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Abstract
In this paper, we investigate the nonlinear coupled discrete Schrödinger equations
with unbounded potentials. We find simple sufficient conditions for the existence of
discrete soliton solution by using the Nehari manifold approach and the compact
embedding theorem. Furthermore, by comparing the value of the action functional at
the discrete soliton solution with those at nonzero solutions of one component zero,
we demonstrate that both components of the discrete soliton solution are nontrivial.
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1 Introduction
The discrete nonlinear Schrödinger equation appears in a number of areas in physics such
as nonlinear optics [1], biomolecular chains [2], and Bose–Einstein condensates [3]. In
these areas and many others, it often emerges as a tight-binding approximation for the
underlying continuum description (e.g., Bose–Einstein condensates trapped in optical lat-
tices), or via an envelope wave expansion of the physical field (e.g., the electromagnetic
wave in an optical system). In the past decades, due to wide applications of difference
equations [4–7], extensive efforts have been devoted to the study of the existence of dis-
crete solitons (also called discrete breathers) for the equation. Several sufficient conditions
for the existence have been found by means of the continuation method [8–11], which is
a powerful tool for both theoretical analysis and numerical computations [12–15], and
the variational methods relying on the critical point techniques (Nehari manifold [16, 17],
linking theorems [18–22]).

In this paper, we consider a system of two linearly coupled discrete nonlinear Schrödin-
ger equations. Our interest in the two-component system has been motivated particularly
by the experimental realization and control of mixtures of Bose–Einstein condensates
composed either by two hyperfine states [23, 24] or by two species [25, 26]. For the bi-
nary Bose–Einstein condensate mixture confined in a one-dimensional lattice, the system
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of the two coupled discrete nonlinear Schrödinger equations takes the form

i
dun

dt
= –(�u)n + b1nun – a1|un|2un – a3|vn|2un – a4vn,

i
dvn

dt
= –(�v)n + b2nvn – a2|vn|2vn – a3|un|2vn – a4un,

(1.1)

where a1, a2, a3, and a4 are positive constants, {b1n} and {b2n} are real-valued sequences,
and � is the discrete Laplacian operator defined as (�u)n = un+1 + un–1 – 2un. In appli-
cations to Bose–Einstein condensates (the condensation for a mixture of two interacting
species), un(vn) denotes the wavefunction of condensate u(v) on site n, ai plays the role
of intraspecies (a1, a2) and interspecies (a3), respectively, a4 is the strength of the electro-
magnetic field, and {bin} is the external potential. In this paper, the potential Vi = {bin}n∈Z
is bounded below and satisfies

lim|n|→∞ bin = +∞, i = 1, 2. (1.2)

In this paper, we study the discrete solitons of (1.1), i.e., the solutions of (1.1) of the
special form

un = exp (–iωt)φn, vn = exp (–iωt)ψn, n ∈ Z, (1.3)

with real amplitudes φn and ψn, and

lim|n|→∞ un = 0, lim|n|→∞ vn = 0. (1.4)

Inserting the ansatz of the discrete solitons (1.3) into (1.1), we obtain the following equiv-
alent algebraic system:

–(�φ)n – ωφn + b1nφn – a1|φn|2φn – a3|ψn|2φn – a4ψn = 0,

–(�ψ)n – ωψn + b2nψn – a2|ψn|2ψn – a3|φn|2ψn – a4φn = 0,
(1.5)

and (1.4) becomes

lim|n|→∞φn = 0, and lim|n|→∞ψn = 0. (1.6)

We are thus led to the study on the existence of solutions for system (1.5) with conditions
(1.6). Indeed, our approach covers the problem for a slightly more general system

(L1φ)n – ω1φn – a1|φn|2φn – a3|ψn|2φn – a4ψn = 0,

(L2ψ)n – ω2ψn – a2|ψn|2ψn – a3|φn|2ψn – a4φn = 0,
(1.7)

with the same boundary conditions as (1.6), where φn, ψn, ω1, and ω2 are the unknowns.
Here L1 and L2 are the second-order difference operators defined by

L1φn = –(�φ)n + b1nφn and L2ψn = –(�ψ)n + b2nφn.

Hence (1.5) is a particular case of (1.7) with ω1 = ω2.
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The soliton dynamics of (1.1) was studied in [27], where the authors performed a unitary
transformation to remove the linear coupling. It helped them determine the soliton dy-
namics by using the known results for a single-component discrete nonlinear Schrödinger
equation and showed that the soliton solutions oscillate from one species to the other. In
[28] the authors claimed the existence of a standing wave of (1.1). However, they did not
justify whether the solution has both nonzero components. In fact, if one of (un, vn) is
identically zero, then (1.1) reduces to a single equation. In this paper, we not only obtain
the existence of discrete soliton solutions for system (1.7), but also show that both compo-
nents of the discrete soliton solution are nontrivial. For the case a4 = 0, the discrete soliton
solutions of (1.1) were discussed in [29].

The main idea of this paper is as follows. First, by using the Nehari manifold approach we
obtain that the sequence {(φ(k),ψ (k))} ⊂ N is bounded in E1 × E2. Then we prove that the
limit of {(φ(k),ψ (k))} exists and is the solution of (1.7) in l2 × l2 by using the compact em-
bedding theorem. Finally, we show that both components of the discrete soliton solution
are not zero.

This paper is organized as follows. In Sect. 2, we introduce some preliminaries, including
a discrete version of compact embedding theorem. In Sect. 3, we prove some key lemmas
on the Nehari manifold. In Sect. 4, we present and prove our main result on the existence of
a nontrivial discrete soliton solution that minimizes the corresponding action functional
of (1.6) and (1.7). Moreover, we prove that both components of the discrete soliton solution
are not zero.

2 Preliminaries
In this section, we describe the functional setting that will be used for our treatment of
the infinite nonlinear system (1.7). We first introduce a compact embedding theorem.

Consider the real sequence spaces

lp =
{
φ = {φn}n∈Z : ‖φ‖p =

(∑
n∈Z

|φn|p
) 1

p
< ∞,φn ∈R,∀n ∈ Z

}
.

Among lp spaces, we have the following elementary embedding relation:

lq ⊂ lp, ‖φ‖p ≤ ‖φ‖q, 1 ≤ q ≤ p ≤ ∞.

When p = 2, it becomes the usual Hilbert space l2 endowed with the scalar product

(φ,ψ) =
∑
n∈Z

φnψn, φ,ψ ∈ l2.

The spectrum of –� in l2 coincides with the interval [0, 4]. It is known that

0 ≤ (–�φ,φ) ≤ 4‖φ‖2
2 ∀φ ∈ l2.

Define

Ei =
{
φ ∈ l2 : (Liφ,φ) < ∞}

, ‖φ‖Ei = (Liφ,φ)
1
2 , i = 1, 2.

The following lemma can be found in [17].
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Lemma 2.1 If V1 and V2 satisfy (1.2), then Ei, i = 1, 2, is compactly embedded into lp for
each 2 ≤ p ≤ ∞, with the best embedding constant αip = max‖φ‖p=1 1/‖φ‖Ei . Furthermore,
the spectrum σ (Li) is discrete.

We define the action functional on E1 × E2 as

J(φ,ψ) =
1
2
(
(L1 – ω1)φ,φ

)
+

1
2
(
(L2 – ω2)ψ ,ψ

)

– a4(φ,ψ) –
1
4

∑
n∈Z

(
a1φ

4
n + a2ψ

4
n + 2a3φ

2
nψ

2
n
)
.

(2.1)

By Lemma 2.1 it follows that the action functional J(φ,ψ) ∈ C1(E1 × E2,R) and (1.7) cor-
responds to J ′(φ,ψ) = 0. So we define

I(φ,ψ) =
(
J ′(φ,ψ), (φ,ψ)

)
=

(
(L1 – ω1)φ,φ

)
+

(
(L2 – ω2)ψ ,ψ

)

– 2a4(φ,ψ) –
∑
n∈Z

(
a1φ

4
n + a2ψ

4
n + 2a3φ

2
nψ

2
n
) (2.2)

and the Nehari manifold

N =
{

(φ,ψ) ∈ E1 × E2 : I(φ,ψ) = 0, (φ,ψ) 
= 0
}

. (2.3)

3 Some lemmas on the Nehari manifold
Let

λi = inf
{
σ (Li)

}
, i = 1, 2.

Throughout the paper, we will assume the following hypothesis on ωi:
(H) ωi < min {λ1 – a4,λ2 – a4}, i = 1, 2.

To prove the main result, we need the following lemmas on the Nehari manifold.

Lemma 3.1 Assume that (H) and (1.2) hold. Then the Nehari manifold N is a nonempty
closed C1 submanifold in E1 × E2. Moreover, for any (φ,ψ) ∈ E1 × E2 – {(0, 0)}, there is a
unique point τ (φ,ψ) ∈ (0,∞) such that (τ (φ,ψ)φ, τ (φ,ψ)ψ) ∈ N , and t = τ (φ,ψ) is the
unique maximum value point of J(tφ, tψ) in t ∈ (0,∞). We have the following equality:

J
(
τ (φ,ψ)φ, τ (φ,ψ)ψ

)
=

I2
1 (φ,ψ)

4I2(φ,ψ)
, (3.1)

where

I1(φ,ψ) = ‖φ‖2
E1 – ω1‖φ‖2

2 + ‖ψ‖2
E2 – ω2‖ψ‖2

2 – 2a4(φ,ψ),

I2(φ,ψ) =
∑
n∈Z

(
a1φ

4
n + a2ψ

4
n + 2a3φ

2
nψ

2
n
)
.
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Proof We first show that N 
= ∅. We rewrite (2.1) and (2.2) as

J(φ,ψ) =
1
2

I1(φ,ψ) –
1
4

I2(φ,ψ) (3.2)

and

I(φ,ψ) = I1(φ,ψ) – I2(φ,ψ), (3.3)

respectively. Then

I(tφ, tψ) = t2I1(φ,ψ) – t4I2(φ,ψ). (3.4)

Since a4 < min {λ1 – ω1,λ2 – ω2}, we have

I1(φ,ψ) = ‖φ‖2
E1 – ω1‖φ‖2

2 + ‖ψ‖2
E2 – ω2‖ψ‖2

2 – 2a4(φ,ψ)

≥ ‖φ‖2
E1 – ω1‖φ‖2

2 + ‖ψ‖2
E2 – ω2‖ψ‖2

2 – a4‖φ‖2
2 – a4‖ψ‖2

2

≥ (λ1 – ω1 – a4)‖φ‖2
2 + (λ2 – ω2 – a4)‖ψ‖2

2

> 0.

(3.5)

Clearly, I2(φ,ψ) > 0. Therefore by (3.4) and (3.5) we see that I(tφ, tψ) > 0 for t > 0 small
enough and I(tφ, tψ) < 0 for t > 0 large enough. As a consequence, there exists τ (φ,ψ) > 0
such that I(τ (φ,ψ)φ, τ (φ,ψ)ψ) = 0, that is, (τ (φ,ψ)φ, τ (φ,ψ)ψ) ∈ N . In fact, from (3.4)
we have

τ (φ,ψ) =
(

I1(φ,ψ)
I2(φ,ψ)

) 1
2

. (3.6)

Moreover, in view of (2.1), we have

J
(
τ (φ,ψ)φ, τ (φ,ψ)ψ

)
=

1
2
τ 2(φ,ψ)I1(φ,ψ) –

1
4
τ 4(φ,ψ)I2(φ,ψ) =

I2
1 (φ,ψ)

4I2(φ,ψ)
.

Let (φ,ψ) ∈ N . By (2.2) and the definition of N we obtain

(
I ′(φ,ψ), (φ,ψ)

)
=

(
I ′(φ,ψ), (φ,ψ)

)
– 2I(φ,ψ)

= –2
∑
n∈Z

(
a1(φn)4 + a2(ψn)4 + 2a3(φn)2(ψn)2)

< 0.

Hence I ′ 
= 0, and the implicit function theorem implies that N is a closed C1 submanifold
in E1 × E2. �

Lemma 3.2 Assume that (H) and (1.2) hold. Then there exists η > 0 such that J(φ,ψ) ≥ η

for all (φ,ψ) ∈ N .
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Proof Since λ1 is the smallest eigenvalue of L1 and λ2 is the smallest eigenvalue of L2,
from the definition of the constants α1p and α2p we get λ1 = 1/α2

12 and λ2 = 1/α2
22. For any

(φ,ψ) ∈ N , we have

‖φ‖2
E1 – ω1‖φ‖2

2 + ‖ψ‖2
E2 – ω2‖ψ‖2

2 – 2a4(φ,ψ)

=
∑
n∈Z

(
a1φ

4
n + a2ψ

4
n + 2a3φ

2
nψ

2
n
)

≤ a∗(‖φ‖2
4 + ‖ψ‖2

4
)2

≤ a∗(‖φ‖2
2 + ‖ψ‖2

2
)2

≤ a∗(α2
12‖φ‖2

E1 + α2
22‖ψ‖2

E2

)2

≤ a∗γ 2
2
(‖φ‖2

E1 + ‖ψ‖2
E2

)2,

(3.7)

where a∗ = max {a1, a2, a3} and γ2 = max {α2
12,α2

22}.
Let

γ1 = min

{
1, 1 –

ω1 + a4

λ1
, 1 –

ω2 + a4

λ2

}
.

Then

‖φ‖2
E1 – ω1‖φ‖2

2 + ‖ψ‖2
E2 – ω2‖ψ‖2

2 – 2a4(φ,ψ)

≥ ‖φ‖2
E1 – ω1‖φ‖2

2 + ‖ψ‖2
E2 – ω2‖ψ‖2

2 – a4‖φ‖2
2 – a4‖ψ‖2

2

≥ γ1
(‖φ‖2

E1 + ‖ψ‖2
E2

)
.

(3.8)

By (3.7) and (3.8) we easily see that

γ1
(‖φ‖2

E1 + ‖ψ‖2
E2

) ≤ a∗γ 2
2
(‖φ‖2

E1 + ‖ψ‖2
E2

)2, (3.9)

which implies that

‖φ‖2
E1 + ‖ψ‖2

E2 ≥ γ1

a∗γ 2
2

. (3.10)

Moreover, we have

J(φ,ψ) = J(φ,ψ) –
1
4

I(φ,ψ)

=
1
4
(‖φ‖2

E1 – ω1‖φ‖2
2 + ‖ψ‖2

E2 – ω2‖ψ‖2
2 – 2a4(φ,ψ)

)

≥ γ1

4
(‖φ‖2

E1 + ‖ψ‖2
E2

)

≥ γ 2
1

4a∗γ 2
2

.

(3.11)

Let η = γ 2
1 /(4a∗γ 2

2 ). Then we get J(φ,ψ) ≥ η for all (φ,ψ) ∈ N . �
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4 Main results
Now we state the main result of this paper.

Theorem 4.1 Assume that (H) and (1.2) hold. Then system (1.7) has at least one nontrivial
discrete soliton solution (φ∗,ψ∗) in E1 × E2 with φ∗ 
= 0 and ψ∗ 
= 0.

By a discrete soliton solution of system (1.7) we mean a minimizer of the following con-
strained minimization problem:

d ≡ inf
(φ,ψ)∈N

J(φ,ψ). (4.1)

We will prove that minimizers of problem (4.1) are solutions of system (1.7) with (1.6).
Such solutions give the lowest possible value of the action functional J among nontrivial
solutions of system (1.7) in E1 × E2.

Remark 4.1 If (φ,ψ) ∈ E1 × E2, then (1.6) holds naturally.

Remark 4.2 In system (1.7) the positive constant a4 can be replaced by a negative one, say
a5. In this case, we replace ψn by –ψn and –a5 by a4, and the conclusion of Theorem 4.1
still holds.

Now we are ready to prove Theorem 4.1.

Proof Let d be given by (4.1). By Lemma 3.1, N is nonempty, and there exists a sequence
{(φ(k),ψ (k))} ⊂ N such that

d = lim
k→∞

J
(
φ(k),ψ (k)). (4.2)

By Lemma 3.2, d > 0 and d ≤ d̃ = maxk {J(φ(k),ψ (k))} < ∞. By (3.11) we have

∥∥φ(k)∥∥2
E1

+
∥∥ψ (k)∥∥2

E2
≤ 4

γ1
J
(
φ(k),ψ (k)) ≤ 4d̃

γ1
< ∞.

Thus the sequences {φ(k)} and {ψ (k)} are bounded in the Hilbert spaces E1 and E2, respec-
tively. Therefore there exist a subsequence of {φ(k)} and a subsequence of {ψ (k)}, denoted
again by {φ(k)} and {ψ (k)} for simplicity, that converge weakly to some φ∗ ∈ E1 and ψ∗ ∈ E2,
respectively. By Lemma 2.1 we get, for each 2 ≤ p ≤ ∞,

lim
k→∞

φ(k) = φ∗, lim
k→∞

ψ (k) = ψ∗, in lp. (4.3)

By (2.1) and (2.3) we know that

J
(
φ(k),ψ (k)) =

1
4

∑
n∈Z

(
a1

(
φ(k)

n
)4 + a2

(
ψ (k)

n
)4 + 2a3

(
φ(k)

n
)2(

ψ (k)
n

)2).
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Now we claim that

lim
k→∞

∑
n∈Z

(
a1

(
φ(k)

n
)4 + a2

(
ψ (k)

n
)4 + 2a3

(
φ(k)

n
)2(

ψ (k)
n

)2)

=
∑
n∈Z

(
a1

(
φ∗

n
)4 + a2

(
ψ∗

n
)4 + 2a3

(
φ∗

n
)2(

ψ∗
n
)2).

(4.4)

According to (4.3), it suffices to show that

lim
k→∞

∑
n∈Z

(
φ(k)

n
)2(

ψ (k)
n

)2 =
∑
n∈Z

(
φ∗

n
)2(

ψ∗
n
)2. (4.5)

Indeed,
∣∣∣∣
∑
n∈Z

(
φ(k)

n
)2(

ψ (k)
n

)2 –
∑
n∈Z

(
φ∗

n
)2(

ψ∗
n
)2

∣∣∣∣
≤

∑
n∈Z

∣∣φ(k)
n – φ∗

n
∣∣∣∣φ(k)

n + φ∗
n
∣∣(ψ (k)

n
)2 +

∑
n∈Z

∣∣ψ (k)
n – ψ∗

n
∣∣∣∣ψ (k)

n + ψ∗
n
∣∣(φ∗

n
)2.

Thus the Hölder inequality and (4.3) imply (4.5).
Next, we will show that (φ∗,ψ∗) ∈ N and J(φ∗,ψ∗) = d. Since Ei is a Hilbert space for

i = 1, 2, by (4.4) we have

∥∥φ∗∥∥2
E1

+
∥∥ψ∗∥∥2

E2

=
∥∥∥weak- lim

k→∞
φ(k)

∥∥∥2

E1
+

∥∥∥weak- lim
k→∞

ψ (k)
∥∥∥2

E2

≤ lim inf
k→∞

∥∥φ(k)∥∥2
E1

+ lim inf
k→∞

∥∥ψ (k)∥∥2
E2

≤ lim inf
k→∞

(∥∥φ(k)∥∥2
E1

+
∥∥ψ (k)∥∥2

E2

)

= lim inf
k→∞

∑
n∈Z

(
a1

(
φ(k)

n
)4 + a2

(
ψ (k)

n
)4 + 2a3

(
φ(k)

n
)2(

ψ (k)
n

)2)

+ lim inf
k→∞

(
ω1

∥∥φ(k)∥∥2
2 + ω2

∥∥ψ (k)∥∥2
2 + 2a4

(
φ(k),ψ (k)))

=
∑
n∈Z

(
a1

(
φ∗

n
)4 + a2

(
ψ∗

n
)4 + 2a3

(
φ∗

n
)2(

ψ∗
n
)2)

+ ω1
∥∥φ∗∥∥2

2 + ω2
∥∥ψ∗∥∥2

2 + 2a4
(
φ∗,ψ∗),

which implies

I
(
φ∗,ψ∗) =

∥∥φ∗∥∥2
E1

– ω1
∥∥φ∗∥∥2

2 +
∥∥ψ∗∥∥2

E2
– ω2

∥∥ψ∗∥∥2
2 – 2a4

(
φ∗,ψ∗)

–
∑
n∈Z

(
a1

(
φ∗

n
)4 + a2

(
ψ∗

n
)4 + 2a3

(
φ∗

n
)2(

ψ∗
n
)2)

≤ 0.

Through an argument similar to the proof of Lemma 3.1, we know that I(tφ∗, tψ∗) is posi-
tive as t is small enough. Therefore there exists t∗ ∈ (0, 1] such that I(t∗φ∗, t∗ψ∗) = 0, which
implies (t∗φ∗, t∗ψ∗) ∈ N . Thus we have J(t∗φ∗, t∗ψ∗) = (1/4)W (t∗) and by ( 4.4), W (1) = 4d,
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where

W (t) = t4
∑
n∈Z

(
a1

(
φ∗

n
)4 + a2

(
ψ∗

n
)4 + 2a3

(
φ∗

n
)2(

ψ∗
n
)2).

Clearly, W (t) is strictly increasing on 0 < t < ∞. Therefore by (4.1)

d ≤ J
(
t∗φ∗, t∗ψ∗) =

1
4

W
(
t∗) ≤ 1

4
W (1) = d.

This implies that t∗ = 1 and J(φ∗,ψ∗) = d.
Now let us prove that (φ∗,ψ∗) is a nontrivial solution to system (1.7). Since (φ∗,ψ∗) is

an energy minimizer on the Nehari manifold N , there exists a Lagrange multiplier � such
that

(
J ′(φ∗,ψ∗) + �I ′(φ∗,ψ∗), (φ,ψ)

)
= 0 (4.6)

for all (φ,ψ) ∈ E1 × E2. Let (φ,ψ) = (φ∗,ψ∗) in (4.6). Then (J ′(φ∗,ψ∗), (φ∗,ψ∗)) =
I(φ∗,ψ∗) = 0 implies that

�
(
I ′(φ∗,ψ∗),

(
φ∗,ψ∗)) = 0.

However,

(
I ′(φ∗,ψ∗),

(
φ∗,ψ∗))

= 2
(
(L1 – ω1)φ∗,φ∗) + 2

(
(L2 – ω2)ψ∗,ψ∗) – 4a4

(
φ∗,ψ∗)

– 4
∑
n∈Z

(
a1

(
φ∗

n
)4 + a2

(
ψ∗

n
)4 + 2a3

(
φ∗

n
)2(

ψ∗
n
)2)

= –2
∑
n∈Z

(
a1

(
φ∗

n
)4 + a2

(
ψ∗

n
)4 + 2a3

(
φ∗

n
)2(

ψ∗
n
)2) < 0.

(4.7)

Thus � = 0, and

(
J ′(φ∗,ψ∗), (φ,ψ)

)
= 0 (4.8)

for all (φ,ψ) ∈ E1 × E2. Take (φ,ψ) = (e(k), 0) and (φ,ψ) = (0, e(k)) in (4.8) for k ∈ Z, where

e(k)
n =

⎧⎨
⎩

1, n = k,

0, n 
= k.

We see that J ′(φ∗,ψ∗) = 0. Thus (φ∗,ψ∗) is a nontrivial solution to system (1.7).
Finally, we will show that φ∗ 
= 0 and ψ∗ 
= 0. In fact, if one of the components of (φ∗,ψ∗),

say ψ∗ = 0, then φ∗ 
= 0. Since φ∗ 
= 0, there exists an integer K such that φ∗
K 
= 0. Let ϕ =

{ϕn}n∈Z, where

ϕn =

⎧⎨
⎩

φ∗
n , |n| ≤ |K |,

0, |n| ≥ |K | + 1.

Obviously, ϕ ∈ E2 – {0}.
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For ε small enough, we consider (φ∗, εϕ) ∈ (E1 – {0}) × (E2 – {0}).
For simplicity, let

B =
∑
n∈Z

(
φ∗

n
)4, BK =

K∑
n=–K

(
φ∗

n
)4, D =

(
(L2 – ω2)ϕ,ϕ

)
.

Then, for ε small enough, we have

I2
1
(
φ∗, εϕ

)
=

((
(L1 – ω1)φ∗,φ∗) +

(
(L2 – ω2)εϕ, εϕ

)
– 2a4

(
φ∗, εϕ

))2

=
(
a1B + Dε2 – 2a4‖ϕ‖2

2ε
)2

= a2
1B2 – 4a1a4B‖ϕ‖2

2ε +
(
2a1BD + 4a2

4‖ϕ‖4
2
)
ε2

– 4a4D‖ϕ‖2
2ε

3 + D2ε4

< a2
1B2 + 2a1a3BBKε2 + a1a2BBKε4

= a1B
(
a1B + a2BKε4 + 2a3BKε2)

= I2
(
φ∗, 0

)
I2

(
φ∗, εϕ

)
.

(4.9)

By Lemma 3.1, (τ (φ∗, εϕ)φ∗, τ (φ∗, εϕ)εϕ) ∈ N , and by (4.9) we have

J
(
τ
(
φ∗, εϕ

)
φ∗, τ

(
φ∗, εϕ

)
εϕ

)
=

I2
1 (φ∗, εϕ)

4I2(φ∗, εϕ)

<
1
4

I2
(
φ∗, 0

)

= J
(
φ∗, 0

)
= inf

(φ,ψ)∈N
J(φ,ψ).

This is a contradiction. So, ψ∗ 
= 0. �

5 Conclusion
We have studied the discrete solitons in the discrete coupled nonlinear Schrödinger equa-
tions with unbounded potentials. These solutions are obtained by using the Nehari man-
ifold approach and the compact embedding theorem. However, we do not know if both
components of the discrete soliton solution are nontrivial. Fortunately, we successfully
found a way to prove that both components are nontrivial, namely, by comparing the value
of the action functional at the discrete soliton solution with ones at nonzero solutions of
one component zero. We think that our method can be applied to a variety of discrete
models, especially to the N-component discrete coupled nonlinear Schrödinger equa-
tions. However, this method seems hard for the coupled discrete nonlinear Schrödinger
equations with general nonlinear terms, because a formula of the action functional is not
obtained and is left for our future work.
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