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1 Introduction and main result
Let 0 ∈ � ⊂ R

N (N ≥ 3) be a bounded domain with smooth boundary ∂�. In this paper,
we consider the following p(x)-Kirchhoff problem:

⎧
⎨

⎩

–(a + b
∫

�

|∇u|p(x)

p(x) dx)�p(x)u = |u|2p+–2u + λ|u|p––2u in �,

u = 0 on ∂�,
(1)

where a ≥ 0, b > 0, �p(x)u = div(|∇u|p(x)–2∇u) is called p(x)-Laplacian, and λ > 0 is a pa-
rameter, p(x) satisfies the following assumptions:

(P1) p ∈ C(�), p– = min{p(x)|x ∈ �}, p+ = max{p(x)|x ∈ �};
(P2) 1 < p– < N and p– < 2p+ < p∗

–, where p∗
– = Np–

N–p–
;

(P3) p(0) = p+, p(x) ≤ p+ – c|x|α for all x ∈ �, where c > 0, α = 1 – N(2p+–p–)
2p+p–

> 0.
The study on Kirchhoff-type equations and variational problems with p(x)-growth con-

dition has attracted more and more interest in the recent years, see [7–9, 17, 29] and the
references therein. It was proposed by Kirchhoff in 1883 as a generalization of the well-
known D’Alembert wave equation

ρ
∂2u
∂t2 –

(
P0

h
+

E
2L

∫ L

0

∣
∣
∣
∣
∂u
∂x

∣
∣
∣
∣

2

dx
)

∂2u
∂x2 = 0, (2)

where ρ , P0, h, L, and E are constants, by considering the changes in the length of the
string during the vibrations, see [16]. This type of operators arises in a natural way in many
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different applications such as image processing, quantum mechanics, elastic mechanics,
electrorheological fluids, see [5, 23] and the references therein. Set M(t) = a + bt, problem
(1) is called nondegenerate if a > 0 and b ≥ 0, while it is named degenerate if a = 0 and
b > 0. In the large literature of degenerate Kirchhoff problems, the transverse oscillations
of a stretched string with nonlocal flexural rigidity depends continuously on the Sobolev
deflection norm of u via M(‖u‖2). From a physical point of view, the fact that M(0) = 0
means that the base tension of the string is zero, a very realistic model. More specifically, M
measures the change of the tension on the string caused by the change of its length during
the vibration. The presence of the nonlinear coefficient M is crucial to be considered when
the changes in tension during the motion cannot be neglected. For more information, the
reader can refer to [1, 28].

In 1994, Ambrosetti, Brezis, and Cerami in [2] considered the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

–�u = λuq + ur , in �,

u > 0, in �,

u = 0, in ∂�,

(3)

where � is a bounded domain in R
N (N ≥ 1) with smooth boundary ∂�, 0 < q < 1 < r <

2∗ – 1, and they established multiple results.
At the same time, many authors researched p(x)-Laplacian equations containing

concave-convex nonlinearities. In particular, Mihǎilescu in [19] studied the following p(x)-
Laplacian equation involving concave-convex nonlinearities:

⎧
⎨

⎩

–�p(x)u = λ|u|q(x)–2u + |u|r(x)–2u, in �,

u = 0, on ∂�,
(4)

where 1 < q(x) < p– < p+ < r(x) < p∗
–, λ is a positive constant. Using Ekeland’s variational

principle and the mountain pass lemma, he proved that problem (4) has two positive solu-
tions for λ > 0 small enough. Subsequently, the more general case was considered in [20].
In 2009, Dai and Hao in [9] studied the following p(x)-Kirchhoff-type equation:

⎧
⎨

⎩

–(a + b
∫

�
1

p(x) |∇u|p(x) dx)�p(x)u = f (x, u), in �,

u = 0, on ∂�,
(5)

where � is a smooth bounded domain in R
N , p(x) ∈ C(�), a, b > 0, and f (x, u) : � ×R →

R satisfy certain condition. They established the existence and multiplicity of solutions
by the variational method. Especially, the standard arguments given in [9] show that the
verification of the Palais–Smale condition at the mountain pass level relies on the well-
known Ambrosetti–Rabinowitz condition((AR) condition, for short):

(AR) There exist T > 0 and θ > 2p+ such that

0 < θF(x, t) = θ

∫ t

0
f (x, τ ) dτ ≤ tf (x, t), |t| ≥ T , a.e. x ∈ �.

Actually, the (AR) condition is quite natural and important not only to ensure that the
Euler–Lagrange functional has a mountain pass geometry, but also to guarantee the
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boundedness of Palais–Smale sequences. However, this condition is somewhat restric-
tive, not being satisfied by many nonlinearities. In fact, from the (AR) condition it follows
that for some C1, C2 > 0

F(x, t) ≥ C1|t|θ – C2, ∀(x, t) ∈ � ×R.

Thus, for example, the function f (x, t) = |t|p+–2t ln(1 + |t|) does not satisfy the (AR) con-
dition. In fact, many papers still required nonlinearity to satisfy the superlinear growth
condition

f (x, t)t > 2p(x)F(x, t) for all x ∈ � and |t| is large enough.

However, it is easy to see that condition (P3) in problem (1) violates this condition. It allows

f (x, t)t ≤ 2p(x)F(x, t) for some x ∈ � and any t > 0,

where f (x, t) = t2p+–1 + λtp––1. As described in [13], we need to overcome some difficulties
to show the existence of nonnegative nontrivial solutions. Similar problems with concave-
convex nonlinearities have been discussed by many authors (see [12, 15, 22, 25–27, 30]).

The main result of this paper reads as follows.

Theorem 1.1 Suppose that a ≥ 0, b > 0, conditions (P1)–(P3) hold. Then there exists λ∗ > 0
such that problem (1) has at least two nonnegative nontrivial solutions for any λ ∈ (0,λ∗).

Remark 1.2 When a = 0, we use the perturbation method and Moser iteration mainly to
deal with degenerate cases. Most of the literature considers only one of the degenerate
and nondegenerate scenarios. However, we discuss the above two cases at same time in
Theorem 1.1.

To discuss problem (1), we need the functional space Lp(x)(�) and W 1,p(x)(�). The vari-
able exponent Lebesgue space Lp(x)(�) is defined by

Lp(x)(�) =
{

u : u : � →R is measurable,
∫

�

|u|p(x) dx < ∞
}

with the norm

|u|p(x) = inf

{

λ > 0 :
∫

�

∣
∣
∣
∣
u
λ

∣
∣
∣
∣

p(x)

dx ≤ 1
}

.

The variable exponent Sobolev space W 1,p(x)(�) is defined by

W 1,p(x)(�) =
{

u ∈ Lp(x)(�) : |∇u| ∈ Lp(x)(�)
}

with the norm

‖u‖1,p(x) = |u|p(x) + |∇u|p(x).
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Define W 1,p(x)
0 (�) as the closure of C∞

0 (�) in W 1,p(x)(�). The spaces Lp(x)(�), W 1,p(x)(�),
and W 1,p(x)

0 (�) are separable and reflexive Banach spaces if 1 < p– ≤ p+ < ∞ (see [11]).
Moreover, we know that ‖u‖ = |∇u|p(x) are equivalent norms on W 1,p(x)

0 (�).

Lemma 1.3 (see [11]) If q ∈ C(�) satisfies 1 ≤ q(x) < p∗(x) (p∗(x) = Np(x)
N–p(x) , if N > p(x);

p∗(x) = +∞, if N ≤ p(x)) for x ∈ �, then the embedding from W 1,p(x)(�) to Lq(x)(�) is com-
pact and continuous.

Lemma 1.4 (see [11]) Set ρ(u) =
∫

�
|u|p(x) dx for u ∈ Lp(x)(�). If u ∈ Lp(x)(�) and {uk}k∈N ⊂

Lp(x)(�), then we have
(i) |u|p(x) < 1 (=1; >1) ⇔ ρ(u) < 1 (=1; >1);

(ii) |u|p(x) > 1 ⇒ |u|p–
p(x) ≤ ρ(u) ≤ |u|p+

p(x);
(iii) |u|p(x) < 1 ⇒ |u|p+

p(x) ≤ ρ(u) ≤ |u|p–
p(x);

(iv) limk→∞ |uk – u|p(x) = 0 ⇔ limk→∞ ρ(uk – u) = 0 ⇔ uk → u in measure in � and
limk→∞ ρ(uk) = ρ(u).

Similar to Lemma 1.4, it is easy to obtain the following lemma.

Lemma 1.5 Set L(u) =
∫

�
|∇u|p(x) dx for u ∈ W 1,p(x)

0 (�). If u ∈ W 1,p(x)
0 (�) and {uk}k∈N ⊂

W 1,p(x)
0 (�), we have
(i) ‖u‖ < 1 (=1; >1) ⇔ L(u) < 1 (=1; >1);

(ii) ‖u‖ > 1 ⇒ ‖u‖p– ≤ L(u) ≤ ‖u‖p+ ;
(iii) ‖u‖ < 1 ⇒ ‖u‖p+ ≤ L(u) ≤ ‖u‖p– ;
(iv) ‖uk‖ → 0 ⇔ L(uk) → 0; ‖uk‖ → ∞ ⇔ L(uk) → ∞.

Lemma 1.6 (see [9]) Set φ(u) =
∫

�
1

p(x) |∇u|p(x) dx for u ∈ W 1,p(x)
0 (�). The functional φ :

X → R is convex. The mapping φ′ : X → X∗ is a strictly monotone, bounded homeomor-
phism and is of (S+) type, namely

un ⇀ u and limn→∞φ′(un)(un – u) ≤ 0 implies un → u,

where X = W 1,p(x)
0 (�).

Lemma 1.7 (see [24]) In the Euclidean space R
N , an optimal Gagliardo–Nirenberg in-

equality has the form

(∫

RN
|u|r dx

) p
rθ ≤ A(p, q, r)

(∫

RN
|∇u|p dx

)(∫

RN
|u|q dx

) p(1–θ )
θq

with 1 < p < N , 1 ≤ q < r ≤ p∗, and θ = θ (p, q, r) = Np(r–q)
r(q(p–N)+Np) ∈ (0, 1], A(p, q, r) the best

constant.

Lemma 1.8 (see [3]) Let X be a real Banach space, let I : X → R be a functional of class
C1(X,R) that satisfies the Palais–Smale condition (i.e. any sequence {un} ⊂ X such that
{I(un)} is bounded and I ′(un) → 0 has a convergent subsequence), I(0) = 0, and the following
conditions hold:

(i) There exist positive constants ρ and α such that I(u) ≥ α for any u ∈ X with ‖u‖ = ρ ;
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(ii) There exists a function e ∈ X such that ‖e‖ > ρ and I(e) ≤ 0.
Then the functional I has a critical value c ≥ α, that is, there exists u ∈ X such that

I(u) = c and I ′(u) = 0 in X∗.

Lemma 1.9 (see [10]) Let X be a complete metric space with metric d, and let I : X �→
(–∞, +∞] be a low semicontinuous function bounded from below and not identical to +∞.
Let ε be given and U ∈ X be such that

I(U) ≤ inf
X

I + ε.

Then there exists V ∈ X such that

I(U) ≤ I(V ), d(U , V ) ≤ 1,

and for each W ∈ X, one has

I(U) ≤ I(W ) + ε d(V , W ).

To end this section, we describe the basic ideas in the proof of Theorem 1.1. If a = 0 and
p(0) = p+, it is not easy to verify the boundedness of Palais–Smale sequence for the func-
tional corresponding to problem (1). Inspired by [6], we first modify the nonlinear term
to obtain a perturbation equation of problem (1). Then, using Ekeland’s variational prin-
ciple and the mountain pass lemma, we prove that the perturbation equation has at least
two nonnegative nontrivial solutions for λ > 0 sufficiently small. Finally, we use the Moser
iteration to prove that the solutions to the perturbation equation are uniformly bounded.
Therefore, we show that two nonnegative nontrivial solutions of the perturbation equation
are also the solutions of the original problem (1).

Throughout this paper, let Bδ = {x : |x| < δ} ⊂ � and �δ = �\ Bδ . We use ‖ · ‖ to denote
the usual norms of W 1,p(x)

0 (�), the letters C and Cμ stand for positive constants which may
take different values at different places.

2 Solutions of the perturbation equation
Since p(x) is a continuous function, from (P2) and (P3), we see that there exists r > 0 such
that

1 < p– – r < 2p+ + r < p∗
– (6)

and

r <
2[Np– – 2p+(N – p–)]

N
. (7)

Let ψ(t) ∈ C∞
0 (R, [0, 1]) be a smooth even function with the following properties: ψ(t) = 1

for |t| ≤ 1, ψ(t) = 0 for |t| ≥ 2 and ψ(t) is monotonically decreasing on the interval (0, +∞).
Define

bμ(t) = ψ(μt), mμ(t) =
∫ t

0
bμ(τ ) dτ
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for μ ∈ (0, 1]. We will deal with the perturbation equation

⎧
⎨

⎩

–(a + b
∫

�

|∇u|p(x)

p(x) dx)�p(x)u = ( u
mμ(u) )ru2p+–1 + λup––1 in �,

u = 0 in ∂�.
(8)

Define

gμ(t) =
(

t
mμ(t)

)r

t2p+–1
+ , Gμ(t) =

∫ t

0
gμ(τ ) dτ .

Then the formal energy functional Jμ associated with equation (8) is defined by

Jμ(u) = a
∫

�

|∇u|p(x)

p(x)
dx +

b
2

(∫

�

|∇u|p(x)

p(x)
dx

)2

–
∫

�

Gμ(u) dx –
λ

p–

∫

�

up–
+ dx.

Lemma 2.1 The function Gμ(t) defined above satisfies the following inequality:

Gμ(t) ≤ 1
2p+

tgμ(t), Gμ(t) ≤ 1
2p+ + r

tgμ(t) + Cμ,

where Cμ > 0 is a positive constant.

Proof By the definition of function gμ, the conclusion is clear for t ≤ 0. Since bμ(t) is
monotonically decreasing on the interval (0, +∞), we have

d
dt

(
t

mμ(t)

)

=
mμ(t) – tbμ(t)

m2
μ(t)

=
t(bμ(ξ ) – bμ(t))

m2
μ(t)

≥ 0

for t > 0, where ξ ∈ (0, t). Therefore, t
mμ(t) is monotonically increasing on the interval

(0, +∞). Hence, gμ(t)
t2p+–1 = ( t

mμ(t) )r is also monotonically increasing on the interval (0, +∞).
It follows that

Gμ(t) =
∫ t

0
gμ(τ ) dτ ≤

∫ t

0

gμ(t)
t2p+–1 τ 2p+–1 dτ =

1
2p+

tgμ(t) for t > 0. (9)

By the definition of function mμ, we have mμ(t) = A
μ

for t ≥ 2
μ

, where A = 1 +
∫ 2

1 ψ(τ ) dτ .
For t > 2

μ
, one has

Gμ(t) =
∫ 2

μ

0
gμ(τ ) dτ +

∫ t

2
μ

(
μ

A

)r

τ 2p++r–1 dτ

=
∫ 2

μ

0

(

gμ(τ ) –
(

μ

A

)r

τ 2p++r–1
)

dτ +
∫ t

0

(
μ

A

)r

τ 2p++r–1 dτ

≤ gμ(t)t
2p+ + r

+ Cμ.

The proof is complete. �

Lemma 2.2 Suppose that a ≥ 0, b > 0, conditions (P1) and (P2) hold. Then, for any μ ∈
(0, 1], there exists λ1 > 0 such that Jμ satisfies the (PS) condition for λ ∈ (0,λ1).



Chu and He Boundary Value Problems         (2023) 2023:35 Page 7 of 18

Proof Let {un} be a (PS) sequence of Jμ in W 1,p(x)
0 (�). This means that there exists C > 0

such that

∣
∣Jμ(un)

∣
∣ ≤ C, J ′

μ(un) → 0 as n → ∞. (10)

Now we show that {un} is bounded in W 1,p(x)
0 (�). If ‖un‖ ≤ 1, we are done. Otherwise, by

Lemma 1.5, we have

‖u‖p– ≤
∫

�

|∇u|p(x) dx. (11)

It follows from the Sobolev embedding theorem that

∫

�

up–
+ dx ≤ C

∫

�

|∇u|p– dx ≤ C
(

1 +
(∫

�

|∇u|p(x) dx
)2)

. (12)

From (6), (11), (12), and Lemma 2.1, we derive that there exists λ1 > 0 such that

Jμ(un) –
1

2p+ + r
〈
J ′
μ(un), un

〉

= a
∫

�

(
1

p(x)
–

1
2p+ + r

)

|∇un|p(x) dx +
b
2

(∫

�

|∇un|p(x)

p(x)
dx

)2

–
b

2p+ + r

∫

�

|∇un|p(x)

p(x)
dx

∫

�

|∇un|p(x) dx +
∫

�

(
gμ(un)un

2p+ + r
– Gμ(un)

)

dx

+
(

1
2p+ + r

–
1

p–

)

λ

∫

�

(un)p–
+ dx

≥
(

1
2p+

–
1

2p+ + r

)
b

p+

(∫

�

|∇un|p(x) dx
)2

+
(

1
2p+ + r

–
1

p–

)

λ

∫

�

(un)p–
+ dx – Cμ|�|

≥
(

br
2p2

+(2p+ + r)
–

2p+ + r – p–

p–(2p+ + r)
Cλ

)(∫

�

|∇un|p(x) dx
)2

– Cλ – Cμ|�|

≥ C1‖un‖2p– – C2

for λ ∈ (0,λ1). It implies from (10) that {un} is bounded in W 1,p(x)
0 (�).

With the loss of generality, up to a subsequence, we may assume that

⎧
⎨

⎩

un ⇀ u in W 1,p(x)
0 (�),

un → u in Ls(�), 1 ≤ s < p∗
–.

Thus, we have

〈
J ′(un), un – u

〉
=

(

a + b
∫

�

|∇un|p(x)

p(x)
dx

)∫

�

|∇un|p(x)–2∇un(∇un – ∇u) dx

–
∫

�

gμ(un)(un – u) dx – λ

∫

�

(un)p––1
+ (un – u) dx → 0.
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It is easy to see that

∣
∣gμ(t)

∣
∣ ≤ C

(|t|2p+–1 + |t|2p++r–1).

Using the Sobolev inequality and the Hölder inequality yields

∣
∣
∣
∣

∫

�

(
gμ(un)

)
(un – u) dx

∣
∣
∣
∣ ≤ C

∫

�

|un|2p+–1|un – u|dx + C
∫

�

|un|2p++r–1|un – u|dx

≤ C‖un‖2p+–1
2p+ ‖un – u‖2p+ + C‖un‖2p++r–1

2p++r ‖un – u‖2p++r

≤ C‖un – u‖2p+ + C‖un – u‖2p++r → 0 (13)

and
∣
∣
∣
∣

∫

�

(un)p––1
+ (un – u) dx

∣
∣
∣
∣ ≤

∫

�

|un|p––1|un – u|dx

≤ ‖un‖p––1
p– ‖un – u‖p–

≤ C‖un – u‖p– → 0 (14)

as n → +∞. From (13) and (14), one has

(

a + b
∫

�

|∇un|p(x)

p(x)
dx

)∫

�

|∇un|p(x)–2∇un(∇un – ∇u) dx → 0 as n → +∞.

Notice that a ≥ 0 and b > 0, we have

∫

�

|∇un|p(x)–2∇un(∇un – ∇u) dx → 0 as n → +∞.

It implies from Lemma 1.6 that {un} is strongly convergent to u. Hence Jμ satisfies the (PS)
condition. �

In the following lemma, we will verify that Jμ possesses the mountain pass geometry.

Lemma 2.3 Suppose that a ≥ 0, b > 0, conditions (P1) – (P3) hold. Then there exists λ2 such
that the functional Jμ possesses the mountain pass geometry for any λ ∈ (0,λ2), namely

(i) there exist m,ρ > 0 such that Jμ(u) > m for any u ∈ W 1,p(x)
0 (�) with ‖u‖ = ρ ;

(ii) there exists w ∈ W 1,p(x)
0 (�) such that ‖w‖ > ρ and Jμ(w) < 0.

Proof By the definition of function Gμ, we have

∫

�

Gμ(u) dx ≤ Cμ

∫

�

(|u|2p+ + |u|2p++r)dx.

By the Sobolev embedding theorem and Lemma 1.5, we obtain

∫

�

|u|2p++r dx ≤ C‖u‖2p++r ≤ C
(∫

�

|∇u|p(x) dx
) 2p++r

p+
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for any u ∈ W 1,p(x)
0 (�) with

∫

�
|∇u|p(x) dx < 1. Let Bδ0 ⊂ � satisfy that there exists ε0 > 0

such that p(x) ≤ p+ – ε0 for any x ∈ �δ0 . By Lemma 1.5, the Hölder inequality, and the
Sobolev embedding theorem, we have

∫

�

|u|2p+ dx =
∫

Bδ0

|u|2p+ dx +
∫

�δ0

|u|2p+ dx

≤ |Bδ0 |
r

2p++r

(∫

�

|u|2p++r dx
) 2p+

2p++r
+ C‖u‖2p+

≤ C|Bδ0 |
r

2p++r

(∫

�

|∇u|p(x) dx
)2

+ C
(∫

�δ0

|∇u|p(x) dx
) 2p+

p+–ε0

≤ C|Bδ0 |
r

2p++r

(∫

�

|∇u|p(x) dx
)2

+ C
(∫

�

|∇u|p(x) dx
) 2p+

p+–ε0

for any u ∈ W 1,p(x)
0 (�) with

∫

�
|∇u|p(x) dx < 1. Therefore,

∫

�

Gμ(u) dx ≤ Cμ

(∫

�

|∇u|p(x) dx
) 2p++r

p+
+ Cμ|Bδ0 |

r
2p++r

(∫

�

|∇u|p(x) dx
)2

+ Cμ

(∫

�

|∇u|p(x) dx
) 2p+

p+–ε0
(15)

for any u ∈ W 1,p(x)
0 (�) with

∫

�
|∇u|p(x) dx < 1. Set ρ0 =

∫

�
|∇u|p(x) dx. Fix μ ∈ (0, 1], it im-

plies from (12) and (15) that

Jμ(u) ≥ a
p+

ρ0 +
b

2p2
+
ρ2

0 – Cμρ
2p++r

p+
0 – Cμ|Bδ0 |

r
2p++r ρ2

0 – Cμρ

2p+
p+–ε0

0 – Cλ
(
1 + ρ2

0
)

≥ b
4p2

+
ρ2

0 – Cλ
(
1 + ρ2

0
)

for δ0, ρ0 > 0 small enough. Let λ2 = bρ2
0

8Cp2
+(1+ρ2

0 ) . We have Jμ(u) > b
8p2

+
ρ2

0 for any λ ∈ (0,λ2).

By Lemma 1.5, we know that there exist m, ρ > 0 such that Jμ(u) > m for any u ∈ W 1,p(x)
0 (�)

with ‖u‖ = ρ .
By the definition of function gμ, we know gμ(t) ≥ t2p+–1. Let U0 ⊂ �δ0 . Fix v0 ∈

W 1,p(x)
0 (U0)\{0}. Then, for t > 0 sufficiently large, we have

Jμ(tv0) = a
∫

U0

1
p(x)

|∇tv0|p(x) dx +
b
2

(∫

U0

1
p(x)

|∇tv0|p(x) dx
)2

–
∫

U0

Gμ(tv0) dx –
λ

p–

∫

U0

|tv0|p–
+ dx

≤ atp+–ε0

∫

U0

1
p(x)

|∇v0|p(x) dx +
b
2

t2(p+–ε0)
(∫

U0

1
p(x)

|∇v0|p(x) dx
)2

–
t2p+

p+

(
μ

A

)r ∫

U0

|v0|2p+ dx < 0.
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Choosing w = tv0 with t > 0 sufficiently large, we have ‖w‖ > ρ and Jμ(w) < 0. The proof is
complete. �

Proposition 2.4 Suppose that a ≥ 0, b > 0, conditions (P1)–(P3) hold. Then there exist λ0 >
0 and L > 0 independent of μ such that problem (8) has at least two nonnegative nontrivial
solutions u′

μ and u′′
μ satisfying

Jμ
(
u′

μ

)
< 0 < Jμ

(
u′′

μ

)
< L for any λ ∈ (0,λ0).

Proof According to (P1) and (P2), we know that there exist ε1 > 0 and U1 ⊂ � such that
p(x) ≥ p+ – ε1 > p– for any x ∈ U1. Fix ϕ0 ∈ W 1,p(x)

0 (U1)\{0}. Let λ0 = min{λ1, λ2}. For any
λ ∈ (0,λ0) and k > 0 sufficiently small, we have

Jμ(kϕ0) = a
∫

U1

1
p(x)

|∇kϕ0|p(x) dx +
b
2

(∫

U1

1
p(x)

|∇kϕ0|p(x) dx
)2

–
∫

U1

Gμ(kϕ0) dx –
λ

p–

∫

U1

|kϕ0|p–
+ dx

≤ akp+–ε1

∫

U1

|∇ϕ0|p(x)

p(x)
dx +

b
2

k2(p+–ε1)
(∫

U1

|∇ϕ0|p(x)

p(x)
dx

)2

–
kp–

p–
λ

∫

U1

|ϕ0|p– dx < 0.

Thus we deduce that

cμ = inf
u∈Bρ (0)

Jμ(u) < 0 < inf
u∈∂Bρ (0)

Jμ(u).

By applying Ekeland’s variational principle in Bρ(0) (see [10]), we obtain that problem (8)
has a solution u′

μ satisfying Jμ(u′
μ) = cμ < 0.

From Lemmas 2.1 and 2.2, we see that the functional Jμ satisfies the (PS) condition and
has the mountain pass geometry. Define

� =
{
γ ∈ C

(
[0, 1], W 1,p(x)

0 (�)
)|γ (0) = 0,γ (1) = w

}
, c̃μ = inf

γ∈�
max
t∈[0,1]

Jμ
(
γ (t)

)
.

By the mountain pass lemma (see [21]), we obtain that problem (8) has a solution u′′
μ sat-

isfying Jμ(u′′
μ) = c̃μ > 0. Consider the functional

I(u) = a
∫

�

|∇u|p(x)

p(x)
dx +

b
2

(∫

�

|∇u|p(x)

p(x)
dx

)2

–
1

2p+

∫

�

|u+|2p+ dx,

where u+ = max{±u, 0}. It is easy to see that Jμ(u) ≤ I(u) for any u ∈ W 1,p(x)
0 (�). We

can choose v0 ∈ W 1,p(x)
0 (�)\{0} such that I(tv0) → –∞ as t → +∞. Then Jμ(u′′

μ) = c̃μ ≤
supt>0 I(tv0) = L.

Since Jμ(u′
μ) < Jμ(0) < Jμ(u′′

μ), we know that u′
μ and u′′

μ are two nontrivial solutions of
problem (8). Let uμ be a nontrivial critical of Jμ and u±

μ = max{±uμ, 0}. After a direct
calculation, we derive that (a + b

∫

�
|∇u–

μ|p(x) dx)
∫

�
|∇u–

μ|p(x) dx = 〈J ′
μ(uμ), u–

μ〉 = 0, which
implies that u–

μ = 0. Hence, uμ ≥ 0. Therefore, u′
μ and u′′

μ are two nonnegative nontrivial
solutions of problem (8). The proof is complete. �
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3 L∞-estimate of nontrivial solutions
In this section, we show that the solutions of perturbation equation (8) are indeed the
solutions of the original problem (1). For this purpose, we need the following uniform
L∞-estimate for critical points of the functional Jμ.

Proposition 3.1 Suppose that a ≥ 0, b > 0, conditions (P1)–(P3) hold. If v is a critical point
of Jμ with Jμ(v) ≤ L, then there exist λ3 > 0 and a positive constant M = M(L) independent
of μ such that ‖v‖L∞(�) ≤ M for any λ ∈ (0,λ3).

To prove Proposition 3.1, we need some preliminaries. Let β = 0 and n = 0 in Corollary 2
on page 139 of [18], we obtain the following lemma.

Lemma 3.2 Let 1 ≤ p < N , p ≤ q ≤ Np
N–p , and α1 = 1 – N(q–p)

pq . Then

‖u‖Lq(RN ) ≤ C
∥
∥|x|α1∇u

∥
∥

Lp(RN )

for all u ∈D(RN ), where D(RN ) is the space of functions in C∞(RN ) with compact supports
in R

N .

Lemma 3.3 Suppose that (P1) – (P3) hold. Then there exists C > 0 such that
∫

�

|u|p– dx ≤ C
∫

�

|x|α|∇u|p(x) dx (16)

for all u ∈ W 1,p(x)
0 (�) with

∫

�
|x|α|∇u|p(x) dx ≥ 1.

Proof If the conclusion does not hold, then there exists a sequence {un} ⊂ W 1,p(x)
0 (�) such

that

n
∫

�

|x|α|∇un|p(x) dx ≤
∫

�

|un|p– dx (17)

and
∫

�

|x|α|∇un|p(x) dx ≥ 1.

Therefore,

ηp–
n =

∫

�

|un|p– dx ≥ n → ∞ as n → +∞. (18)

Set un = ηnvn. Then
∫

�

|vn|p– dx = η–p–
n

∫

�

|un|p– dx = 1.

Combining (17) with (18), we have

n
∫

�

|x|α|∇vn|p(x) dx ≤ nη–p–
n

∫

�

|x|α|∇un|p(x) dx

≤ η–p–
n

∫

�

|un|p– dx = 1,
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which implies that

∫

�

|x|α|∇vn|p(x) dx → 0 as n → +∞. (19)

Therefore, for any δ > 0, we obtain

∫

�δ

|∇vn|p(x) dx ≤ 1
δα

∫

�δ

|x|α|∇vn|p(x) dx → 0 as n → +∞.

By the Young inequality, for any ε > 0, one has

∫

�δ

|∇vn|p– dx ≤
∫

�δ

(
ε + Cε|∇vn|p(x))dx.

According to the arbitrariness of ε > 0, we have

∫

�δ

|∇vn|p– dx → 0 as n → +∞. (20)

Noticing that ∂� ⊂ ∂�δ and vn = 0 on ∂�, by the Sobolev embedding theorem, we obtain

∫

�δ

|vn|p∗
– dx → 0 as n → +∞ (21)

for all δ > 0. Set p = p– and q = 2p+, it follows from Lemma 3.2 that

‖u‖L2p+ (RN ) ≤ C
(∫

RN
|x|αp– |∇u|p– dx

) 1
p–

(22)

for all u ∈ D(RN ). Let ψ ∈ C∞
0 (RN ) satisfy |ψ(x)| ≤ 1, ψ(x) = 1 for |x| ≤ δ1 < 1

2 , ψ(x) = 0
for |x| ≥ 2δ1, and |∇ψ | ≤ C for x ∈ R

N . Using the Hölder inequality, we deduce from (22)
that

(∫

Bδ1

|vn|2p+ dx
) p–

2p+ ≤
(∫

RN
|ψvn|2p+ dx

) p–
2p+ ≤ C

∫

RN
|x|αp– |∇ψvn|p– dx

≤ C
∫

RN
|x|αp–

(|ψ |p– |∇vn|p– + |vn|p– |∇ψ |p–
)

dx

≤ C
∫

B2δ1

|x|αp– |∇vn|p– dx + C
∫

�δ1

|vn|p– dx

≤ Cε

∫

B2δ1

|x|α|∇vn|p(x) dx

+ ε

∫

B2δ1

|x|αp–
p(x)–1

p(x)–p– dx + C
∫

�δ1

|vn|p– dx

≤ Cε

∫

B2δ1

|x|α|∇vn|p(x) dx + εδN
1 + C

(∫

�δ1

|vn|p∗
– dx

) p–
p∗–

. (23)
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It implies from (19), (21), and (23) that

∫

Bδ1

|vn|p– dx ≤ C
(∫

Bδ1

|vn|2p+ dx
) p–

2p+ → 0 as δ1 → 0 and n → +∞.

By the Hölder inequality, it follows from (21) that

∫

�δ1

|vn|p– dx ≤ C
(∫

�δ1

|vn|p∗
– dx

) p–
p∗– → 0 as n → +∞.

Therefore, we have

∫

�

|vn|p– dx → 0 as n → +∞,

which contradicts the fact that
∫

�

|vn|p– dx = 1.

The proof of Lemma 3.3 is completed. �

Lemma 3.4 Suppose that a ≥ 0, b > 0, conditions (P1)–(P3) hold. If Jμ(u) ≤ L and J ′
μ(u) = 0,

then there exist λ3 > 0 and C = C(L) > 0 independent of μ such that

∫

�

|x|α|∇u|p(x) dx ≤ C for any λ ∈ (0,λ3).

Proof If
∫

�
|x|α|∇u|p(x) dx < 1, we are done. Otherwise, by Lemma 2.1 and Lemma 3.3, we

derive from (P3) that

L ≥ Jμ(u) –
1

2p+

〈
J ′
μ(u), u

〉

= a
∫

�

(
1

p(x)
–

1
2p+

)

|∇u|p(x) dx +
∫

�

(
gμ(u)u

2p+
– Gμ(u)

)

dx

+
(

1
2p+

–
1

p–

)

λ

∫

�

up–
+ dx +

b
2

∫

�

1
p(x)

|∇u|p(x) dx
∫

�

(
1

p(x)
–

1
p+

)

|∇u|p(x) dx

≥ b
2

∫

�

1
p(x)

|∇u|p(x) dx
∫

�

(
1

p(x)
–

1
p+

)

|∇u|p(x) dx –
(

1
p–

–
1

2p+

)

λ

∫

�

up–
+ dx

≥ b
2

∫

�

c|x|α
p+(p+ – c|x|α)

|∇u|p(x) dx
∫

�

1
p(x)

|∇u|p(x) dx –
(

1
p–

–
1

2p+

)

λ

∫

�

up–
+ dx

≥ C3

∫

�

|x|α|∇u|p(x) dx
∫

�

|∇u|p(x) dx – C4λ

∫

�

|x|α|∇u|p(x) dx

≥ C3

(∫

�

|x|α|∇u|p(x) dx
)2

– C4λ

∫

�

|x|α|∇u|p(x) dx

≥ (C3 – C4λ)
∫

�

|x|α|∇u|p(x) dx. (24)
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Set C = 2L/C5 and λ3 = C5/2C4. It implies from (24) that
∫

�
|x|α|∇u|p(x) dx ≤ C for any

λ ∈ (0,λ3). �

Lemma 3.5 Suppose that a ≥ 0, b > 0, conditions (P1)–(P3) hold. If Jμ(u) ≤ L and J ′
μ(u) = 0,

then there exists C = C(L) > 0 independent of μ such that

∫

�

|∇u|p(x) dx ≤ C for any λ ∈ (0,λ3).

Proof By the definition of function mμ, we know that mμ(t) = t for t ≤ 1
μ

and mμ(t) ≥ 1
μ

for t > 1
μ

. Therefore, we have

gμ(u) ≤ Cμr|u|2p++r–1 ≤ C
(
1 + |u|2p++r–1) (25)

for any μ ∈ (0, 1]. It follows from J ′
μ(u) = 0 that u is a solution of problem (8). Multiply

problem (8) by u and integrate to obtain

b
∫

�

1
p(x)

|∇u|p(x) dx
∫

�

|∇u|p(x) dx ≤
(

a + b
∫

�

1
p(x)

|∇u|p(x) dx
)∫

�

|∇u|p(x) dx

=
∫

�

(
gμ(u) + λup––1

+
)
udx

≤ C
(

1 +
∫

�

|u|2p++r dx
)

(26)

for any λ ∈ (0,λ3). Choose θ = Nrp–
(2p++r)[2p+(p––N)+Np–] , it is easy to verify θ ∈ (0, 1]. From

Lemma 1.7 we have

∫

�

|u|2p++r dx ≤ A
(∫

�

|∇u|p– dx
) (2p++r)θ

p–
(∫

�

|u|2p+ dx
) (2p++r)(1–θ )

2p+

≤ A
(∫

�

1 + |∇u|p(x) dx
) (2p++r)θ

p–
(∫

�

|u|2p+ dx
) (2p++r)(1–θ )

2p+
. (27)

It follows from (26) and (27) that

b
p+

(∫

�

|∇u|p(x) dx
)2

≤ b
∫

�

1
p(x)

|∇u|p(x) dx
∫

�

|∇u|p(x) dx

≤ C + C
∫

�

|u|2p++r dx

≤ C + CA
(∫

�

|∇u|p(x) dx + |�|
) (2p++r)θ

p–

×
(∫

�

|u|2p+ dx
) (2p++r)(1–θ )

2p+
. (28)

According to (7), we have

(2p+ + r)θ
p–

=
Nr

[2p+(p– – N) + Np–]
< 2.
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To prove that
∫

�
|∇u|p(x) dx is bounded, we just prove that

∫

�
|u|2p+ dx is bounded. Now

we show that
∫

�
|u|2p+ dx is uniformly bounded. By the Sobolev embedding theorem and

Lemma 3.4, for any δ > 0, we have

∫

�δ

|u|p∗
– dx ≤ C

(∫

�δ

|∇u|p– dx
) p∗–

p–

≤ C
(

1 +
∫

�δ

|∇u|p(x) dx
) p∗–

p–

≤ C + Cδ

(∫

�δ

|x|α|∇u|p(x) dx
) p∗–

p–

≤ C + Cδ

(∫

�

|x|α|∇u|p(x) dx
) p∗–

p–

≤ Cδ . (29)

Noticing that 1 < 2p+ < p∗
–, by the Hölder inequality and (29), we have

∫

�δ

|u|2p+ dx ≤ C
(∫

�δ

|u|p∗
– dx

) 2p+
p∗– ≤ Cδ (30)

for any δ > 0. It implies from (23) that

(∫

Bδ

|u|2p+ dx
) p–

2p+ ≤ Cε

∫

B2δ

|x|α|∇u|p(x) dx + εδN + C
(∫

�δ

|u|p∗
– dx

) p–
p∗–

≤ Cε

∫

�

|x|α|∇u|p(x) dx + εδN + C
(∫

�δ

|u|p∗
– dx

) p–
p∗–

.

By Lemma 3.4, we obtain

∫

Bδ

|u|2p+ dx ≤ Cδ . (31)

We deduce from (30) and (31) that

∫

�

|u|2p+ dx ≤ C. (32)

According to (28) and (32), we have
∫

�
|∇u|p(x) dx is uniformly bounded. �

Proof of Proposition 3.1 Using the Sobolev embedding theorem and Lemma 3.5, we have

∫

�

|v|p∗
– dx ≤ C

(∫

�

|∇v|p– dx
) p∗–

p– ≤ C
(∫

�

(
1 + |∇v|p(x))dx

) p∗–
p– ≤ C. (33)
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Let s > 0 and t = 2p+ + r. According to (25), multiply problem (8) by vsp–+1 and integrate to
obtain

b
∫

�

1
p(x)

|∇v|p(x) dx
∫

�

|∇v|p(x)–2∇v∇vsp–+1 dx

≤
(

a + b
∫

�

1
p(x)

|∇v|p(x) dx
)∫

�

|∇v|p(x)–2∇v∇vsp–+1 dx

=
∫

�

(
gμ(v) + λvp––1

+
)
vsp–+1 dx

≤ C
(

1 +
∫

�

|v|sp–+t dx
)

for any λ ∈ (0,λ3). It implies that

b
∫

�

1
p(x)

|∇v|p(x) dx
∫

�

|∇v|p– vsp– dx

≤ b
∫

�

1
p(x)

|∇v|p(x) dx
∫

�

(
1 + |∇v|p(x))vsp– dx

=
b

p–

∫

�

|∇v|p(x) dx
(∫

�

vsp– dx +
1

sp– + 1

∫

�

|∇v|p(x)–2∇v∇vsp–+1 dx
)

≤ Cb
p–

∫

�

|∇v|p(x) dx
(

1 +
∫

�

|v|sp–+t dx
)

. (34)

On the one hand, by the Sobolev embedding theorem, we have

∫

�

|∇v|p– vsp– dx =
1

(1 + s)p–

∫

�

∣
∣∇v1+s∣∣p– dx

≥ C
(1 + s)p–

(∫

�

|v|(1+s)p∗
– dx

) p–
p∗–

. (35)

On the other hand, by the Hölder inequality and (33), we have

∫

�

|v|sp–+t dx ≤
(∫

�

|v|p∗
– dx

) t–p–
p∗–

(∫

�

|v|p–(1+s) p∗–
p∗––t+p– dx

) p∗––t+p–
p∗–

≤ C
(

1 +
∫

�

|∇v|p(x) dx
) t–p–

p–
(∫

�

|v|(1+s) p∗–
d dx

) dp–
p∗–

, (36)

where d = p∗
––t+p–

p–
> 1. According to (34), (35), and (36), we obtain

b
p+

∫

�

|∇v|p(x) dx
(∫

�

|v|(1+s)p∗
– dx

) p–
p∗–

≤ b
∫

�

1
p(x)

|∇v|p(x) dx
(∫

�

|v|(1+s)p∗
– dx

) p–
p∗–



Chu and He Boundary Value Problems         (2023) 2023:35 Page 17 of 18

≤ b
p–

(
C(1 + s)

)p–

×
∫

�

|∇v|p(x) dx
(

1 +
(

1 +
∫

�

|∇v|p(x) dx
) t–p–

p–
)(∫

�

|v|(1+s) p∗–
d dx

) dp–
p∗–

.

Since t–p–
p–

> 1 and
∫

�
|∇v|p(x) dx < C, we have

(∫

�

|v|(1+s)p∗
– dx

) p–
p∗– ≤ (

C(1 + s)
)p– max

{

1,
(∫

�

|v|(1+s) p∗–
d dx

) dp–
p∗–

}

,

which implies that

max

{

1,
(∫

�

|v|(1+s)p∗
– dx

) 1
(1+s)p∗–

}

≤ (
C(1 + s)

) 1
1+s max

{

1,
(∫

�

|v|(1+s) p∗–
d dx

) d
(1+s)p∗–

}

. (37)

Now we carry out an iteration process. Set sk = dk – 1 for k = 1, 2, . . . . By (37), we have

max

{

1,
(∫

�

|v|dk p∗
– dx

) 1
dk p∗–

}

≤ (
Cdk) 1

dk max

{

1,
(∫

�

|v|dk–1p∗
– dx

) 1
dk–1p∗–

}

≤
k∏

j=1

(
Cdj)

1
dj max

{

1,
(∫

�

|v|p∗
– dx

) 1
p∗–

}

= C
∑k

j=1 d–j · d
∑k

j=1 jd–j
max

{

1,
(∫

�

|v|p∗
– dx

) 1
p∗–

}

. (38)

Since d > 1, the series
∑∞

j=1 d–j and
∑∞

j=1 jd–j are convergent. Letting k → ∞, we conclude
from (33) and (38) that ‖v‖L∞(�) ≤ M. The proof is complete. �

Proof of Theorem 1.1 Let λ∗ = min{λ0, λ3}. By Proposition 2.4, we know that problem (8)
has at least two nonnegative nontrivial solutions u′

μ and u′′
μ satisfying

Jμ
(
u′

μ

)
< 0 < Jμ

(
u′′

μ

)
< L for all λ ∈ (0,λ∗).

By the definition of function mμ, we have mμ(t) = t for t ≤ 1
μ

. Hence, problem (8) reduces
to problem (1) for |u| ≤ 1

μ
. Let μ < 1

2M . By Proposition 3.1, it is easy to see that u′
μ and u′′

μ

are indeed two nonnegative nontrivial solutions of problem (1). �
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