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Abstract
In the article, we present multiple solutions for a second-order singular Dirichlet
boundary value problem that arises when modeling the ocean flow of the Antarctic
Circumpolar Current. The main tools of the proof are the Leray–Schauder nonlinear
alternative principle and a well-known fixed point theorem in cones.
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1 Introduction
Gyres are known as the circulation of ocean flows derived by the combination of gravity
and Coriolis forces produced by the Earth’s rotation. To balance the two forces against each
other, the ocean flows adjust to the two forces acting primarily on them [18, 19]. Especially,
the Antarctic Circumpolar Current (ACC) plays an extremely key role in global climate
among the ocean flows. It is the main way of exchanging water between the Pacific, Indian,
and Atlantic oceans.

Recently, the existence of solutions to geophysical fluid dynamics nonlinear governing
equations, proposed by Constantin et al. [10–16], has been widely discussed and studied
in this field. In practice, these geophysical flows have horizontal velocities with about a
factor 104 larger than the vertical velocities [32]. Therefore, on a rotating sphere, a stream
function can be introduced to model gyres as shallow water flows by neglecting vertical
velocities in [16]. In spherical coordinates, the model can be transformed into a planar
elliptic partial differential equation under the stereographic projection. By ignoring the
change of azimuth variation, Chu first transformed the arctic gyres model (i.e., elliptic
partial differential equation) into a second-order differential equation by seeking a radially
symmetric solution in [2]. The existence and some explicit solutions of non-trivial solu-
tions in the case of constant vorticity and linear vorticity functions were presented. After
that, a series of works [3–5] were devoted to studying this problem with nonlinear vortic-
ity functions and different kinds of boundary value conditions. Marynets and Haziot also
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considered such equations about the Antarctic Circumpolar Current with suitable bound-
ary conditions in reference [20, 21, 25–29]. In what follows, we first review the model of
the general motion of a gyre flow in spherical coordinates. Let ϕ ∈ [0, 2π ) be the azimuthal
angle (i.e., the angle of longitude) and θ ∈ [0,π ) be the polar angle, θ = 0 corresponds to
the North Pole. On the spherical Earth, the azimuthal and velocity components of the
horizontal gyre flow are respectively given by

1
sin θ

ψϕ and – ψθ ,

where ψ(θ ,ϕ) is the stream function. See [16], recording

�(θ ,ϕ) = ψ(θ ,ϕ) + ω cos θ , (1.1)

where � is the stream function related to the ocean’s motion. The governing equation for
the gyres is

1
sin2 θ

�ϕϕ + �θ cot θ + �θθ = F(� – ω cos θ ), (1.2)

where ω > 0 is the non-dimensional Coriolis parameter, 2ω cos θ is the planetary vorticity
generated by Earth’s rotation, F(� – ω cos θ ) is the ocean vorticity. The total vorticity of
the ocean flow equals the sum of 2ω cos θ and F(� – ω cos θ ).

Let (r,φ) be the polar coordinates in the equatorial plane. By making a stereographic
projection of the unit sphere from the North Pole to the equatorial plane

ξ = reiφ with r = cot

(
θ

2

)
=

sin θ

1 – cos θ
, (1.3)

we have

cos θ =
ξ ξ̄ – 1
ξ ξ̄ + 1

, sin θ =
2
√

ξ ξ̄

ξ ξ̄ + 1
, ∂θ = –

ξ

sin θ
∂ξ –

ξ̄

sin θ
∂ξ̄ , ∂φ = iξ∂ξ – iξ̄ ∂ξ̄ .

Using (1.3) to cancel several terms, we obtain that equation (1.2) can be simplified as

�ξξ̄ =
F(� – ω((ξ ξ̄ – 1)/(ξ ξ̄ + 1)))

(1 + ξ ξ̄ )2
. (1.4)

By computing partial derivatives in (1.1), we have

�ξ = ψξ +
2ωξ̄

(1 + ξ ξ̄ )2
, �ξξ̄ = ψξξ̄ +

2ω

(1 + ξ ξ̄ )2
–

4ωξξ̄

(1 + ξ ξ̄ )3
. (1.5)

Together (1.5) with (1.4), we get

ψξξ̄ + 2ω
1 – ξ ξ̄

(1 + ξ ξ̄ )3
–

F(ψ)
(1 + ξ ξ̄ )2

= 0.
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According to Cartesian coordinates (x, y), the gyre flow model (1.2) can be transformed
into the elliptic partial differential equation

�ψ + 8ω
1 – (x2 + y2)
(1 + x2 + y2)3 –

4F(ψ)
(1 + x2 + y2)2 = 0, (1.6)

where � = ∂2
x + ∂2

y is the Laplace operator, represented by the Cartesian coordinates on
the equatorial plane, and the unknown function ψ(x, y) expresses the stream function.

Since ACC is one of the most important ocean currents with considerable uniformity
in the azimuthal direction (see the discussions in [14, 33]). Therefore, we can furtherly
simplify problem (1.2).

From

r =
√

x2 + y2,
∂r
∂x

=
x√

x2 + y2
=

x
r

,
∂r
∂y

=
y√

x2 + y2
=

y
r

,

we obtain

ψx =
x
r
ψ̇(r) and ψy =

y
r
ψ̇(r),

ψxx =
y2

r3 ψ̇(r) +
x2

r2 ψ̈(r) and ψyy =
x2

r3 ψ̇(r) +
y2

r2 ψ̈(r),

therefore

�ψ = ψ̈(r) +
1
r
ψ̇(r).

Thus, linking with (1.6), we have

ψ̈(r) +
1
r
ψ̇(r) + 8ω

1 – r2

(1 + r2)3 –
4F(ψ(r))
(1 + r2)2 = 0. (1.7)

Actually, when the gyre flow has no variation in the azimuthal direction, we can look for
a radial symmetric solutions ψ = ψ(r) of problem (1.7).

Using the change of variables

ψ(r) = U(s), s1 < s < s2

with r = e–s/2 for

0 < s1 = –2 ln(r+) < s < s2 = –2 ln(r–)

and 0 < r– < r+ < 1,
we obtain

U̇(s) = –
1
2

e–s/2ψ̇
(
e–s/2) = –

1
2

rψ̇(r)

and

Ü(s) =
1
4

e–s/2ψ̇
(
e–s/2) +

1
4

e–sψ̈
(
e–s/2) =

1
4

rψ̇(r) +
1
4

r2ψ̈(r).
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Then equation (1.7) is transformed into the second-order ordinary differential equation

Ü(s) –
es

(1 + es)2 F
(
U(s)

)
+

2ωes(es – 1)
(1 + es)3 = 0, s1 < s < s2. (1.8)

In the newest literature [7, 17, 34–36, 38], many functional-analytic techniques were
used to research the solutions of this second-order differential equation (1.8) with large
classes of functions for the nonlinear functions F , such as the lower and upper solutions,
theory of topological degree and so on. But when the nonlinear functions F may be singu-
lar at U = 0, it is rarely discussed as far as we know. In the present paper, we will consider
this situation for the Antarctic Circumpolar Current.

Between parallels of latitude defined by an appropriate choice of r± ∈ (0, 1) with r+/r– ∈
(1, 2), the flow in a jet component of the ACC is described by equation (1.8) and the fol-
lowing boundary conditions

U(s1) = U(s2) = 0, (1.9)

which means the boundary of the jet is a streamline, which confines a particle because the
flow is steady.

For 0 < s1 < s2, using the change of variables

u(t) = U(s), t =
s – s1

s2 – s1
,

the second-order boundary value problem (1.8)–(1.9) can be transformed into the follow-
ing two-point boundary value problem

⎧⎨
⎩

ü – α(t)F(u(t)) + β(t) = 0, 0 < t < 1,

u(0) = u(1) = 0,
(1.10)

where

α(t) =
(s2 – s1)2e(s2–s1)t+s1

(1 + e(s2–s1)t+s1 )2 =
(s2 – s1)2

4 cosh2( (s2–s1)t+s1
2 )

> 0 (1.11)

and

β(t) =
2ω(s2 – s1)2e(s2–s1)t+s1 (e(s2–s1)t+s1 – 1)

(1 + e(s2–s1)t+s1 )3

=
ω(s2 – s1)2 sinh( (s2–s1)t+s1

2 )
2 cosh3( (s2–s1)t+s1

2 )
> 0. (1.12)

Due to the element inequality and the above conditions, we can easily know that the nu-
merical range of α(t) is α(t) ∈ [ (s2–s1)2

4 cosh2( s2
2 )

, (s2–s1)2

4 cosh2( s1
2 )

] ⊆ (0, (ln 2)2).
In the present paper, we are especially interested in the nonlinear vorticity function F(u)

with attractive singularity in the dependent variable u = 0, i.e., limu→0+ F(u) = –∞, which
means that problem (1.10) is a singular boundary value problem. The study of singular
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boundary value problems has come from many applications since the middle 1970s. In
1979, Taliaferro [31] established that the singular boundary value problem

⎧⎨
⎩

ÿ + q(t)y–a = 0, 0 < t < 1,

y(0) = y(1) = 0,

has a solution y(t) ∈ C[0, 1] ∩ C1(0, 1); here a > 0, q ∈ C(0, 1) with q > 0 on (0, 1) and∫ 1
0 t(1 – t)q(t) dt < ∞. This generated the interest of many researchers in singular prob-

lems frequently arising in the study of nonlinear phenomena. In the 1980s and 1990s,
many scholars studied the singular boundary value problems:

⎧⎨
⎩

ÿ + q(t)f (t, y) = 0, 0 < t < 1,

y(0) = y(1) = 0.
(1.13)

Agarwal and O’Regan discussed the existence and multiplicity of solutions to singular
positive boundary value problems (1.13) in [1]. They used the Leray–Schauder alternative
principle and a well-known fixed point theorem in cones. Chu generalized the results to
singular Dirichlet systems in [8]. There are also some other classical tools that have been
used to discuss periodic singular differential equations in literature [6, 9, 22, 23]. In this pa-
per, we adopt the ideas in [1, 8] to achieve multiple solutions for the second-order singular
Dirichlet boundary value problem of Antarctic Circumpolar Current

⎧⎨
⎩

ü + α(t)(u–a + νub) + β(t) = 0, 0 < t < 1,

u(0) = u(1) = 0,
(1.14)

where α(t), β(t) are described as in (1.11) and (1.12), a > 0, b > 0, and ν ∈ R is a given
parameter.

In this paper, we use the notation R
+ = [0,∞) and R

– = (–∞, 0]. If φ ≥ 0 for all t ∈ [0, 1],
and it is positive in a set of positive measure, we say that φ � 0. We still use the supremum
norm of C[0, 1] with the norm ‖u‖ = supt∈[0,1] |u(t)|.

The rest of the paper is organized as follows. In Sect. 2, several preliminary knowledge
and theorems are given. In Sect. 3, we state and prove the existence results when the non-
linear oceanic vorticity F has an attractive singularity. Moreover, some applications of the
new results to (1.10) are also presented in Sect. 3. A brief conclusion is given in Sect. 4.

2 Preliminaries and notation
Let us first review the following lemma and an existence principle in [1], which will be
required in Sect. 3.

Lemma 2.1 ([1]) Let

K =
{

u ∈C[0, 1] : u(t) ≥ 0, t ∈ [0, 1] and u(t) is concave on [0, 1]
}

.

Then for all u ∈K,

u(t) ≥ t(1 – t)‖u‖, 0 ≤ t ≤ 1.
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Consider the scalar problem

⎧⎨
⎩

ü + f (t, u) = 0, 0 < t < 1,

u(0) = a, u(1) = b.
(2.1)

Theorem 2.2 ([1]) Suppose the following two conditions are satisfied:
(1) the map u → f (t, u) is continuous for a.e. 0 ≤ t ≤ 1,
(2) the map t → f (t, u) is measurable for all u ∈R.

(I) Assume for each r > 0, there exists hr ∈ L1
loc(0, 1) with

∫ 1
0 t(1 – t)hr(t) dt < ∞ such

that ‖u‖ ≤ r implies |f (t, u)| ≤ hr(t) for a.e. t ∈ (0, 1) holds. In addition, suppose
that there is a constant M > |a| + |b|, independent of λ, with

‖u‖ = sup
0≤t≤1

∣∣u(t)
∣∣ �= M

for any solution u ∈ AC[0, 1] (with u̇ ∈ ACloc(0, 1)) to

⎧⎨
⎩

ü + λf (t, u) = 0, 0 < t < 1,

u(0) = a, u(1) = b,

for each λ ∈ (0, 1). Then (2.1) has a solution u with ‖u‖ ≤ M.
(II) Assume that there exists h ∈ L1

loc(0, 1) with
∫ 1

0 t(1 – t)h(t) dt < ∞ such that
|f (t, u)| ≤ h(t) for a.e. t ∈ (0, 1) and u ∈R. Then (2.1) has a solution.

Next we present the following two well-known results that will be applied to demon-
strate our main results.

Theorem 2.3 (Leray–Schauder alternative principle [30]) Assume that � is an open subset
of a convex set K in a normed linear space X, and p ∈ �. Let T : � → K be a compact
continuous map. Then one of the following two conclusions holds:

(I) T has at least one fixed point in �.
(II) There exists u ∈ ∂� and 0 < λ < 1 such that u = λTu + (1 – λ)p.
Let K be a cone in X and D be a subset of X. We write ∂K D = (∂D) ∩ K and DK = D ∩ K .

Theorem 2.4 ([24]) Let X be a Banach space, and let K be a cone in X. Assume that �1,
�2 are open bounded subsets of X with �1

K �= ∅, �1
K ⊂ �2

K . Let

S : �2
K → K

be a continuous and completely continuous operator such that
(i) u �= λSu for λ ∈ [0, 1) and u ∈ ∂K�1, and

(ii) there exists v ∈ K\{0} such that u �= Su + λv for all u ∈ ∂K�2 and all λ > 0.
Then S has a fixed point in �

2
K\�1

K .

In the present paper, we research the second-order singular Dirichlet boundary value
problem (1.10). Throughout this paper, we suppose that F : [0, 1] × R

+\{0} → R
– is the

continuous oceanic vorticity function and limu→0+ F(t, u) = –∞.
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Due to

∫ 1

0
t(1 – t)β(t) dt =

∫ 1

0
t(1 – t) · ω(s2 – s1)2 sinh( (s2–s1)t+s1

2 )
2 cosh3( (s2–s1)t+s1

2 )
dt

≤ 1
4
ω(s2 – s1)2

∫ 1

0

sinh( (s2–s1)t+s1
2 )

2 cosh3( (s2–s1)t+s1
2 )

dt

=
1
4
ω(s2 – s1)

∫ 1

0

d[cosh( (s2–s1)t+s1
2 )]

cosh3( (s2–s1)t+s1
2 )

= –
1
8
ω(s2 – s1) cosh–2

(
(s2 – s1)t + s1

2

)∣∣∣∣
1

0

= –
1
8
ω(s2 – s1)

(
1

cosh2( s2
2 )

–
1

cosh2( s1
2 )

)

< +∞.

Using Theorem 2.2(II), we know that the following problem

⎧⎪⎨
⎪⎩

ü + ω(s2–s1)2 sinh( (s2–s1)t+s1
2 )

2 cosh3( (s2–s1)t+s1
2 )

= 0, 0 < t < 1,

u(0) = 0, u(1) = 0,

has a solution μ. Factually, μ : R→R
+ can be expressed as

μ(t) =
∫ 1

0
G(t, τ ) · ω(s2 – s1)2 sinh( (s2–s1)τ+s1

2 )
2 cosh3( (s2–s1)τ+s1

2 )
dτ ,

where

G(t, s) =

⎧⎨
⎩

t(1 – s), 0 ≤ t ≤ s ≤ 1,

s(1 – t), 0 ≤ s ≤ t ≤ 1,

is the Green function for

⎧⎨
⎩

ü = 0, 0 < t < 1,

u(0) = 0, u(1) = 0.

Since G(t, s) ≥ 0 and β(t) = ω(s2–s1)2 sinh( (s2–s1)t+s1
2 )

2 cosh3( (s2–s1)t+s1
2 )

> 0, we can easily know that μ(t) ≥ 0.

In this paper, we denote

μ∗ = min
t

μ(t), μ∗ = max
t

μ(t),

we can easily know μ∗ ≥ 0.
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To conclude the preliminaries, we observe that if the singular Dirichlet boundary value
problem

⎧⎨
⎩

ü – (s2–s1)2

4 cosh2( (s2–s1)t+s1
2 )

F(t, u(t) + μ(t)) = 0, 0 < t < 1,

u(0) = 0, u(1) = 0,
(2.2)

has a nonnegative solution u satisfying u(t) + μ(t) > 0 for t ∈ (0, 1) and 0 < ‖u‖ < r, we can
calculate the system to get

ü + μ̈ –
(s2 – s1)2

4 cosh2( (s2–s1)t+s1
2 )

F
(
t, u(t) + μ(t)

)
+

ω(s2 – s1)2 sinh( (s2–s1)t+s1
2 )

2 cosh3( (s2–s1)t+s1
2 )

= 0,

that is, y(t) = u(t) + μ(t) is a nonnegative solution of (1.10) with 0 < ‖y – μ‖ < r. Therefore,
for the convenience, we will consider (2.2) in the next section.

3 Main results
Define an operator A : X → X by

(Au)(t) = –
∫ 1

0

(s2 – s1)2

4 cosh2( (s2–s1)s+s1
2 )

F
(
s, u(s) + μ(s)

)
G(t, s) ds.

It is well known that seeking a solution of (2.2) is equivalent to seeking a fixed point for
the operator A.

Theorem 3.1 Assume that three conditions are satisfied:
(H1) For each positive constant L, there is a continuous function φL � 0 satisfying

F(t, u) ≤ –φL(t)

for (t, u) ∈ (0, 1) × (0, L];
(H2) there exist two nonnegative continuous functions g(u) and h(u) on (0,∞) satisfying

–g(u) – h(u) ≤ F(t, u) ≤ 0

for (t, u) ∈ (0, 1) × (0,∞), where g(u) is non-increasing, and h(u)/g(u) is non-
decreasing in u;

(H3) there exists a constant r > 0 satisfying:

(s2 – s1)2

24 cosh2( s1
2 )

{
1 +

h(r + μ∗)
g(r + μ∗)

}
<

∫ r

0

1
g(u)

du

Then (1.10) has at least a nonnegative solution u ∈ C[0, 1] ∩ C2(0, 1) with u(t) > 0 for all
t ∈ (0, 1) and 0 < ‖u – μ‖ < r.

Proof From the end of Sect. 2, it is enough if we find that (2.2) has a nonnegative solution
u such that 0 < ‖u‖ < r and u(t) + μ(t) > 0 for t ∈ (0, 1).
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Since (H3) holds, we choose a positive constant ε > 0 and ε < r, satisfying

(s2 – s1)2

24 cosh2( s1
2 )

{
1 +

h(r + μ∗)
g(r + μ∗)

}
<

∫ r

ε

1
g(u)

du. (3.1)

Choosing n0 from {1, 2, . . .} satisfying 1
n0

< ε
2 . Let N0 = {n0, n0 + 1, . . .}. We will consider the

family of problems

⎧⎨
⎩

ü – λ
(s2–s1)2

4 cosh2( (s2–s1)t+s1
2 )

Fm(t, u(t) + μ(t)) = 0, 0 < t < 1,

u(0) = u(1) = 1
m , m ∈ N0,

(3.2)

where λ ∈ [0, 1] and

Fm(t, u) =

⎧⎨
⎩

F(t, u), u ≥ 1
m ,

F(t, 1
m ), u ≤ 1

m .

Define the operator Am : X → X:

(
Amu

)
(t) =

∫ 1

0
G(t, τ )

[
–

(s2 – s1)2

4 cosh2( (s2–s1)τ+s1
2 )

Fm(
τ , u(τ ) + μ(τ )

)]
dτ .

Then the solution of (3.2) is found if the following fixed point problem

u = λAmu +
1
m

(3.3)

is solved.
In what follows, we will declare that any fixed point u of (3.3) must satisfy ‖u‖ �= r for

any λ ∈ [0, 1]. Otherwise, assume that u is a fixed point of (3.3) for some λ ∈ [0, 1] with
‖u‖ = r. Notice that since α(t) = (s2–s1)2

4 cosh2( (s2–s1)t+s1
2 )

> 0 and Fm(t, u) ≤ 0, we have

ü(t) = λ
(s2 – s1)2

4 cosh2( (s2–s1)t+s1
2 )

Fm(
t, u(t) + μ(t)

) ≤ 0, 0 ≤ t ≤ 1

and u(t) ≥ 1
m > 0 for 0 ≤ t ≤ 1. Therefore, by Lemma 2.1

u(t) ≥ t(1 – t)‖u‖.

Therefore, there exists tm ∈ (0, 1) with u̇(t) ≥ 0 on (0, tm), u̇(t) ≤ 0 on (tm, 1) and u(tm) =
‖u‖ = r. Then for τ ∈ (0, 1), according to (H2) and F(t, u) ≤ 0, we have

ü(τ ) = λ
(s2 – s1)2

4 cosh2( (s2–s1)τ+s1
2 )

Fm(
τ , u(τ ) + μ(τ )

)

= λ
(s2 – s1)2

4 cosh2( (s2–s1)τ+s1
2 )

F
(
τ , u(τ ) + μ(τ )

)

≥ (s2 – s1)2

4 cosh2( (s2–s1)τ+s1
2 )

[
–g

(
u(τ ) + μ(τ )

)
– h

(
u(τ ) + μ(τ )

)]
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≥ –
(s2 – s1)2

4 cosh2( s1
2 )

g
(
u(τ ) + μ(τ )

){
1 +

h(u(τ ) + μ(τ ))
g(u(τ ) + μ(τ ))

}
.

So

–ü(τ ) ≤ (s2 – s1)2

4 cosh2( s1
2 )

g
(
u(τ ) + μ(τ )

){
1 +

h(u(τ ) + μ(τ ))
g(u(τ ) + μ(τ ))

}
. (3.4)

Integrate (3.4) from tm to t(t ≥ tm) to obtain

–u̇(t) ≤ g
(
u(t)

){
1 +

h(r + μ∗)
g(r + μ∗)

}∫ t

tm

(s2 – s1)2

4 cosh2( s1
2 )

dτ . (3.5)

Therefore, we have

–
u̇(t)

g(u(t))
≤

{
1 +

h(r + μ∗)
g(r + μ∗)

}
(s2 – s1)2

4 cosh2( s1
2 )

∫ t

tm

dτ . (3.6)

Then integrating from tm to 1, we obtain

–
∫ 1

tm

u̇(t)
g(u(t))

dt ≤
{

1 +
h(r + μ∗)
g(r + μ∗)

}
(s2 – s1)2

4 cosh2( s1
2 )

∫ 1

tm

∫ t

tm

dτ dt.

That is

∫ r

1
m

du
g(u)

≤
{

1 +
h(r + μ∗)
g(r + μ∗)

}
(s2 – s1)2

4 cosh2( s1
2 )

∫ 1

tm

(1 – τ ) dτ . (3.7)

Consequently,

∫ r

ε

du
g(u)

≤
{

1 +
h(r + μ∗)
g(r + μ∗)

}
(s2 – s1)2

4 cosh2( s1
2 )

∫ 1

tm

(1 – τ ) dτ

≤
{

1 +
h(r + μ∗)
g(r + μ∗)

}
(s2 – s1)2

4 cosh2( s1
2 )

1
tm

∫ 1

tm

τ (1 – τ ) dτ . (3.8)

Similarly, integrating (3.4) from t(t ≤ tm) to tm and then from 0 to tm, we can obtain

∫ r

ε

du
g(u)

≤
{

1 +
h(r + μ∗)
g(r + μ∗)

}
(s2 – s1)2

4 cosh2( s1
2 )

1
1 – tm

∫ tm

0
τ (1 – τ ) dτ . (3.9)

When 0 < tm ≤ 1
2 , we have

1
1 – tm

∫ tm

0
τ (1 – τ ) dτ ≤ 2

∫ 1
2

0
τ (1 – τ ) dτ =

1
6

.

When 1
2 ≤ tm < 1, we have

1
tm

∫ 1

tm

τ (1 – τ ) dτ ≤ 2
∫ 1

1
2

τ (1 – τ ) dτ =
1
6

.
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Therefore, (3.8) and (3.9) imply

∫ r

ε

du
g(u)

≤ (s2 – s1)2

24 cosh2( s1
2 )

{
1 +

h(r + μ∗)
g(r + μ∗)

}
.

This contradicts with (3.1), which implies ‖u‖ �= r. Therefore, Theorem 2.2 ensures that

u = λAmu +
1
m

has a fixed point record as um. That is, the system

⎧⎨
⎩

ü – (s2–s1)2

4 cosh2( (s2–s1)t+s1
2 )

Fm(t, u(t) + μ(t)) = 0, 0 < t < 1,

u(0) = u(1) = 1
m , m ∈ N0,

(3.10)

has a solution record as um satisfying ‖um‖ ≤ r. Factually (as above)

1
m

≤ um(t) < r for t ∈ [0, 1].

um is certainly a positive solution of (3.10).
Following we will show that um(t) + μ(t) have a uniform sharper lower bound for all

m ∈ N0, that is, there exists a positive constant k independent of m satisfying

um(t) + μ(t) ≥ kt(1 – t) for t ∈ [0, 1]. (3.11)

Due to μ∗ ≥ 0, (3.11) is satisfied if we can establish that

um(t) ≥ kt(1 – t) for t ∈ [0, 1]. (3.12)

According to assumption (H1), there exists a continuous function φr+μ∗ � 0 satisfying
F(t, u) ≤ –φr+μ∗ (t) for all t ∈ (0, 1) and ‖u‖ ≤ r + μ∗. Let ur+μ∗

m be the unique solution of
(3.10). Using the Green function, the solution of (3.10) can be represented as

ur+μ∗
m (t) =

1
m

+ t
∫ 1

t
(1 – τ )

[
–

(s2 – s1)2

4 cosh2( (s2–s1)τ+s1
2 )

F
(
τ , um(τ ) + μ(τ )

)]
dτ

+ (1 – t)
∫ t

0
τ

[
–

(s2 – s1)2

4 cosh2( (s2–s1)τ+s1
2 )

F
(
τ , um(τ ) + μ(τ )

)]
dτ .

Therefore, we have

ur+μ∗
m (t) ≥ (s2 – s1)2

4 cosh2( s2
2 )

[
t
∫ 1

t
(1 – τ )φr+μ∗ (τ ) dτ + (1 – t)

∫ t

0
τφr+μ∗ (τ ) dτ

]

≡ (s2 – s1)2

4 cosh2( s2
2 )

�r+μ∗
(t).

Now it is easy to calculate that

�̇r+μ∗
(t) =

∫ 1

t
(1 – τ )φr+μ∗ (τ ) dτ –

∫ t

0
τφr+μ∗ (τ ) dτ for t ∈ (0, 1)
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with �r+μ∗ (0) = �r+μ∗ (1) = 0. If k0 ≡ ∫ 1
0 (1 – τ )φr+μ∗ (τ ) dτ exists, then �̇r+μ∗ (0) = k0; oth-

erwise, �̇r+μ∗ (0) = ∞. In either situation, there exists a constant k1 > 0, independent of
m, with �̇r+μ∗ (0) ≥ k1. Thus, there is an ε > 0 with �r+μ∗ (t) ≥ 1

2 k1t ≥ 1
2 k1t(1 – t) for all

t ∈ [0, ε]. Similarly, there exists a constant k2, independent of m, with –�̇r+μ∗ (1) ≥ k2.
Thus, there is a δ > 0 with �r+μ∗ (t) ≥ 1

2 k2(1 – t) ≥ 1
2 k2t(1 – t) for t ∈ [1 – δ, 1].

Finally, for t ∈ [ε, 1 – δ], it is easy to check that

�r+μ∗ (t)
t(1 – t)

is continuous on [ε, 1 – δ].

Then there exists a constant k3, independent of m, with �r+μ∗ (t) ≥ 1
2 k3t(1 – t). Let us

choose a positive constant k = min{ 1
2 k1, 1

2 k2, 1
2 k3}, then (3.12) is true.

Furtherly, we will prove

{um}m∈N0 is a bounded and equicontinuous family on [0, 1]. (3.13)

Returning to (3.6) (with u replaced by um), we have

–
u̇m(t)

g(um(t))
≤

{
1 +

h(r + μ∗)
g(r + μ∗)

}
(s2 – s1)2

4 cosh2( s1
2 )

(t – tm). (3.14)

On the other hand, we obtain

u̇m(t)
g(um(t))

≤
{

1 +
h(r + μ∗)
g(r + μ∗)

}
(s2 – s1)2

4 cosh2( s1
2 )

(tm – t). (3.15)

Consequently,

|u̇m(t)|
g(um(t))

≤
{

1 +
h(r + μ∗)
g(r + μ∗)

}
(s2 – s1)2

4 cosh2( s1
2 )

|t – tm|. (3.16)

We now declare that there exist c0 and c1 with c0 > 0, c1 < 1, c0 < c1 such that

c0 < inf{tm : m ∈ N0} ≤ sup{tm : m ∈ N0} < c1. (3.17)

Factually, it is enough if we can show that inf{tm : m ∈ N0} > 0 and sup{tm : m ∈ N0} < 1.
First, we prove sup{tm : m ∈ N0} < 1. If this is false, there exists a subsequence S of N0 with
tm → 1 as m → ∞ in S. Integrating (3.14) from tm to 1, we have

–
∫ 1

m

um(tm)

dx
g(x)

≤
{

1 +
h(r + μ∗)
g(r + μ∗)

}
(s2 – s1)2

8 cosh2( s1
2 )

(1 – tm)2

for m ∈ S. Since tm → 1 as m → ∞ in S, we have from the inequality that um(tm) → 0 as
m → ∞ in S. However, since the maximum of um on [0, 1] occurs at tm, we have um → 0
in C[0, 1] as m → ∞ in S. This contradicts (3.12). So sup{tm : m ∈ N0} < 1. Similarly, we
can show inf{tm : m ∈ N0} > 0. Let c0 and c1 be selected as in (3.17). The expressions (3.14),
(3.15) and (3.16) imply

|u̇m(t)|
g(um(t))

≤
{

1 +
h(r + μ∗)
g(r + μ∗)

}
V (t), t ∈ (0, 1),
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where

V (t) =
(s2 – s1)2

4 cosh2( s1
2 )

(
max{t, c1} – min{t, c0}

)
.

It is easy to check that V ∈ L1[0, 1]. Define I : [0,∞) → [0,∞)

I(z) =
∫ z

0

dx
g(x)

.

Then I is an increasing map from [0,∞) onto [0,∞) and I(∞) = ∞ because g(u) > 0 is
non-increasing on (0,∞). Also, I is continuous on [0, C] for any C > 0. So {I(um)}m∈N0 is
bounded; therefore,

{
I(um)

}
m∈N0

is a bounded and equicontinuous family on [0, 1]. (3.18)

The equicontinuity follows from (here t, s ∈ [0, 1])

∣∣I(um(t)
)

– I
(
um(s)

)∣∣ =
∣∣∣∣
∫ t

s

u̇m(t)
g(um(t))

dt
∣∣∣∣ ≤

{
1 +

h(r + μ∗)
g(r + μ∗)

}∣∣∣∣
∫ t

s
V (x) dx

∣∣∣∣.

According to the fact (3.18), the uniform continuity of I–1 on [0, I(r + μ∗)] and

∣∣um(t) – um(s)
∣∣ =

∣∣I–1(I
(
um(t)

))
– I–1(I

(
um(s)

))∣∣.
We now prove (3.13).

By the Arzela–Ascoli Theorem [37], there exists a subsequence N of N0 and a function
u ∈ C[0, 1] such that um converges uniformly on [0, 1] to u as m → ∞ through N . Also,
u(0) = u(1) = 0, 0 < ‖u‖ ≤ r and u(t) ≥ kt(1 – t) for t ∈ [0, 1]. For each t ∈ (0, 1), we can
follow the argument in [1] to obtain

ü(t) –
(s2 – s1)2

4 cosh2( (s2–s1)t+s1
2 )

F
(
t, u(t) + μ(t)

)
= 0 for 0 < t < 1.

Furthermore, it is easy to see that ‖u‖ < r (note if ‖u‖ = r, a contradiction will be yielded
by the essential argument from (3.4)–(3.9)). �

In what follows, we found the existence of two nonnegative solutions to the singular
second-order Dirichlet boundary value problem

⎧⎨
⎩

ü(t) + (s2–s1)2

4 cosh2( (s2–s1)t+s1
2 )

[g(u(t)) + h(u(t))] + β(t) = 0, 0 < t < 1,

u(0) = 0, u(1) = 0,
(3.19)

where β(t) is described as in (1.12), nonlinear term g(u) ∈ C((0, 1) ×R\{0},R), and h(u) ∈
C((0, 1) × R,R), g(u) may be singular at u = 0. From Theorem 3.1, we have immediately
the following existence result for (3.19).

Theorem 3.2 Suppose that (H3) and the following condition hold:
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(H4) g(u) > 0 is non-increasing, h(u) ≥ 0 and h(u)/g(u) is non-decreasing in u;
Then (3.19) has a nonnegative solution u with u(t) > 0 for all t ∈ (0, 1) and 0 < ‖u – μ‖ < r.
Proof . As in the proof of Theorem 3.1, we take F(t, u) = –g(u) – h(u). So (H1) is satisfied
with φr+μ∗ (t) = g(r + μ∗).

Theorem 3.3 Suppose that (H3) and (H4) and the following condition hold:
(H5) choose c ∈ (0, 1

2 ), fix it, and assume that there exists R > r such that

R
g(R + μ∗){1 + h(σR+μ∗)

g(σR+μ∗) }
≤ (s2 – s1)2

4 cosh2( s2
2 )

∫ 1–c

c
G(ζ , τ ) dτ ,

here σ = c(1 – c) and 0 ≤ ζ ≤ 1 is satisfying

∫ 1–c

c
G(ζ , τ ) dτ = sup

0≤t≤1

∫ 1–c

c
G(t, τ ) dτ .

Then (3.19) has at least a nonnegative solution ũ with ũ(t) > 0 for t ∈ (0, 1) and r < ‖ũ–μ‖ ≤
R.

Proof As a similar argument in the proof of Theorem 3.1, it is only needed to prove that

⎧⎨
⎩

ü(t) + (s2–s1)2

4 cosh2( (s2–s1)t+s1
2 )

[g(u(t) + μ(t)) + h(u(t) + μ(t))] = 0, 0 < t < 1,

u(0) = 0, u(1) = 0,
(3.20)

has a solution ũ ∈ X with ũ(t) + μ(t) > 0 on (0, 1) and r < ‖ũ‖ ≤ R.
Since (H3) holds, a positive constant ε < r can be chosen, such that (3.1) holds. Choose

n1 ∈ {1, 2, . . .} satisfying 1
n1

< min{ ε
2 ,σR} and let N1 = {n1, n1 +1, . . .}. We consider the family

of systems

⎧⎨
⎩

ü(t) + (s2–s1)2

4 cosh2( (s2–s1)t+s1
2 )

[gm(u(t) + μ(t)) + h(u(t) + μ(t))] = 0, 0 < t < 1,

u(0) = 1
m , u(1) = 1

m ,
(3.21)

where

gm(u) =

⎧⎨
⎩

g(u), u ≥ 1
m ,

g( 1
m ), u ≤ 1

m

We know that gm(u) ≤ g(u) for u ∈ [0,∞) since g(u) is non-increasing.
Define a set

K =
{

u ∈ X : u(t) ≥ t(1 – t)‖u‖ for t ∈ [0, 1]
}

.

Clearly K is a cone in X. Define the open sets

�1 =
{

u ∈ X : ‖u‖ < r
}

, �2 =
{

u ∈ X : ‖u‖ < R
}
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and the operator S : �2
K\�1

K → K :

(Su)(t) =
1
m

+
∫ 1

0
G(t, τ )

(s2 – s1)2

4 cosh2( (s2–s1)τ+s1
2 )

[
gm(

u(τ ) + μ(τ )
)

+ h
(
u(τ ) + μ(τ )

)]
dτ .

A standard argument implies that S : �2
K\�1

K → X is continuous and completely con-
tinuous. If u ∈ K , then (Su)(t) ≥ 0 for all t ∈ [0, 1]. We also notice that

(Su)′′(t) ≤ 0 on (0, 1),

(Su)(0) = (Su)(1) =
1
m

,

so (Su)(t) is concave on [0, 1] and Su ∈ K . Therefore, S : �2
K\�1

K → K is well defined.
In what follows, we will use Theorem 2.4 to show that S has at least one fixed point.

Firstly we will declare that: (i) u �= λSu for λ ∈ [0, 1) and u ∈ ∂K�1. Suppose it is false, i.e.,
there exist u ∈ ∂K�1 and λ ∈ [0, 1) such that u = λSu. We can suppose that λ �= 0. Now
since u ∈ ∂K�1, we have ‖u‖ = r. Since u = λSu, we have

⎧⎨
⎩

ü(t) + λ
(s2–s1)2

4 cosh2( (s2–s1)t+s1
2 )

[gm(u(t) + μ(t)) + h(u(t) + μ(t))] = 0, 0 < t < 1,

u(0) = 1
m , u(1) = 1

m .

We notice that

ü = –λ
(s2 – s1)2

4 cosh2( (s2–s1)t+s1
2 )

[
gm(

u(t) + μ(t)
)

+ h
(
u(t) + μ(t)

)] ≤ 0, 0 ≤ t ≤ 1

So, we have u(t) ≥ 1
m > 0 on [0, 1], and there exists t0 ∈ (0, 1) such that u̇(t) ≥ 0 on (0, t0),

u̇(t) ≤ 0 on (t0, 1) and u(t0) = ‖u‖ = r. We also observe that

gm(
u(t) + μ(t)

)
+ h

(
u(t) + μ(t)

) ≤ g
(
u(t) + μ(t)

)
+ h

(
u(t) + μ(t)

)
, 0 < t < 1.

Then as a similar argument in the proof of the Theorem 3.1, a contradiction can lead to
(H3), so (i) is proved.

Then we will claim that (ii) there exists v ∈ K\{0} such that u �= Su + λv for all u ∈ ∂K�2

and all λ > 0. Let v(t) ≡ 1, then v ∈ K\{0}. Suppose it is false, i.e. there exist u ∈ ∂K�2

and λ > 0 such that u = Su + λv, then ‖u‖ = R, and u is concave on [0, 1]. According to
Lemma 2.1, we have that

u(t) ≥ t(1 – t)R, 0 ≤ t ≤ 1.

Particularly, for t ∈ [c, 1 – c], we have

σR = c(1 – c)R ≤ u(t) ≤ R

and

1
m

< σR ≤ σR + μ∗ ≤ u(t) + μ(t) ≤ R + μ∗. (3.22)
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Therefore, we have gm(u(t) + μ(t)) = g(u(t) + μ(t)) for t ∈ [c, 1 – c]. Then using (3.22) and
(H4), we have

u(ζ ) = (Su)(ζ ) + λ

=
1
m

+
∫ 1

0
G(ζ , τ )

(s2 – s1)2

4 cosh2( (s2–s1)τ+s1
2 )

[
gm(

u(τ ) + μ(τ )
)

+ h
(
u(τ ) + μ(τ )

)]
dτ + λ

>
∫ 1–c

c
G(ζ , τ )

(s2 – s1)2

4 cosh2( (s2–s1)τ+s1
2 )

g
(
u(τ ) + μ(τ )

){
1 +

h(u(τ ) + μ(τ ))
g(u(τ ) + μ(τ ))

}
dτ + λ

≥ g
(
R + μ∗){1 +

h(σR + μ∗)
g(σR + μ∗)

}
(s2 – s1)2

4 cosh2( s2
2 )

∫ 1–c

c
G(ζ , τ ) dτ + λ.

Therefore,

R > g
(
R + μ∗){1 +

h(σR + μ∗)
g(σR + μ∗)

}
(s2 – s1)2

4 cosh2( s2
2 )

∫ 1–c

c
G(ζ , τ ) dτ + λ.

This contradicts (H5), and (ii) is proved.
By Theorem 2.4, S has at least one fixed point um ∈ �

2
K\�1

K with r ≤ ‖um‖ ≤ R. We claim
that ‖um‖ > r, in fact, suppose ‖um‖ = r, then following the same argument will produce
a contradiction. Therefore, (3.21) has a solution um with um(t) ≥ 1

m for 0 ≤ t ≤ 1. This
implies that the following boundary value problem

⎧⎨
⎩

ü(t) + (s2–s1)2

4 cosh2( (s2–s1)t+s1
2 )

[g(u(t) + μ(t)) + h(u(t) + μ(t))] = 0, 0 < t < 1,

u(0) = 1
m , u(1) = 1

m ,

has a solution um with

um(t) ≥ 1
m

, 0 ≤ t ≤ 1; r < ‖um‖ ≤ R

and

um(t) ≥ t(1 – t)r, 0 ≤ t ≤ 1.

Next as a similar way in the proof of Theorem 3.1, we can also show that

{um}m∈N0 is a bounded and equicontinuous family on [0, 1].

Using the Arzela–Ascoli Theorem again, there is a subsequence N of N0 and a function
u ∈ C[0, 1] such that um converges uniformly on [0, 1] to u as m → ∞ through N . Also
u(0) = u(1) = 0, r < ‖u‖ ≤ R and u(t) ≥ t(1 – t)r for 0 ≤ t ≤ 1. Therefore, using the similar
argument as in the proof of [1], we can show that for each t ∈ (0, 1)

ü(t) +
(s2 – s1)2

4 cosh2( (s2–s1)t+s1
2 )

[
g
(
u(t) + μ(t)

)
+ h

(
u(t) + μ(t)

)]
= 0.

That means u is a positive solution of (3.20) with r < ‖u‖ ≤ R. �
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According to the Theorem 3.2 and 3.3, it is easy to obtain the following multiplicity
results for (3.19).

Theorem 3.4 Suppose that (H3)–(H5) are satisfied. Then (3.19) has at least two nonneg-
ative solutions u(t) > 0, ũ(t) > 0 for all t ∈ (0, 1) and ‖u – μ‖ < r < ‖ũ – μ‖ ≤ R.

Theorem 3.5 Assume that a > 0, b ≥ 0,
(i) if b < 1, then for each ν > 0, the boundary value problem (1.14) has at least one

positive solution.
(ii) if b ≥ 1, then for each ν with 0 < ν < ν1, the boundary value problem (1.14) has at

least one positive solution, where ν1 is some positive constant.
(iii) if b > 1, then for each 0 < ν < ν1, the boundary value problem (1.14) has at least two

positive solution.

Proof Theorem 3.3 is applied to system (1.14). We take F(t, u) = –u–a – νub, then F(t, u) ≤
0, limu→0+ F(t, u) = –∞. Let g(u) = u–a, h(u) = νub, then (H4) holds. If there exists a positive
number r satisfying

ν <
24 cosh2( s1

2 )ra+1 – (s2 – s1)2(a + 1)
(s2 – s1)2(a + 1)(r + μ∗)a+b ,

then the condition (H3) holds. Thus, boundary value problem (1.14) has at least one pos-
itive solution if

0 < ν < ν1 = sup
r>0

24 cosh2( s1
2 )ra+1 – (s2 – s1)2(a + 1)

(s2 – s1)2(a + 1)(r + μ∗)a+b .

Note that if b < 1 then ν1 = ∞ and if b ≥ 1 then ν1 < ∞, we have the results (i) and (ii).
If b > 1, we take c = 1

5 and fix it. Then condition (H5) becomes

ν ≥ 4 cosh2( s2
2 )R(R + μ∗)a – (s2 – s1)2L

(s2 – s1)2L(σR + μ∗)a+b , (3.23)

where

L = max
0≤t≤1

∫ 4
5

1
5

G(t, s) ds.

Since b > 1, the right-hand side of (3.23) tends to 0 as R → +∞. Then, for any 0 < ν < ν1,
it can find R large enough such that (3.23) is satisfied. Therefore, boundary value problem
(1.14) has another solution. We have the result (iii). �

4 Conclusions
In the article, using the Leray–Schauder alternative principle and a well-known fixed point
theorem in cones, we establish the existence results of multiple positive solutions for a
second-order Dirichlet problem modeling the ocean flow of the Antarctic Circumpolar
Current (ACC). We pay special attention to the nonlinear term F(t, u), which represents
the negative oceanic vorticity function and is singular at the origin; in other words, the
function has an attractive singularity. Some recent results of the ocean flow for the Antarc-
tic Circumpolar Current are generalized and enriched.
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