x, t), (11)

where w denotes the transversal displacement (deflection).
We take into account the axial initial magnetic field H as a vector that acts on the rotating

nanobeam in the form of H = (H0, 0, 0). In this particular instance, after applying Eqs. (8)
and (9), the induced magnetic field h can be calculated as

h = –Hx

(
∂v
∂y

+
∂w
∂z

, –
∂v
∂x

, –
∂w
∂x

)
= Hx

(
0, 0,

∂w
∂x

)
. (12)

When Eqs. (9) and (12) are used, the current density J is derived as

J = ∇ × h = –Hx

(
0,

∂2w
∂x2 , 0

)
. (13)

As a result, the Lorentz force F that is induced by the axial magnetic field that is being
applied can be computed as

F = (fx, fy, fz) = μ0(J × H) = μ0H2
x

(
0, 0,

∂2w
∂x2

)
. (14)

If this is the case, the magnetic force per unit length, also known as the resulting Lorentz
force, will have the following form [34]:

f (x) =
∫

A
fz dA = Aμ0H2

x
∂2w
∂x2 . (15)
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Because rotating parts are used so often in engineering, many researchers have been
interested in how they behave mechanically. It has also been used to analyze the free vi-
brations of nanobeams, which rotate at varying speeds depending on their scale.

The centrifugal tension force FT (x) resulting from rotation appears when the nanobeam
rotates around an axis parallel to the z-axis at a small distance from one of its ends with a
constant angular velocity �. The equation of motion for the nanobeam can now be derived
by applying Hamilton’s principle, considering the effect of the external forces acting on the
nanobeam shown in the previous illustration. For rotating elastic Euler–Bernoulli beam,
we have the following motion equations [35, 36]:

∂2M
∂x2 + f (x) = m

∂2w
∂t2 –

∂

∂x

[
FT (x)

∂w
∂x

]
. (16)

The last component of Eq. (16) displays the impact of centrifugal force on the mechanical
response of the structures, m = ρA represents the mass per unit length, M is the bending
moment, and FT (x) denotes the centrifugal force due to the rotation of the system.

The nonlocal constitutive relation provided in Eq. (5) for nanobeams takes the following
form:

σx – ξ
∂2σx

∂x2 = –E
(

z
∂2w
∂x2 + αTθ

)
. (17)

The moment of bending, denoted by M, can be represented as

M =
∫

zσx dA. (18)

With the help of relation (16), the moment can be obtained as a function of displacement
by introducing Eq. (16) into Eq. (17) to get

M – ξ
∂2M
∂x2 = –EI

(
∂2w
∂x2 + αT MT

)
. (19)

The thermal bending moment, denoted by the symbol MT , can be expressed in the form

MT =
12
h3

∫ h/2

–h/2
θ (x, z, t)z dz. (20)

We may extract the equation of motion for nonlocal Euler–Bernoulli beams by inserting
M from Eq. (18) into Eq. (15), which gives us the following:

∂4w
∂x4 +

1
EI

(
1 – ξ

∂2

∂x2

)(
ρA

∂2w
∂t2 – Aμ0H2

x
∂2w
∂x2 –

∂

∂x

(
FT (x)

∂w
∂x

))
+αT

∂2MT

∂x2 = 0. (21)

After ignoring the nonlocal scale factor ξ , this equation can be simplified to a classical
version. At a certain distance x from the origin O, the axial force FT (x) generated by the
centrifugal stiffener can be expressed as follows:

FT (x) =
∫ L

x
ρA�2(rad + x) dx. (22)
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The value of the constant rad represents the incremental distance between the rotation
axis and the beam’s first side (hub radius). If � is equal to zero, then this indicates that
there is no rotation, and as a result, the centrifugal tension force FT (x) is eliminated.

When the relationship (19) and the motion Eq. (16) are used together, the nonlocal bend-
ing moment M may be written as

M = ρAξ
∂2w
∂t2 – Aξμ0H2

x
∂2w
∂x2 – ξ

∂

∂x

(
FT (x)

∂w
∂x

)
– EI

(
∂2w
∂x2 + αT MT

)
. (23)

The DPL heat transfer model for the current nanobeam can be stated as follows when
the source of heat is not there (Q = 0):

(
1 + τq

∂

∂t
+

τ 2
q

2
∂2

∂t2

)
∂

∂t

[
ρCeθ – γ T0z

∂2w
∂x2

]
= K∇2θ + τθ K

∂

∂t
(∇2θ

)
. (24)

4 Solution procedure
Assume that with the increase in temperature θ the direction of the thickness of the
nanobeam changes as a sinusoidal function in the variable z as follows:

θ (x, z, t) = ψ(x, t) sin

(
πz
h

)
. (25)

When Eq. (25) is substituted into Eqs. (21) and (23), one obtains

EI
∂4w
∂x4 +

(
1 – ξ

∂2

∂x2

)(
ρA

∂2w
∂t2 – Aμ0H2

x
∂2w
∂x2

)
+

24EIαT

π2h
∂2ψ

∂x2 = (1 – ξ ), (26)

M = ρAξ
∂2w
∂t2 – Aξμ0H2

x
∂2w
∂x2 – ξ

∂

∂x

(
FT (x)

∂w
∂x

)
– EI

(
∂2w
∂x2 +

24T0αT

π2h
ψ

)
. (27)

In addition to this, the equation for heat conduction may be rewritten to take into ac-
count the size of the nanobeam, and it can then be represented as

(
1 + τq

∂

∂t
+

τ 2
q

2
∂2

∂t2

)
∂

∂t

[
ρCE

K
ψ –

γ T0π
2h

24K
∂2w
∂x2

]
=

(
1 + τθ

∂

∂t

)(
∂2ψ

∂x2 –
π2

h2 ψ

)
. (28)

In the present investigation, the most significant axial force that can be exerted on a
nanobeam due to the uniform rotation has been taken into account. The maximum axial
force FT (x) due to centrifugal stiffening, in this case, can be written as follows [8, 37, 38]:

FT (x) = Fmax =
∫ L

0
ρA�2(r + x) dx =

1
2
ρA�2L(2r + L). (29)

Because of this, we can write the system of equations down as a partial differential equa-
tion with a constant parameter. The controlling mathematical formula for the transverse
deformation w(x, t) of a spinning microbeam is then found to be

EI
∂4w
∂x4 + ρA

(
1 – ξ

∂2

∂x2

)
∂2w
∂t2 –

(
Aμ0H2

x + Fmax
)
(

1 – ξ
∂2

∂x2

)
∂2w
∂x2

= –
24EIαT

π2h
∂2ψ

∂x2 ,

(30)
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M = ρAξ
∂2w
∂t2 – ξ

(
Aμ0H2

x + Fmax
)∂2w
∂x2 – EI

(
∂2w
∂x2 +

24T0αT

π2h
ψ

)
. (31)

Variables in basic equations can be transformed by using the following nondimensional
quantities:

{
u′, w′, x′, z′} =

ϑ0

k
{u, w, x, z}, {

t′, τ ′
q, τ ′

θ

}
=

ϑ2
0

k
{t, τθ , τθ },

ξ ′ =
ϑ2

0
k2 ξ , ψ ′ =

ψ

T0
,

{
L′, h′, b′, r′} =

ϑ0

k
{L, h, b, r},

M′ =
k

ϑ0EI
M, k =

K
ρCE

, ϑ2
0 =

E
ρ

.

(32)

So, it is possible to write the nondimensional versions of the expressions for heat transfer,
the motion equation, and the bending moment in simpler ways by omitting the primes, as
shown here:

∂4w
∂x4 +

12
h2

(
1 – ξ

∂2

∂x2

)
∂2w
∂t2 –

12
h2

(
a2

0 +
Fmax

ρA

)(
1 – ξ

∂2

∂x2

)
∂2w
∂x2 = –

24αT

π2h
∂2ψ

∂x2 , (33)

M =
12ξ

h2
∂2w
∂t2 –

12ξ

h2

(
a2

0 +
Fmax

ρA

)
∂2w
∂x2 –

∂2w
∂x2 –

24T0αT

π2h
ψ , (34)

(
∂

∂t
+ τq

∂2

∂t2 +
τ 2

q

2
∂3

∂t3

)[
ψ –

γπ2h
24ηK

∂2w
∂x2

]
=

(
1 + τθ

∂

∂t

)(
∂2ψ

∂x2 –
π2

h2 ψ

)
, (35)

where a2
0 = μ0H2

x
ρ

.
It is necessary to consider the initial and boundary conditions before attempting to solve

the governing equations. Initially, the initial constraints can be assumed to be

w(x, 0) = 0 =
∂w(x, 0)

∂t
, u(x, 0) = 0 =

∂u(x, 0)
∂t

, ψ(x, 0) = 0 =
∂ψ(x, 0)

∂t
. (36)

5 Solution in the transformed domain
Equations (33) and (34) are both partial differential equations of the fourth order, repre-
senting the equations of motion and heat transfer, respectively. Solving these differential
equations mathematically and obtaining direct analytical results is a very challenging task
due to its complex nature. In this context, the Laplace transform method converts them
into ordinary equations for deflection and temperature change. When the Laplace trans-
form is applied, the equations of system (33)–(35) can be rewritten as

A0
d4w
dx4 – A1s2 d2w

dx2 + A2s2w = –A3
d2ψ

dx2 , (37)

–A5
d2w
dx2 =

d2ψ

dx2 – A4ψ , (38)

M = –A0
d2w
dx2 + A6w – A3ψ , (39)
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where

A0 = 1 +
12ξ

h2

(
a2

0 +
Fmax

ρA

)
, A1 =

12
h2

(
a2

0 +
Fmax

ρA
+ ξ s2

)
,

A4 =
π2

h2 +
1
q

, A2 =
12s2

h2 , A3 =
24T0αT

π2h
,

q =
1 + τθ s

s(1 + τqs + s2τ 2
q /2)

, A5 =
γ c2π2h
24qK0

, A6 =
12ξ s2

h2 .

(40)

6 State-space approach technique
To use the state-space approach technique [39, 40] to solve the problem, we will present
the function φ defined using the relation

d2w
dx2 = φ. (41)

When Eq. (41) is plugged into Eqs. (37) and (38), one arrives at the following result:

d2φ

dx2 = –B3w – B4ψ + B5φ, (42)

d2ψ

dx2 = B1ψ – B2φ, (43)

where

B1 = A4, B2 = A5, B3 = A2s2, B4 =
A3

A0
, B5 =

A1s2

A0
. (44)

In this part, we will attempt to find a solution to the existing issue by employing the
direct integration approach by matrix exponential. Taking into consideration the following
functions as being state variables

V 1 = w, V 2 = ψ , V 3 = φ,

V 4 =
dV 1

dx
, V 5 =

dV 2

dx
, V 6 =

dV 3

dx
,

(45)

it is possible to write Eqs. (41)–(43) in the form of a matrix as

dV (x, s)
dx

= V ′(x, s) = A(s)V (x, s), (46)

where

V (x, s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

V 1

V 2

V 3

V 4

V 5

V 6

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

, A(s) =

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0
0 B1 –B2 0 0 0

–B3 –B4 B5 0 0 0

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

. (47)
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In the transform domain, the state vector is denoted by V (x, s), and its components are
the temperature ψ and the deflection w after they have been changed, along with the gra-
dients of those two variables.

System of Eqs. (46) is capable of being integrated with the help of the matrix exponential,
which will result in

V (x, s) = eA(s)xV (0, s). (48)

The matrix eA(s)x denotes the exponential transfer matrix, and V (0, s) is given by

V (0, s) =
{

w,ψ ,φ,
dw
dx

,
dψ

dx
,

dφ

dx

}tr

(0, s). (49)

To determine the structure of the matrix denoted by the expression eA(s)x, we will make
use of the well-established Cayley–Hamilton principle. For our novel state-space method,
the square matrix A(s) is analyzed to find the eigenvalues and eigenvectors Y (x, s) that
fulfill

A(s)Y (x, s) = hY (x, s). (50)

This equation gives the characteristic solution for the matrix A(s) as

∣∣A(s) – kI
∣∣ = 0, (51)

where I is the identity matrix, k is a symbol for a particular root of A(s), which allows the
equation to be satisfied

k6 – lk4 + mk2 – n = 0, (52)

where

l = B1 + B5, m = B1B5 – B2B4 + B3, n = B1B3. (53)

To solve the characteristic equation in matrix form, it is necessary to consider the Caley–
Hamilton principle [41, 42]. According to the Hamilton theorem, the matrix A(s) meets
its own characteristic equation when viewed from a matrix perspective. Because of this,
one can deduce that

[
A(s)

]6 – l
[
A(s)

]4 + m
[
A(s)

]2 – n = 0. (54)

It is possible to formulate the Taylor expansion of the transfer matrix eA(s)x as follows:

eA(s)x =
∞∑

n=0

[A(s)x]n

n!
. (55)

This infinite series (55) can be simplified using the Cayley–Hamilton theorem, as shown
below [41, 42]

eA(s)x = a0I + a1A + a2A2 + a3A3 + a4A4 + a5A5 = l(x, s), (56)
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where the unknown parameters aj(x, s) are based on the values of x and s. According to
the Cayley–Hamilton theorem, the characteristic roots ±ki (i = 1, 2, 3) of the matrix A(s)
are required to have equations that they satisfy, which means that

e±kix = a0I + a1ki + a2k
2
i + a3k

3
i + a4k

4
i + a5k

5
i , i = 1, 2, 3. (57)

Appendix A illustrates the process of solving the equations presented above to obtain
the parameters aj(x, s). As a result, the exponential matrix can be found by using the ex-
pression

eA(s)x = l(x, s) =
[
lij(x, s)

]
, i, j = 1, 2, . . . , 6, (58)

where Appendix B provides the elements lij(x, s).

7 Application and boundary conditions
It is known that an additional form of energy is released in the form of heat when an
electric current flows through a conductive material. The amount of heat produced by an
electric current depends on several factors, including the magnitude of the current, the
resistance of the conductor, and the duration of the current flow. In the present problem,
it is considered that an electric current, e.g., a voltage, passes through the graphene tape
located at the first end of the nanobeam, as shown in Fig. 1. The thermal effect generated
by the graphene tape connected to a voltage source allows the generated external heat to be
transmitted and leads to heat flowing into the beam, according to Joule’s theory of electric
heating. According to Joule’s first rule, the ability of an electrical conductor to generate
heat is proportional to the amount of energy it can supply to an external resistance. In this
case, we have the following relationship:

P = I2
e Re, (59)

where Ie represents the amount of current passing through the resistor and Re represents
the electrical resistance in the circuit. Ohm’s law, Ve = IeRe, may be used as an input for
the universal power calculation [43]

P =
V 2

e
Re

, (60)

where V 2
e denotes the voltage.

It is necessary to assume that 100% of the applied energy is transformed into heat to
determine the amount of heat energy produced by electrical resistance. The quantity of
heat produced by the current flow is proportional to the length of the flow when the resis-
tance and the current are kept constant. In this case, we will assume that the nanobeam is
thermally loaded at its initial end (x = 0), which gives [44]

ψ(0, t) = I2
e Ret =

V 2
e

Re
t. (61)



Abouelregal et al. Boundary Value Problems         (2023) 2023:21 Page 13 of 26

To accommodate various applications, various boundary conditions are employed. In
this situation, we use the following sets of mechanical boundary conditions:

w(x, t)|x=0,L = 0,
∂2w(x, t)

∂x2

∣∣
∣∣
x=0,L

= 0. (62)

In the Laplace transform domain, we can now transform Eqs. (61) and (62), respectively,
as follows:

w(x, s)|x=0 = 0,
d2w(x, s)

dx2

∣
∣∣∣
x=0

= 0, φ(x, s)|x=0 = 0, (63)

ψ(x, s)|x=0 =
V 2

e
sRe

= G(s). (64)

Also, we can impose the following conditions at the other end (x = L) of the nanobeam

w(L, s) = ψ(L, s) = φ(L, s) = 0. (65)

Consequently, the values dw(0,s)
dx , dψ(0,s)

dx , and dφ(0,s)
dx may be written as

d
dx

⎧
⎪⎨

⎪⎩

w
ψ

φ

⎫
⎪⎬

⎪⎭
(0, s) = –G(s)

⎡

⎢
⎣

l14(L, s) l15(L, s) l16(L, s)
l24(L, s) l25(L, s) l26(L, s)
l34(L, s) l35(L, s) l36(L, s)

⎤

⎥
⎦

–1 ⎧
⎪⎨

⎪⎩

l12(L, s)
l22(L, s)
l32(L, s)

⎫
⎪⎬

⎪⎭
. (66)

After applying several simplifications, one can arrive at the ultimate solutions to the
functions w(x, s) and θ (x, z, s) in the Laplace transform domain as follows:

w(x, s) = S
[

sinh(k1(L – x))
(k2

1 – k2
2)(k2

1 – k2
3) sinh(k1L)

+
sinh(k2(L – x))

(k2
2 – k2

1)(k2
2 – k2

3) sinh(k2L)

+
sinh(k3(L – x))

(k2
3 – k2

2)(k2
3 – k2

1) sinh(k3L)

]
,

(67)

θ (x, z, s) = –B2S sin

(
πz
h

)[
k2

1 sinh(k1(L – x))
(k2

1 – B1)(k2
1 – k2

2)(k2
1 – k2

3) sinh(k1L)

+
k2

2 sinh(k2(L – x))
(k2

2 – B1)(k2
2 – k2

1)(k2
2 – k2

3) sinh(k2L)

+
k2

3 sinh(k3(L – x))
(k2

3 – B1)(k2
3 – k2

2)(k2
3 – k2

1) sinh(k3L)

]
,

(68)

where

S =
G(s)(B1 – k2

1)(B1 – k2
2)(B1 – k2

3)
B1B2

.

Using the previously derived formulas for w(x, s) and θ (x, s), we can calculate the bending
moment and the axial displacement M(x, s) and u(x, s).
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8 Numerical inversion of the transformed functions
In straightforward situations, the inverse transform can be determined analytically or with
the aid of tables. Evaluating the complex integration of the inverse transformation also
yields the Laplace transform. Sometimes it is tough to spot the inverts. Possible explana-
tions include the fact that the inverse is not a named function and hence cannot be ex-
pressed in a “simple” formula. Moreover, the issue is well posed only if the Laplace trans-
form is neither calculable nor measured on the real and positive axes. For instance, the
same transform applies to pairs of time-domain functions that differ at a single instant in
time. The lack of a precise inversion formula makes this instance exceedingly challenging.
In such circumstances, the adoption of a numerical approach is required. Numerous nu-
merical algorithms have been published, each with its own set of uses and strengths when
applied to specific classes of functions.

The Fourier series expansion technique will be briefly described here. The key to this
approach is the integration of the contour Bromwich inversion, which can be written as
the integral of a real-valued function of a real variable given a given contour. The inversion
integral is turned into a Fourier transform, and then the Fourier transform is approximated
by a Fourier series with a known error estimate (using the trapezoidal method). By using
this method, we may convert any Laplace domain function into a time domain function
by [45]

g(t) =
eA/2

t
Re

[
g
(A

2t

)]
+

eA/2

t
Re

[ n0∑

K=1

g
(A + 2iKπ

2t

)
(–1)K

]

. (69)

It is now possible to numerically calculate Eq. (69) by summing over a limited number
of K. The accuracy may be improved by adjusting the values of A and K. Using this ap-
proach proves to be quite precise. Many computer tests have shown that the value of A
must meet the relation A∼= 10 [46] for convergence to happen faster.

9 Numerical results and discussions
Under the effect of a longitudinal magnetic field and a thermoelectric field, the thermal and
mechanical wave scattering characteristics of immersed nanobeams will be examined, and
a discussion will follow based on the formulae that were found using the nonlocal Euler—
Bernoulli beam theory. In order to represent the patterns of the studied fields, including
the temperature change, deformation, lateral vibration, and flexure moment, figures in the
x direction that are analyzed in terms of x, z, and t can be utilized. Single-crystal silicon
was selected as the material of choice so that numerical assessments could be performed.
The following illustrates the problem’s constants [47]:

E = 169 GPa, ρ = 2330
kg
m3 , G = 79.6 GPa, CE = 713J/(kgK),

T0 = 317K, αT = 2.59 × 10–6(1/K), ν = 0.064, K0 = 156W/(mK).

The calculations are performed using fixed aspect ratios for the rotating nano width,
which is assumed to be 50 nm, L/h = 10, and b/h = 0.5. In addition to this, the values of
the parameters t = 0.12 and z = h/6 are held constant. According to the definition given
by Eringen [21], e0 is a material-specific constant. For example, by comparing the network
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dynamics results with those of the nonlocal concept, it was discovered that the value of
e0 for a given class of materials is equal to 0.39 [32]. According to Sudak [48], the e0 val-
ues should be obtained from experimental data, although not many of them are available
for nanobeams. The following are the three distinct categories that can be used in the
discussions of results and numerical data.

According to the research that has been done so far, there has not been a complete anal-
ysis of the vibration aspects of spinning thermoelastic nanobeams. Considering the modi-
fied thermoelasticity theory in the formulation and incorporating the influence of the Joule
theory of electric heating on the behavior of different research fields throughout the whole
structure are both important considerations. Therefore, this study explores this topic to fill
the gap that was revealed in the open literature related to the thermomechanical vibration
of spinning nanobeams.

In this section, we will examine the influences of varying the rotational angular speed
� on a rotating nanobeam in a homogeneous magnetic field and experiencing convection
due to an electric current created in a graphene slab. It is supposed that the nonlocal co-
efficient, the electrical voltage, electrical resistance, and the phase delays are all constants
in this scenario (ξ = 0.3, Ve = 10 V, Re = 300, τq = 0.05, and τθ = 0.02). When there is no
rotation, the angular speed of rotation is considered zero (� = 0), which is treated as a par-
ticular case in this work. The fluctuation of the considered variables is depicted in Figs. 2
through 5 for four distinct values of angular speed � = 0, 0.1, 0.3, and 0.4, respectively.

It is evident from Fig. 2 that the thermal deflection w satisfies the suggested boundary
condition of the problem as it vanishes at the two ends of the beam at x = 0 and x = L.
It is also detected that as the angular velocity of rotation rises, the absolute value of the
deflection decreases. As a result of the presence of the thermal source resulting from the
electric current to which the beam is exposed, the accurate beam will have the highest ab-
solute values towards the first side and decrease in the direction of the axial axis. Another
thing to note about this diagram is that the deflection rapidly decreases from zero to its
minimum value at point x ∼= 0.12 and gradually decreases back to zero. There is a high
degree of consistency between these results and those reported in [49].

Figure 3 shows that for different angular speeds of rotation �, the temperature θ of the
nanobeam is found to change with increasing distance x. The temperature profile θ ex-
pands slightly as the spin speed increases. Moreover, it is seen that the temperature curves

Figure 2 The effect of rotation (�) on the variation of deflection w



Abouelregal et al. Boundary Value Problems         (2023) 2023:21 Page 16 of 26

Figure 3 The effect of rotation (�) on the variation of temperature θ

Figure 4 The effect of rotation (�) on the variation of displacement u

Figure 5 The effect of rotation (�) on the variation of bending moment M

rise and reach their highest point at the first side of the beam as a result of the convective
load that the beam is subjected to. Then, as x increases toward the other end of the beam,
the heat wave’s ability to get there diminishes until it finally fades away. Changing the axial
direction of the nanobeam lowers its temperature along its length. Contrary to the predic-
tions made by the conventional theory of convection, heat waves travel through a medium
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at a slower rate than would be consistent with physics. These observations are consistent
with those obtained in the previous literature, including those found by the investigators
in [50, 51].

In Fig. 4, we have a graphic made to examine the impact of the speed of rotation � on the
change in the axial displacement u. We can see that the displacement u is greatest at the
initial end of the nanobeam, then reduces to its smallest at the point x ∼= 0.22, and finally
rises to its value of zero as we move to the opposite edge. We also found that mechanical
waves travel in a restricted area. Finally, this graph displays that as the rotational speed
rises, the absolute value of the deformations u decreases.

As shown in Fig. 5, changing values of the angular velocity of rotation � cause the pat-
terns of bending moment M to change within the rotating nanobeam. Figure 5 displays
that the bending moment M is negative on the first side of the nanobeam and gradually
increases until it disappears with time in the direction it reaches the other side of the
nanobeam. Although the effect of the two rotors is weak on the moment M, its absolute
value increases with the increase in the rotation speed �.

Therefore, it can be concluded that the rotation field plays a significant role in nano-
beams’ mechanical, thermal, and vibration behavior and that this analysis aspect should
be considered when developing NEMS and MEMS devices. Since rotation analysis is one
of the main goals of the present work, the analysis presented in this study can be used to
design better the blades of micro devices such as rotating microturbines [52]. Moreover,
the previous considerations allow us to conclude the significant effect of rotation on the
response of the studied fields. These observations are also consistent with those found in
the previous literature [53, 54].

The theory of nonlocal elasticity is based on the atomic theory of lattice dynamics in
addition to the concept of phonon scattering. In this theory, the spatial weight is deter-
mined by a one-dimensional nonlocal parameter known as the attenuation function. The
value of this coefficient depends on the length of the internal property of the material di-
vided by the length of its external property. Several previous studies have shown that the
effects of size and thermal stresses have a profound influence on the dynamic properties
of materials at the nanoscale, making them very different from their behavior in the case
of materials at larger scales.

In the second part of the discussion, the impact of the nonlocal factor ξ on the behavior
of the studied physical variables will be considered. These changes are represented in the
graphs shown in Figs. 6–9. It is noted that in the case when ξ = 0, the results are described
in the case of the traditional local theory, which does not take into account the effect of the
scale. In the situation of the nonlocal thermoelasticity theory, three different nonzero val-
ues are taken into account, and they are ξ = 0.3, 0.5, and 0.7. In the numerical calculations
in this case, it will be assumed that the other effective constants are constants (� = 0.3,
Ve = 10 V, Re = 300, τq = 0.05, and τθ = 0.02). According to the numerical data presented
in the figures, it is seen that the nonlocal index ξ has a great effect on the behavior of all
the physical fields under consideration. From Figs. 6, 8, and 9, it is clear that the deflection
w, displacement u, and moment M are greatly influenced by the change of this parameter,
while in Fig. 7, it is clear that it has a slight impact on the temperature θ and the propaga-
tion of the heat wave. The reason for this is due to the fact that the presence of the nonlocal
index tends to decrease the stiffness of the nanobeams. The nonlocal parameter nonde-
pendence on temperature has been observed in many investigations and previous studies
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Figure 6 The effect of nonlocality (ξ ) on the variation of the deflection w

Figure 7 The effect of nonlocality (ξ ) on the variation of the temperature θ

Figure 8 The effect of nonlocality (ξ ) on the variation of the displacement u

[55]. Other aspects for media with microstructure can be found in [56–61]. It can be con-
cluded further that the steady state of the mechanical waves within the beam depends on
specific values of the nonlocal index ξ .

Since the temperature of the conducting substances increases as the electric current
flows through them, we say that it has a thermal impact. The magnitude of this tempera-
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Figure 9 The effect of nonlocality (ξ ) on the variation of the bending moment M

Figure 10 The effect of electric voltage V2e on the variation of the deflection w

ture’s impact is determined by three primary factors: the resistance of the electrical con-
ductor; the amount of time that the electric current flows through the conductor; and the
magnitude of the electric current itself, which generates a larger amount of heat. The law
of Joules provides a mathematical expression for this connection, stating that the amount
of heat generated by an electric current is proportional to the square of the current mul-
tiplied by the length of time the current is passed through a specific conductor.

In the final part of the discussion, the numerical results of the studied domains will
be presented in two sets of graphs. The first set of Figs. 10–13 displays the behavior of
thermophysical domains such as thermal deflection w, displacement u, and temperature
increase θ when the electrical resistance of a graphene strip is kept constant at 300 ohms
and four different values of voltage Ve are considered to be 10, 11, 12, and 13 volts. When
the electrical resistance changes (Re = 300, 350, 400, or 450 �) while the voltage remains
constant at Ve = 11 volts, the second group of Figs. 14–17 will be studied.

As can be shown in Figs. 10–13, an increase in electrical voltage Ve results in an equiv-
alent rise in all the investigated physical fields. The curves approach each other as one
moves away from the electricity source, but their values fluctuate depending on the mag-
nitude of the voltage Ve.

The resistance of conductive materials is expected to rise with the rise in temperature,
while the resistance of insulating materials will decrease. In general, semiconductors have
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Figure 11 The effect of electric voltage V2e on the variation of the temperature θ

Figure 12 The effect of electric voltage V2e on the variation of the displacement u

Figure 13 The effect of electric voltage V2e on the variation of the moment M

a lower resistance at higher temperatures. Figures 14 and 15 show that the value of the
electrical resistance Re has a significant influence on the height changes of the physical
domains within the nanobeam, including temperature changes θ and deflection w. Also,
one of the important conclusions that can be noted is that when the electrical resistance
value increases, the value of the absolute value of these studied fields declines. It can also
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Figure 14 The effect of electric resistance Re on the variation of deflection w

Figure 15 The effect of electric resistance Re on the variation of temperature θ

Figure 16 The effect of electric resistance Re on the variation of displacement u

be noticed from graph 15 that the thermoelectric effect causes a rapid rise in temperature
θ over a small distance near the first end of the beam, although the strength of the re-
sulting curves varies with the electrical resistance Re. Three separate displacements u and
bending moment M curves (Figs. 16 and 17) show how the peak values decrease with in-
creasing electrical resistance values. It was found that the maximum values of these fields
decreased with movement in the direction of the x-axis. Figure 17 presents the graphs of
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Figure 17 The effect of electric resistance Re on the variation of bending moment M

the bending moment, which showed a single peak and a significant decrease in magnitude
with increasing electrical resistance Re.

10 Conclusions
The current research proposes a revised nonlocal beam theory for investigating nanos-
tructure systems that rotate along a fixed axis. In the formulations, the nonlocal constitu-
tive relations discovered by Eringen as well as a modified thermoelastic framework with
phase delays are utilized. After the governing system equations have been derived, the
governing equations may be solved by applying the state-space technique as well as the
Laplace transform methods. Nonlocality and beam rotation are also studied, and their
implications on the topic under study are examined in depth.

When investigating nanostructures at the nanometer scale, it is common for nonlocal ef-
fects to become more noticeable. The results demonstrate that the nonlocal indicator has a
small impact on how the nondimensional temperature changes but a big effect on how the
nondimensional deflection, displacement, and bending moment peak values change. The
angular velocity of rotation has a considerable influence on the distributions of different
thermophysical domains except for temperature, where the effect is weak. From the re-
sults, it is seen that the magnitudes of these fields increase along with the rotational speed
of the nanobeam around a fixed axis. The proposed model in this effort is able to investi-
gate the thermal and mechanical vibrations of many structural systems, such as the beams
and flaps of rotating nanopillars, in addition to the axial vibration of these beams. Also,
the current work might contribute to a more in-depth comprehension of the dynamics of
spinning nanobeams in some way.

Appendix A
The coefficients aj after solving Eq. (57) can be written as

a0(x, s) = –
k2

2k
2
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2
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k3

2k3
3(k2

2 – k2
3) sinh(k1x) + k3

1k
3
3(k2

3 – k2
1) sinh(k2x) + k3

2k
3
1(k2

1 – k2
2) sinh(k3x)

k1k2k3(k2
1 – k2

2)(k2
2 – k2

3)(k2
3 – k2

1)
,

a2(x, s) =
(k4

2 – k4
3) cosh(k1x) + (k4

3 – k4
1) cosh(k2x) + (k4

1 – k4
2) cosh(k3x)

(k2
1 – k2

2)(k2
2 – k2

3)(k2
3 – k2

1)
,



Abouelregal et al. Boundary Value Problems         (2023) 2023:21 Page 23 of 26

a3(x, s) =
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Appendix B
The elements [Lij(x, s)] of Eq. (58) can be expressed as follows:

L11(x, s) = a0 – a4B3, L12(x, s) = –a4B4, L13(x, s) = a2 + a4B5,

L14(x, s) = a1 – a5B3, L15(x, s) = –a5B4, L16(x, s) = a3 + a5B5,

L22(x, s) = a0 + a2B1 + a4
(
B2

1 + B2B4
)
, L21(x, s) = a4B2B3,

L33(x, s) = a0 + a2B5 + a4
(
B2B4 – B3 + B2

5
)
, L23(x, s) = –a2B2 – a4B2(B1 + B5),

L24(x, s) = a5B2B3, L35(x, s) = –a3B4 – a5B4(B1 + B5),

L25(x, s) = a1 + a3B1 + a5
(
B2

1 + B2B4
)
, L26(x, s) = –a3B2 – a5B2(B1 + B5),

L31(x, s) = –a2B3 – a4B5B3, L32(x, s) = –a2B4 – a4B4(B1 + B5),

L34(x, s) = –a3B3 – a5B5B3, L36(x, s) = a1 + a3B5 + a5
(
B2B4 – B3 + B2

5
)
,

L46(x, s) = a2 + a4B5, L45(x, s) = –a4B4 L41(x, s) = –a3B3 – a5B5B3,

L42(x, s) = –a3B4 – a5B4(B1 + B5), L44(x, s) = a0 – a4B3,

L43(x, s) = a1 + a3B5 + a5
(
B2B4 – B3 + B2

5
)
, L51(x, s) = a3B2B3 + a5B2B3(B1 + B5),

L52(x, s) = a1B1 + a3
(
B2B4 + B2

5
)

+ a5
(
B3

1 + 2B1B2B4 + B2B4B5
)
,

L53(x, s) = –a1B2 – a3B2(B1 + B5) – a5B2
(
B1B5 + B2

5 + B2
1 – B3 + B2B4

)
,

L54(x, s) = a4B2B3, L55(x, s) = a0 + a2B1 + a4
(
B2

1 + B4B2
)
,

L56(x, s) = –a2B2 – a4B2(B1 + B5),

L61(x, s) = –a1B3 – a3B3B5 – a5B2
(
B2

5 – B3 + B2B4
)
, L64(x, s) = –a2B3 – a4B5B3,

L62(x, s) = –a1B4 – a3B4(B1 + B5) – a5B4
(
B1B5 + B2

5 + B2
1 – B3 + B2B4

)
,

L63(x, s) = a1B5 + a3
(
B2

5 – B3 + B2B4
)

+ a5
(
B1B2B4 + 2B4B1B5 + B3

5 + B2
1 – 2B3B5

)
,

L65(x, s) = –a2B4 + a4(B1 + B5), L66(x, s) = a0 + a2B5 + a4
(
B2

5 – B3 + B4B2
)
.
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