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Abstract
An objective of this paper is to investigate the boundary value problem of a
high-order nonlinear fractional q-difference equation. It was to obtain a unique
iterative solution for this problem by means of applying a novel fixed-point theorem
of ψ – (h, r)-concave operator, in which the operator is increasing and defined in
ordered sets. Moreover, we construct a monotone explicit iterative scheme to
approximate the unique solution. Finally, we give an example to illustrate the use of
the main result.
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1 Introduction
In the early twentieth century, Jackson discovered a new mathematical direction of q-
difference calculus. Its basic definition and properties can be seen in the literature [1, 2].
Since then, due to q-difference calculus having important applications in mathematical
physics, quantum mechanics, complex analysis, and other fields, many scholars have stud-
ied q-difference equations and obtained a variety of useful results. Fractional q-difference
calculus is an extension of q-difference calculus, which originated from Al-Salam [3] and
Agarwal [4], and some results can be found in the literature [5, 6]. Up to now, fractional
q-difference calculus is still a hot topic of research. In recent years, there has been tremen-
dous interest in developing the solvability of fractional q-difference equations.

It is of great significance to investigate the boundary value problems (BVPs) of fractional
q-difference equations. As is known, it can be applied to many aspects of real life, such as
engineering, physics, chemistry, mechanics, the electrodynamics of composite media, and
so on. More and more researchers devote themselves to the research, and have come up
with a great deal of interesting and novel theories and results for various BVPs of fractional
q-difference equations, see [7–19] and references therein. However, in spite of BVPs for
fractional q-difference equations attracting extensive attention from experts and scholars,

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13661-023-01718-1
https://crossmark.crossref.org/dialog/?doi=10.1186/s13661-023-01718-1&domain=pdf
mailto:changlongyu@126.com
http://creativecommons.org/licenses/by/4.0/


Wang et al. Boundary Value Problems         (2023) 2023:37 Page 2 of 13

relevant conclusions are still few in number. In particular, the solvability theory of higher-
order nonlinear fractional q-difference equations needs further exploration.

In [8], Ferreira investigated the BVP for the nonlinear fractional q-difference equation
⎧
⎨

⎩

(Dα
q y)(x) = –f (x, y(x)), 0 < x < 1,

y(0) = (Dqy)(0) = 0, (Dqy)(1) = β ≥ 0,

where 2 < α ≤ 3 and f : [0, 1] ×R �−→ R is a nonnegative continuous function. The author
obtained the existence of positive solutions for BVP by applying a fixed-point theorem in
cones.

Recently, in [11], Zhai and Ren obtained the existence and uniqueness of solutions for
the nonlinear fractional q-difference equation with three-point boundary conditions

⎧
⎨

⎩

(Dα
q u)(t) + f (t, u(t)) = b, 0 < t < 1, 2 < α < 3,

u(0) = (Dqu)(0) = 0, (Dqu)(1) = β(Dqu)(η),

by using a new fixed-point theorem of increasing ψ – (h, r)-concave operators defined in
ordered sets, where 0 < βηα–2 < 1, 0 < q < 1, b ≥ 0 is a constant, Dα

q denotes the Riemann–
Liouville-type fractional q-derivative of order α.

On the basis of the above works, we mainly investigate the BVP of the nonlinear frac-
tional q-difference equation

⎧
⎨

⎩

(Dγ
q � )(t) + f (t,� (t)) = ξ , 0 < t < 1,

� (0) = (Dq� )(0) = · · · = (Dn–2
q � )(0) = 0, (Dδ

q� )(1) = a(Dδ
q� )(η),

(1)

where 0 < q < 1, n – 1 < γ ≤ n (n > 2), 1 ≤ δ ≤ n – 2, 0 < η < 1, 0 < aηγ –δ–1 < 1 and ξ ≥ 0 is a
constant. Using a novel fixed-point theorem of ψ – (h, r)-concave operators defined in an
ordered set Ph,r ([20]), we discuss the existence and uniqueness of iterative solutions for
BVP (1), which is an increasing technique of dealing with nonlinear fractional q-difference
BVPs.

The present paper is organized as follows. The second section shows the definitions,
lemmas, theorems, and assumptions used in this paper. The third section expounds the
main conclusions of this paper and gives the corresponding proof. The fourth section cites
an example to verify the main conclusions. The last section of this paper contains a few
concluding remarks.

2 Preliminaries
In this section, we first introduce some definitions and results of fractional q-calculus.

The q-integral of a function f in the interval [0, b] is given by

(Iqf )(x) =
∫ x

0
f (t) dqt = x(1 – q)

∞∑

n=0

f
(
xqn)qn, x ∈ [0, b].

If a ∈ [0, b] and f is defined in the interval [0, b], its integral from a to b is defined by

∫ b

a
f (t) dqt =

∫ b

0
f (t) dqt –

∫ a

0
f (t) dqt.
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Lemma 2.1 ([7]) Let α > 0, then we have the following formulas:

[
a(t – s)

](α) = aα(t – s)(α),

tDq(t – s)(α) = [α]q(t – s)(α–1).

Remark 2.2 ([8]) If α > 0 and a ≤ b ≤ t, then (t – a)(α) ≥ (t – b)(α).

Definition 2.3 ([8]) Let β ≥ 0 and f be a function defined on [0, 1]. The fractional q-
integral of Riemann–Liouville type is

(
Iβ

q f
)
(s) =

1

q(β)

∫ s

0
(s – qt)(β–1)f (t) dqt, s ∈ [0, 1].

Obviously, (Iβ
q f )(s) = (Iqf )(s) when β = 1.

Definition 2.4 ([8]) The fractional q-derivative of Riemann–Liouville type of β ≥ 0 is
defined by

(
Dβ

q f
)
(s) =

(
Dl

qIl–β
q f

)
(s), s ∈ [0, 1],

where l is the smallest integer greater than or equal to β . In particular, if β = 1, then
(Dβ

q f )(s) = (Dqf )(s).

Lemma 2.5 ([8]) Let α,β ≥ 0 and f be a function defined on [0, 1]. Then, the following
formulas hold:

1. (Iβ
q Iα

q f )(x) = (Iα+β
q f )(x),

2. (Dα
q Iα

q f )(x) = f (x).

Remark 2.6 Assume that g(t) ∈ [0, 1] and α, β are two constants such that α > 2 ≥ β ≥ 1.
Then,

Dβ
q

∫ t

0
(t – qs)(α–1)g(s) dqs =


q(α)

q(α – β)

∫ t

0
(t – qs)(α–β–1)g(s) dqs.

Lemma 2.7 ([8]) Let α > 0 and p be a positive integer. Then, the following equality holds:

(
Iα

q Dp
qf

)
(x) =

(
Dp

qIα
q f

)
(x) –

p–1∑

k=0

xα–p+k


q(α + k – p + 1)
(
Dk

qf
)
(0).

Lemma 2.8 ([6]) For λ ∈ (–1,∞) and α ≥ 0, then the following equality holds:

Iα
q (t – a)(λ) =


q(λ + 1)

q(α + λ + 1)

(t – a)(α+λ), 0 < a < t.

In particular, for λ = 0 and a = 0, we have Iα
q (1)(t) = tα


q(α+1) . In conclusion, we can obtain

∫ t

0
(t – qs)(α–1) dqs = 
q(α)Iα

q (1)(t) =
1

[α]q
tα .
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Next, we introduce a concave operator that plays an important role in the proof of the
main results.

Let (X,‖ · ‖) be a real Banach space with a partial order induced by a cone P of X, i.e.,
x ≤ y if and only if y – x ∈ P.

Definition 2.9 For any x, y ∈ X, we define x and y as equivalent, if there exist μ > 0 and
ν > 0 such that μx ≤ y ≤ νx, denoted by x ∼ y.

To formulate our hypotheses, we define two important sets. For given h > θ , define the
set Ph = {x ∈ X | x ∼ h}, and it is obvious that Ph ⊂ P. Let r ∈ P with θ ≤ r ≤ h, we define
Ph,r = {x ∈ X | x+r ∈ Ph}, namely Ph,r ={x ∈ X | there exist μ = μ(h, r, x) > 0, ν = ν(h, r, x) > 0
such that μh ≤ x + r ≤ νh}. It is easy to see that Ph = Ph,θ .

Definition 2.10 ([20]) Suppose T : Ph,r → E is a given operator that satisfies: for any x ∈
Ph,r , λ ∈ (0, 1), there exists ψ(λ) > λ such that

T
(
λx + (λ – 1)r

) ≥ ψ(λ)Tx +
(
ψ(λ) – 1

)
r.

Then, T is called a ψ – (h, r)-concave operator.

Lemma 2.11 ([20]) Assume that T is an increasing ψ – (h, r)-concave operator and P is
normal, Th ∈ Ph,r . Then, T has a unique fixed point x∗ in Ph,r . Further, for any v0 ∈ Ph,r , the
sequence vn = Avn–1, n = 1, 2, . . . , then ‖vn – x∗‖ → 0 as n → ∞.

Lemma 2.12 ([21]) Assume that T is an increasing ψ – (h, θ )-concave operator and P is
normal, Th ∈ Ph. Then, T has a unique fixed point x∗ in Ph. Further, for any v0 ∈ Ph, the
sequence vn = Avn–1, n = 1, 2, . . . , then ‖vn – x∗‖ → 0 as n → ∞.

Now, we propose some assumptions that will be used in this paper, as shown below:
(H1) f ∈ C([0, 1] × [–r̂, +∞), (–∞, +∞)) and f (t, u) ≤ f (t, v) for –r̂ ≤ u ≤ v < +∞;
(H2) ∀λ ∈ (0, 1) and y ∈ [0, r̂], there exists ψ(λ) > λ such that

f
(
t,λx + (λ – 1)y

) ≥ ψ(λ)f (t, x), ∀t ∈ [0, 1], x ∈ (–∞, +∞);

(H3) f (t, 0) ≥ 0 with f (t, 0) ≡ 0 for every t ∈ [0, 1];
(H4) f ∈ C([0, 1] × [0, +∞), [0, +∞)) and f (t, 0) ≡ 0 for every t ∈ [0, 1];
(H5) ∀t ∈ [0, 1], f (t, x) is increasing with respect to x;
(H6) ∀λ ∈ (0, 1), there exists ψ(λ) > λ such that

f (t,λx) ≥ ψ(λ)f (t, x), ∀t ∈ [0, 1], x ∈ [0, +∞).

3 Result of existence and uniqueness
Let X = C[0, 1] be the Banach space endowed with the norm ‖�‖ = sup{|� (t)| : t ∈ [0, 1]}
and define the standard normal cone P by P = {� ∈ X | � (t) ≥ 0, t ∈ [0, 1]}.
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If ξ > 0, ∀t ∈ [0, 1], we note that

r(t) =
ξ (1 – q)2


q(γ – 1)

[
1 – aηγ –δ

(1 – aηγ –δ–1)(1 – qγ –1)(1 – qγ –δ)
tγ –1

–
1

(1 – qγ )(1 – qγ –1)
tγ

] (2)

and

r̂(t) = max
{

r(t) : t ∈ [0, 1]
}

, h(t) = Htγ –1,

where

H ≥ ξ

(1 – aηγ –δ–1)(1 – qγ –1)(1 – qγ –δ)
q(γ – 1)
. (3)

Lemma 3.1 Let y ∈ C[0, 1], aηγ –δ–1 = 1 and η ∈ (0, 1). Then, the BVP

⎧
⎨

⎩

(Dγ
q � )(t) + y(t) = 0, 0 < t < 1,

� (0) = (Dq� )(0) = · · · = (Dn–2
q � )(0) = 0, (Dδ

q� )(1) = a(Dδ
q� )(η),

(4)

has a unique solution

� (t) =
∫ 1

0
G(t, qs)y(s) dqs +

atγ –1

(1 – aηγ –δ–1)[γ – 1]q

∫ 1

0
H(η, qs)y(s) dqs,

where

G(t, s) =
1


q(γ )

⎧
⎨

⎩

(1 – s)(γ –δ–1)tγ –1 – (t – s)(γ –1), 0 ≤ s ≤ t ≤ 1,

(1 – s)(γ –δ–1)tγ –1, 0 ≤ t ≤ s ≤ 1,

H(t, s) =

q(γ – δ)

q(γ – 1) tDδ

qG(t, s)

=
[γ – 1]q


q(γ )

⎧
⎨

⎩

(1 – s)(γ –δ–1)tγ –δ–1 – (t – s)(γ –δ–1), 0 ≤ s ≤ t ≤ 1,

(1 – s)(γ –δ–1)tγ –δ–1, 0 ≤ t ≤ s ≤ 1.

Proof Let � (t) be a solution of (4). In view of Lemma 2.5 and Lemma 2.7, we have

� (t) = c1tγ –1 + c2tγ –2 + · · · + cntγ –n –
1


q(γ )

∫ t

0
(t – qs)(γ –1)y(s) dqs,

where c1, c2, . . . , cn are some constants to be determined. Since (Di
q� )(0) = 0 (0 ≤ i ≤ n–2),

it follows that c2 = c3 = · · · = cn = 0. Thus,

� (t) = c1tγ –1 –
1


q(γ )

∫ t

0
(t – qs)(γ –1)y(s) dqs.
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By Remark 2.6, we have

(
Dδ

q�
)
(t) = c1


q(γ )

q(γ – δ)

tγ –δ–1 –
1


q(γ – δ)

∫ t

0
(t – qs)(γ –δ–1)y(s) dqs.

Using the boundary condition (Dδ
q� )(1) = a(Dδ

q� )(η), we obtain

c1 =
1

(1 – aηγ –δ–1)
q(γ )

[∫ 1

0
(1 – qs)(γ –δ–1)y(s) dqs – a

∫ η

0
(η – qs)(γ –δ–1)y(s) dqs

]

.

Hence,

� (t) =
tγ –1


q(γ )(1 – aηγ –δ–1)

[∫ 1

0
(1 – qs)(γ –δ–1)y(s) dqs

– a
∫ η

0
(η – qs)(γ –δ–1)y(s) dqs

]

–
1


q(γ )

∫ t

0
(t – qs)(γ –1)y(s) dqs.

Namely,

� (t) =
tγ –1(1 – aηγ –δ–1 + aηγ –δ–1)


q(γ )(1 – aηγ –δ–1)

[∫ 1

0
(1 – qs)(γ –δ–1)y(s) dqs

– a
∫ η

0
(η – qs)(γ –δ–1)y(s) dqs

]

–
1


q(γ )

∫ t

0
(t – qs)(γ –1)y(s) dqs

=
∫ 1

0
G(t, qs)y(s) dqs +

atγ –1

(1 – aηγ –δ–1)[γ – 1]q

∫ 1

0
H(η, qs)y(s) dqs.

The proof is completed. �

Remark 3.2 When δ = 1, the function G(t, s) can be reduced to the following form:

G(t, s) =
1


q(γ )

⎧
⎨

⎩

(1 – s)(γ –2)tγ –1 – (t – s)(γ –1), 0 ≤ s ≤ t ≤ 1,

(1 – s)(γ –2)tγ –1, 0 ≤ t ≤ s ≤ 1,

which appeared in [11].

Remark 3.3 When δ = 1, then H(t, s) = tDqG(t, s), which is the relationship between G(t, s)
and H(t, s) in [11].

Lemma 3.4 The function G(t, qs) is continuous on [0, 1] × [0, 1] and satisfies
(1) G(t, qs) ≥ 0, for any t, s ∈ [0, 1];
(2) G(t, qs) is strictly increasing in t;
(3) G(t, qs) ≤ 1


q(γ ) (1 – qs)(γ –δ–1)tγ –1 ≤ 1

q(γ ) , for any t, s ∈ [0, 1].

Proof Let g1(t, qs) = (1 – qs)(γ –δ–1)tγ –1 – (t – qs)(γ –1), g2(t, qs) = (1 – qs)(γ –δ–1)tγ –1.
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(1) For t, s ∈ [0, 1], obviously, g2(t, qs) ≥ 0. We just need to prove g1(t, qs) ≥ 0, for t = 0,

g1(t, qs) = (1 – qs)(γ –δ–1)tγ –1 – (t – qs)(γ –1)

= tγ –1
[

(1 – qs)(γ –δ–1) –
(

1 –
qs
t

)(γ –1)]

≥ tγ –1[(1 – qs)(γ –δ–1) – (1 – qs)(γ –1)] ≥ 0.

Consequently, G(t, qs) ≥ 0.
(2) For s ∈ [0, 1], t = 0,

tDqg1(t, qs) = [γ – 1]q
[
(1 – qs)(γ –δ–1)tγ –2 – (t – qs)(γ –2)]

= [γ – 1]qtγ –2
[

(1 – qs)(γ –δ–1) –
(

1 –
qs
t

)(γ –2)]

≥ [γ – 1]qtγ –2[(1 – qs)(γ –δ–1) – (1 – qs)(γ –2)] ≥ 0,

tDqg2(t, qs) = [γ – 1]qtγ –2(1 – qs)(γ –δ–1) ≥ 0.

Therefore, G(t, qs) is an increasing function in the first variable.
(3) It is easy to see that this conclusion is correct. The proof is completed. �

Remark 3.5 According to Remark 3.3, H(t, qs) has common properties with G(t, qs), that
is H(t, qs) ≥ 0 and H(t, qs) ≤ [γ –1]q


q(γ ) (1 – qs)(γ –δ–1)tγ –δ–1 ≤ [γ –1]q

q(γ ) .

Theorem 3.6 Suppose that (H1)–(H3) hold, then the BVP (1) has a unique solution � ∗ ∈
Ph,r . Moreover, define a sequence to be

ϕn(t) =
∫ 1

0
G(t, qs)f

(
s,ϕn–1(s)

)
dqs +

atγ –1

(1 – aηγ –δ–1)[γ – 1]q

×
∫ 1

0
H(η, qs)f

(
s,ϕn–1(s)

)
dqs

–
ξ (1 – q)2(1 – aηγ –δ)

(1 – aηγ –δ–1)(1 – qγ –1)(1 – qγ –δ)
q(γ – 1)
tγ –1

+
ξ (1 – q)2

(1 – qγ )(1 – qγ –1)
q(γ – 1)
tγ , n = 1, 2, . . . ,

for any given ϕ0 ∈ Ph,r , we have ϕn(t) → � ∗(t) as n → ∞.

Proof For t ∈ [0, 1], we obtain

r(t) =
ξ (1 – q)2


q(γ – 1)

[
1 – aηγ –δ

(1 – aηγ –δ–1)(1 – qγ –1)(1 – qγ –δ)
tγ –1 –

1
(1 – qγ –1)(1 – qγ )

tγ

]

≥ ξ (1 – q)2


q(γ – 1)
tγ –1 (1 – aηγ –δ)(1 – qγ ) – (1 – aηγ –δ–1)(1 – qγ –δ)

(1 – aηγ –δ–1)(1 – qγ –1)(1 – qγ –δ)(1 – qγ )

≥ aξ (1 – q)2(ηγ –δ–1 – ηγ –δ)

q(γ – 1)(1 – aηγ –δ–1)(1 – qγ –1)(1 – qγ )

tγ –1 ≥ 0
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and

r(t) =
ξ (1 – q)2(1 – aηγ –δ)

(1 – aηγ –δ–1)(1 – qγ –1)(1 – qγ –δ)
q(γ – 1)
tγ –1

–
ξ (1 – q)2

(1 – qγ –1)(1 – qγ )
q(γ – 1)
tγ

≤ ξ

(1 – aηγ –δ–1)(1 – qγ –1)(1 – qγ –δ)
q(γ – 1)
tγ –1 ≤Htγ –1 = h(t), t ∈ [0, 1].

Thus, 0 ≤ r(t) ≤ h(t), we have r ∈ P. In addition, Ph,r = {� ∈ C[0, 1] | � + r ∈ Ph}.
According to Lemmas 2.8 and 3.1, if � is a solution of the BVP (1), then

� (t) =
∫ 1

0
G(t, qs)

[
f
(
s,� (s)

)
– ξ

]
dqs

+
atγ –1

(1 – aηγ –δ–1)[γ – 1]q

∫ 1

0
H(η, qs)

[
f
(
s,� (s)

)
– ξ

]
dqs

=
∫ 1

0
G(t, qs)f

(
s,� (s)

)
dqs +

atγ –1

(1 – aηγ –δ–1)[γ – 1]q

∫ 1

0
H(η, qs)f

(
s,� (s)

)
dqs

–
ξ (1 – q)2


q(γ – 1)

[
tγ –1(1 – aηγ –δ)

(1 – qγ –1)(1 – qγ –δ)(1 – aηγ –δ–1)
–

tγ

(1 – qγ )(1 – qγ –1)

]

=
∫ 1

0
G(t, qs)f

(
s,� (s)

)
dqs

+
atγ –1

(1 – aηγ –δ–1)[γ – 1]q

∫ 1

0
H(η, qs)f

(
s,� (s)

)
dqs – r(t).

Therefore, for any � ∈ Ph,r and t ∈ [0, 1], we define the operator

T� (t) =
∫ 1

0
G(t, qs)f

(
s,� (s)

)
dqs

+
atγ –1

(1 – aηγ –δ–1)[γ – 1]q

∫ 1

0
H(η, qs)f

(
s,� (s)

)
dqs – r(t).

It is easy to see � (t) is the solution of the BVP (1) if and only if � is the fixed point of T .
Initially, we show that T is a ψ – (h, r)-concave operator. For any λ ∈ (0, 1), � ∈ Ph,r ,

from the condition (H2), we can obtain that

T
(
λ� + (λ – 1)r

)
(t)

≥ ψ(λ)
∫ 1

0
G(t, qs)f

(
s,� (s)

)
dqs

+
atγ –1ψ(λ)

(1 – aηγ –δ–1)[γ – 1]q

∫ 1

0
H(η, qs)f

(
s,� (s)

)
dqs – r(t)

= ψ(λ)T� (t) +
[
ψ(λ) – 1

]
r(t).

Thus, we have T(λ� + (λ – 1)r) ≥ ψ(λ)T� + [ψ(λ) – 1]r, λ ∈ (0, 1), � ∈ Ph,r . It follows
that T is a ψ – (h, r)-concave operator.
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On the other hand, we prove that T : Ph,r → X is increasing. Due to � ∈ Ph,r , we have
� + r ∈ Ph, and there exists ι > 0 such that � (t) + r(t) ≥ ιh(t), thus we obtain

� (t) ≥ ιh(t) – r(t) ≥ –r(t) ≥ –r̂, t ∈ [0, 1].

By condition (H1), we know T : Ph,r → X is increasing.
Now, we prove that Th ∈ Ph,r , which is what we need to prove Th + r ∈ Ph. By Lemma 3.4

and (H1), we obtain

Th(t) + r(t)

=
∫ 1

0
G(t, qs)f

(
s, h(s)

)
dqs +

atγ –1

(1 – aηγ –δ–1)[γ – 1]q

∫ 1

0
H(η, qs)f

(
s, h(s)

)
dqs

=
∫ 1

0
G(t, qs)f

(
s,Hsγ –1)dqs +

atγ –1

(1 – aηγ –δ–1)[γ – 1]q

∫ 1

0
H(η, qs)f

(
s,Hsγ –1)dqs

≤ 1

q(γ )

∫ 1

0
(1 – qs)(γ –δ–1)tγ –1f (s,H) dqs

+
atγ –1

(1 – aηγ –δ–1)
q(γ )

∫ 1

0
(1 – qs)(γ –δ–1)f (s,H) dqs

= h(t)
[

1
H
q(γ )

+
a

H(1 – aηγ –δ–1)
q(γ )

]∫ 1

0
(1 – qs)(γ –δ–1)f (s,H) dqs

and

Th(t) + r(t)

≥ 1

q(γ )

∫ 1

0

[
(1 – qs)(γ –δ–1)tγ –1 – (t – qs)(γ –1)]f (s, 0) dqs

≥ 1

q(γ )

∫ 1

0

[
(1 – qs)(γ –δ–1) – (1 – qs)(γ –1)]tγ –1f (s, 0) dqs

=
h(t)

H
q(γ )

∫ 1

0

[
(1 – qs)(γ –δ–1) – (1 – qs)(γ –1)]f (s, 0) dqs.

Let

μ =
[

1
H
q(γ )

+
a

H(1 – aηγ –δ–1)
q(γ )

]∫ 1

0
(1 – qs)(γ –δ–1)f (s,H) dqs,

ν =
1

H
q(γ )

∫ 1

0

[
(1 – qs)(γ –δ–1) – (1 – qs)(γ –1)]f (s, 0) dqs.

Under the conditions of 
q(γ ) > 0, H > 0, and assumptions (H1), (H3), we can obtain

∫ 1

0
(1 – qs)(γ –δ–1)f (s,H) dqs ≥

∫ 1

0

[
(1 – qs)(γ –δ–1) – (1 – qs)(γ –1)]f (s, 0) dqs > 0,

that is μ ≥ ν > 0 holds. Therefore, we have Th + r ∈ Ph.
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Eventually, by Lemma 2.11, we obtain that the operator T has a unique fixed point � ∗ ∈
Ph,r , and

� ∗(t) =
∫ 1

0
G(t, qs)f

(
s,� ∗(s)

)
dqs

+
atγ –1

(1 – aηγ –δ–1)[γ – 1]q

∫ 1

0
H(η, qs)f

(
s,� ∗(s)

)
dqs – r(t), t ∈ [0, 1].

Consequently, � ∗(t) is the unique solution of the BVP (1) in Ph,r . For any ϕ0 ∈ Ph,r , the
sequence ϕn = Tϕn–1, n = 1, 2, . . . , satisfies ϕn → � ∗ as n → ∞. That is,

ϕn(t) =
∫ 1

0
G(t, qs)f

(
s,ϕn–1(s)

)
dqs

+
atγ –1

(1 – aηγ –δ–1)[γ – 1]q

∫ 1

0
H(η, qs)f

(
s,ϕn–1(s)

)
dqs

–
ξ (1 – q)2(1 – aηγ –δ)

(1 – aηγ –δ–1)(1 – qγ –1)(1 – qγ –δ)
q(γ – 1)
tγ –1

+
ξ (1 – q)2

(1 – qγ )(1 – qγ –1)
q(γ – 1)
tγ ,

where n = 1, 2, . . . , and ϕn(t) → � ∗(t) as n → ∞. The proof is completed. �

Remark 3.7 Suppose the conditions of Theorem 3.6 hold and

∫ 1

0
G(t, qs)f (s, 0) dqs +

atγ –1

(1 – aηγ –δ–1)[γ – 1]q

∫ 1

0
H(η, qs)f (s, 0) dqs

≡ ξ

∫ 1

0
G(t, qs) dqs +

aξ tγ –1

(1 – aηγ –δ–1)[γ – 1]q

∫ 1

0
H(η, qs) dqs, ∀t ∈ [0, 1].

Then, the BVP (1) has a unique nontrivial solution in Ph,r . Meanwhile, we can construct
an iterative scheme approximating the unique solution.

Corollary 3.8 Suppose that (H1)–(H3) hold, then the BVP

⎧
⎨

⎩

(Dγ
q � )(t) + f (t,� (t)) = ξ , 0 < t < 1,

� (0) = (Dq� )(0) = · · · = (Dn–2
q � )(0) = 0, (Dδ

q� )(1) = 0,

has a unique solution � ∗ ∈ Ph,r , where h, r are given as in (2) and (3). Further, for any
ϕ0 ∈ Ph,r , making an iterative sequence

ϕn(t) =
∫ 1

0
G(t, qs)f

(
s,ϕn–1(s)

)
dqs –

ξ (1 – q)2

(1 – qγ –1)(1 – qγ –δ)
q(γ – 1)
tγ –1

+
ξ (1 – q)2

(1 – qγ )(1 – qγ –1)
q(γ – 1)
tγ , n = 1, 2, . . . ,

we have ϕn(t) → � ∗(t) as n → ∞.
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If ξ = 0, we can obtain the uniqueness of positive solutions for the BVP (1) by using
Lemma 2.12. The proof is similar to Theorem 3.6.

Theorem 3.9 Suppose that (H4)–(H6) are satisfied, and ξ = 0. Then, the BVP (1) has a
unique positive solution � ∗ in Ph, where h(t) = tγ –1, t ∈ [0, 1]. Moreover, for any initial
value ϕ0 ∈ Ph, from the sequence

ϕn(t) =
∫ 1

0
G(t, qs)f

(
s,ϕn–1(s)

)
dqs

+
atγ –1

(1 – aηγ –δ–1)[γ – 1]q

∫ 1

0
H(η, qs)f

(
s,ϕn–1(s)

)
dqs, n = 1, 2, . . . ,

we obtain ϕn(t) → � ∗(t) as n → ∞.

4 Application example
To illustrate the main result, we present in this section one significant example.

Example 4.1 Consider the following BVP:

⎧
⎨

⎩

(D
9
2
q � )(t) + f (t,� (t)) = 1, 0 < t < 1,

� (0) = (Dq� )(0) = (D2
q� )(0) = (D3

q� )(0) = 0, (D
5
2
q � )(1) = 1

2 (D
5
2
q � )( 1

2 ),
(5)

where

f (t,� ) =
{(

� +
448 + 28

√
2

1143
q( 7
2 )

)

t
7
2

–
(

4,700,016 + 438,912
√

2
7,268,464 + 454,279

√
2
� +

16,448 + 1536
√

2
64,897
q( 7

2 )

)

t
9
2

} 1
3

,

and q = 1
2 , γ = 9

2 , δ = 5
2 , a = η = 1

2 , ξ = 1. It can be easily seen that

r(t) =
448 + 28

√
2

1143
q( 7
2 )

t
7
2 –

16,448 + 1536
√

2
64,897
q( 7

2 )
t

9
2 , h(t) = Ht

7
2 ,

where H ≥ 448+28
√

2
1143
q( 7

2 )
, for any t ∈ (0, 1).

Then, we obtain

r(t) ≥ 10,273,792 + 61,468
√

2
74,177,271
q( 7

2 )
t

7
2 ≥ 0

and

r(t) ≤ 448 + 28
√

2
1143
q( 7

2 )
t

7
2 ≤Ht

7
2 = h(t).
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Moreover, r̂(t) = 448+28
√

2
1143
q( 7

2 )
for t ∈ [0, 1]. We see that f : [0, 1] × [– 448+28

√
2

1143
q( 7
2 )

, +∞) →
(–∞, +∞) is continuous and increasing with respect to the second variable, and

f (t, 0) =
(

448 + 28
√

2
1143
q( 7

2 )
t

7
2 –

16,448 + 1536
√

2
64,897
q( 7

2 )
t

9
2

) 1
3

=
(
r(t)

) 1
3 ≥ 0,

with f (t, 0) ≡ 0, t ∈ [0, 1]. Thus, the conditions (H1) and (H3) are satisfied.
It is apparent that

f
(
t,� (t)

)
=

[
r(t)

r̂
� (t) + r(t)

] 1
3

and

r(t)
r̂

= t
7
2 –

4,700,016 + 438,912
√

2
7,268,464 + 454,279

√
2

t
9
2 , t ∈ [0, 1].

Using Remark 4 in [20], we have

f
(
t,λx + (λ – 1)y

) ≥ ψ(λ)f (t, x), λ ∈ (0, 1), x ∈ (–∞, +∞), y ∈ [0, r̂],

where ψ(λ) = λ
1
3 > λ, λ ∈ (0, 1), it follows that the condition (H2) is satisfied. According to

Theorem 3.6, the BVP (5) has a unique solution � ∗ ∈ Ph,r . For ϕ0 ∈ Ph,r , if

ϕn(t) =
∫ 1

0
G(t, qs)

{(

ϕn–1(s) +
448 + 28

√
2

1143
q( 7
2 )

)

t
7
2

–
(

4,700,016 + 438,912
√

2
7,268,464 + 454,279

√
2
ϕn–1(s) +

16,448 + 1536
√

2
64,897
q( 7

2 )

)

t
9
2

} 1
3

dqs

+
128 + 8

√
2

381
t

7
2

∫ 1

0
H

(
1
2

, qs
)

×
{(

ϕn–1(s) +
448 + 28

√
2

1143
q( 7
2 )

)

t
7
2

–
(

4,700,016 + 438,912
√

2
7,268,464 + 454,279

√
2
ϕn–1(s) +

16,448 + 1536
√

2
64,897
q( 7

2 )

)

t
9
2

} 1
3

dqs

–
448 + 28

√
2

1143
q( 7
2 )

t
7
2 +

16,448 + 1536
√

2
64,897
q( 7

2 )
t

9
2 , n = 1, 2, . . . ,

we have ϕn(t) → � ∗(t) as n → ∞, t ∈ [0, 1].

5 Conclusion
This research establishes the existence and uniqueness results of solutions for the BVPs of
a high-order nonlinear fractional q-difference equation, according to a novel fixed-point
theorem of increasingly ψ – (h, r)-concave operators defined in ordered sets, we approach
the unique solution by constructing an iterative sequence, which enriches the methods to
solve the boundary value problems of fractional q-difference equations, and provides the
theoretical guarantee for the application of fractional q-difference equations in fields such
as aerodynamics, the electrodynamics of complex medium, capacitor theory, electrical
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circuits, control theory, and so on. This paper does not need to limit the existence of upper
and lower solutions, which is the advantage of this paper compared with other articles. In
the future, we are committed to finding new ways to continue our research.
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