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Abstract
We reprove a result by Bartsch, Weth, and Willem (Calc. Var. Partial Differ. Equ.
18(3):253–268, 2003) concerning the nondegeneracy of bubble solutions for a critical
semilinear elliptic equation involving the polyharmonic operator. The merit of our
proof is that it does not rely on the comparison theorem. The argument of our proof
mainly uses the stereographic projection with the Funk–Hecke formula, which works
for general critical semilinear elliptic equations.
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1 Introduction
We consider the nondegeneracy property of the bubble solutions for the critical semilinear
equation involving the polyharmonic operator
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(–�)mu = |u|2∗–2u in R
N ,

u ∈Dm,2(RN ),
(1.1)

where m < N
2 is a positive integer, 2∗ = 2N

N–2m , and Dm,2(RN ) is the closure of C∞
c (RN ) with

respect to the norm

‖u‖ =

⎧
⎨

⎩

(
∫

RN |� m
2 u(x)|2 dx) 1

2 if m is even,

(
∫

RN |∇�
m
2 u(x)|2 dx) 1

2 if m is odd.

For m = 1, the equation

⎧
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–�u = |u| 4
N–2 u in R

N ,

u ∈D1,2(RN ),
(1.2)
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arises in the study of blowup solutions of the H1 critical focusing nonlinear Schrödinger
equation

iut – �u = |u| 4
N–2 u, (t, x) ∈R×R

N ,

and the H1 critical focusing nonlinear wave equation

utt – �u = |u| 4
N–2 u, (t, x) ∈ R×R

N ,

which have attracted the attention of a lot of scholars; see, for instance, [1–3].
For m > 1, (1.1) arises in the Q-curvature problem. Indeed, if u is a positive solution of

(1.1), then the Q-curvature of the conformal metric g = u
4

N–2m |dx|2 (|dx|2 is the standard
Euclidean metric on R

N ) is constant (see [4–6]). Swanson [7] showed that the function

ω(x) =
(

�( N
2 + m)

�( N
2 – m)

) N–2m
4m

(
2

1 + |x|2
) N–2m

2
(1.3)

is a bubble solution of (1.1), which is also one extremal of the sharp Sobolev inequality

π
m
2 2m

(
�( N

2 + m)
�( N

2 – m)

) 1
2
(

�( N
2 )

�(N)

) m
N ‖u‖2∗ ≤ ‖u‖ for all u ∈Dm,2(

R
N) \ {0},

where ‖u‖2∗ = (
∫

RN |u(x)|2∗ dx)
1

2∗ .
Now noticing that (1.1) is invariant under scaling and translations, we observe that

(–�)mωμ,z(x) = ω2∗–1
μ,z (x), x ∈ R

N , (1.4)

where

ωμ,z(x) = μ
N–2m

2 ω(μx + z), μ ∈ (0, +∞), z ∈R
N ,

and ω is defined by (1.3). By differentiating (1.4) with respect to the parameters (μ, z) at
(1, 0), we obtain that the N + 1 linear independent functions

∂ω

∂xj
(x), 1 ≤ j ≤ N , �ω(x) =

N – 2
2

ω(x) + x · ∇ω(x)

satisfy

(–�)mϕ(x) –
(
2∗ – 1

)
ω2∗–2(x)ϕ(x) = 0. (1.5)

A natural problem, arising in the study of bubbling phenomena of (1.1), is the nonde-
generacy property of solution (1.3) for (1.1). More precisely, if ϕ is bounded and satisfies
(1.5), then does ϕ belong to span{ ∂ω

∂x1
, ∂ω

∂x2
, . . . , ∂ω

∂xN
,�ω}?

Bartsch, Weth, and Willem [8] obtained the nondegeneracy property of solution (1.3)
for (1.1). More precisely, we have the following:
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Theorem 1.1 ([8]) For any bounded ϕ satisfying

(–�)mϕ(x) –
(
2∗ – 1

)
ω2∗–2(x)ϕ(x) = 0,

we have

ϕ ∈ span

{
∂ω

∂x1
,
∂ω

∂x2
, . . . ,

∂ω

∂xN
,�ω

}

.

Remark 1.2 We give several remarks on Theorem 1.1.
1. The argument used in our proof is different from those appeared in [8]. Our

argument is inspired by Frank and Lieb [9, 10]; see also Dávilla, Del Pino, and Sire
[11]. In this paper, we mainly use the stereographic projection argument combined
with the Funk–Hecke formula, whereas the argument in [8] relies on the ODE
technique with comparison theorem.

2. The nondegeneracy property of the bubble solutions for (1.1) plays a crucial role in
the construction of multibubble solutions to (1.1); see, for instance, [12–14].

2 Proof of Theorem 1.1
For simplicity of notation, let us denote

ρ(x) =
(

2
1 + |x|2

) 1
2

. (2.1)

Then using (1.3), we can rewrite (1.5) as follows:

(–�)mϕ(x) –
N + 2m
N – 2m

�( N
2 + m)

�( N
2 – m)

ρ4m(x)ϕ(x) = 0. (2.2)

First of all, since ω ∈ C∞(RN ), for any bounded ϕ satisfying (2.2), using the standard elliptic
regularity theory, we have ϕ ∈ C∞(RN ). Using the fact that ω2∗–2(x) � 1

1+|x|4m , we deduce
that ϕ satisfies the integral equation

ϕ(x) = α(N , m)
∫

RN

ρ4m(y)
|x – y|N–2m ϕ(y) dy, (2.3)

where

α(N , m) =
2�( N

2 + m + 1)

22mπ
N
2 �(m)(N – 2m)

. (2.4)

Moreover, since ϕ is bounded, using the fact that (see [15] for instance),

∫

RN

1
|x – y|N–2m

1
1 + |y|θ dy �

⎧
⎪⎪⎨

⎪⎪⎩

1
1+|x|θ–2m if 2m < θ < N ,
1+log(1+|x|)
1+|x|N–2m if θ = N ,

1
1+|x|N–2m if θ > N ,
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by a bootstrap argument we deduce that

∣
∣ϕ(x)

∣
∣� 1

1 + |x|N–2m . (2.5)

Next, to transform the integral equation (2.3) on R
N into the corresponding integral

equation on S
N , let us introduce the stereographic projection

S : RN �→ S
N \ {

(0, 0, . . . , 0, –1)
}

,

x �→
(

2x
1 + |x|2 ,

1 – |x|2
1 + |x|2

)

,

where S
N = {ξ = (ξ1, ξ2, . . . , ξN+1) ∈ R

N+1|∑N+1
j=1 ξ 2

j = 1}. A direct computation implies that
(see also [10, 16])

|Sx – Sy| =|x – y|ρ(x)ρ(y). (2.6)

For any f : RN �→R, let us denote

S∗f (ξ ) =
f (S–1ξ )

ρN–2m(S–1ξ )
, (2.7)

where S–1 : SN \ {(0, 0, . . . , 0, –1)} �→R
N is the inverse of the stereographic projection:

S–1(ξ1, ξ2, . . . , ξN+1) =
(

ξ1

1 + ξN+1
,

ξ2

1 + ξN+1
, . . . ,

ξN

1 + ξN+1

)

. (2.8)

Moreover, for any F ∈ L1(SN ), we have the identity1

∫

SN
f
(
S–1ξ

)
dξ =

∫

RN
f (x)ρ2N (x) dx. (2.9)

By H N+1
k (k ≥ 0) we denote the mutually orthogonal space of the restriction on S

N of
real harmonic polynomials, homogeneous of degree of k on R

N+1. Moreover, we have the
following orthogonal decomposition:

L2(
S

N)
=

∞⊕

k=0

H N+1
k . (2.10)

Especially, we have

H N+1
1 = span{ξj|1 ≤ j ≤ N + 1}. (2.11)

For further analysis, we need the following Funk–Hecke lemma.

1The Jacobian of the stereographic projection is ρ2N(x).
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Lemma 2.1 ([17, 18]) Let λ ∈ (0, N). For any Y ∈ H N+1
k ,

∫

SN

1
|ξ – η|λ Y (η) dη = μk(λ)Y (ξ ), (2.12)

where

μk(λ) = 2N–λπ
N
2

�(k + λ
2 )�( N–λ

2 )
�( λ

2 )�(k + N – λ
2 )

. (2.13)

Now let us turn our attention to the integral equation (2.3). On the one hand, using (2.6),
we have

1
|x – y|N–2m =

ρN–2m(x)ρN–2m(y)
|Sx – Sy|N–2m . (2.14)

By inserting (2.14) into (2.3) we immediately get

ϕ(x) = α(N , m)ρN–2m(x)
∫

RN

1
|Sx – Sy|N–2m

ϕ(y)
ρN–2m(y)

ρ2N (y) dy. (2.15)

On the other hand, by (2.5) we have

∫

RN

∣
∣ϕ(x)

∣
∣2

ρ4m(x) dx �
∫

RN

1
1 + |x|2N dx < +∞,

which, together with (2.7), implies that

∫

SN

∣
∣S∗ϕ(ξ )

∣
∣2 dξ < +∞. (2.16)

Hence inserting (2.7) into (2.15) and using (2.16), we deduce that S∗ϕ ∈ L2(SN ) satisfies

S∗ϕ(ξ ) = α(N , m)
∫

RN

S∗ϕ(η)
|ξ – η|N–2m dη. (2.17)

Now observe that

α(N , m) =
1

μ1(N – 2m)
,

where μ1(N –2m) is defined by (2.13) with k = 1 and λ = N –2m. Therefore using Equation
(2.12), from (2.17) we obtain

S∗ϕ ∈ H N+1
1 ,

which, together with (2.11), implies that

S∗ϕ ∈ span{ξj|1 ≤ j ≤ N + 1}. (2.18)
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Therefore using the definition of S∗ϕ (see (2.7)), we deduce from (2.18) that

ϕ(x) ∈ span
{
ρN–2m+2(x)x1,ρN–2m+2(x)x2, . . . ,ρN–2m+2(x)xN ,ρN–2m+1(x)

(
1 – |x|2)},

which, together with (1.3) and (2.1), implies that

ϕ ∈ span

{
∂ω

∂x1
,
∂ω

∂x2
, . . . ,

∂ω

∂xN
,�ω

}

.

This ends the proof of Theorem 1.1.
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