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Abstract
This paper studies the uniqueness of solutions to a two-term nonlinear fractional
integro-differential equation with nonlocal boundary condition and variable
coefficients based on the Mittag-Leffler function, Babenko’s approach, and Banach’s
contractive principle. An example is also provided to illustrate the applications of our
theorem.
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1 Introduction
Let T > 0. The Riemann-Liouville fractional integral Iα of order α ∈ R+ is defined for func-
tion u(x) as (see [1, 2])

(
Iαu

)
(x) =

1
�(α)

∫ x

0
(x – t)α–1u(t) dt, x ∈ [0, T].

In particular,

(
I0u

)
(x) = u(x),

from [3].
Let l ∈ N = {1, 2, 3, . . .}. The Liouville-Caputo derivative of fractional order α ∈ R+ of

function u(x) is defined as

(
CDαu

)
(x) = Il–α dl

dxl u(x) =
1

�(l – α)

∫ x

0
(x – t)l–α–1u(l)(t) dt,

where l – 1 < α ≤ l.
Let a(x) ∈ C[0, T], g : [0, T] × R → R and f : C[0, T] → R. We shall study the unique-

ness of solutions for the following nonlinear integro-differential equation with nonlocal
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boundary condition and variable coefficients for l < α ≤ l + 1:

⎧
⎪⎪⎨

⎪⎪⎩

CDαu(x) + a(x)Iβu(x) = g(x, u(x)), x ∈ [0, T],

u(0) = –f (u), u′′(0) = · · · = u(l)(0) = 0,
∫ T

0 u(x) dx = λ,

(1.1)

where λ is a constant. In particular, for l = 1, equation (1.1) turns out to be

⎧
⎨

⎩
CDαu(x) + a(x)Iβu(x) = g(x, u(x)), x ∈ [0, T],

u(0) = –f (u),
∫ T

0 u(x) dx = λ.
(1.2)

Boundary value problems of fractional differential equations have recently attracted many
researchers and emerged as an important field of research due to their applications in
various areas of science and engineering, such as control theory, wave propagation, me-
chanics, and biology [4–21]. In 2014, Tariboon et al. [4] investigated the existence and
uniqueness of solutions for the following fractional differential equation:

CDαu(x) = g
(
x, u(x)

)
, 1 < α ≤ 2, x ∈ [0, T],

subject to nonlocal fractional integral boundary conditions:

m∑

i=1

λiu(ηi) = ω1,
n∑

j=1

μj
(
Iβj u(T) – Iβj u(ζj)

)
= ω2,

where g : [0, T] × R → R is a continuous function, λi,μj ∈ R for all i = 1, 2, . . . , m, j =
1, 2, . . . , n, and ω1,ω2 ∈ R, using Krasnoselskii’s fixed point theorem, Banach’s contractive
principle and Leray-Schauder’s nonlinear alternative.

In particular, for all αi = βj = 1, the above boundary conditions become

λ1

∫ η1

0
u(x) dx + · · · + λm

∫ ηm

0
u(x) dx = ω1,

μ1

∫ T

ζ1

u(x) dx + · · · + μn

∫ T

ζn

u(x) dx = ω2.

In 2013, Yan et al. [5] studied the existence and uniqueness of solutions for the following
boundary value problem of fractional differential equation based on several standard fixed
point theorems:

CDαu(x) = g
(
x, u(x)

)
, 1 < α ≤ 2, x ∈ [0, T], (1.3)

with the nonlocal boundary conditions

u(0) = g(u),
∫ T

0
u(x) dx = m,

where g : C2[0, T] → R is a C2 continuous functional. Clearly, equation (1.3) with its nonlo-
cal boundary conditions is a special case of equation (1.2) by setting a(x) = 0. Very recently,
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Li et al. [22] studied the uniqueness and existence for the following nonlinear integro-
differential equation with the boundary condition using several fixed point theorems:

⎧
⎨

⎩
CDα

p u(x) + μIβ
p u(x) = g(x, u(x)), x ∈ [p, q], l – 1 < α ≤ l,β ≥ 0,

u(p) = u′(p) = · · · = u(l–2)(p) = 0 = u(l–1)(q),

where μ is a constant, and 0 ≤ p < q < +∞.
Very little is known in modern literature about boundary value problems of fractional

integro-differential equations with integral boundary conditions and variable coefficients.
We will work on equation (1.1), which, to the best of the author’s knowledge, is new and
requires the following preliminaries.

We define the Banach space C[0, T] with the norm

‖u‖ = max
x∈[0,T]

∣∣u(x)
∣∣ < +∞.

The two-parameter Mittag-Leffler function [2] is defined by

Eα,β (z) =
∞∑

k=0

zk

�(αk + β)
, z ∈ C,α,β > 0.

Babenko’s approach [23] is a powerful tool for solving differential and integro-differential
equations with initial conditions by treating bounded integral operators as normal vari-
ables. The method itself is similar to the Laplace transform while working on differential
and integral equations with constant coefficients, but it can be applied to equations with
continuous and bounded variable coefficients. As an example to demonstrate the tech-
nique, we will show the following lemma, which plays an essential role in deriving our
main theorem.

Lemma 1 Let a, h : [0, T] → R be continuous functions and f : C[0, T] → R be a continuous
functional. Assume that

2MTα+β

�(α + β + 2)
Eα+β ,1

(
MTα+β

)
< 1,

where M is a constant satisfying

‖a‖ = max
x∈[0,T]

∣∣a(x)
∣∣ ≤ M.

Then u(x) is a solution to the following nonlinear integro-differential equation

⎧
⎪⎪⎨

⎪⎪⎩

CDαu(x) + a(x)Iβu(x) = h(x), l < α ≤ l + 1, x ∈ [0, T],

u(0) = –f (u), u′′(0) = · · · = u(l)(0) = 0,
∫ T

0 u(x) dx = λ,

(1.4)

if and only if u(x) satisfies the integral equation

u(x) =
∞∑

j=0

(–1)j(Iαa(x)Iβ
)jIαh(x) – f (u)

∞∑

j=0

(–1)j(Iαa(x)Iβ
)j · 1
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–
2

�(α + 1)T2

∫ T

0
(T – t)αh(t) dt

∞∑

j=0

(–1)j(Iαa(x)Iβ
)jx

+
2

�(α + 1)�(β)T2

∫ T

0
(T – x1)αa(x1) dx1

∫ x1

0
(x1 – t)β–1u(t) dt

·
∞∑

j=0

(–1)j(Iαa(x)Iβ
)jx +

2λ

T2

∞∑

j=0

(–1)j(Iαa(x)Iβ
)jx

+
2f (u)

T

∞∑

j=0

(–1)j(Iαa(x)Iβ
)jx,

in the space C[0, T].

Proof Clearly,

Iα
(

CDα
)
u(x) = u(x) + f (u) + c1x,

using

u(0) = –f (u), u′′(0) = · · · = u(l)(0) = 0.

Hence, applying the operator Iα to both sides of the equation

CDαu(x) + a(x)Iβu(x) = h(x),

we get

u(x) + f (u) + c1x + Iαa(x)Iβu(x) = Iαh(x).

Obviously,

∫ T

0
Iαh(x) dx =

1
�(α)

∫ T

0
dx

∫ x

0
(x – t)α–1h(t) dt =

1
�(α)

∫ T

0
h(t) dt

∫ T

t
(x – t)α–1 dx

=
1

�(α + 1)

∫ T

0
(T – t)αh(t) dt.

Similarly,

∫ T

0
Iαa(x)Iβu(x) dx =

1
�(α + 1)�(β)

∫ T

0
(T – x1)αa(x1) dx1

∫ x1

0
(x1 – t)β–1u(t) dt.

Thus,

∫ T

0
u(x) dx +

∫ T

0
f (u) dx + c1

∫ T

0
x dx +

∫ T

0
Iαa(x)Iβu(x) dx =

∫ T

0
Iαh(x) dx,

which implies that

λ + f (u)T +
T2

2
c1 =

∫ T

0
Iαh(x) dx –

∫ T

0
Iαa(x)Iβu(x) dx,
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by noting that f (u) ∈ R. So,

c1 =
2

�(α + 1)T2

∫ T

0
(T – t)αh(t) dt

–
2

�(α + 1)�(β)T2

∫ T

0
(T – x1)αa(x1) dx1

∫ x1

0
(x1 – t)β–1u(t) dt

–
2λ

T2 –
2f (u)

T
,

and

(
1 + Iαa(x)Iβ

)
u(x) = Iαh(x) – f (u) – c1x.

Treating the factor (1 + Iαa(x)Iβ) as a variable, we deduce that by Babenko’s approach

u(x) =
(
1 + Iαa(x)Iβ

)–1[Iαh(x) – f (u) – c1x
]

=
∞∑

j=0

(–1)j(Iαa(x)Iβ
)jIαh(x) – f (u)

∞∑

j=0

(–1)j(Iαa(x)Iβ
)j · 1

– c1

∞∑

j=0

(–1)j(Iαa(x)Iβ
)jx

=
∞∑

j=0

(–1)j(Iαa(x)Iβ
)jIαh(x) – f (u)

∞∑

j=0

(–1)j(Iαa(x)Iβ
)j · 1

–
2

�(α + 1)T2

∫ T

0
(T – t)αh(t) dt ·

∞∑

j=0

(–1)j(Iαa(x)Iβ
)jx

+
2

�(α + 1)�(β)T2

∫ T

0
(T – x1)αa(x1) dx1

∫ x1

0
(x1 – t)β–1u(t) dt

·
∞∑

j=0

(–1)j(Iαa(x)Iβ
)jx +

2λ

T2

∞∑

j=0

(–1)j(Iαa(x)Iβ
)jx

+
2f (u)

T

∞∑

j=0

(–1)j(Iαa(x)Iβ
)jx.

It remains to show that u ∈ C[0, T]. Clearly,

∥
∥Iαh

∥
∥ =

1
�(α)

max
x∈[0,T]

∣∣
∣∣

∫ x

0
(x – t)α–1h(t) dt

∣∣
∣∣ ≤ Tα

�(α + 1)
‖h‖.

Hence, we infer that

‖u‖ ≤
∞∑

j=0

∥∥(
Iαa(x)Iβ

)jIα
∥∥‖h‖ +

∣∣f (u)
∣∣

∞∑

j=0

∥∥(
Iαa(x)Iβ

)j∥∥

+
2‖h‖

�(α + 2)T2 Tα+1
∞∑

j=0

∥
∥(

Iαa(x)Iβ
)j∥∥‖x‖
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+
2M‖u‖Tα+β–1

�(α + β + 2)

∞∑

j=0

∥
∥(

Iαa(x)Iβ
)j∥∥‖x‖

+
2|λ|
T2

∞∑

j=0

∥∥(
Iαa(x)Iβ

)j∥∥‖x‖ +
2|f (u)|

T

∞∑

j=0

∥∥(
Iαa(x)Iβ

)j∥∥‖x‖

≤ ‖h‖
∞∑

j=0

MjT (α+β)j+α

�((α + β)j + α + 1)
+

∣
∣f (u)

∣
∣

∞∑

j=0

MjT (α+β)j

�((α + β)j + 1)

+
2‖h‖Tα

�(α + 2)

∞∑

j=0

MjT (α+β)j

�((α + β)j + 1)
+

2M‖u‖Tα+β

�(α + β + 2)

∞∑

j=0

MjT (α+β)j

�((α + β)j + 1)

+
[

2|λ|
T

+ 2
∣∣f (u)

∣∣
] ∞∑

j=0

MjT (α+β)j

�((α + β)j + 1)
. (1.5)

This implies that

(
1 –

2MTα+β

�(α + β + 2)
Eα+β ,1

(
MTα+β

))‖u‖

= ‖h‖TαEα+β ,α+1
(
MTα+β

)
+

[
3
∣
∣f (u)

∣
∣ +

2‖h‖Tα

�(α + 2)
+

2|λ|
T

]
Eα+β ,1

(
MTα+β

)
< +∞.

By our assumption,

1 –
2MTα+β

�(α + β + 2)
Eα+β ,1

(
MTα+β

)
> 0,

which infers that ‖u‖ is bounded. Furthermore, u(x) is clearly continuous over the interval
[0, T]. This completes the proof of Lemma 1. �

2 Main results
We are now ready to present our key results regarding the uniqueness of solutions to equa-
tion (1.1) using Banach’s contractive principle.

Theorem 2 Assume that a(x) ∈ C[0, T], g : [0, T]×R → R is continuous and f : C[0, T] →
R is a continuous functional, and there exist nonnegative constants L and L1 such that

∣∣g(x, y1) – g(x, y2)
∣∣ ≤ L|y1 – y2|, y1, y2 ∈ R,

∣∣f (u) – f (v)
∣∣ ≤ L1‖u – v‖, u, v ∈ C[0, T].

Furthermore,

q = LTαEα+β ,α+1
(
MTα+β

)
+

[
3L1 +

2LTα

�(α + 2)
+

2MTα+β

�(α + β + 2)

]
Eα+β ,1

(
MTα+β

)

< 1.

Then equation (1.1) has a unique solution in the space C[0, T].
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Proof From Lemma 1, we define a nonlinear mapping T over the space C[0, T] by

(Tu)(x) =
∞∑

j=0

(–1)j(Iαa(x)Iβ
)jIαg(x, u) – f (u)

∞∑

j=0

(–1)j(Iαa(x)Iβ
)j · 1

–
2

�(α + 1)T2

∫ T

0
(T – t)αg

(
t, u(t)

)
dt ·

∞∑

j=0

(–1)j(Iαa(x)Iβ
)jx

+
2

�(α + 1)�(β)T2

∫ T

0
(T – x1)αa(x1) dx1

∫ x1

0
(x1 – t)β–1u(t) dt

·
∞∑

j=0

(–1)j(Iαa(x)Iβ
)jx +

2λ

T2

∞∑

j=0

(–1)j(Iαa(x)Iβ
)jx

+
2f (u)

T

∞∑

j=0

(–1)j(Iαa(x)Iβ
)jx.

Clearly,

∣∣g(x, u)
∣∣ =

∣∣g(x, u) – g(x, 0) + g(x, 0)
∣∣ ≤ L|u| +

∣∣g(x, 0)
∣∣,

which implies that

max
x∈[0,T]

∣
∣g(x, u)

∣
∣ ≤ L‖u‖ + max

x∈[0,T]

∣
∣g(x, 0)

∣
∣ < +∞,

since g(x, 0) ∈ C[0, T]. It follows from inequality (1.5) that (Tu)(x) ∈ C[0, T] by noting that

1 –
2MTα+β

�(α + β + 2)
Eα+β ,1

(
MTα+β

)
> 0

in Lemma 1, as q < 1. Further, we need to prove that T is contractive. Indeed,

(Tu)(x) – (Tv)(x)

=
∞∑

j=0

(–1)j(Iαa(x)Iβ
)jIα

(
g(x, u) – g(x, v)

)

–
(
f (u) – f (v)

) ∞∑

j=0

(–1)j(Iαa(x)Iβ
)j · 1

–
2

�(α + 1)T2

∫ T

0
(T – t)α

(
g
(
t, u(t)

)
– g

(
t, v(t)

))
dt ·

∞∑

j=0

(–1)j(Iαa(x)Iβ
)jx

+
2

�(α + 1)�(β)T2

∫ T

0
(T – x1)αa(x1) dx1

∫ x1

0
(x1 – t)β–1(u(t) – v(t)

)
dt

·
∞∑

j=0

(–1)j(Iαa(x)Iβ
)jx +

2(f (u) – f (v))
T

∞∑

j=0

(–1)j(Iαa(x)Iβ
)jx.
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Thus,

∣
∣(Tu)(x) – (Tv)(x)

∣
∣ ≤ LTα‖u – v‖

∞∑

j=0

MjT (α+β)j

�((α + β)j + α + 1)

+ 3L1‖u – v‖
∞∑

j=0

MjT (α+β)j

�((α + β)j + 1)

+
2L‖u – v‖Tα

�(α + 2)

∞∑

j=0

MjT (α+β)j

�((α + β)j + 1)

+
2M‖u – v‖Tα+β

�(α + β + 2)

∞∑

j=0

MjT (α+β)j

�((α + β)j + 1)

= q‖u – v‖.

Since q < 1, equation (1.1) has a unique solution in the space C[0, T] by Banach’s fixed
point theorem. This completes the proof of Theorem 2. �

Example 3 The following nonlinear integro-differential equation with nonlocal boundary
condition and variable coefficients:

⎧
⎪⎪⎨

⎪⎪⎩

CD3.5u(x) + 2x2

x2+1 I1.1u(x) = 1
2 cos(x2u(x)) + x3, x ∈ [0, 1],

u(0) = 1
9 sin u(1/2), u′′(0) = u′′′(0) = 0,

∫ 1
0 u(x) dx =

√
2,

has a unique solution in C[0, 1].

Proof Clearly,

g(x, u) =
1
2

cos
(
x2u(x)

)
+ x3,

and

∣∣g(x, u) – g(x, v)
∣∣ ≤ 1

2
∣∣x2u – x2v

∣∣ ≤ 1
2
|u – v|.

Therefore, L = 1/2 as x ∈ [0, 1]. On the other hand,

f (u) =
1
9

sin u(1/2),

and

∣∣f (u) – f (v)
∣∣ ≤ 1

9
∣∣sin u(1/2) – sin v(1/2)

∣∣ ≤ 1
9
∣∣u(1/2) – v(1/2)

∣∣ ≤ 1
9
‖u – v‖,

which indicates that L1 = 1/9. It follows from Theorem 2 that

q =
1
2

E4,6,4.5(2) +
[

3
9

+
1

�(5.5)
+

4
�(6.6)

]
E4.6,1(2).
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Using online calculators from the site https://www.wolframalpha.com/ (accessed on 09
October 2022), we get

E4,6,4.5(2) =
∞∑

j=0

2j

�(4.6j + 4.5)
≈ 0.0860118,

E4.6,1(2) =
∞∑

j=0

2j

�(4.6j + 1)
≈ 1.0325,

1
�(5.5)

≈ 0.0191048,
4

�(6.6)
≈ 0.0116042.

These obviously claim that q < 1. By Theorem 2, it has a unique solution in C[0, 1]. �

3 Conclusion
We have investigated the uniqueness of solutions to the nonlinear fractional integro-
differential equation (1.1) with nonlocal boundary condition and variable coefficients us-
ing the Mittag-Leffler function, Babenko’s approach, and Banach’s contractive principle
and presented an applicable example. The technique used clearly opens up new directions
for studying other types of boundary conditions or with different fractional derivatives,
such as boundary value problems of the nonlinear fractional partial integro-differential
equations with variable coefficients as well as nonlinear integro-differential equations with
the Hilfer fractional derivatives.
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