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Abstract
We investigate a nonlinear equation with quadratic nonlinearities, including a
nonlinear model in Silva and Freire (J. Differ. Equ. 320:371–398, 2022). Using the
classical energy estimate methods, we give a necessary and sufficient condition of
blow-up of solutions to nonlinear equations. We answer a problem pointed out by
Silva and Freire (J. Differ. Equ. 320:371–398, 2022).
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1 Introduction
Silva and Freire [1] investigated in detail the following equation:

Wt – Wtxx = –WWx + WWxxx, (t, x) ∈R+ ×R, (1.1)

for which they considered continuation and persistence of solutions and necessary condi-
tions for blow-up of a solution.

Equation (1.1) is related to the equation

Wt – Wtxx + aW kWx = bW k–1WxWxx + cW kWxxx, (1.2)

where constants a, b, c satisfy (ab, ac) �= (0, 0), and k �= 0 (see [2]). Under certain restric-
tions on the parameters a, b, c, and k, the conserved currents, peakon solutions, and point
symmetries are discussed in [2–4]. Obviously, when a = 3, b = 2, c = 1, and k = 1, Eq. (1.2)
reduces to the standard Camassa–Holm equation [5]. If a = 4, b = 3, c = 1, and k = 1, then
Eq. (1.2) becomes the Degasperis–Procesi model [6]. When a = 4, b = 3, c = 1, and k = 2,
Eq. (1.2) reduces to the Novikov equation [7]. For a = b + c, b ∈ R, c �= 0, and k > 0, if the
initial value belongs to a suitable Besov space, the well-posedness of short-time solutions
for Eq. (1.2) is investigated in [8]. Under certain restrictions on the constants a, b, c, k,
the global well-posedness for Eq. (1.2) is also established in Yan [8]. For real b, c = 1, and
a = b + 1, the traveling wave solutions, the persistence properties, and unique continua-
tion to Eq. (1.2) are considered by Guo et al. [9, 10] and Himonas and Thompson [11, 12].
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Under different assumptions on the parameters a, b, c, k and the initial data, many useful
dynamical properties for Eq. (1.2) can be found in [13–17].

We consider the following initial value problem:

⎧
⎨

⎩

Wt – Wtxx = –mWWx + WWxxx,

W (0, x) = W0(x),
(1.3)

where the constant m ∈ (–∞,∞). If m = 1, then the first equation in (1.3) becomes
Eq. (1.1).

For problem (1.3) with m = 1, Silva and Freire [1] pointed out the following conjecture.

Conjecture Let m = 1, s > 3
2 , W0(x) ∈ Hs(R), and lifespan T > 0. Then the solution W (t, x)

of problem (1.3) blows up at finite time if and only if

lim
t→T

∥
∥Wx(t, ·)∥∥L∞ = ∞. (1.4)

The conjecture is presented on p. 396 in [1]. We will derive several estimates from
problem (1.3) itself. Using the obtained estimates, we obtain two results: (1) If W0(x) ∈
Hs(R), s > 3

2 , and the solution of problem (1.3) blows up, then
∫ T

0 |Wx(t, x)|dx = ∞, where
T is the lifespan of W (t, x) (2) If W0(x) ∈ Hs(R) with s > 3

2 , then limt→T ‖W (t, ·)‖Hs = ∞ if
and only if (1.4) holds. Our Theorem 3.2 demonstrates that the conjecture is right for any
constant m ∈ (–∞,∞).

In Sect. 2, we present several lemmas, and in Sect. 3, we provide our main results and
their proofs.

2 Several lemmas
Set �2 = 1 – ∂2

x . Then ∂2
x = 1 – �2 and �–2 = (1 – ∂2

x )–1, and we have

Wt = �–2(WWxxx) – m�–2(WWx)

= �–2((WWxx)x – WxWxx
)

– m�–2(WWx)

= �–2(((WWx)x – W 2
x
)

x – WxWxx
)

– m�–2(WWx)

= �–2((WWx)xx – 3WxWxx
)

– m�–2(WWx)

= �–2(1 – �2)(WWx) – 3�–2(WxWxx) – m�–2(WWx)

= –WWx – 3�–2(WxWxx) +
1 – m

2
�–2(W 2)

x.

Thus problem (1.3) becomes

⎧
⎨

⎩

Wt + WWx = –3�–2(WxWxx) + 1–m
2 �–2(W 2)x,

W (0, x) = W0(x).
(2.1)

Lemma 2.1 Let W0 ∈ Hs(R) with s > 3
2 . Then there is T = T(W0) > 0 such that problem

(2.1) has a unique solution W (t, x), and

W ∈ C
(
[0, T); Hs(R)

) ∩ C1([0, T); Hs–1(R)
)
.
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Using the Kato theorem [18], we can prove the well-posedness of local solutions for
problem (2.1). In fact, the proof of well-posedness of a short-time solution for problem
(2.1) is very similar to those of the famous Camassa–Holm and Degasperis–Procesi mod-
els (see [11, 15, 16]). Here we omit its proof.

Lemma 2.2 Suppose that s ≥ 3 and W (t, x) ∈ Hs(R). Then

∫

R

WWxWxx dx = –
1
2

∫

R

W 3
x dx, (2.2)

∫

R

WWxxWxxx dx = –
1
2

∫

R

WxW 2
xx dx. (2.3)

Proof Since1

∫

R

WWxWxx dx =
∫

R

WWx dWx

=
(
WW 2

x
)∣
∣∞
–∞ –

∫

R

Wx
(
W 2

x + WWxx
)

dx,

= –
∫

R

Wx
(
W 2

x + WWxx
)

dx,

we get (2.2). Similarly, we have

∫

R

WWxxWxxx dx =
∫

R

WWxx dWxx

=
(
WW 2

xx
)∣
∣∞
–∞ –

∫

R

Wxx(WxWxx + WWxxx) dx,

= –
∫

R

Wxx(WxWxx + WWxxx) dx,

which leads to (2.3). �

Lemma 2.3 Let W0(x) ∈ Hs(R) (s > 3
2 ). Then

∫

R

�–2(W 2)dx =
∫

R

W 2 dx,
∫

R

�–2(W 2
x
)

dx =
∫

R

W 2
x dx. (2.4)

Proof We only need to prove the first identity in (2.4). Since

�–2W 2 =
1
2

∫

R

e–|x–η|W 2(t,η) dη ≥ 0

and
∫

R

e–|x–η| dη = 2,

1For any f ∈ Lr (R) with 1 ≤ r ≤ ∞, we have �–2f (x) = 1
2

∫

R
e–|x–η|f (η)dη (see Constantin and Escher [14]). If a function

g ∈ Hs(R) with s > 3
2 , then g(±∞) = g′(±∞) = g′′(±∞) = g[s] (±∞) = 0, where [s] denotes the integer part of s (see [18]).
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by the Tonelli theorem we get

∫

R

�–2(W 2)dx =
1
2

∫

R

∫

R

e–|x–η|W 2(t,η) dη dx

=
1
2

∫

R

W 2(t,η) dη

∫

R

e–|x–η| dx

=
∫

R

W 2(t,η) dη,

which finishes the proof. �

Lemma 2.4 ([19]) If r ≥ 0 and f1, f2 ∈ Hr ∩ L∞, then

‖f1f2‖r ≤ c
(‖f1‖L∞‖f2‖r + ‖f1‖r‖f2‖L∞

)
,

where the constant c > 0 depends only on r.

Lemma 2.5 ([19]) Let f1 ∈ Hr ∩ W 1,∞ (r > 0) and f2 ∈ Hr–1 ∩ L∞. Then

∥
∥
[
�r , f1

]
f2

∥
∥

L2 ≤ c
(‖∂xf1‖L∞

∥
∥�r–1f2

∥
∥

L2 +
∥
∥�rf1

∥
∥

L2‖f2‖L∞
)
,

where [�r , f1] = �rf1 – f1�
r , and the constant c > 0 depends only on r.

Remark 1 Using the arguments in [8, 15], the lifespan T in Lemma 2.1 does not depend on
the Sobolev index s > 3

2 . Namely, for arbitrary s1 > s > 3
2 or s > s1 > 3

2 , the maximal existence
time for ‖W‖Hs and ‖W‖Hs1 is the same.

3 Main results
Theorem 3.1 Let W0 ∈ Hs(R) with s > 3

2 , and suppose W satisfies problem (1.3) or problem
(2.1). If the lifespan T of W is finite and

lim
t→T

∥
∥W (t, ·)∥∥Hs = ∞, (3.1)

then

∫ T

0

∥
∥Wx(τ , ·)∥∥L∞ dτ = ∞. (3.2)

Proof If s > 3
2 , then using the operator �sW�s, from problem (2.1) we obtain

1
2

d
dt

∫

R

(
�sW

)2 dx

=
∫

R

(
�sW

)
�sWt dx

=
∫

R

(
�sW

)
�s

(

–WWx –
3
2
�–2∂x

(
W 2

x
)

+
1 – m

2
�–2(W 2)

x

)

dx,



Liu et al. Boundary Value Problems         (2023) 2023:28 Page 5 of 10

which leads to

1
2

d
dt

∫

R

(
�sW

)2 dx

≤
∣
∣
∣
∣

∫

R

(
�sW

)
�s(WWx) dx

∣
∣
∣
∣ +

|m – 1|
2

∣
∣
∣
∣

∫

R

(
�sW

)
�s–2(W 2)

x dx
∣
∣
∣
∣

+
3
2

∣
∣
∣
∣

∫

R

�sW�s–2∂x
(
W 2

x
)

dx
∣
∣
∣
∣

= G1 + G2 + G3. (3.3)

In fact, we have
∫

R

W�sW�sWx dx =
∫

R

W�sW d
(
�sW

)

= –
∫

R

�sW
(
Wx�

sW + W�sWx
)

dx,

from which we obtain
∫

R

W�sW�sWx dx = –
1
2

∫

R

Wx�
sW�sW dx. (3.4)

Employing the Cauchy–Schwarz inequality, (3.4), and Lemma 2.5, we acquire

∣
∣
∣
∣

∫

R

(
�sW

)
�s(WWx) dx

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

R

(
�sW

)(
�s(WWx) – W�sWx

)
dx

+
∫

R

(
�sW

)
W�sWx dx

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫

R

(
�sW

)(
�s(WWx) – W�sWx

)
dx

∣
∣
∣
∣

+
∣
∣
∣
∣

∫

R

(
�sW

)
W�sWx dx

∣
∣
∣
∣

≤ c‖W‖Hs
(‖W‖Hs–1‖Wx‖L∞ + ‖W‖Hs‖Wx‖L∞

)

+
1
2
‖Wx‖L∞

∥
∥�sW

∥
∥

L2

≤ c‖Wx‖L∞‖W‖2
Hs ,

which leads to

G1 ≤ c‖Wx‖L∞‖W‖2
Hs . (3.5)

Similarly to the proof of (3.5), we have

G2 ≤ |m – 1|
2

∣
∣
∣
∣

∫

R

(
�s–1W

)
�s–1(W 2)

x dx
∣
∣
∣
∣

≤ c
∣
∣
∣
∣

∫

R

(
�s–1W

)
�s–1(WWx) dx

∣
∣
∣
∣
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≤ c‖Wx‖L∞‖W‖2
Hs–1

≤ c‖Wx‖L∞‖W‖2
Hs . (3.6)

Now Lemma 2.4 yields

G3 ≤ ∥
∥�sW

∥
∥

L2

∥
∥�s–2∂x

(
W 2

x
)∥
∥

L2

≤ c
∥
∥�sW

∥
∥

L2

∥
∥W 2

x
∥
∥

Hs–1

≤ c
∥
∥�sW

∥
∥

L2‖Wx‖L∞‖Wx‖Hs–1

≤ c‖Wx‖L∞‖W‖2
Hs . (3.7)

Using inequalities (3.3), (3.5),(3.6), and (3.7) results in

1
2

d
dt

∫ ∞

–∞

(
�sW

)2 dx ≤ c‖Wx‖L∞
∥
∥�sW

∥
∥2

L2 , (3.8)

where c > 0 is a constant. Using (3.8) yields

‖W‖Hs ≤ ‖W0‖Hs ec
∫ t

0 ‖Wx‖L∞ dτ . (3.9)

Suppose that limt→T ‖W‖Hs = ∞. From (3.9) we have

∫ T

0
‖Wx‖L∞ dτ = ∞,

which ends the proof. �

Theorem 3.2 Let W0(x) ∈ Hs(R) with s > 3
2 , and let T be the lifespan of solution W (t, x)

for problem (2.1). If T is finite, then

lim
t→T

∥
∥W (t, ·)∥∥Hs(R) = ∞ (3.10)

if and only if

lim
t→T

∥
∥Wx(t, ·)∥∥L∞(R) = ∞. (3.11)

Proof Let (3.10) hold. We will derive that (3.11) holds. Using Remark 1 and choosing s = 3,
Lemma 2.1 ensures that there exists W (t, x) ∈ C([0, T), H3(R))∩C1([0, T), H2(R)). We will
employ the classical energy estimates. From problem (2.1) we acquire

1
2

d
dt

∫

R

W 2 dx =
∫

R

WWt dx

=
∫

R

W
(
–WWx – 3�–2(WxWxx)

)
dx +

1 – m
2

∫

R

W�–2(W 2)

x dx

= –3
∫

R

W�–2(WxWxx) dx +
1 – m

2

∫

R

W�–2(W 2)

x dx

= –
3
2

∫

R

W�–2(W 2
x
)

x dx +
1 – m

2

∫

R

W�–2(W 2)

x dx
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=
3
2

∫

R

Wx�
–2(W 2

x
)

dx –
1 – m

2

∫

R

Wx�
–2(W 2)dx. (3.12)

Applying the first equation in (2.1) yields

Wtx = –W 2
x – WWxx –

3
2
�–2(W 2

x
)

xx +
1 – m

2
�–2(W 2)

xx

= –W 2
x – WWxx –

3
2
�–2(1 – �2)(W 2

x
)

+
1 – m

2
�–2(1 – �2)(W 2)

= –W 2
x – WWxx –

3
2
�–2W 2

x +
3
2

W 2
x

+
1 – m

2
�–2(W 2) –

1 – m
2

W 2

=
1
2

W 2
x – WWxx –

1 – m
2

W 2 –
3
2
�–2W 2

x +
1 – m

2
�–2(W 2). (3.13)

Using Lemma 2.2 and (3.13), we have

1
2

d
dt

∫

R

W 2
x dx =

∫

R

Wx

(
1
2

W 2
x – WWxx –

1 – m
2

W 2 –
3
2
�–2W 2

x

+
1 – m

2
�–2W 2

)

dx

=
1
2

∫

R

W 3
x dx –

∫

R

WWxWxx dx –
3
2

∫

R

Wx�
–2W 2

x dx

+
1 – m

2

∫

R

Wx�
–2W 2 dx

=
∫

R

W 3
x dx –

3
2

∫

R

Wx�
–2W 2

x dx +
1 – m

2

∫

R

Wx�
–2W 2 dx. (3.14)

Using (3.13) gives rise to

Wtxx = WxWxx – WxWxx – WWxxx – (1 – m)WWx

–
3
2
�–2(W 2

x
)

x +
1 – m

2
�–2(W 2)

x

= –WWxxx – (1 – m)WWx –
3
2
�–2(W 2

x
)

x +
1 – m

2
�–2(W 2)

x. (3.15)

Applying integration by parts, (3.15), and Lemma 2.2, we have

1
2

d
dt

∫

R

W 2
xx dx

= –
∫

R

WWxxWxxx dx – (1 – m)
∫

R

WWxWxx dx

–
3
2

∫

R

Wxx�
–2(W 2

x
)

x dx +
1 – m

2

∫

R

Wxx�
–2(W 2)

x dx

=
1
2

∫

R

WxW 2
xx dx +

1 – m
2

∫

R

W 3
x dx
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–
3
2

∫

R

W�–2(W 2
x
)

xxx dx –
1 – m

2

∫

R

Wx�
–2(W 2)

xx dx

=
1
2

∫

R

WxW 2
xx dx +

1 – m
2

∫

R

W 3
x dx –

3
2

∫

R

W�–2(1 – �2)(W 2
x
)

x dx

–
1 – m

2

∫

R

Wx�
–2(1 – �2)(W 2)dx

=
1
2

∫

R

WxW 2
xx dx +

1 – m
2

∫

R

W 3
x dx + 3

∫

R

WWxWxx dx

–
3
2

∫

R

W�–2(W 2
x
)

x dx –
1 – m

2

∫

R

Wx�
–2W 2 dx

=
1
2

∫

R

WxW 2
xx dx –

m + 2
2

∫

R

W 3
x dx

+
3
2

∫

R

Wx�
–2(W 2

x
)

dx –
1 – m

2

∫

R

Wx�
–2W 2 dx. (3.16)

Using (3.12), (3.14), and (3.16), we have

1
2

d
dt

∫

R

(
W 2 + W 2

x + W 2
xx

)
dx

= –
m
2

∫

R

W 3
x dx +

1
2

∫

R

WxW 2
xx dx

+
m – 1

2

∫

R

Wx�
–2W 2 dx +

3
2

∫

R

Wx�
–2(W 2

x
)

dx. (3.17)

If (3.10) holds, then suppose that we can choose a positive constant M satisfying

∣
∣Wx(t, x)

∣
∣ < M, t ∈ [0, T), x ∈R. (3.18)

Employing (3.17), (3.18), Lemma 2.3, �–2(W 2) ≥ 0, and �–2(Wx)2 ≥ 0, we have

1
2

[
d
dt

∫

R

(
W 2 + W 2

x + W 2
xx

)
dx

]

<
M|m|

2

∫

R

W 2
x dx +

M
2

∫

R

W 2
xx dx +

|m – 1|M
2

∫

R

W 2 dx +
3M

2

∫

R

W 2
x dx

< max

{
M|m|

2
,

3M
2

,
|m – 1|M

2

}∫

R

(
W 2 + W 2

x + W 2
xx

)
dx. (3.19)

Let

H(t) =
∫

R

(
W 2 + W 2

x + W 2
xx

)
dx, K = max

{
M|m|, 3M, |m – 1|M}

.

From (3.19) we obtain

H(t) ≤ H(0) + K
∫ t

0
H(τ ) dτ ,

which, together with the Gronwall inequality, yields

H(t) ≤ H(0)eKt . (3.20)
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From (3.20) we obtain W (t, x) ∈ H2(R), which, combined with Remark 1, is a contradiction
to (3.10). Therefore we conclude that assumption (3.18) is not right.

Conversely, using ‖Wx‖L∞ < c‖W‖Hs , if

lim
t→T

∥
∥Wx(t, ·)∥∥L∞(R) = ∞,

then we derive that

lim
t→T

∥
∥W (t, ·)∥∥Hs = ∞.

The proof is completed. �
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