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1 Introduction and main result
Let 0∈ � ⊂ RN (N ≥ 3) be a bounded domain with smooth boundary�� . In this paper,
we consider the followingp(x)-Kirchho� problem:

�
�

�
…(a + b

�
�

|∇u|p(x)

p(x) dx)� p(x)u = |u|2p+…2u + � |u|p……2u in � ,

u = 0 on �� ,
(1)

wherea ≥ 0, b > 0, � p(x)u = div(|∇u|p(x)…2∇u) is calledp(x)-Laplacian, and� > 0 is a pa-
rameter,p(x) satis“es the following assumptions:

(P1) p ∈ C(� ), p…= min{p(x)|x ∈ � }, p+ = max{p(x)|x ∈ � };
(P2) 1 <p…< N andp…< 2p+ < p∗

…, wherep∗
…= Np…

N…p…
;

(P3) p(0) = p+, p(x) ≤ p+ …c|x|� for all x ∈ � , wherec > 0, � = 1 …N(2p+…p…)
2p+p…

> 0.
The study on Kirchho�-type equations and variational problems withp(x)-growth con-

dition has attracted more and more interest in the recent years, see [7…9, 17, 29] and the
references therein. It was proposed by Kirchho� in 1883 as a generalization of the well-
known D•Alembert wave equation
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� t2

…
�

P0
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0
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�
�
�
� u
� x

�
�
�
�

2

dx
	

� 2u
� x2

= 0, (2)

where � , P0, h, L, and E are constants, by considering the changes in the length of the
string during the vibrations, see [16]. This type of operators arises in a natural way in many
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di�erent applications such as image processing, quantum mechanics, elastic mechanics,
electrorheological ”uids, see [5, 23] and the references therein. SetM(t) = a + bt, problem
(1) is called nondegenerate ifa > 0 andb ≥ 0, while it is named degenerate ifa = 0 and
b > 0. In the large literature of degenerate Kirchho� problems, the transverse oscillations
of a stretched string with nonlocal ”exural rigidity depends continuously on the Sobolev
de”ection norm of u via M(‖u‖2). From a physical point of view, the fact thatM(0) = 0
means that the base tension of the string is zero, a very realistic model. More speci“cally,M
measures the change of the tension on the string caused by the change of its length during
the vibration. The presence of the nonlinear coe�cientM is crucial to be considered when
the changes in tension during the motion cannot be neglected. For more information, the
reader can refer to [1, 28].

In 1994, Ambrosetti, Brezis, and Cerami in [2] considered the following problem:

�


�



�

…� u = � uq + ur, in � ,

u > 0, in � ,

u = 0, in �� ,

(3)

where � is a bounded domain inRN (N ≥ 1) with smooth boundary�� , 0 <q < 1 < r <
2∗ … 1, and they established multiple results.

At the same time, many authors researchedp(x)-Laplacian equations containing
concave-convex nonlinearities. In particular, Mih�ailescu in [19] studied the followingp(x)-
Laplacian equation involving concave-convex nonlinearities:

�
�

�
…� p(x)u = � |u|q(x)…2u + |u|r(x)…2u, in � ,

u = 0, on�� ,
(4)

where 1 <q(x) < p…< p+ < r(x) < p∗
…, � is a positive constant. Using Ekeland•s variational

principle and the mountain pass lemma, he proved that problem (4) has two positive solu-
tions for � > 0 small enough. Subsequently, the more general case was considered in [20].
In 2009, Dai and Hao in [9] studied the followingp(x)-Kirchho�-type equation:

�
�

�
…(a + b

�
�

1
p(x) |∇u|p(x) dx)� p(x)u = f (x,u), in � ,

u = 0, on�� ,
(5)

where� is a smooth bounded domain inRN , p(x) ∈ C(� ), a,b > 0, andf (x,u) : � × R →
R satisfy certain condition. They established the existence and multiplicity of solutions
by the variational method. Especially, the standard arguments given in [9] show that the
veri“cation of the Palais…Smale condition at the mountain pass level relies on the well-
known Ambrosetti…Rabinowitz condition((AR) condition, for short):

(AR) There existT > 0 and� > 2p+ such that

0 < � F(x,t) = �
� t

0
f (x, 	 )d	 ≤ tf (x,t), |t| ≥ T , a.e.x ∈ � .

Actually, the (AR) condition is quite natural and important not only to ensure that the
Euler…Lagrange functional has a mountain pass geometry, but also to guarantee the
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boundedness of Palais…Smale sequences. However, this condition is somewhat restric-

tive, not being satis“ed by many nonlinearities. In fact, from the (AR) condition it follows

that for someC1,C2 > 0

F(x,t) ≥ C1|t|� …C2, ∀(x,t) ∈ � × R.

Thus, for example, the functionf (x,t) = |t|p+…2t ln(1 + |t|) does not satisfy the (AR) con-

dition. In fact, many papers still required nonlinearity to satisfy the superlinear growth

condition

f (x,t)t > 2p(x)F(x,t) for all x ∈ � and |t| is large enough.

However, it is easy to see that condition (P3) in problem (1) violates this condition. It allows

f (x,t)t ≤ 2p(x)F(x,t) for somex ∈ � and anyt > 0,

wheref (x,t) = t2p+…1+ � tp……1. As described in [13], we need to overcome some di�culties

to show the existence of nonnegative nontrivial solutions. Similar problems with concave-

convex nonlinearities have been discussed by many authors (see [12, 15, 22, 25…27, 30]).

The main result of this paper reads as follows.

Theorem 1.1 Suppose that a ≥ 0,b > 0,conditions (P1)…(P3) hold.Then there exists � ∗ > 0

such that problem (1) has at least two nonnegative nontrivial solutions for any � ∈ (0,� ∗).

Remark 1.2 Whena = 0, we use the perturbation method and Moser iteration mainly to

deal with degenerate cases. Most of the literature considers only one of the degenerate

and nondegenerate scenarios. However, we discuss the above two cases at same time in

Theorem1.1.

To discuss problem (1), we need the functional spaceLp(x)(� ) andW 1,p(x)(� ). The vari-

able exponent Lebesgue spaceLp(x)(� ) is de“ned by

Lp(x)(� ) =
�

u : u : � → R is measurable,
�

�
|u|p(x) dx < ∞

�

with the norm

|u|p(x) = inf

�
� > 0 :

�

�

�
�
�
�
u
�

�
�
�
�

p(x)

dx ≤ 1
�

.

The variable exponent Sobolev spaceW 1,p(x)(� ) is de“ned by

W 1,p(x)(� ) =


u ∈ Lp(x)(� ) : |∇u| ∈ Lp(x)(� )

�

with the norm

‖u‖1,p(x) = |u|p(x) + |∇u|p(x).
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De“ne W 1,p(x)
0 (� ) as the closure ofC∞

0 (� ) in W 1,p(x)(� ). The spacesLp(x)(� ), W 1,p(x)(� ),

and W 1,p(x)
0 (� ) are separable and re”exive Banach spaces if 1 <p…≤ p+ < ∞ (see [11]).

Moreover, we know that‖u‖ = |∇u|p(x) are equivalent norms onW 1,p(x)
0 (� ).

Lemma 1.3 (see [11]) If q ∈ C(� ) satisfies 1 ≤ q(x) < p∗(x) (p∗(x) = Np(x)
N…p(x) , if N > p(x);

p∗(x) = +∞, if N ≤ p(x)) for x ∈ � , then the embedding from W 1,p(x)(� ) to Lq(x)(� ) is com-
pact and continuous.

Lemma 1.4 (see [11]) Set � (u) =
�

� |u|p(x) dx for u ∈ Lp(x)(� ). If u ∈ Lp(x)(� ) and {uk}k∈N ⊂
Lp(x)(� ), then we have

(i) |u|p(x) < 1 (=1;>1) ⇔ � (u) < 1 (=1;>1);

(ii) |u|p(x) > 1⇒ |u|p…
p(x) ≤ � (u) ≤ |u|p+

p(x);

(iii) |u|p(x) < 1⇒ |u|p+
p(x) ≤ � (u) ≤ |u|p…

p(x);

(iv) limk→∞ |uk …u|p(x) = 0 ⇔ limk→∞ � (uk …u) = 0⇔ uk → u in measure in � and
limk→∞ � (uk) = � (u).

Similar to Lemma1.4, it is easy to obtain the following lemma.

Lemma 1.5 Set L(u) =
�

� |∇u|p(x) dx for u ∈ W 1,p(x)
0 (� ). If u ∈ W 1,p(x)

0 (� ) and {uk}k∈N ⊂
W 1,p(x)

0 (� ), we have
(i) ‖u‖ < 1 (=1;>1) ⇔ L(u) < 1 (=1;>1);

(ii) ‖u‖ > 1⇒ ‖u‖p…≤ L(u) ≤ ‖u‖p+ ;

(iii) ‖u‖ < 1⇒ ‖u‖p+ ≤ L(u) ≤ ‖u‖p…;

(iv) ‖uk‖ → 0 ⇔ L(uk) → 0; ‖uk‖ → ∞ ⇔ L(uk) → ∞.

Lemma 1.6 (see [9]) Set 
 (u) =
�

�
1

p(x) |∇u|p(x) dx for u ∈ W 1,p(x)
0 (� ). The functional 
 :

X → R is convex. The mapping 
 ′ : X → X∗ is a strictly monotone, bounded homeomor-
phism and is of (S+) type, namely

un � u and limn→∞
 ′(un)(un …u) ≤ 0 implies un → u,

where X = W 1,p(x)
0 (� ).

Lemma 1.7 (see [24]) In the Euclidean space RN , an optimal Gagliardo–Nirenberg in-
equality has the form

� �

RN
|u|r dx

	 p
r� ≤ A(p,q,r)

� �

RN
|∇u|p dx

	� �

RN
|u|q dx

	 p(1…� )
� q

with 1 < p < N , 1 ≤ q < r ≤ p∗, and � = � (p,q,r) = Np(r…q)
r(q(p…N)+Np) ∈ (0, 1], A(p,q,r) the best

constant.

Lemma 1.8 (see [3]) Let X be a real Banach space, let I : X → R be a functional of class
C1(X,R) that satisfies the Palais–Smale condition (i.e. any sequence {un} ⊂ X such that
{I(un)} is bounded and I ′(un) → 0has a convergent subsequence), I(0) = 0,and the following
conditions hold:

(i) There exist positive constants � and � such that I(u) ≥ � for any u ∈ X with ‖u‖ = � ;
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(ii) There exists a function e ∈ X such that ‖e‖ > � and I(e) ≤ 0.

Then the functional I has a critical value c ≥ � , that is, there exists u ∈ X such that
I(u) = c and I ′(u) = 0 in X∗.

Lemma 1.9 (see [10]) Let X be a complete metric space with metric d, and let I : X �→
(…∞, +∞] be a low semicontinuous function bounded from below and not identical to +∞.

Let � be given and U ∈ X be such that

I(U) ≤ inf
X

I + � .

Then there exists V ∈ X such that

I(U) ≤ I(V ), d(U,V ) ≤ 1,

and for each W ∈ X, one has

I(U) ≤ I(W ) + � d(V ,W ).

To end this section, we describe the basic ideas in the proof of Theorem1.1. If a = 0 and

p(0) = p+, it is not easy to verify the boundedness of Palais…Smale sequence for the func-

tional corresponding to problem (1). Inspired by [6], we “rst modify the nonlinear term

to obtain a perturbation equation of problem (1). Then, using Ekeland•s variational prin-

ciple and the mountain pass lemma, we prove that the perturbation equation has at least

two nonnegative nontrivial solutions for� > 0 su�ciently small. Finally, we use the Moser

iteration to prove that the solutions to the perturbation equation are uniformly bounded.

Therefore, we show that two nonnegative nontrivial solutions of the perturbation equation

are also the solutions of the original problem (1).

Throughout this paper, letB
 = {x : |x| < 
 } ⊂ � and � 
 = � \ B
 . We use‖ · ‖ to denote

the usual norms ofW 1,p(x)
0 (� ), the lettersC andCµ stand for positive constants which may

take di�erent values at di�erent places.

2 Solutions of the perturbation equation
Sincep(x) is a continuous function, from (P2) and (P3), we see that there existsr > 0 such

that

1 <p……r < 2p+ + r < p∗
… (6)

and

r <
2[Np…… 2p+(N …p…)]

N
. (7)

Let � (t) ∈ C∞
0 (R, [0, 1]) be a smooth even function with the following properties:� (t) = 1

for |t| ≤ 1,� (t) = 0 for |t| ≥ 2 and� (t) is monotonically decreasing on the interval (0,+∞).

De“ne

bµ (t) = � (µ t), mµ (t) =
� t

0
bµ (	 )d	
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for µ ∈ (0, 1]. We will deal with the perturbation equation

�
�

�

…(a + b
�

�
|∇u|p(x)

p(x) dx)� p(x)u = ( u
mµ (u) )

ru2p+…1+ � up……1 in � ,

u = 0 in �� .
(8)

De“ne

gµ (t) =
�

t
mµ (t)

	 r

t2p+…1
+ , Gµ (t) =

� t

0
gµ (	 )d	 .

Then the formal energy functionalJµ associated with equation (8) is de“ned by

Jµ (u) = a
�

�

|∇u|p(x)

p(x)
dx +

b
2

� �

�

|∇u|p(x)

p(x)
dx

	 2

…
�

�
Gµ (u)dx …

�
p…

�

�
up…

+ dx.

Lemma 2.1 The function Gµ (t) defined above satisfies the following inequality:

Gµ (t) ≤ 1
2p+

tgµ (t), Gµ (t) ≤ 1
2p+ + r

tgµ (t) + Cµ ,

where Cµ > 0 is a positive constant.

Proof By the de“nition of function gµ , the conclusion is clear fort ≤ 0. Sincebµ (t) is
monotonically decreasing on the interval (0,+∞), we have

d
dt

�
t

mµ (t)

	
=

mµ (t) …tbµ (t)
m2

µ (t)
=

t(bµ (� ) …bµ (t))
m2

µ (t)
≥ 0

for t > 0, where� ∈ (0,t). Therefore, t
mµ (t) is monotonically increasing on the interval

(0,+∞). Hence, gµ (t)
t2p+…1 = ( t

mµ (t) )
r is also monotonically increasing on the interval (0,+∞).

It follows that

Gµ (t) =
� t

0
gµ (	 )d	 ≤

� t

0

gµ (t)
t2p+…1

	 2p+…1d	 =
1

2p+
tgµ (t) for t > 0. (9)

By the de“nition of function mµ , we havemµ (t) = A
µ for t ≥ 2

µ , whereA = 1 +
� 2

1 � (	 )d	 .
For t > 2

µ , one has

Gµ (t) =
� 2

µ

0
gµ (	 )d	 +

� t

2
µ

�
µ
A

	 r

	 2p++r…1d	

=
� 2

µ

0

�
gµ (	 ) …

�
µ
A

	 r

	 2p++r…1
	

d	 +
� t

0

�
µ
A

	 r

	 2p++r…1d	

≤ gµ (t)t
2p+ + r

+ Cµ .

The proof is complete. �

Lemma 2.2 Suppose that a ≥ 0, b > 0, conditions (P1) and (P2) hold. Then, for any µ ∈
(0, 1],there exists � 1 > 0 such that Jµ satisfies the (PS) condition for � ∈ (0,� 1).
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Proof Let {un} be a (PS) sequence ofJµ in W 1,p(x)
0 (� ). This means that there existsC > 0

such that

�
�Jµ (un)

�
� ≤ C, J ′

µ (un) → 0 asn → ∞. (10)

Now we show that{un} is bounded inW 1,p(x)
0 (� ). If ‖un‖ ≤ 1, we are done. Otherwise, by

Lemma1.5, we have

‖u‖p…≤
�

�
|∇u|p(x) dx. (11)

It follows from the Sobolev embedding theorem that

�

�
up…

+ dx ≤ C
�

�
|∇u|p…dx ≤ C

�
1 +

� �

�
|∇u|p(x) dx

	 2	
. (12)

From (6), (11), (12), and Lemma2.1, we derive that there exists� 1 > 0 such that

Jµ (un) …
1

2p+ + r
�
J ′
µ (un),un

�

= a
�

�

�
1

p(x)
…

1
2p+ + r

	
|∇un|p(x) dx +

b
2

� �

�

|∇un|p(x)

p(x)
dx

	 2

…
b

2p+ + r

�

�

|∇un|p(x)

p(x)
dx

�

�
|∇un|p(x) dx +

�

�

�
gµ (un)un

2p+ + r
…Gµ (un)

	
dx

+
�

1
2p+ + r

…
1
p…

	
�

�

�
(un)p…

+ dx

≥
�

1
2p+

…
1

2p+ + r

	
b
p+

� �

�
|∇un|p(x) dx

	 2

+
�

1
2p+ + r

…
1
p…

	
�

�

�
(un)p…

+ dx …Cµ |� |

≥
�

br
2p2

+(2p+ + r)
…

2p+ + r …p…

p…(2p+ + r)
C�

	� �

�
|∇un|p(x) dx

	 2

…C� …Cµ |� |

≥ C1‖un‖2p……C2

for � ∈ (0,� 1). It implies from (10) that {un} is bounded inW 1,p(x)
0 (� ).

With the loss of generality, up to a subsequence, we may assume that

�
�

�
un � u in W 1,p(x)

0 (� ),

un → u in Ls(� ), 1≤ s < p∗
….

Thus, we have

�
J ′(un),un …u

�
=

�
a + b

�

�

|∇un|p(x)

p(x)
dx

	 �

�
|∇un|p(x)…2∇un(∇un …∇u)dx

…
�

�
gµ (un)(un …u)dx …�

�

�
(un)p……1

+ (un …u)dx → 0.
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It is easy to see that

�
�gµ (t)

�
� ≤ C

� |t|2p+…1+ |t|2p++r…1� .

Using the Sobolev inequality and the Hölder inequality yields

�
�
�
�

�

�

�
gµ (un)

�
(un …u)dx

�
�
�
� ≤ C

�

�
|un|2p+…1|un …u|dx + C

�

�
|un|2p++r…1|un …u|dx

≤ C‖un‖2p+…1
2p+

‖un …u‖2p+ + C‖un‖2p++r…1
2p++r ‖un …u‖2p++r

≤ C‖un …u‖2p+ + C‖un …u‖2p++r → 0 (13)

and

�
�
�
�

�

�
(un)p……1

+ (un …u)dx
�
�
�
� ≤

�

�
|un|p……1|un …u|dx

≤ ‖un‖p……1
p…

‖un …u‖p…

≤ C‖un …u‖p…→ 0 (14)

asn → +∞. From (13) and (14), one has

�
a + b

�

�

|∇un|p(x)

p(x)
dx

	 �

�
|∇un|p(x)…2∇un(∇un …∇u)dx → 0 asn → +∞.

Notice that a ≥ 0 andb > 0, we have

�

�
|∇un|p(x)…2∇un(∇un …∇u)dx → 0 asn → +∞.

It implies from Lemma1.6that {un} is strongly convergent tou. HenceJµ satis“es the (PS)

condition. �

In the following lemma, we will verify thatJµ possesses the mountain pass geometry.

Lemma 2.3 Suppose that a ≥ 0,b > 0,conditions (P1)…(P3) hold.Then there exists � 2 such
that the functional Jµ possesses the mountain pass geometry for any � ∈ (0,� 2), namely

(i) there exist m, � > 0 such that Jµ (u) > m for any u ∈ W 1,p(x)
0 (� ) with ‖u‖ = � ;

(ii) there exists w ∈ W 1,p(x)
0 (� ) such that ‖w‖ > � and Jµ (w) < 0.

Proof By the de“nition of function Gµ , we have

�

�
Gµ (u)dx ≤ Cµ

�

�

� |u|2p+ + |u|2p++r� dx.

By the Sobolev embedding theorem and Lemma1.5, we obtain

�

�
|u|2p++r dx ≤ C‖u‖2p++r ≤ C

� �

�
|∇u|p(x) dx

	 2p++r
p+
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for any u ∈ W 1,p(x)
0 (� ) with

�
� |∇u|p(x) dx < 1. LetB
 0 ⊂ � satisfy that there exists� 0 > 0

such that p(x) ≤ p+ …� 0 for any x ∈ � 
 0. By Lemma1.5, the Hölder inequality, and the

Sobolev embedding theorem, we have

�

�
|u|2p+ dx =

�

B
 0

|u|2p+ dx +
�

� 
 0

|u|2p+ dx

≤ |B
 0|
r

2p++r

� �

�
|u|2p++r dx

	 2p+
2p++r

+ C‖u‖2p+

≤ C|B
 0|
r

2p++r

� �

�
|∇u|p(x) dx

	 2

+ C
� �

� 
 0

|∇u|p(x) dx
	 2p+

p+…� 0

≤ C|B
 0|
r

2p++r

� �

�
|∇u|p(x) dx

	 2

+ C
� �

�
|∇u|p(x) dx

	 2p+
p+…� 0

for any u ∈ W 1,p(x)
0 (� ) with

�
� |∇u|p(x) dx < 1. Therefore,

�

�
Gµ (u)dx ≤ Cµ

� �

�
|∇u|p(x) dx

	 2p++r
p+

+ Cµ |B
 0|
r

2p++r

� �

�
|∇u|p(x) dx

	 2

+ Cµ

� �

�
|∇u|p(x) dx

	 2p+
p+…� 0

(15)

for any u ∈ W 1,p(x)
0 (� ) with

�
� |∇u|p(x) dx < 1. Set� 0 =

�
� |∇u|p(x) dx. Fix µ ∈ (0, 1], it im-

plies from (12) and (15) that

Jµ (u) ≥ a
p+

� 0 +
b

2p2
+

� 2
0 …Cµ �

2p++r
p+

0 …Cµ |B
 0|
r

2p++r � 2
0 …Cµ �

2p+
p+…� 0
0 …C�

�
1 + � 2

0

�

≥ b
4p2

+
� 2

0 …C�
�
1 + � 2

0

�

for 
 0, � 0 > 0 small enough. Let� 2 =
b� 2

0
8Cp2

+(1+� 2
0)

. We haveJµ (u) > b
8p2

+
� 2

0 for any � ∈ (0,� 2).

By Lemma1.5, we know that there existm, � > 0 such thatJµ (u) > m for anyu ∈ W 1,p(x)
0 (� )

with ‖u‖ = � .

By the de“nition of function gµ , we know gµ (t) ≥ t2p+…1. Let U0 ⊂ � 
 0. Fix v0 ∈
W 1,p(x)

0 (U0)\{0}. Then, for t > 0 su�ciently large, we have

Jµ (tv0) = a
�

U0

1
p(x)

|∇tv0|p(x) dx +
b
2

� �

U0

1
p(x)

|∇tv0|p(x) dx
	 2

…
�

U0

Gµ (tv0)dx …
�
p…

�

U0

|tv0|p…
+ dx

≤ atp+…� 0

�

U0

1
p(x)

|∇v0|p(x) dx +
b
2

t2(p+…� 0)
� �

U0

1
p(x)

|∇v0|p(x) dx
	 2

…
t2p+

p+

�
µ
A

	 r �

U0

|v0|2p+ dx < 0.
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Choosingw = tv0 with t > 0 su�ciently large, we have‖w‖ > � and Jµ (w) < 0. The proof is
complete. �

Proposition 2.4 Suppose that a ≥ 0,b > 0,conditions (P1)…(P3) hold.Then there exist � 0 >
0 and L > 0 independent of µ such that problem (8) has at least two nonnegative nontrivial
solutions u′

µ and u′′
µ satisfying

Jµ
�
u′

µ

�
< 0 <Jµ

�
u′′

µ

�
< L for any � ∈ (0,� 0).

Proof According to (P1) and (P2), we know that there exist� 1 > 0 andU1 ⊂ � such that
p(x) ≥ p+ …� 1 > p…for any x ∈ U1. Fix � 0 ∈ W 1,p(x)

0 (U1)\{0}. Let � 0 = min{� 1, � 2}. For any
� ∈ (0,� 0) andk > 0 su�ciently small, we have

Jµ (k� 0) = a
�

U1

1
p(x)

|∇k� 0|p(x) dx +
b
2

� �

U1

1
p(x)

|∇k� 0|p(x) dx
	 2

…
�

U1

Gµ (k� 0)dx …
�
p…

�

U1

|k� 0|p…
+ dx

≤ akp+…� 1

�

U1

|∇� 0|p(x)

p(x)
dx +

b
2

k2(p+…� 1)
� �

U1

|∇� 0|p(x)

p(x)
dx

	 2

…
kp…

p…
�

�

U1

|� 0|p…dx < 0.

Thus we deduce that

cµ = inf
u∈B� (0)

Jµ (u) < 0 < inf
u∈� B� (0)

Jµ (u).

By applying Ekeland•s variational principle inB� (0) (see [10]), we obtain that problem (8)
has a solutionu′

µ satisfyingJµ (u′
µ ) = cµ < 0.

From Lemmas2.1and2.2, we see that the functionalJµ satis“es the (PS) condition and
has the mountain pass geometry. De“ne

� =


� ∈ C

�
[0, 1],W 1,p(x)

0 (� )
� |� (0) = 0,� (1) = w

�
, c̃µ = inf

� ∈�
max
t∈[0,1]

Jµ
�
� (t)

�
.

By the mountain pass lemma (see [21]), we obtain that problem (8) has a solutionu′′
µ sat-

isfying Jµ (u′′
µ ) = c̃µ > 0. Consider the functional

I(u) = a
�

�

|∇u|p(x)

p(x)
dx +

b
2

� �

�

|∇u|p(x)

p(x)
dx

	 2

…
1

2p+

�

�
|u+|2p+ dx,

where u+ = max{±u, 0}. It is easy to see thatJµ (u) ≤ I(u) for any u ∈ W 1,p(x)
0 (� ). We

can choosev0 ∈ W 1,p(x)
0 (� )\{0} such that I(tv0) → …∞ as t → +∞. Then Jµ (u′′

µ ) = c̃µ ≤
supt>0 I(tv0) = L.

SinceJµ (u′
µ ) < Jµ (0) < Jµ (u′′

µ ), we know thatu′
µ and u′′

µ are two nontrivial solutions of
problem (8). Let uµ be a nontrivial critical of Jµ and u±

µ = max{±uµ , 0}. After a direct
calculation, we derive that (a + b

�
� |∇u…

µ |p(x) dx)
�

� |∇u…
µ |p(x) dx = 〈J ′

µ (uµ ),u…
µ 〉 = 0, which

implies that u…
µ = 0. Hence,uµ ≥ 0. Therefore,u′

µ and u′′
µ are two nonnegative nontrivial

solutions of problem (8). The proof is complete. �
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3 L∞-estimate of nontrivial solutions
In this section, we show that the solutions of perturbation equation (8) are indeed the
solutions of the original problem (1). For this purpose, we need the following uniform
L∞-estimate for critical points of the functionalJµ .

Proposition 3.1 Suppose that a ≥ 0,b > 0,conditions (P1)…(P3) hold. If v is a critical point
of Jµ with Jµ (v) ≤ L, then there exist � 3 > 0 and a positive constant M = M(L) independent
of µ such that ‖v‖L∞(� ) ≤ M for any � ∈ (0,� 3).

To prove Proposition3.1, we need some preliminaries. Let� = 0 andn = 0 in Corollary 2
on page 139 of [18], we obtain the following lemma.

Lemma 3.2 Let 1 ≤ p < N , p ≤ q ≤ Np
N…p , and � 1 = 1 …N(q…p)

pq . Then

‖u‖Lq(RN ) ≤ C
�
� |x|� 1∇u

�
�

Lp(RN )

for all u ∈D(RN ),where D(RN ) is the space of functions in C∞(RN ) with compact supports
in RN .

Lemma 3.3 Suppose that (P1) … (P3) hold. Then there exists C > 0 such that
�

�
|u|p…dx ≤ C

�

�
|x|� |∇u|p(x) dx (16)

for all u ∈ W 1,p(x)
0 (� ) with

�
� |x|� |∇u|p(x) dx ≥ 1.

Proof If the conclusion does not hold, then there exists a sequence{un} ⊂ W 1,p(x)
0 (� ) such

that

n
�

�
|x|� |∇un|p(x) dx ≤

�

�
|un|p…dx (17)

and
�

�
|x|� |∇un|p(x) dx ≥ 1.

Therefore,

� p…
n =

�

�
|un|p…dx ≥ n → ∞ asn → +∞. (18)

Setun = � nvn. Then

�

�
|vn|p…dx = � …p…

n

�

�
|un|p…dx = 1.

Combining (17) with (18), we have

n
�

�
|x|� |∇vn|p(x) dx ≤ n� …p…

n

�

�
|x|� |∇un|p(x) dx

≤ � …p…
n

�

�
|un|p…dx = 1,
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which implies that

�

�
|x|� |∇vn|p(x) dx → 0 asn → +∞. (19)

Therefore, for any
 > 0, we obtain

�

� 


|∇vn|p(x) dx ≤ 1

 �

�

� 


|x|� |∇vn|p(x) dx → 0 asn → +∞.

By the Young inequality, for any� > 0, one has

�

� 


|∇vn|p…dx ≤
�

� 


�
� + C� |∇vn|p(x)� dx.

According to the arbitrariness of� > 0, we have

�

� 


|∇vn|p…dx → 0 asn → +∞. (20)

Noticing that �� ⊂ � � 
 andvn = 0 on �� , by the Sobolev embedding theorem, we obtain

�

� 


|vn|p∗
…dx → 0 asn → +∞ (21)

for all 
 > 0. Setp = p…andq = 2p+, it follows from Lemma3.2that

‖u‖L2p+ (RN ) ≤ C
� �

RN
|x|� p…|∇u|p…dx

	 1
p…

(22)

for all u ∈ D(RN ). Let � ∈ C∞
0 (RN ) satisfy|� (x)| ≤ 1, � (x) = 1 for |x| ≤ 
 1 < 1

2, � (x) = 0

for |x| ≥ 2
 1, and|∇� | ≤ C for x ∈ RN . Using the Hölder inequality, we deduce from (22)

that

� �

B
 1

|vn|2p+ dx
	 p…

2p+ ≤
� �

RN
|� vn|2p+ dx

	 p…
2p+ ≤ C

�

RN
|x|� p…|∇� vn|p…dx

≤ C
�

RN
|x|� p…

� |� |p…|∇vn|p…+ |vn|p…|∇� |p…
�
dx

≤ C
�

B2
 1

|x|� p…|∇vn|p…dx + C
�

� 
 1

|vn|p…dx

≤ C�

�

B2
 1

|x|� |∇vn|p(x) dx

+ �
�

B2
 1

|x|� p…
p(x)…1

p(x)…p… dx + C
�

� 
 1

|vn|p…dx

≤ C�

�

B2
 1

|x|� |∇vn|p(x) dx + �
 N
1 + C

� �

� 
 1

|vn|p∗
…dx

	 p…
p∗…

. (23)
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It implies from (19), (21), and (23) that

�

B
 1

|vn|p…dx ≤ C
� �

B
 1

|vn|2p+ dx
	 p…

2p+ → 0 as
 1 → 0 andn → +∞.

By the Hölder inequality, it follows from (21) that

�

� 
 1

|vn|p…dx ≤ C
� �

� 
 1

|vn|p∗
…dx

	 p…
p∗… → 0 asn → +∞.

Therefore, we have

�

�
|vn|p…dx → 0 asn → +∞,

which contradicts the fact that

�

�
|vn|p…dx = 1.

The proof of Lemma3.3is completed. �

Lemma 3.4 Suppose that a ≥ 0,b > 0,conditions (P1)…(P3) hold. If Jµ (u) ≤ L and J ′
µ (u) = 0,

then there exist � 3 > 0 and C = C(L) > 0 independent of µ such that

�

�
|x|� |∇u|p(x) dx ≤ C for any � ∈ (0,� 3).

Proof If
�

� |x|� |∇u|p(x) dx < 1, we are done. Otherwise, by Lemma2.1and Lemma3.3, we

derive from (P3) that

L ≥ Jµ (u) …
1

2p+

�
J ′
µ (u),u

�

= a
�

�

�
1

p(x)
…

1
2p+

	
|∇u|p(x) dx +

�

�

�
gµ (u)u

2p+
…Gµ (u)

	
dx

+
�

1
2p+

…
1
p…

	
�

�

�
up…

+ dx +
b
2

�

�

1
p(x)

|∇u|p(x) dx
�

�

�
1

p(x)
…

1
p+

	
|∇u|p(x) dx

≥ b
2

�

�

1
p(x)

|∇u|p(x) dx
�

�

�
1

p(x)
…

1
p+

	
|∇u|p(x) dx …

�
1
p…

…
1

2p+

	
�

�

�
up…

+ dx

≥ b
2

�

�

c|x|�
p+(p+ …c|x|� )

|∇u|p(x) dx
�

�

1
p(x)

|∇u|p(x) dx …
�

1
p…

…
1

2p+

	
�

�

�
up…

+ dx

≥ C3

�

�
|x|� |∇u|p(x) dx

�

�
|∇u|p(x) dx …C4�

�

�
|x|� |∇u|p(x) dx

≥ C3

� �

�
|x|� |∇u|p(x) dx

	 2

…C4�
�

�
|x|� |∇u|p(x) dx

≥ (C3 …C4� )
�

�
|x|� |∇u|p(x) dx. (24)
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SetC = 2L/C5 and � 3 = C5/2C4. It implies from (24) that
�

� |x|� |∇u|p(x) dx ≤ C for any

� ∈ (0,� 3). �

Lemma 3.5 Suppose that a ≥ 0,b > 0,conditions (P1)…(P3) hold. If Jµ (u) ≤ L and J ′
µ (u) = 0,

then there exists C = C(L) > 0 independent of µ such that

�

�
|∇u|p(x) dx ≤ C for any � ∈ (0,� 3).

Proof By the de“nition of function mµ , we know thatmµ (t) = t for t ≤ 1
µ and mµ (t) ≥ 1

µ

for t > 1
µ . Therefore, we have

gµ (u) ≤ Cµ r|u|2p++r…1≤ C
�
1 + |u|2p++r…1� (25)

for any µ ∈ (0, 1]. It follows from J ′
µ (u) = 0 that u is a solution of problem (8). Multiply

problem (8) by u and integrate to obtain

b
�

�

1
p(x)

|∇u|p(x) dx
�

�
|∇u|p(x) dx ≤

�
a + b

�

�

1
p(x)

|∇u|p(x) dx
	 �

�
|∇u|p(x) dx

=
�

�

�
gµ (u) + � up……1

+

�
udx

≤ C
�

1 +
�

�
|u|2p++r dx

	
(26)

for any � ∈ (0,� 3). Choose� = Nrp…
(2p++r)[2p+(p……N)+Np…] , it is easy to verify� ∈ (0, 1]. From

Lemma1.7we have

�

�
|u|2p++r dx ≤ A

� �

�
|∇u|p…dx

	 (2p++r)�
p…

� �

�
|u|2p+ dx

	 (2p++r)(1…� )
2p+

≤ A
� �

�
1 + |∇u|p(x) dx

	 (2p++r)�
p…

� �

�
|u|2p+ dx

	 (2p++r)(1…� )
2p+

. (27)

It follows from (26) and (27) that

b
p+

� �

�
|∇u|p(x) dx

	 2

≤ b
�

�

1
p(x)

|∇u|p(x) dx
�

�
|∇u|p(x) dx

≤ C + C
�

�
|u|2p++r dx

≤ C + CA
� �

�
|∇u|p(x) dx + |� |

	 (2p++r)�
p…

×
� �

�
|u|2p+ dx

	 (2p++r)(1…� )
2p+

. (28)

According to (7), we have

(2p+ + r)�
p…

=
Nr

[2p+(p……N) + Np…]
< 2.
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To prove that
�

� |∇u|p(x) dx is bounded, we just prove that
�

� |u|2p+ dx is bounded. Now

we show that
�

� |u|2p+ dx is uniformly bounded. By the Sobolev embedding theorem and

Lemma3.4, for any
 > 0, we have

�

� 


|u|p∗
…dx ≤ C

� �

� 


|∇u|p…dx
	 p∗

…
p…

≤ C
�

1 +
�

� 


|∇u|p(x) dx
	 p∗

…
p…

≤ C + C


� �

� 


|x|� |∇u|p(x) dx
	 p∗

…
p…

≤ C + C


� �

�
|x|� |∇u|p(x) dx

	 p∗
…

p…

≤ C
 . (29)

Noticing that 1 < 2p+ < p∗
…, by the Hölder inequality and (29), we have

�

� 


|u|2p+ dx ≤ C
� �

� 


|u|p∗
…dx

	 2p+
p∗… ≤ C
 (30)

for any 
 > 0. It implies from (23) that

� �

B


|u|2p+ dx
	 p…

2p+ ≤ C�

�

B2


|x|� |∇u|p(x) dx + �
 N + C
� �

� 


|u|p∗
…dx

	 p…
p∗…

≤ C�

�

�
|x|� |∇u|p(x) dx + �
 N + C

� �

� 


|u|p∗
…dx

	 p…
p∗…

.

By Lemma3.4, we obtain

�

B


|u|2p+ dx ≤ C
 . (31)

We deduce from (30) and (31) that

�

�
|u|2p+ dx ≤ C. (32)

According to (28) and (32), we have
�

� |∇u|p(x) dx is uniformly bounded. �

Proof of Proposition 3.1 Using the Sobolev embedding theorem and Lemma3.5, we have

�

�
|v|p∗

…dx ≤ C
� �

�
|∇v|p…dx

	 p∗
…

p… ≤ C
� �

�

�
1 + |∇v|p(x)� dx

	 p∗
…

p… ≤ C. (33)
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Let s > 0 andt = 2p+ + r. According to (25), multiply problem (8) by vsp…+1 and integrate to

obtain

b
�

�

1
p(x)

|∇v|p(x) dx
�

�
|∇v|p(x)…2∇v∇vsp…+1 dx

≤
�

a + b
�

�

1
p(x)

|∇v|p(x) dx
	 �

�
|∇v|p(x)…2∇v∇vsp…+1 dx

=
�

�

�
gµ (v) + � vp……1

+

�
vsp…+1 dx

≤ C
�

1 +
�

�
|v|sp…+t dx

	

for any � ∈ (0,� 3). It implies that

b
�

�

1
p(x)

|∇v|p(x) dx
�

�
|∇v|p…vsp…dx

≤ b
�

�

1
p(x)

|∇v|p(x) dx
�

�

�
1 + |∇v|p(x)� vsp…dx

=
b
p…

�

�
|∇v|p(x) dx

� �

�
vsp…dx +

1
sp…+ 1

�

�
|∇v|p(x)…2∇v∇vsp…+1 dx

	

≤ Cb
p…

�

�
|∇v|p(x) dx

�
1 +

�

�
|v|sp…+t dx

	
. (34)

On the one hand, by the Sobolev embedding theorem, we have

�

�
|∇v|p…vsp…dx =

1
(1 + s)p…

�

�

�
�∇v1+s��p…dx

≥ C
(1 + s)p…

� �

�
|v|(1+s)p∗

…dx
	 p…

p∗…
. (35)

On the other hand, by the Hölder inequality and (33), we have

�

�
|v|sp…+t dx ≤

� �

�
|v|p∗

…dx
	 t…p…

p∗…
� �

�
|v|p…(1+s) p∗

…
p∗……t+p… dx

	 p∗
……t+p…

p∗…

≤ C
�

1 +
�

�
|∇v|p(x) dx

	 t…p…
p…

� �

�
|v|(1+s) p∗

…
d dx

	 dp…
p∗…

, (36)

whered = p∗
……t+p…

p…
> 1. According to (34), (35), and (36), we obtain

b
p+

�

�
|∇v|p(x) dx

� �

�
|v|(1+s)p∗

…dx
	 p…

p∗…

≤ b
�

�

1
p(x)

|∇v|p(x) dx
� �

�
|v|(1+s)p∗

…dx
	 p…

p∗…
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≤ b
p…

�
C(1 + s)

� p…

×
�

�
|∇v|p(x) dx

�
1 +

�
1 +

�

�
|∇v|p(x) dx

	 t…p…
p…

	� �

�
|v|(1+s) p∗

…
d dx

	 dp…
p∗…

.

Since t…p…
p…

> 1 and
�

� |∇v|p(x) dx < C, we have

� �

�
|v|(1+s)p∗

…dx
	 p…

p∗… ≤ �
C(1 + s)

� p…max

�
1,

� �

�
|v|(1+s) p∗

…
d dx

	 dp…
p∗…

�
,

which implies that

max

�
1,

� �

�
|v|(1+s)p∗

…dx
	 1

(1+s)p∗…
�

≤ �
C(1 + s)

� 1
1+s max

�
1,

� �

�
|v|(1+s) p∗

…
d dx

	 d
(1+s)p∗…

�
. (37)

Now we carry out an iteration process. Setsk = dk … 1 fork = 1,2, . . . . By (37), we have

max

�
1,

� �

�
|v|dkp∗

…dx
	 1

dkp∗…
�

≤ �
Cdk � 1

dk max

�
1,

� �

�
|v|dk…1p∗

…dx
	 1

dk…1p∗…
�

≤
k�

j=1

�
Cdj� 1

dj max

�
1,

� �

�
|v|p∗

…dx
	 1

p∗…
�

= C
� k

j=1 d…j · d
� k

j=1 jd…j
max

�
1,

� �

�
|v|p∗

…dx
	 1

p∗…
�

. (38)

Sinced > 1, the series
� ∞

j=1 d…j and
� ∞

j=1 jd…j are convergent. Lettingk → ∞, we conclude

from (33) and (38) that ‖v‖L∞(� ) ≤ M. The proof is complete. �

Proof of Theorem 1.1 Let � ∗ = min{� 0, � 3}. By Proposition2.4, we know that problem (8)

has at least two nonnegative nontrivial solutionsu′
µ andu′′

µ satisfying

Jµ
�
u′

µ

�
< 0 <Jµ

�
u′′

µ

�
< L for all � ∈ (0,� ∗).

By the de“nition of function mµ , we havemµ (t) = t for t ≤ 1
µ . Hence, problem (8) reduces

to problem (1) for |u| ≤ 1
µ . Let µ < 1

2M . By Proposition3.1, it is easy to see thatu′
µ andu′′

µ

are indeed two nonnegative nontrivial solutions of problem (1). �
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