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1 Introduction
Colored noise was first introduced in [17, 21] in order to obtain information on the ve-
locity of randomly moving particles, which cannot be obtained from white noise since
the Wiener process is nowhere differentiable. Moreover, for many physical systems, the
stochastic fluctuations are correlated and should be modeled by colored noise rather than
white noise, see [14].

This paper is concerned with the asymptotic behavior of the plate equation driven by

nonlinear colored noise in unbounded domains:

U + oy + Au+vu + f(x,u) = g(x, ) + h(t, %, u)¢s(6,0), t>1T,x0€RY, (L1)
u(x, ) = uo(x), u(x,7) = urox), x€R” '

where 7 € R, o, v are positive constants, f and / are given nonlinearity, g € L2 (R, H'(R")),

and (s is a colored noise with correlation time § > 0.

The existence and uniqueness of pathwise random attractors of stochastic plate equa-
tions have been studied in [12, 13, 15, 16] in the case of bounded domains; and in [30—-35]
in the case of unbounded domains. We also mention that the global attractors of deter-
ministic plate equations have been investigated in [2, 7, 9, 10, 24, 26-29, 37] in bounded
domains, and in [5, 6, 11, 25, 36] on unbounded domains.
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In all these publications ([30—35]), only the additive white noise and linear multiplica-
tive white noise were considered. Note that the random equation (1.1) is driven by col-
ored noise rather than white noise. In general, it is very difficult to study the asymptotic
dynamics of differential equations driven by nonlinear white noise, including the random
attractors. Indeed, only when the white noise is linear can the stochastic equations be
transformed into a deterministic equations, then one can obtain the existence of ran-
dom attractors of the plate equation (1.1). However, this transformation does not apply
to stochastic equations driven by nonlinear white noise, and that is why we are currently
unable to prove the existence of random attractors for systems with nonlinear white noise.

For the colored noise, even if it is nonlinear, we are able to show system (1.1) has a
random attractor in H*(R") x L2(R"), which is quite different from the nonlinear white
noise. The reader is referred to [3, 4, 22, 23] for more details on random attractors of
differential equations driven by colored noise. In this paper, instead of using white noise,
we will consider the random equation (1.1) driven by nonlinear colored noise. The main
aim of this paper is to obtain the existence and uniqueness of random attractors for (1.1)
when the diffusion term / is a nonlinear continuous function.

Note that system (1.1) is defined in the unbounded domain R” where the noncompact-
ness of Sobolev embeddings on unbounded domains gives rise to difficulty in showing the
pullback asymptotic compactness of solutions; to overcome this we use the tail-estimates
method (as in [18]) and the splitting technique to obtain the pullback asymptotic com-
pactness.

The rest of this article consists of four sections. In the next section, we define some
functions sets and recall some useful results. In Sect. 3, we first establish the existence,
uniqueness, and continuity of solutions in initial data of (1.1) in H?(R") x L?(R"), then de-
fine a nonautonomous random dynamical system based on the solution operator of prob-
lem (1.1). The last two sections are devoted to deriving necessary estimates of solutions
of (1.1) and the existence of random attractors.

Throughout the paper, the inner product and the norm of L2(R") will be denoted by (-, -)
and || - ||, respectively. The letters ¢ and ¢; (i = 1,2,...) are generic positive constants that
may depend on some parameters in the contexts.

2 Asymptotic compactness of cocycles
In this section, we define some functions sets and recall some useful results, see [19, 20].
These results will be used to establish the asymptotic compactness of the solutions and
attractor for the random plate equation defined on the entire space R”.

From now on, we assume (2, F, P) is the canonical probability space where Q = {w €
C(R,R) : w(0) = 0} with compact-open topology, F is the Borel o -algebra of 2, and P is
the Wiener measure on (£2, F). Recall the standard group of transformations {0, };cr on :

biw(-) = w(t+-)—w(t), VteRandVwe Q.
Let X be a Banach space with norm || - ||x. Suppose @ :R* x Rx @ x X - X is a
continuous cocycle on X over (2, F,P,{0;};cr). Let D be a collection of some families

of the nonempty subset of X:

D={D={D(r,0) CX:D(r,0) #¥,T € R,w € Q}}.
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Suppose @ has a D-pullback absorbing set K = {K(7,w) : T € R,w € Q} € D; that is, for
every T € R, w € Q, and D € D there exists T = T(r,w, D) > 0 such that forall £t > T,

(6,7 —t,0_0,D(t - ,0_,0)) CK(7,0). (2.1)
Assume that
Ot T,0,%) = D1(t, T, 0,%) + Do(t,T,0,%x), VieR' ,7TeR,weQ,xeX, (2.2)
where both ®; and ®; are mappings from R* x R x Q x X to X.
Given k € N, denote by Oy = {x € R" : |x| < k} and Or={xeR": |x| > k). Let X be a
Banach space with norm || - ||x that consists of some functions defined on R”. Given a

function u : R” — R, the restrictions of u to O and Oy are written as ulo, and u| O

respectively. Denote by
Xo, = {ulo, :ue X} and X@k = {u|@k cu € X}.
Suppose Xp, and X@k are Banach spaces with norm || - ||, and | - II@k, respectively, and
lullx < lulogllog + lulg o, YueX. (2:3)

We further assume that for every § > 0, t € R, and w € 2, there exists ¢, = £(3, 7, w,K) >
0 and kg = ko(8, T, w) > 1 such that

| @, T~ to,0-0, 2o, | O <8 YHEK([T ~t0,0.40) (2.4)
and

(Dl (tO; T — 1o, e—toa)! I((T - to, e—toa))) |Ok0

has a finite cover of balls of radius § in X|ok0. (2.5)
In addition, we assume that for every k e N, t e R*, t € R, and w € €, the set
o, (t, T -t,0_0,K(t -t 9_ta))) is precompact in X|o,. (2.6)

Theorem 2.1 If(2.1)—(2.6) hold, then the cocycle ® is D-pullback asymptotically compact

[}
n=1

in X; that is, the sequence {®(t,, T — ty,0_1,0, %) is precompact in X for any T € R,

w € 2, D e D, t, - 0o monotonically, and x, € D(t — t,,,6_;,w).

Theorem 2.2 Let D be an inclusion closed collection of some families of nonempty bounded
subsets of X, and ® be a continuous cocycle on X over (2, F,P,{0;}1cr). Then, ® has a
unique D-pullback random attractor A in D if ® is D-pullback asymptotically compact
in X and ® has a closed measurable D-pullback absorbing set K in D.
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3 Cocycles of random plate equations
In this section, we first establish the existence of a solution for problem (1.1), then we
define a nonautonomous cocycle of (1.1).

Given § > 0, let ¢5(0;w) be the unique stationary solution of the stochastic equation:

1 1
d§5 + gé‘a dt = g dW, (31)

where W is a two-sided real-valued Wiener process on (2, F, P). The process s(6;w) is
called one-dimensional colored noise. Recall that there exists a 0;-invariant subset of full
measure (see [1]), which is still denoted by €2, such that for all w € 2, ¢;(6;w) is continuous
inteR and

lim s (etta)” _

t—+o0

0, forO0<§<1.

Let —A denote the Laplace operator in R”, A = A? with the domain D(A) = H*(R"). We
can also define the powers A” of A for v € R. The space V,, = D(A%) is a Hilbert space with
the following inner product and norm

(wv)y = (AT, ATy), |-, =A%

We introduce the following hypotheses to complete the uniform estimates.
Let f : R” x R — R be a continuous function and F(x,r) = forf(x, s)ds for all x € R”,
reRands,s;, s €R,

llnln inf ilgn (f(x5)s) >0, (3.2)
f(x,0) =0, |f (x,51) = f (%, 52)| < o1 () + [s1]” + [52]P) Is1 — s, (3.3)
F(x,s) + ¢1(x) > 0, (3.4)

where p>0forl1<n<4and0O<p< ﬁ for n > 5, oy is a positive constant, ¢; € L'(R"),
and ¢ € L*(R").
Let/7:R x R” x R — xR be continuous such that for all ¢,s,s;,s2 € R and x € R”,

|h(t,x,s)| < asls| + @a(t, %), (3.5)

’h(tixrsl) - h(t’x! SZ)| < 013|51 - 52|! (36)

where a, and o are positive constants, and ¢, € LY (R, L*(R")).

Definition 3.1 Given 1 € R, w € Q, T > 0, uy € H*(R"), and u, ¢ € L*(R"), a function
u(-, T, w,up,u19) : [t,7 + T] — H*(R") is called a (weak) solution of (1.1) if the following
conditions are fulfilled:

@) u-, T, 0, ug, u10) € L®(z, T+ T; HX(R") N C([t, T + T], L*(R")) with u(z, T, o, uo, 410) =
uo, us(-, T, w, g, 1 9) € L®(z, T+ T; LAR™)) N C([7, T + T], L2(R")) with u,(z, T, , to, u10) =
uig.

(ii) w(t, T, uo, u10) : R — HAHR") is (F, BH?(R"))-measurable, and u(t, T, -, ug, t1) :
Q — L*(R") is (F, B(L*>(R"))-measurable.
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(ili) For all £ € C3°((z, T + T) x R"),
+T t+T +T
—/ (7 dt+a/ (u[,é)dt+f (Au, AE)dt
+T +T
+ v/ (u,é)dt+/ / f(x,u(t,x))é(t,x) dxdt
T T R”

w+T +T
= / (g(t,x),é)dt + / /n h(t,x,u(t,x));,;(@tw)é(t, x)dxdt.

In order to investigate the long-time dynamics, we are now ready to prove the existence
and uniqueness of solutions of (1.1). We first recall the following well-known existence
and uniqueness of solutions for the corresponding linear plate equations of (1.1).

Lemma 3.1 Let uy € H*(R"), u1 € L*(R") and g € L (z,t + T; L*(R")) with t € R and
T > 0. Then, the linear plate equation

un+aut+A2u+vu=g(t), t<t<t+T,

with the initial conditions
u(t) =ug, and ult)=uyp,

possesses a unique solution u in the sense of Definition 3.1. In addition,
uc C([r,r + T],HZ(R”)) and u; € C([r, T+ T],LZ(R”)),

and there exists a positive number C depending only on v (but independent of T, T, ug, uy 0,
and g) such that forall t € [t,7 + T,

t+T
[0 * 0] = € (Wl + ol + [ o)) ()

Furthermore, the solution u satisfies the energy equation

d
E(llutll2 + I Aul® + vilull?) = -2allu)|? + 2(g(8), ur), (3.8)

and

d

d—t(u(t), u () + a (@), w0 + | Au@) | + v |u@)|* = |luee)|* + (g0), (), (3.9)
foralmostall t € [t,T + T].

Theorem 3.1 Let T € R, uy € H*(R"), uy 9 € L>(R"). Suppose (3.2)—(3.6) hold, then:
(a) Problem (1.1) possesses a solution u in the sense of Definition 3.1;

(b) The solution u to problem (1.1) is unique, continuous with initial data in H*(R") x
L*(R"), and

ueC([t,t + TLH*(R")) and u, e C([r,7+T),L*(R")). (3.10)
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Moreover, the solution u to problem (1.1) satisfies the energy equation

dt<||ut||2+v||u||2+ ||Au||2+2/ F(x,u(t,x))dx) + 20| |
]Rn

= 2(g(t), ut) +28s (Gtw)/

h(t, x, u(t, x))ut(t, x)dx
Rn

(3.11)
foralmostall t € [t,T + T].

Proof The proof will be divided into four steps. We first construct a sequence of approxi-
mate solutions, and then derive uniform estimates, in the last two steps we take the limit
of those approximate solutions to prove the uniqueness of the solutions.

Step (i): Approximate solutions Given k € N, define a function 7, : R — R by

s, if —k<s<k,
ni(s) =13k, ifs>k,

(3.12)
-k, ifs<—k.

Then, for every fixed k € N, the function 7 as defined by (3.12) is bounded and Lipschitz
continuous; more precisely, for all s,51,s, € R

m(0)=0,  |m(s)| <Is| and |mi(s1) = m(s2)| < ls1 —sal. (3.13)
For all x € R” and ¢, 5 € R, denote
Jfi(x,8) :f(x, nk(s)), Fr(x,s) = /ka(x, r)dr and
0 (3.14)
hi(8,%,8) = h(t, %, 1(s)).
By (3.2) we know that there exists ky € N such that for all |s| > kp and x € R”,
f(x,8)s>0, (3.15)
thus, for all k > kg and x € R”,
fe(x, k) >0, Sfi(x,—k) < 0. (3.16)
By (3.3), (3.4), (3.13), (3.14), and (3.16) we know that for all s,s1,5, € R and x € R”,
i@, 51) = filo, 82)| < a1 (@) + Is1 1 + [s2l)[s1 = sal, VA >1, (3.17)
and
Fi(x,8) + ¢1(x) > 0, Vk > ko. (3.18)

By (3.17) we obtain that for all s € N and x € R”,

|Fr(x,8)| < o (0@)ls]® + [s17*?),  Vk > 1. (3.19)
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By (3.5), (3.6), (3.13), and (3.14) we obtain that for all k > 1, £,s,51,5, € Rand x € R”,

|hi(t, %,8)| < cals| + @a(t, %), (3.20)

|7, %,51) = (8, %, 82) | < asls1 = 5o (3.21)
By (3.3), (3.13), and (3.14), we find that for all k € N, 5,51,5, € N and x € R”,

[fi(x,5)| < erk(p(x) + k?), (3.22)

Ifi(x,81) = fi(x,82)| < 01 (@(%) + 2K [s1 = s3] (3.23)

For every k € N, consider the following approximate system for u:

2
Low + aZug + N+ vig + fi(ug) = g 1) + (8, w) 8 (), £> 7, (3.29)

9
ur(t) = uo, ytuk(f) = U1,0-

From (3.21), (3.23), ¢ € L*°(R"), and the standard method (see, e.g., [8]), it follows that
for each T € R, w € Q, uy € H*(R"), u o € L*(R"), problem (3.24) has a unique global
solution u; defined on [z, 7 + T] for every T > 0 in the sense of Definition 3.1. In partic-
ular, u (-, T, w,u0) € C([t, T + T), H*(R")) and u,(¢, T, w, up) is measurable with respect to
w € Q in HX(R") for every t € [t,T + T). Similarly, d;,ux(-, T, ®,up) € C([t,T + T],L*(R"))
and 9,ux (¢, T, w, up) is measurable with respect to w € Q in L*(R”) for every ¢ € [, 7 + T.
Furthermore, the solution u satisfies the energy equation:

d
p <||3tbtk||2 + Ul |® + | Auege|* + 2/ Fr(, ui(t,)) dx) + 20|13
R~

= Z(g(t), 8tuk) + 2{5(0@)/ hk(t,x, uk(t,x))atuk(t,x) dx (3.25)

n

for almost all £ € [7,7 + T]. Next, we use the energy equation (3.25) to derive a uniform
estimate on the sequence {u}72;.

Step (ii): Uniform estimates

For the last term on the right-hand side of (3.25), by (3.21) we have

225 (O;w) /R ) P (6%, ui (6, %)) By (£, %) dx
<266, <a2 /R k(69 - |t 9| fR o) - |t ) dx)
<125(010)|(c2 | s @] + (1 + a2) |0 @) |* + 02| ). (3.26)
By Young’s inequality, we obtain
2(g(8), dux) < [0em®) | + |20 (3.27)

By (3.25)—(3.27), it follows that for almost all ¢ € [z, 7 + T7,

d 2 2 2
77 \ 19l vl + 1| A |7 + 2

Fk(x, u(t, x)) dx) + 20|01 ||?
RVI

Page 7 of 34
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<a(1+|66:0))(|u®|” + [0 ®)]?) + |26 - [0 + g, (328)

where ¢; > 0 depends only on «;, but independent of k.
By (3.18) and (3.28) we obtain

d
p <||3tbt/<||2 + vl + | Aw]|* + 2/ Fr (%, uy (£, %)) dx)
t -
< C2(1 + |Q(9ta))|) <|| 01y (£) ||2 +v ||uk(t) ||2 N R 2‘4{” Fk(x, uk(t,x)) dx)
+]250)] - 20| + 261 (1 + [650:0) ) 1 1y + |20 (3.29)

where ¢; > 0 depends only on v and «, but is independent of k.
Multiplying (3.29) by e~ J3a+is@rodr and then integrating the inequality on (7, ), we
have

B2k | + vllagc® + 1| Avg || + 2/ Fi(%, uy(, %)) dx
Rn

Seczﬁ(hl{a(erw))dr<||1/i1,0||2 + U||Ll()||2+ ”AMOHZ +2/ Fk(x,uo(x)) dx)

n

t
+/ 2 LGN (| (6,0)] - [ pas)|
+ 201(1 + |§5(95a))|) o1l 1y + ||g(s)||2) ds. (3.30)

By (3.19) we obtain, for all k > 1,

2 /R B o)) | e < 20ty (o< ol + 1k 2 )

2
< 2001 (gl zoegem o I + 1o o) (331)

Equations (3.30) and (3.31) imply that there exists a positive constant c3 = c3(z, T, ¢, ¢1, 92,
g, w,8,a1,v) (but independent of k, uy, and u; o) such that forall t € [t,t + T] and k > 1,

Noqaagl® + vl + | A + 2 / Fe(, ety %)) dx
Rn

p+2

2
<cz+cs(1+lluol® + ||M0||H2(Rn))»

which along with (3.18) show that for all ¢ € [t, 7 + T] and k > ko,

1Bkl + vl + | Ave | + 2/ Fr(, ux(t,%)) dx
R}’l

2
<cs+2ll@1ll 1 +cs(1+ lurol® + ||Mo||i+z(w)), (3.32)

thus,

{w};2,  isbounded in L®(z, 7 + T; H*(R")) (3.33)
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and
{du}2, isbounded in L™(7,7 + T;L*(R")). (3.34)

By (3.17), there exists a positive constant ¢4 = c4(p, #, 1) such that

/[fk(x,uk(t,x))|2dx5c4</ |<p(x)|2dx+/ |uk(t,x)|2("*“dx>,
Rn RYI Rn

which along with the embedding H?*(R") < L?>»*)(R") and the assumption ¢ € L®(R")
implies that there exists ¢5 = c5(p, n, @1, 9) > 0 (independent of k) such that

An [fk(x, ur(t, x)) |2 dx < c5(1 + || ur(t) ”f{(‘fzﬂg)) (3.35)

By (3.33) and (3.35) we see that

e ur)},  isboundedin L*(r,7 + T;L*(R")). (3.36)
By (3.20) we obtain
/Rn i (8,2, 1 (8,2)) |” dix < 203 i |1 + 2] 02 @) ||,
which together with (3.33) shows that
{hk(~, ~,uk)}Zi1 is bounded in Lz(r, T+ T;LZ(R”)). (3.37)

By (3.33), (3.34), (3.36), and (3.37), it follows that there exists u € L*®(z, T + T; H*(R")) with
du e L®(t, 7+ T;L2(RM), k1 € L*(t, 1+ T; L*(R"), ko € L*(t, T+ T; L*(R™)), vi*T € H*(R")
and vI*T € L%(R") such that

ur — u  weak-star in L™ (7:, T+ T;H? (R”)), (3.38)
d;up — d,u  weak-star in L™ (r, T+ T;LZ(]R”)), (3.39)
fe(uk) = k1 weakly in Lz(t, 7+ T;L? (]R”)), (3.40)
hi(uk) = ko weakly in L?(z, 7 + T3 L*(R")), (3.41)
ue(t + T) > v**" weakly in H*(R"), (3.42)
dur(t + T) — vi*T weakly in L* (]R”). (3.43)

It follows from (3.38) and (3.39) that there exists a subsequence that is still denoted u,
such that

ur(t,x) — u(t,x) foralmostall (t,x) € [t,T + T] x R”". (3.44)
By (3.13) and (3.44) we obtain that for almost all (¢,x) € [t,7 + T] x R”,

e (a8, %)) — u(t, )|

= |nk(uk(t¢x)) - nk(”(t:x))| + |7]k(”(t)x)) - M(tvx)’
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= |Mk(t,x) - u(t,x)| + |nk(u(t,x)) - u(t,x)| — 0, ask— oo.
By (3.45), we have

fk(x, uk(t,x)) —>f( L ult, x)) for almost all (¢,x) € [t,7 + T] x R”,

hk(t,x, uk(t,x)) — h(t,x, u(t,x)) for almost all (t,x) € [z, + T] x R".
It follows from (3.40), (3.41), (3.46), and (3.47) that

fi(ur) — f(u)  weakly in Lz(r,r + T;LZ(R”)),

hi(, - ux) = h(-,-,u)  weakly in Lz(r, 7+ T;L? (]R”)).

Step (iii): Existence of solutions
Choosing an arbitrary £ € C3°((r, 7 + T) x R"). By (3.24) we obtain

w+T +T
_/ (8tuk,§t)dt+af (0su, &) dt
T+T T
+/ (Auk,AE)dt+vf (ux, &) dt
+T
+ / / Sie (o, i (£,%)) & (8, %) dc dit
T RrR”

+T +T
=f (g(0),8) dt+/ / I (8, %, uie(8,%)) 85 (O,w)& (£, %) dx dit.
T T R”

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

Letting kK — oo in (3.50), it follows from (3.38), (3.39), (3.48), and (3.49) that for any & €

C((r, T+ T) x R"),

+T +T +T +T
—f (ut,’;‘t)dt+ot/ (ut,é)dt+/ (Au,AE)dt+v/ (u,&)dt
+T
+/ / f(x,u(t,x))é(t,x) dxdt
T R”
+T +T
= / (g(0), &) dr + / / h(t,x, u(t, x)) 5(0,0)& (¢, %) dx d.
T T R”
Note that
uel™(t,t+ T;H*(R")) and duel®(r,7+T;L*(R")).
By (3.52) we obtain
h(-,-u)e Lz(t,t + T;LZ(R”)).
We claim that

f(-,u) belongs to L™ (r, 7+ T Lz(R”)).

(3.51)

(3.52)

(3.53)

(3.54)
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In fact, by (3.3) we obtain that there exists some cg = ¢(p, 1, a1, ¢) > 0 such that

(@) + )|} )

1F (u®) | < 262 (1912 gy oo @)

<cs([|u@)] + |u@) |5,

which along with (3.52) leads to (3.54).
By (3.51)—(3.54), we can obtain

u; belongs to L? (r, T+ T;H? (]R")), (3.55)

where H2(R") is the dual space of H?(R").
Next, we prove u and u, satisfy the initial conditions (1.1),.
By (3.24), we obtain that for any v € C°(R") and ¥ € C*([t, t + T1),

+T
/ (i (0), V)Y () dt + (duie(x + T),v) Y (x + T) = (wie(x + T),v)y'(x + T)
w+T
+ (g VY (2) — (t1,0, Y (2) + / (Buua0),v)  (0) e
+T
+/ (Auk(t),AV)W(t) dt
+T T+T
+v / (uk(t), V)tﬁ(t) dt + / fk(x, u(t, x))v(x)w(t) dxdt
T T R~
+T T+T
=/ (g(t),v)gﬂ(t) dt+/ /n hk(t,x, uk(t,x))c(;(@tw)v(x)xﬂ(t) dxdt. (3.56)

Letting kK — oo in (3.56), by (3.38), (3.39), (3.42), (3.43), (3.48), and (3.49) we obtain, for
any v € C°(R") and ¢ € C*([t, 7 + T)),

™+T
/ (u(@),v)y" (t) dt + (V{*T,v)l//(r +T) - (V”T,v)l/f’(t +7)
t+T
+ (o, V)Y (T) = (11,0, V)Y (7) + a/ (Beua(2), v) ¥ (£) dt
t+T
+ / (Au(t), Av)y (¢) dt
+T +T
+ v/ (u(t),v)l//(t) dt + / /Rnf(x, u(t,x))v(x)t//(t) dx dt
+T +T

= / (g(t), v)tp(t) dt + / A;an h(t,x, u(t,x))g“g(Gtw)v(x)w(t) dxdt. (3.57)

By (3.51) we obtain that for any v € C3°(R"),

%(ut, V) + a(u, v) + (Au, Av) + v(u,v) + /nf(x, u(t, x))v(x) dx

= (g(t),v) +/ h(t,x, u(t,x))Q(Gtw)v(x) dx. (3.58)

R”
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By (3.58) we find that for any v € C3°(R”) and ¥ € C?([t,  + T1),

+T
/ (u@),v)y" () dt + (deu(r + T),v)(x + T) — (u(t + T),v)¥'(r + T)
t+T
+ (u(t),v)w/(t) - (Btu(r),v)w(r) + oe/ (Btu(t),v)l/f(t) dt
t+T
+/ (Au(t), Av)y (¢) dt
+T +T
) d L u(t, dxd
+ U/T (u(t) V)I//(t) t+/r /Rnf(x u(t x))V(x)l//(t) xdt
+T +T
= / (g(t,),v) ¥ (o) de + / / h(t,x, u(t, x)) 5 (O,0)v(x) Y (2) dx dt, (3.59)
T T R”
together with (3.57) to obtain, for v € C°(R”) and ¢ € C*([r, 7 + T]),

(T + T) = (V00 (x + T) + (o, V)Y (7) = (1,0, v) ¥ ()
= (0eu(r + T),v) Y (r + T) = (u(r + T),v) ¢ (x + T) + (u(r),v) ¥/ ()

= (0uu(x),v)¥ (7). (3.60)

Let ¥ € C*([r,t + T]) such that Y (r + T) = ¢/'(tr + T) = /() = 0 and ¥ (t) = 1, then by
(3.60) we have

(0eua(1),v) = (u10,v), Vv e CP(R"). (3.61)

Let ¢ € C?([r,t + T]) such that ¥(t + T) = ¥'(z + T) = ¥(r) = 0 and ¥/'(t) = 1, then by
(3.60) we have

(u(r), V) =(up,v), VYveCy (R"), (3.62)

which together with (3.61) shows that u satisfies the initial conditions (1.1),.
Through choosing proper ¥ € C*([t, 7 + T]), we can also obtain from (3.60) that

u(t+T)=v""", and du(r+T)=v"",
which along with (3.42) and (3.43) implies that

u(t +T)—> u(t + T)  weakly in H*(R"), (3.63)

dup(t + T) — du(t + T) weakly in L? (R”). (3.64)
Similar to (3.63) and (3.64), one can verify that for any ¢ € [7,7 + T1,

ui(t) —> u(t) weakly in H*(R"), (3.65)

dui(t) — 0,u(t) weakly in L*(R"). (3.66)
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Thus, we obtain the claim. By (3.65) and (3.66), we obtain that u is a solution of (1.1) in
the sense of Definition 3.1.

Step (iv): Uniqueness of solutions

Let u; and u, be solutions to (1.1), denote v = #; — u5. Then, we have

Vie + Ve + A2V + vy =f(-,bt2) _f('¢ Ml) + (h(t! ] ul) - h(t¢ '!MZ))é‘B(etw)r
v(t) =0, vi(t) =0.

(3.67)

By (3.8), we obtain

d
g(llwll2 + 1 Av)® +viv)®)

=2« ||Vt||2 + Z(f(x u2) _f('r Ml)’ Vt) + Z(h(tr ¥} Ml) - h(t’ ) uZ): Vt)gé(etw)- (368)

Since H2(R") < L*P*)(R") for 0 < p < -%, by (3.3), we obtain

=

1 Ctea) £ Coun)| < oo VIl + ot (1 12 gy + 0022 gy ) 12

and hence

Z(f(, MZ) _f('r ul)’ Vt)
< 2”}((',142) -1 Ml)H llvell

< o (llgllzoegm + a5 + 12l g ) (V15 + Ivel1%).- (3.69)

By (3.6) we obtain
2(h(t, - w1) = h(t, - uy), ve) &5 (6,0)
= ||h(f, s ur) = h(t, - uz) ” llvell |C8(9t60)|

< 2a3]vll1v:|£5(6r ) |

<az([IVII® + vell?) |25 (0r) - (3.70)
It follows from (3.68)—(3.70) that

d
E(nvrn2 +AVI* +v[v]?)

< e (14 a1 Wy + N2 ) (V2112 + I AVI 4+ w[1V11%), (3.71)

where ¢; > 0 depends on 7 and T Since u;,u, € L®(t, 7 + T; H*(R")), then applying Gron-
wall’s lemma on [7, T + T], we can obtain the uniqueness of solution as well as the contin-
uous dependence property of the solution with initial data. d

We now define a mapping ® : R* x R x Q x H*(R") x L2(R") — H*(R") x L*(R") such
that for all £ € R*, 7 € R, w € Q and (o, u10) € H*(R") x L2(R"),

D(t, 7,0, (o, ur0)) = (u(t + T, 7,0-c0, o), Ut + T, T, 0_r 0, 1)), (3.72)
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where u is the solution of (1.1). Then, ® is a continuous cocycle on H2(R") x L*(R") over
(Q’ ]:’Pr {et}teR)~

4 Uniform estimates of solutions

In this section, we derive necessary estimates of solutions of (1.1) under stronger condi-
tions than (3.2)—(3.6) on the nonlinear functions f and /. These estimates are useful for
proving the asymptotic compactness of the solutions and the existence of pullback random
attractors.

From now on, we assume f satisfies: for all x € R” and s € R,

Sf(x,8)s = yF(x,5) > @3(x), (4.1)
F(x,9) + @1(x) > calsl’*?, (4.2)
’asf(xrs)| =< L|S|p +g, ‘axf(xrs)‘ =< (/)4(96), (43)

wherep>0forl <m<4andO<p< ﬁ forn > 5, y € (0,1], a4, ¢ are positive constants,
@3 € LY(R"), and ¢4 € L2(R") N L®(R"), 1 > 0 will be denoted later.
By (3.3) and (4.1) we obtain that for all x € R” and s € R,

YE(x,5) < a18%0(x) + o] — g3(w). (4.4)

Assume the nonlinearity / satisfies: for all x e R” and ¢,s € R,

(5, %,5)| < @5(x)|s] + @(x), (4.5)

|0xh(t,x,9)| + |0sh(t, %,8)| < @7(%), (4.6)

where g5 € L®(R") N L2*» (R"), gs € LX(R"), and ¢, € L2(R") N L(R").
Let D be the set of all tempered families of nonempty bounded subsets of H2(R") x
L>(R"). D ={D(1,9): 1 € R,w € Q} is called tempered if for any ¢ > 0,

lim e"CtHD(r -t,0_w

t—>+00 )HHz(]R")xLZ(]R”) = 0,

where [|D||2@myx12mny = SUPsep 118 |2 mnyx 2 mm) -
Under « >0, v >0, and y € (0, 1], we can choose a sufficiently small positive constant ¢

such that
. 2a 1 1
e<minyl,v, —¢, —a—-2¢——-¢cy >0,
5 2 8
(4.7)
1 1, 1,
V- —vy—ea+—-¢ey>0, v—eg—ca+—e">0.
2 8 2
We also assume
Tl 2
et ||g(s)||1ds <00, VteR, (4.8)

0
lim e_“/ 1o’ lg(s—2) Hf ds=0, forVc>O0. (4.9)
o0

t—>+00
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Lemma 4.1 Let (3.2), (3.3), (3.6), (4.1), (4.2), and (4.5)—(4.8) hold. Then, for any t € R,
w € Q and D € D, there exists T = T(t,w,D) > 0 such that for all t > T, the solution of
(1.1) satisfies

(T, T = £,6_r 0, 11,0) H2 + |t T - £,6_r 0, u0) HIZ-IZ(R”)

T
+ / e%‘?y(s_’)(n u(s, 7 —t,0_;w, M1,0)||2 + ||u(s, T —t,0_;0,up) ||12'-12(R”)) ds
-t
0
<ty [ (e gt 0l + a0 F) s
—00

where (1o, u10) € D(t — t,0_,w) and M, is a positive constant independent of T, w, and D.

Proof By (3.9), (3.11), (4.1), and (4.10) we obtain, for almostall ¢ € [t,7 + T1,

d
E(nutn%vnun% ||Au||2+2/ F(x,uu,x))dxw(u,ut))
RVI

+ 2 — &) |lug||* + ea(u, ug) + )| Au||* + ev||u||* + ey / F(x,u(t,x)) dx
R
<ell@sllprgn + ((6) + (6, - u(®)) 5(Orw), 1 + 2u). (4.10)
For the second term on the right-hand side of (4.10), using (4.2) and (4.5) we have

(g(® + h(t, - u®))gs(0,0), cu + 2uy)
<(|lg®| + |1t u®) s @0)||) (elluell + 2241l

IA

evllul|? + orlue]? + (a1 + %svl>(||g(t)|| + ||h(t,.,u(t))§3(9¢w)||)2

evllull® + allul® + (207 +ev7") || g(0) ||2 + (227t +ev7h) | (e, ~,u(t))§3(9,5a))“2

IA

evllul® + allu]® + (227t + v g + 22071 + v |5 60) o6 I

IA
NI~ NI~ N -

+ 2(205_1 +8v‘1)|§5(9ta))|2An|g05(x)|2|u(t,x)|2dx

< —evflul® + allul? + 22t + v )| g@) | + a1| 25 6r0) |

N =

+lsya4/ ‘u(t,x)|p+2dx
2 -

2+ 4 2+ 4
rafes@a*? [ o7 s

< Zevllull® + allul? + (207" + 207 |g@)|* + 1|5 (Biw) [

N =

+ ley/I-"(x,u(t,x))alx
27 Jr

1 2+4
+ §8V||§01”L1(]R”) +¢3] 85 (0,0) |77

< —evfull® + allull® + (2o~ + 07" | g(2) ||2

N =
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+ ley / F(x, u(t,x)) dx + c4(1 + |§5(9tw)|2+%), (4.11)
27 Jr

where ¢4 >0 dependson «, v, y, ¢.
It follows from (4.10) and (4.11) and rewriting the result obtained, we have

d 2 2 2 /
— | e ||” + v|lze]|” + || Au]]” + 2
dt(” ell lzell” + [| A -

F(x, u(t,x)) dx + (u, ut)>

1
' Eey(nutnz vl + a2 F(x,u(t,x))dx+e(u,ut)>
R”

Lo Vi + (1= 2 Yiaur? « 2ev(1= Ly Yjup?
+a—e——ey Jwl*+el1-=~ ul*+ zev(1- =y )|lu
A L g 2 2

<es(t ol + s ) e (a~ e ) (112

where ¢5 >0 depends on o, v, y, ¢.
For the second term on the right-hand side of (4.12) we obtain

- s(oc - iay)(u, u))
1
< 8<Ol - 187/) Al

1 1 1 1
< 582 (a - ZSV) llul® + 3 (06 - ZSV) (7[5 (4.13)

By (4.12) and (4.13) we obtain

d
E(nutnz +vllull® + || Aul? + 2/ F(x, u(t,x)) dx + & (u, ut))
]Rn

1

+ —sy(nutnz sollull? + || Aul? +2/ F(x,u(t,x))dx+e(u,u[)>
R}’l

L L (A 1 ! | Au|?
+|za—e——¢ ul|“+el1-— u
2 gtV )it g

L ! 12 2]
+-elv—=vy—sa+-¢
2 2V 4o )

S

<cs(1+ @) + | @w)[*'7). (4.14)

Multiplying (4.14) by ei°7!, and then integrating the inequality [t — ¢, 7], after replacing w
by 6_,w, we obtain

”Ltt('(, T-t0_ 0, ulyo)Hz +v ||u(t, T —1,0_,w,uUp) ”2 + H Au(t, T —t,0_;w, ug) ||2
+ 2/ F(x,u(t,7 - t,6_;0, uo)) dx
Rn
+ S(M(‘C, T—40_0,up),ut, T —t,60_,0, M1,o))

1 1 T
+|-a—e——-sy / 27 6-0) [ae(s, T = £,6_c 0, 11,0) ||2 ds
2 8 Tt
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1 T
+ell1-Zy / eher(-1) | Auls, T —t,0_ 0, 1) ||2ds
4 Tt
1 1 1 T
+—elv—=vy —ca+ -2y / edey (=) |u(s,t - t,6_c 0, Mo)szS
2 2 4 T—t
< e—zlm’t<||z,¢1,0||2 +ulluol® + | Auoll? + Zf F(x, ug) dx + &(uo, u1,0)>
RVI

e / eI g + 0s(6sc0) ) .
-t

For the first term on the right-hand side of (4.15), by (4.4) we obtain

_1 2 2 2
e Wt(llul,oll +vlluoll” + | Auoll +2/ F(x,uo)dx+8(uo,u1,o))
n
P 2 2 +2
=< cge ey (1 + ”MI,OH + ”MO”HZ(Rn + ”MO”ZZ(Rn))

< C76_%€W(1 +|D(r - ¢, G_ta))||p+2) — 0, ast— oo.

(4.15)

(4.16)

By (4.15) and (4.16) we find that there exists T = T(t,w,D) > 0 such that for all t > T,

||ut(r, T -t G,Ta),ulvo)Hz +v ||u(1:, T —t,0_;0,Up) ||2 + H Au(t, T —t,0_w, Ug) ||2

+ 2[ F(x,u(t, 7 — t,0_ 0, u0)) dx
Rn

+ E(M(T, T —t,0_rw,up), us(t,T — t,0_; 0, M1,o))

1 1 '
N e / etV |uae(s, T = 2,6 0, u1,0)H2 ds
2 8 Tt

T
re(1-37) [ e auts -t o) ds

Tt

1 1

1 T
+—elv—=vy —ca+-g2y f edey =) |u(s,t —t,6_; 0, Mo)szs
2 2 4 Tt

<l+cs /Tte%”“_r)(l + @) + ’Q(es_rw)!2+%) ds.
.
By (4.7) we obtain
e(u(t, T —t,0_.0,u0), u (T, T — ,0_ 0, u10))
< Selute 10w, + e funtr, T~ 1,010
< svelu(e 60 o)+ Jelute, 80w

It follows from (4.2), (4.17), and (4.18) that for all £ > T,

(4.17)

(4.18)

1 1
3 [e(t, 7 = £,6_r 0, 11,0) ||2 + §v||u(r, T-40_,0, uo)”2 +|Au(t, T - 1,60, uo)”2

1 1 T
+|-a—e——-gy / ie7 (D) [ae(s, T = £,6_c 0, 11,0) ||2 ds
2 8 Tt
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T
+ 8<1 _ iy) / e%f”(s‘t) “Au(s,r —t,0_.w,up) ||2d5
Tt

1 1 1 T
+—elv—=vy —ca+ -2y / edey (D) ||M(S, T-10 0, Mo)szS
2 2 4 T—t

0 4
<1+2[l@1llpn + C5/ eie’“(l + | gs + t)||2 + |§5(93w)|2+1’) ds.
{o¢]

Then, the proof is completed. d

Based on Lemma 4.1, we can easily obtain the following Lemma that implies the exis-
tence of tempered random absorbing sets of ®.

Lemma 4.2 If (3.2), (3.3), (3.6), (4.1), (4.2), and (4.5)—(4.9) hold, then the cocycle ® pos-
sesses a closed measurable D-pullback absorbing set B = {B(t,w) : 1 € R,w € Q} € D, which
is given by

B(T,Cl)) = {(MO) ul,O) € HZ(RH) X LZ(RH) : ”uO”?{Z(Rn) + ”MI,OH2 = L('L',Cl))}, (4"19)
where

0
L(t,w) = M; +M1/ 6%5“(1 + ||g(s + t)”2 + ‘{g(@sw)’2+§) ds.

In order to derive the uniform tail-estimates of the solutions of (1.1) for large space
variables when time is long enough, we need to derive the regularity of the solutions in a
space higher than H?(R").

Lemma 4.3 Let (3.2), (3.3), (3.6), (4.1), (4.2), and (4.5)—(4.8) hold. Then, for any t € R,
w € Q and D € D, there exists T = T(t,w,D) > 0 such that for all t > T, the solution of
(1.1) satisfies

||A%ut(r, T -t 9,,w,u1,0)||2 + ||A%u(1:, T —t,0_;w,Up) ||2

‘ Ley(s-1) 1 2 3 2
+ e1®’ (HA‘%u,(s, T-10_;0, ”LO)H + HA4 u(s, 7 —t,0_;w, uo)H )ds
-t
o 2 2
SMy+ My | et (1+ ||gls+1)|| + |2560)|7) ds,
-00

where (1o, u10) € D(t — t,0_;w) and M, is a positive number independent of T, w, and D.

Proof Taking the inner product of (1.1); with A3y in L?*(R"), we have

%(A%u“A‘l&u) +oz(A%ut,A%u) + ||A%u||2 + 11||A%u||2 + (f(x,u),A%u)

= ||A%ut ||2 + (g(t) +h(t, -, u)s (Gta)),A%u). (4.20)
Taking the inner product of (1.1); with A3 u; in L*(R"), we find that

d
T At s vjatu]’ + |atul’)
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= 220 |[Atu||® - 2(F (e, u), A2u) + 2(g(£) + t, - ) Cs (B0), AP 1), (4.21)
By (4.20) and (4.21), we obtain
@ (bl + vlabul + |atu]? + e(abu,atu)
+ (o — &) |[Atuy|* + cor(ATuy, Atu)

+ SHA%M”Z + sv”A%qu +e(f(x, u),A%u) +2(f (x, u),A%ut)

= (g(t) + h(t, - )¢5 (O,0), eA T + 247 1), (4.22)
For the right-hand side of (4.22), using (4.5), (4.6), and Lemma 4.1, we have

(g(®) + h(t, - u(®))¢5(0,), €A Tu+2A2 )

< (le@l, + (6 - w@)es@)]) (e A7 u] + 242

< gevlatul sadabu s (ot + o ) (@], + [ate  u0)cs 0], )
< sevAbul® +afabu]’ + (ot + o) g0
+ 2ot + e ) (e, u(0) s (60) |}
< %gv“A%unz valAu? + 207 + o)) + cs |t Or)| . (4.23)

From (4.3) and Lemma 4.1 we find

e (f (%, u),A%u) +2(f (% u),A%ut)|

a a
R” ou ax
a d
+8/ —f(x,u)-A%u-Aiu+ —f(x,u)-Aiu dx
R” ou ox

§2L/ |u|p~’Aéu’-’A71Lut‘dx+2§/ ’Aéu’-|A71Lut‘dx
R” R~
+2/ |¢4|~’A%ut|dx
RVI
+8t/ |u|P~|A%ru|~|A%u|dx+8g/ |A%u|-|A%u|dx
R” R
+8/ |¢4|~|A%u|dx
]RVI
4
< 2full g, - [4tul o [4%u ]+ 26 [abu] - |Afu] + 2 [aTu]® + < lleall®

+et||ul? - ||A%u||2 +fsg||A%u||2 + %”Aiun2 + §||g1)4||2

2cp+1L2
&

§8||A%Lut“2+ L"||A%u||2+09,
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where the definition of L see Lemma 4.2, and C is the positive constant satisfying

1 2
5 0p
C||Au||22(/ |u|1°dx> , Cllulléz(/ Iul%dx> .
]Rn ]Rﬂ

Choosing
we obtain

[o(Fe ), ATw) +2( ), Abur)| < s Atue ]+ S [ATu] + oo (4.24)
By (4.22)—(4.24), we obtain

%(||A%ut||2+u||A%u”2+HA%M||2+8(A%W,A%M))+(a_zg)||A%utH2

vsa(atu, Atu) + Z[Atul’ + Soatu)’
<co(l+ e} + o @)]),

which can be rewritten as

@ (bl + vlabul + |atu]? + o(abu,atu)

y([ 4t +v]atul’ + [aTu]”+ o(atu, Atu))

1
iR

+<a 28__8y);|A4ut|| +—<1——>||A4MH +§v<1——>||A4u||
(

+ ||g(t)Hf + |§5(6ta))|2) - s(a - isy)(A}Lut,Aiu). (4.25)

For the last term on the right-hand side of (4.25) we have
1 1 1
- s(oc - 187/) (A4ut,A4u)
1 1 1
<e(a-gor ) abul Jatu
1 1 1 1
< 582<Ol - Zay) ||A%u||2 +5 (a - ZSJ/) ||A%1ut 2

from which together with (4.25), we obtain

’

@ (abu ]+ vlabal « Jatu]?  e(abu, atu)

e Loy (At + ]atul® o |ATul + e(abu, atw)

(5 -2e- gor )bl o 5 (1 ) abup
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+ f<v iy l82)/) ||A%u||2

2 2 2 8
2 2
<cw(1+|g®)]] + [¢s6:0)]). (4.26)
Similar to the remainder of Lemma 4.1, we can obtain the desired result. O

Lemma 4.4 Let (3.2), (3.3), (3.6), (4.1), (4.2), and (4.5)—(4.8) hold. Then, for every n > 0,
Tt €R, we Qand D € D, there exists Ty = To(n, T,w,D) >0 and my = my(n, t,w) > 1 such
that for all t > Ty, m > mg and (ug, u1) € D(t — t,0_,w), the solution of (1.1) satisfies

/ (|ut(T) T-t 9,1—0), M1,0)|2 + |M(Tr T-4t 9,10), u0)|2
|x|>m
+ |Au(r, T—-t0_0, u0)|2) dx <.
Proof Let p : R” — R be a smooth function such that 0 < p(x) <1 for all x € R”, and
1

ox)=0 for|x| < 5; and p)=1 for|x|>1.
For every m € N, let

omx) = p(x/m), xeR”.
Then, there exist positive constants ¢;; and cj; independent of m such that |V p,,(x)| <

%cn, AP, (x)] < %012 forallx € R” and m € N.

Similar to the energy equation (3.11), we have

4 @) (|ue(t, )|+ v]uelt )| + | Aue(t, %)| + 2F (, u(t, x))) dx

dt Jr
2 () |18, %) |
+ (fonp () |ue (£, %) | dx
= —4/ V(%) - Au(t,x) - Vi (t,x) dx — 2/ APy (x) - Au(t,x) - uy(t,x) dx
RY R”
42 / o) (6, it (t,%) dix
+ 2{,;(9@)/ pm(x)h(t, x, u(t,x))ut(t, x)dx. (4.27)
Rn

Taking the inner product of (1.1); with p,,,(x)u in L2(R"), we have

% - P ()16 (t, %) 14, (¢, %) dx + « /Rn O () 1a(t, %) 1 (t, x) dx
+ /]R” pm(x)|Au(t,x)’2dx +v /Rn ,om(x)|u(t,x)|2dx
+ /n pm(x)f(x, u(t,x))u(t,x) dx

= / pm(x)‘ut(t,x)yzdx— 2/ Vo (x) - Au(t,x) - Vu(t,x) dx
R7 R7
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—/ Appm(x) - Au(t,x) - u(t,x) dx
Rﬂ
+ /W om(*)(g(t, %) + h(t, %, u(t, %)) 5 (6;0) ) u(t, x) dx.

By (4.27) and (4.28), we obtain

d
E /IR” pWI(x)(|ut(t,x)|2 + l)|u(t,x)|2 + |Au(t,x)|2

+ 2F (%, u(t, x)) + eu(t, x)uy (¢, %)) dx

+(2a—£)/ ,om(x)|ut(t,x)|2dx+£oe/ O ()1t %), (£, %) dox
R7 R”
()| Ault,x)| d
+£/H;np @)|Au(t,x)|” dx
+£v/ pm(x)|u(t,x)|2dx+s/ ,om(x)f(x,u(t,x))u(t,x)dx
R7 R7

= f Pm(x) (g(t, x) + h(t, x, u(t, x)) Q(G,a))) (su(t, x) + 2u,(t, x)) dx

- 28/ Vo (x) - Au(t,x) - Vu(t,x) dx — 8/ App(x) - Au(t,x) - u(t,x) dx

n

—4/ Vo (x) - Ault,x) - Vi, (¢, x) dx
- 2/ App(x) - Ault,x) - u(t,x) dx.
Rﬂ

By (4.1) and (4.29) we obtain

d
E /R” pm(x)(|ut(t,x)|2 + V|M(t,x)|2 + |Au(t,x)|2

+ 2F(x, u(t, x)) + eu(t, x)u,(t, x)) dx

+(20l—8)/ pm(x)|ut(t,x)|2dx+soe/ Om () u(t, x)us(t, x) dx
RVI RVI
()| Ault,x)| d
+8/R”,o @) | Au(t,x)|” dx
+£u/ pm(x)|u(t,x)|2dx+£yf om(®)F (x, u(t, x)) dx
R R

< / D) ((6,2) + (6,5, u(t, )25 (By0)) (£10(6,2) + 2, (0, ) e

Rn

iy fR prerers

- 25/ Vo (x) - Au(t,x) - Vu(t,x) dx — 8/ App(x) - Au(t,x) - u(t,x) dx

n

—4/ Vo (x) - Ault,x) - Vi, (¢, x) dx

- 2/ App(x) - Ault,x) - us(t,x) dx.
Rﬂ

(4.28)

(4.29)

(4.30)
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Similar to the arguments of (4.11), we know that the first term on the right-hand side of
(4.30) is bounded by

I/ O (%) (g(t, x) + h(t, x, u(t, x));‘g (Gtw)) (su(t, x) + 2u,(t, x)) dx
R}‘l

<50 [ pulutenf drea [ puwlutl dx
2 R” R”

+ %sy /}Rn p,,,(x)F(x, u(t,x)) dx

e / Pm@(g6 ) + 010)] + |50 ()
RV[
+ |8 Ow)gs )27 da, (4.31)

where ¢;3 depends only on «, v, y, and ¢.
By (4.30) and (4.31) we obtain

% pm(x)(|ut(t,x)’2+v|u(t,x)|2+ ‘Au(t,x)|2
RK
+ 2F(x, u(t, x)) + eul(t, x)u,(t, x)) dx

+(a—e)/ pm(x)|ut(t,x)|2dx+ea/ P ()1t )1y (8, %) dx
R}’l Rﬂ

()| Au(t, %) d
+8/Rnp (x)| u(tx)| x

+ l8\)/ pm(x)|u(t,x)|2dx+18y‘/ pm(x)F(x,u(t,x))dx
2 R” 2 R”

< [ ou (g0 +[r)] + [ea)| + gs0hpsta)]

L4
+ [25(6:0) s (%)) dix

C14
+ Z(Ilull + V]l + Nl + 1 Vaaell) | Auel], (4.32)

where ¢14 > 0 depends only on «, v, ¥, and ¢, but not on m.
By (4.32) we obtain

d
& /R” pm(x)(|ut(t,x)|2 + l)|u(t,x)|2 + |Au(t,x)|2

+ 2F (x, u(t,x)) + eu(t, x)u,(t, %)) dx
+ %sy/ ,om(x)(|ut(t,x)|2 + v|u(t,x)|2 + |Au(t,x)|2
Rn

+ 2F(x, u(t, x)) + eul(t, x)u,(t, x)) dx

+ (a —-&- iey) /H‘{” pm(x)’ut(t,x)‘zdx

+ 8<Ol - iy) /1;{" Om () u(t, x)u,(t, x) dx
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+ 8<1 - iy) /]R” pm(x)|Au(t,x)|2dx

1 1 1
+ 581}(1 - 5)/) ./R" pm(x)|u(t,x)|2dx+ Esy An pm(x)F(x, u(t,x)) dx

<o [ on@ (et ¢ 01| + a0 + s Grolgsto]
+ 6@l 7) dx

C14
+ Z(Ilull + V]l + Nl + [ Vaaell) | Al (4.33)

By Young’s inequality we obtain

8<Oé - iy) /]Rn Om(X)u(t, x)u,(t, x) dx

< %ez(a - iy) fR (@) u(t, )| dx

+ %(a - %y) /]R” ,om(x)|ut(t,x)’2dx. (4.34)

By (4.33) and (4.34) we obtain

% pm(x)(|ut(t,x)|2+u|u(t,x)|2+ ‘Au(t,x)|2
R'I

+ 2F(x, u(t, x)) + eu(t, x)u,(t, x)) dx

+ isy /]Rn /o,,,(x)(|ut(t,x)‘2 + v‘u(t,x)|2 + !Au(t,x)‘2

+ ZF(x, u(t, x)) + eu(t, x)u,(t, x)) dx

1 1
+ (Ea —e— gsy) ./]R” ,om(x)|ut(t,x)|2dx
+ 5(1 - %y) /]R" pm(x)|Au(t,x)|2dx

1 1 1
+ —E(V ——Vvy —ea+ 182)/) / ,om(x)|u(t,x)}2dx
Rn

2 2
+ %sy /n ,om(x)F(x, u(t,x)) dx

<cu /R (@) (|gt,2)| + |01@)| + | @3@)| + |25 6:0) 06 ()|

+ 23057 ) d

c
+ f(”uﬂ +[IVull + [lul + ”V”t”)”AM”' (4.35)
By (4.7) and (4.35) we have

% / pm(x)(|ut(t,x)’2 + v|u(t,9c)|2 + ‘Au(t,x)|2 + 2F(x, u(t,x)) + eu(t, x)ut(t,x)) dx
Rn
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+ %8)// ,o,,,(x)(|ut(t,x)|2 + v|u(t,x)|2 + |Au(t,x)|2
RVI
+ 2F (%, u(t, x)) + eu(t, x)uy (¢, %)) dx
<cu /R o8 @) + [ + o3| + 23 O]

+ [25(6:0)ps (%)) dix

C14
+ ;(Ilull + IVl + Nl + 1 Vaaell) | Al (4.36)

Multiplying (4.36) by ei°7!, and then integrating the inequality [t — ¢, 7], after replacing w
by 6_,w, we obtain

/ o) (|, T = 1,6 0,u10)|* + v]u(z, T = £,6_ 0, u0)|*
RVI

+ |Au(t, T-t0_ uo)’2

+ 2F(x, u(t, 7 —t,0_;w, uo)) +eu(t, T —t,0_rw,up)us(t, T — t,0_; o, M1,o)) dx

< 6_‘1‘57"/ om(@®) (lu1,0* + viwo|* + | Auo|* + 2F (x, uo(x)) + cu4o(x)u1,0(x)) das
+ cM/ e%w“—f)/ @) (|g(s,0)|” + |@1@)| + |@3(x)|) dx dis
Tt R”

i Ley(s-1) 2 244
+eu | el Pm () (|25 Os—r )6 ()|~ + | 85 (05— )5 (%) |7 ) d s
Tt R”

2c T
Pl 318”(3”)(||u(r, T —10_rw,up

2
m J., )HH2(R")

+ ” u(t, 7 —t,0_,0,u10) ”i[l( ) ds. (4.37)

R")

Next, we estimate the right-hand side of (4.37). By (4.16), we know that there exists
T1(n, t,w,D) > 0 such that for all £ > T7,

47 [ pu) (ol + viol + 1o
RVI

+ 2F (%, uo(x)) + g1 (x)u1,0(%)) dx < 1. (4.38)
For the second and the third terms on the right-hand side of (4.37) we obtain

614/ eéw(s_r)/. pm(x)(|g(s,x)|2 + o1 (®)] + [ @3()]) dxds
Tt R”
K lgy(s_f) 2 244
+ea | et (Pm(%)[ 25 (Os—c ) 06(x)|” + |25(Os—r )5 (x)| " 7 ) dx s
Tt R”
<cu [ [ (gton ¢ oo + losto]) deds
- x

00 [%|=5m

T 4
e f ehertso) / (165 6sr)ps@)[” + |56 )ips )| ) dxds
—00 \x\z%m

< 614/ e%”(s”)/ (|g(s,x)|2 + |1 (@)] + @3 (x)|) dxcds
—00 \x\z%m
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0
+cl4/ e%EVS|§5(93w){2dsf |<p6(x)|2dx
—00 \x\z%m
o 2+ 4 2+ 4
+c14/ 61“’5‘{5(9340)| r ds/ ) |(p5(x)’ ? dx. (4.39)
—00 |x|=5m

By (4.8) and with the conditions of ¢;(x) (i = 1,3, 5, 6) satisfied, we know that there exists
my =mi(n, T,w) > 1 such that for all m > m;, the right-hand of side of (4.39) is bounded
by n, i.e.,

614/ ee7(=7) An ,0,,,(96)(]g(s,x)‘2 + o1 (@)] + @3 (x)|) dxcds

T + 4
o / ee7(-7) / (om()]25(0sc )06 @) [* + |56 )5 (x)|* 7 ) dx dis
-t R”

<. (4.40)

For the last term in (4.37), by Lemma 4.1 and Lemma 4.3, we know that there exists
T>(n, t,w,D) > T such that for all t > T5,

2c Ley(s— ’
f f_te“y(s V|u(z, - t,6-c0, ”O)HHZ(R”>

+ |ue(r, T = £,0_c0,u10) ”i[l(R”)) ds < Cmﬁ,

where ¢;5 > 0 depends only on ¢, v, ¥, €, 7, and w, but not on m. Thus, there exists m; =

ms(n, T,w) > my such that for all m > m, and t > T,

2c folese ;
ﬁ t-te“y“ O ([lutr, 7 = 8,00, 10) o
+ ez, = 6,0, u10) 11 o) ds < . -

By (4.37), (4.38), (4.40), and (4.41) we see that for all m > m, and t > T»,

/ pm(x)(|ut(7:¢ T -1t 9,1-((), M1,0)|2 + V|M(T’ T-t 9—‘:0)7 M0)|2
RVI

+|Au(t, T - t,0_;0, uo)|2
+ 2F(x, u(t, 7 —t,0_,;0, uo)) +eu(t, T —t,0_;w,up)u:(t,T — t,0_, 0, ul,o)) dx

< 3n. (4.42)

By (4.7) we have

8/ PmX)u(t, T — t,0_r0, up)u(t, T —t,0_, 0, u10) dx
R}’l
1 2
=5V P (@) |u(T, T — 8,00, u0)|” dx
Rn

1 2
+5 [ ot = 60,010 i,
Rn
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which together with (4.2) and (4.42) yields that for all m > m; and ¢ > T,

1 2 1 2
/ o) (= ’ut(t,r -t G_Tw,lh,o)‘ + —v’u(t,r -t,0_;0, uo)’
R# 2 2
+ |Au(t,r -t,0_;0, M0)|2dx

<3n+ 2/11;" P (%) 01 (%) dx. (4.43)
Since ¢, € L}(R"), there exists m3 = m3(n, T, ) > m; such that for all m > m3,
2 [ onwendz=2 [ P <2 / E (2.44)
From (4.43) and (4.44) we obtain, for all m > m3 and t > T,

1 2 1 2
/ P ) (5 (T, T = 1,6 0, u10)|” + Sv|u(t, T - 1,60, u0)|
Il 2 2
+ |Au(r,r -t,0_w, Mo)|2dx
1 2 1 2
< pm(x)(5|ut(t, T—4,0_0,u10)|" + 5”\”(“’ ~ 4,600, uo)|
RVI

+ ’Au(t, T-t0_ 0, uo)’2 dx

<4n. O

5 Existence of random attractors
In this section, we present the existence and uniqueness of D-pullback random attractors
of (1.1).

Let u be the solution of (1.1). Denote u = v + v, where ¥ and v are the solutions of the

following equations, respectively,

Vg +oav+ A+ vv=g(8), t>T,
tt t g() (5.1)

U(t) = uo, V(t) = u10,
and

Vi + avy + A2+ vy = —f(x, u) + h(t, x, u)2s(Orw), t>T,

v(t) =0, vi(t) =0.

(5.2)

Lemma 5.1 Suppose (4.7) and (4.8) hold. Then, for every t € R, w € Q and D € D, there
exists T = T(t,w,D) > 0 such that forallt > T and r € [—t,0], the solution v of (5.1) satisfies

||17(t +r1T-t0_;0, uo)||12{2(w) + ||17,(t +7,7T—560_;w,uy) ||2

0
Ee"%”Mz(l+/ e§“||g(s+r)||2ds>,

where (1, u1,0) € D(t — t,0_1w) and M, is a positive number independent of T, w, and D.
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Proof From (3.8), (3.9), and (5.1) we see that

d, . - - - -
E(Il‘wll2 + AV + v][P] + & (¥(2), V() + (2 — £) |72
+&|| AV + ev||7)% + ea(f/(t), it(t))

= (g(0), e¥(t) + 204(0))
<ele®] 70| +2]e®] |70

< 2P| +alpo] + (% . a1> e (53)

In addition, we obtain

(a - %s)e(f»(t), T/t(t))

1 1 - -
= (a - 58) @[50 + |70 ). (5.4
By (5.3) and (5.4) we have

d - - o 1 3 -
E(nvrn2 + AV + v ][9] + e (9(0), 7(0))) + (5“ - 18) (111>

1 1 1 1
+e|| A% + e(v - 58 - Eea + 182) 171% + Esz(f/(t),f/t(t))
1
< (5 +a 1)Ilg(t)

which can be rewritten as

2
’

d
E(Ilfall2 + LAV + vl + e (9(2), :(2)))

+ Se(IT + 1AV + vIIPI® + e (9(2), (D))

N =

1 5 P | .9 1 1,5\ -2
+ —a— = )|IVell” + =¢l|AV||"+ =g v—e—ea + =" ||V
2 4 2 2 2
1 a1 2
< 2 +a ||g(t)|| . (5.5)

It follows from (4.7) and (5.5) that

d
E(HM2 + AV + ][9] + e (9(2), 7.(2)) )
+ %s(nvtnz + AT + v [[P)1% + & (9(8), 7(1)))
< (% + al) le®]?. (5.6)

Applying Gronwall’s lemma to (5.6), we obtain forallt € R, t >0, r € [-£,0] and w € €,

||17,(r +7,T —5L6_w,uy ) ||2 + || AV(T +71,T —t,0_; 0, Ug) ||2
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+ v||17(r +7,T—t,0_,0,up) ||2
+ 8(17(1 +7,T—t,0_;0,up), V(T +7,T —t,0_; 0, ul,o))

< e 27 3 (g ol + vlluol® + | Ao 1® + £(uo, un,0))
T+r
+ (% + a1>e%”/ e266-7) ||g(s)||2ds.
Tt
By (4.7) we have
8(17(1 +7,T—t,0_rw,up), V(T +1,T —t,0_; 0, M1,o))
< %8”17(1' +1,7-t0_,0, uo)”2 + %s“ﬁ,(r +1,T—40_0,u10) ||2
< %v”f/(r +7,T—t,0_;w,up) ||2 + %“f/r(t +r1-t0_;0, ul,o)”z.

By (5.7) and (5.8) we see that forall 7t € R, £ >0, r € [-£,0] and w € ,

S5t 4t 100,10+ | AFE + 7,7~ 60, u0)|
+ %v”fl(t +7,T— t,Q_Tw,uo)Hz

_lg 1 2 2 2
<e 2 e 2 (Jlugoll* + vlluoll® + | Auoll* + &(uo, 1,0))

1 1 TH )

+ (— +a‘1)e‘28’/ e2°677]|g(s)| " ds.
2 Tt

Similar to (4.16), one can verify that
1
e 2 (Nluroll® + viiuoll® + | Ao l|* + £(uso, u10)) — 0, ast— oo,

which along with (5.9) yields the desired result.

Page 29 of 34

(5.7)

(5.8)

(5.9)

O

Based on Lemma 5.1, we infer that system (5.1) has a tempered pullback random ab-

sorbing set.

Lemma 5.2 Suppose (4.8) and (4.9) hold, then (5.1) possesses a closed measurable D-

pullback absorbing set By = {B1(t,w): T € R,w € Q} € D, which is given by
Bl(f’ w) = {(M(), ul,O) € H2 (Rn) S L2 (Rn) : ”uO”iﬂ(Rn) + ”141,0”2 = Ll(r,a))},
where
o )
Li(t,w) = My +M2/ e2®|g(s + 1)| " ds.
—00
Lemma 5.3 Suppose (4.8) and (4.9) hold, then the sequence of the solutions to (5.1)

{ﬁ(r, T —t,,0_ 0, ué")),f/t(r, T —t,,0_, 0, u(ln()))}noil

(5.10)
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converges in H*(R") x L*(R") for any t € R, w € Q, D € D, t, — oo monotonically, and
(ué"), u({,’(),) € D(t - ty,0_4,w).

Proof Let m > n and

Vn,m(tx T-— tn) 9,1(1))
=9(t,T = by, 00, u(()n)) -9(t, T — b, 0_c 0, uém))
=9(t,T — by, 000, u(()")) =Vt T = b, 0_c 0, V(T = by T — by, O 0, uf)m)) (5.11)

fort>1t—¢t,
By (5.1) we obtain

02V m(E) + 0BV (£) + AV, (£) + vvn,m(t) =0, t>T—t,

V(T = ) = 0 = V(T = by T = by, O 0, ul™), (5.12)

OVum(T — 1) = u(f'()) _—

Similar to (5.9) with r =0, £ = £, and g = 0, we obtain
1
5 || 0tV (T, T = 1y, 0 0) “ + HAVnm(T T —1y,0 o) “ zvvnm( —tw, 0 ra))”
f ei%”n (” atVn,m(T - tn)||2 + ||Vn,m(f - tn) “2 + || Avn,m(f - tn)||2): (513)
which together with (5.12),, gives

2 2
18V (T, T = £, 02 0)||” + 2] AViyn(T, T = b1, 0—c ) | + V(7. T = £, 0 0) |
_1 ~ -
< e 2”"(”1/,:('( -ty T — L‘,,,,G_Tw, M(;:yé)nz + ”V(T 1ty T — tmye—rw: M(OWI) ||12r.12)

#2030 (Jufy |+ Jug? |+ | 2ug? ). (5.14)

By (5.9) with r = —t,,, and ¢ = ¢,,,, we obtain

”f/t(r — bt T =ty O_r 0, u(lfno)) Hz + 2” AT = by, T = by 0 0, uém)) ”2

+ V|t =t T = by O 0,1t (m))”

< Debetng3etm (||u(1"3 ||2 + vH ug’) ||2 + || Auf)") H2 + S(Mg"),u(ff())))

T—t,

+(1+ 2a‘1)e%8’" / ' 266-7) lg(s) ”st. (5.15)

T—by

It follows from (5.14) and (5.15) that for m > n — o0,

|9Vm (T, T = 10,60 0) | + Vi (T, T = 1,60 ) ”Hz am > 0,

which together with (5.11) implies {¥(t,7 — £,,0_, ®, ug’)),fzt(r, T —t,0_c0, u(l'fg) 09

Cauchy sequence in H?(R") x L2(R"). This complete the proof. O

°isa
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Lemma 5.4 Suppose (4.8) and (4.9) hold, then (5.1) has a unique D-pullback random at-
tractor Ay = {A,(t,0) : T € R, 0 € Q} € D in H*(R*n) x L2(R"), which is actually a single-
ton; that is, A1 (t, w) consisting of a single point forall t € R, w € Q.

Proof From Lemmas 5.2 and 5.3 by applying the abstract results in [19], we can obtain the
existence and uniqueness of the D-pullback random attractor A; € D of (5.1) in H2(R") x
L*(R") immediately.
Next, we prove A is a singleton. Suppose {t,}52, 1 is a sequence of numbers such that
t, — 00 as n— 00. Given T € R, w € 2, let (20, 2V0), 5", 973) € Ai(t = £, 0, ).
Similar to (5.13) we have

||at(7:, T— tn; 9—'{&); Z(I}j())) - ~l (T’ T-— tn’e’fa)’y(l}:%) HZ

+ 2|| AV(T,T — by, 00, z(()")) - Af/(t, T - tn,é’_ra),yg’)) ||2
+v|o(r, T - tn,e_fw,zg’)) -¥(t, T - tn,e_fw,yg’)) ||2

<ty 58l ¢ [ -+ 2l - 27

<22 (Jafg]* + ” ey + DA + 1743 L)
<4673 | Ay (T ~ £, 0-1,0) | oy 2y (5.16)

Due to A; € D, we see that the right-hand side of (5.16) tends to zero as n — o0, and thus
we obtain

nli)rgo(ﬁt(t, T—1,0_,0, zY'())) V(T - t,,,@,ra),y(l’f()))) =0 inlL? (R"),

lim (ﬁ(r, T —ty,0_c0, z(()")) - T/t(r, = tn,G_Tw,yg'))) =0 inH? (R"),

n—00

which, together with the invariance of A;, shows that the D-pullback random attractor
A, is a singleton. This complete the proof. d

To obtain the asymptotic compactness of the solutions of (5.2), we need the following
Lemma.

Lemma 5.5 Let ug € HX(R"), u10 € L*(R"), 1 € R, w € Q and T > 0. If (3.2), (3.3), (3.6),
(4.1), (4.2), and (4.5)—(4.8) hold, then the solution of (5.2) satisfies, forall t € [t,t + T1,

|Atve,T,0)| + At T,0) < C,
where C is a positive number depending on T, w, T and R when ||(to, u1,0) | pr2wnyx 12 gy < R
Proof This is an immediate consequence of Lemma 4.3. 0
Lemma 5.6 Let (3.2), (3.3), (3.6), (4.1), (4.3), and (4.5)—(4.9) hold. Then, the cocycle ® is

D-pullback asymptotically compact in H*(R") x L*>(R"); that is, the sequence {®(t,, T —

by 01,0, (ué"),u(lf’g)}zil has a convergent subsequence in H*(R") x L>(R") for any T € R,

we,DeD,t,— oo,and (ug’), u(lf'())) €D(t — ty,0_4,w).
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Proof Givent e R*, 7 € R, w € , and (ug, uy o € H*(R") x L*(R"), define

(Dl (t; 7,w, (MO: ul,O)) = (v(t +7,7, 9—1'0)1 MO); f/t(t +7,7, 0—‘[0)1 ul,O));

(¢, 7, 0, (o, u10)) = (V(E+ T, T, 0_c 0, u0), Ve (£ + T, T, 0_r 0, 141 0)),

where v and v are the solutions of (5.1) and (5.2), respectively.
By (3.72) we have

cD(t, T,w, (M(), Mly())) = (Dl (t, T,w, (MQ, ull())) + q)g (t, T,w, (M(), Mly())). (517)

Let B € D be the € D-pullback absorbing set of ¢ given by (4.19). From Lemmas 4.2, 4.4,
and 5.4 we see that for every § > 0 there exists £y = £,(8, 7,w,B) > 0 and ko = ko(5, 7, w) > 1
such that for all (o, u#1,0) € B(t — to,0_yw),

” qD(t(), T— to,O_th), (Llo, ul,o)) |@k0 HHZ(@](O)XLZ(@](O) < 8, (518)
with (7)k0 ={xeR":|x| > ko}, and
o} (to, T — to, O_yw, B(T - 1o, Q,tow)) is covered by a ball of radius § (5.19)

in H*(R") x L*(R").
In addition, by Lemma 5.5 we know that for everyt e R*, 1t e R, w € Q,and k € N,

o, (t, T —t,0_w,B(t - t, Q,tw)) is bounded in H* (R") x H' (R"),
and thus for each k € N,
®, (t, T -5 0_,w,B(t —t, Q,ta))) lo, is precompact H2(O)) x LX), (5.20)

with O = {x e R" : |x| < k}.
It follows from (5.17)—(5.20) that all conditions of Theorem 2.1 are satisfied, hence, ® is
D-pullback asymptotically compact in H?(R") x L*(R"). O

Since Lemma 4.2 implies a closed measurable D-pullback absorbing set for ®, and ® is
D-pullback asymptotically compact in H2(R") x L*(R") from Lemma 5.6, we immediately
obtain the following existence theorem by Theorem 2.2.

Theorem 5.1 Let (3.2), (3.3), (3.6), (4.1), (4.3), and (4.5)—(4.9) hold. Then, the cocycle ®
has a unique D-pullback random attractor in H*(R") x L*(R").
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