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1 Introduction
We consider the fractional nonlinear Schrédinger (FNLS) equation

iU () ut alx] JuPbi+ oJul-bi=0, (1.1)

Ujt=0 = Uo.

Here and hereafterN 2, ;=+1, =0,p,q>1,andu:=u(t,x):Rx RN  C. The
fractional Laplacian operator is de“ned via the Fourier transform as follows:

F (..)> :=|-|*F- s (0,1).
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Introduced by Laskin L8, 19], the fractional Schrodinger problem used the theory of
functional measures caused by the Levy stochastic process with expansion of the Feyn-
man path integral from the Brownian-like to the Levy-like quantum mechanical paths.
The inhomogeneous nonlinear Schrédinger equatios€ 1 =1 ... ;) models the beam
propagation [L, 12, 20, 23] in nonlinear optics and plasma physics.

The well-posedness issues of some particular cases of the above problem were investi-
gated by many authors. Indeed, the fractional nonlinear Schrédinger equati@n 3, 13,

14, 27, 32] corresponds to 1 =0in (1.1). If , =0, then problem (.1) “ts the nonlinear
Schrodinger equation, called NLS for shor2p, 28]. Eventually, the Schrédinger equation
with mixed power nonlinearity [8, 21, 22, 30] coincides with =0 ands=1.

The FNLS with a mixed source term was investigated if,[9], where the questions of
global/nonglobal existence and scattering of solutions were treated.

The aim of this note is to study the competition between the singular inhomogeneous
local source termx| |u[Pt and the local homogeneous terju|%4. We try to generalize
some results about the fractional Schrédinger problem with a mixed power source term
to the inhomogeneous case. Indeed, we obtain a sharp threshold of global/nonglobal exis-
tence of energy solutions to problemi(1). Moreover, we investigate th&? concentration
of the mass-critical nonglobal solutions and obtain a scattering result in the defocusing
regime, based on the Morawetz estimate and the decay in some Lebesgue spaces. There
are at least three technical di culties: the absence of scaling invariance, the presence of a
singular inhomogeneous term, and a nonlocal fractional di erential operator. The spher-
ically symmetric assumption is due to the loss of regularity in Strichartz estimates in the
nonradial regime [L5]. The blowup results are based on the pioneering worB][ which
partially resolves the open problem of nonglobal existence of solutions to FNLS using a
localized variance identity. In the present work, we treat simultaneously the two di erent
regimes >0and <...3 contrarily to the most papers considering the inhomogeneous
Schradinger problem. A similar problem with a nonlocal source term of Hartree type was
treated recently by the “rst author R9].

The note has the following plan. In Secg, we derive the contribution and some standard
estimates. Section8and4 are devoted to proving some localized variance-type identities.
In Sect.5, we give a nonglobal existence criterion. Secti@deals with establishing the
“nite-time blowup of solutions with nonpositive energy. In Sects? and 8, we investigate
the L? concentration of the mass-critical solutions. In Sec®, we establish a threshold of
global existence versus “nite-time blowup of solutions. The scattering of defocusing global
solutions in the energy space is proved in Se&0. Finally, a compact Sobolev embedding
is given in the Appendix.

Let us denote the Lebesgue and Sobolev spaces and their classical norms:

L':=L"RY,  HS:=HSRV, HS:=1f HST()=f]] ;
= 23 * HS:: : 2+ ("' .)2 2 %'

Eventuallyx* are two real numbers close ta satisfyingx® >x andx<x.

2 Main results and useful estimates
In this section, we collects the main results and some standard estimates.
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2.1 Notations
Here and hereafter, we de“ne the real numbers

Np..1)...2
Ip:=1(N,p, ,s)::%, Jp =3 (N,p, ,9:=1+p..1y;

Jq:=J (N,q,0,9), l4:=1(N,q,0,9.
The energy critical exponents are

2(2s+ )
N..2

p°:=p°(N,s )=1+ and g°:=p“N,s0).

The mass critical exponents are

2(2s+ )
N

pc:=p°N,s, )=1+ and qc:=p%(N,s 0).
In the spirit of [3], we denote r:=R? (3), where  C, (RV)is aradial, and

aXZ X1,

x S and 1.
0, x| 10,
By a direct calculus it follows that
r 1 r() r, and R N.
De“ne also
=N 0 =1 0, and z:=1.5 _R
2 .= ... R , 1-=1...Rp y 3.—1..: |X|2
Denote the localized virial
M [u]:=2 u udx=2 Uk wudx.
RN RN
ThenM [u]= u, u,where g:=.i] - (g )+ - d]. Finally, we introduce the

sequence of functions

sin( t) Fu
Un(t, ) = Fot AN

2.2 Preliminaries
First, a sharp Gagliardo...Nirenberg-type inequality related 101} was established inZ6,

28].
Proposition 2.1 Let >...8andl+ ZN‘—;(’) <p<pC Then
1. There is (a best constant) C(N,p, ,9) > Osuch that forallu HSif 0 and all

u Hyif >0

u™|x| dx C(N,p, ,9 u % (..)%u (2.1)
RN
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2. Moreover,

Ip
J v
C(N:p, ,S):w s Qp ...p...l?
Jop 1p
where Qp resolves
(- )Qp+Qp Xl QP Qp=0, Q Hy..{0k 22)

3. Furthermore, we have the Pohozaev identities
s 2
Jp (2)2Qp "=1p Q 2, Jp N|Qp|1+p|x| dx=(1+p) Qp 2,
R

Remark2.2 ForA R, the characteristic function (4} is equal to one onA and to zero
on the complement ofA.

Second, problemZ1.1) is locally well-posed in the energy spacgg, 28].

Proposition 2.3 Let z}— <s<1, >..8 1+ % <p<pS l<qg<qanduy HS.
Then there is a unique local solution tfl.1) in the energy space

C [0, TLHy .

Moreoverthe following quantitiescalled respectively the mass and enerape time invari-
ant:

M u(t) = u(t) 2;

Eu®) = ()% *mt u® T dxe S u) Mdx

2 2,
1+p gn 1+q gn

Finally, we give a compact Sobolev embedding established in the Appendix.
Lemma 2.4 Lets (0,1), >..2and1+ % <p<pC Then:
HE RN LY |x| dx .
Now we give the contribution of this note.

2.3 Mainresults
To investigate the nonglobal existence of solutions, we need some variance-type estimates.

Theorem2.5 Lets (3,1), >..8 1+2N.(%2°)<p<pc,and1<q<qc,and|etu Cr(HS)
be a solution of(1.1). Then,forany R>0,0< ;< (1..4)(p... 1)and0< ¢<(1..2)@...1),
on[0,T), we have

2 4d p 1
...—1+p

c c 5 Bt p
R_25+ (p..1K...1) ( ) u +
R —72 —Sp-

2

s 4g
M _[u] 4s(...)%u [ul**PIx| dx..—
RN

1+q
C s g...1

L,
—_ (... )2u 9
R(q...l)(kl...l)“sq

lu]*9dx
N
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In the mass-critical case, we have the following re“ned version.

Theorem 2.6 Lets (3,1),..8< <0,1<g<g%andl<p<p®andletu Cr(H)be
a solution of (1.1). Assume thatl , =2 or | 4 = 2. Then there exists C=C(N,s, )>0such
that, forall ,R>0,0n[0,T), we have

d ) e, o
—M _u] 4sHupl..4 m  1.C L, B4| |42+ & ug2dxdm
dt 0 RN
+0 i+ ..N“’_'?fgi_‘_ 1+R %4 R4
RZS RZS

Remark2.7 The above localized variance estimates follow the idea3jf [
The next elementary result will be useful.

Proposition 2.8 Lets (3,1), >..8 1+ ZN.{%EO} <p<pfandl<qg<q, and let
u Cr (Hy) be a maximal solution of(1.1). Assume that Fug] = 0 and there are §, >0
satisfying

t

Mout)y ... (..)3u()?d forallt [to,T).

to

ThenT <
In the case of negative energy, we give a nonglobal existence result.

Proposition 2.9 Lets (1,1),..8< <29N ... ®), 1+252% <p<min{l +4sp%, and
1 <q<min{1 + 4s,g%. Then any maximal energy solution t¢l.1) with negative energy is
nonglobal if one of the following assumptions is satis‘ed

1L 1g>2and(lq..1p) 1 G

2. 1p>2and(1p..1g) 2 0.

Remarks2.10
1. The unnatural condition max{p,q} < 1 +4s which seems to be technical, is due to the
absence of a classical variance identity.
2. The contribution of the inhomogeneous term appears in the difference

| [ .= N(p..q)...2
p--q 2s :

In the homogeneous mass-critical case, the situation reads as follows.

Proposition 2.11 Lets (s 1), ..8< <O,andl<p<pSandletu Cr (HS)bea
maximal solution to(1.1). Assume that ; =...1=..p, and | 4= 2. Then:

1.T = if up < Qq;

2. Ifs>1, 1 y<2andug=c 2Qq( ), where|d > Land

2|1 4p g 1 .
S (2 gN Xl IQqIS x V&I then T <, or there exist C>0andt >0 such
(1+p)(I %L 1)(... )2Qq 2

that

(.)3u(t) Ct foralt t;
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3. Ifs>3,1p,<2 Up = Qq ,andT < ,thenthereis  [0,2 [ such that

(- )2Qq

I Fg, ()i
(... )3u(t) He

lim < ut,
CT ()3

Remarks2.12

1. The above result gives some sufficient conditions to get finite or infinite time blowup
in the mass-critical homogeneous regime with small data. In the first case, the finite
time blowup holds independently of the first component of the source term;

2. In the second case, which treats the complementary of the first one, there is a
competition between the source term components;

3. The proof of the third case is omitted because it follows like and simpler than the last
point in the next result.

Page 6 of 31

Next, consider the case of mass-critical inhomogeneous regime. Let us take the open

problem property, which is true for =0, see 10].
Assumption 1 There is a unique radial positive ground state t@(2).

Proposition 2.13 Lets (5—,1),..8< <O0,and1<qg<gfandletu Cr (H})bea
maximal solution to(1.1). Assume that ; =1=...,and |, =2.Then

1. T = lf Up < Qp ;

5 218 N QI dX | syl
2. Ifs>1 1 <2 andug=c 2Qp( ), where >( R V2T and
e i @+a)(dP-1..1)(... )2 Qp 2

Il >1 then T < ,orthereexist C>0andt >O0such that

(.)3u(t) Ct foralt t;

3. Under Assumption 1, if s> %, <2dN ... I g<2 ug = Qp ,andT < ,then
there is [0,2 IR such that

lim 7("')29’ “d oy, —("')ESQ" - Q=0
t T (... )2u (... )2u Hs

Remarks2.14
1. The proofs of the first and second points are omitted because they follow the proof of
Proposition 2.11;

2. In the last point, we need extra assumptions: Assumption 1 and <29N ... 1)
Now we investigates the repulsive regime.

Theorem2.15 Let =1, >..8 1+2l\l_{%3°> <p<pfandl<qg<g‘andletu Cr (Hy)
be a maximal solution to(1.1).
1. Assumethat| ¢=2<lp, Uy < Qq ,and E[u0]<(1...%p)(l ...{g—q)%s)rg, where g is
defined in (9.1).If (... )2Ug <ro,thenT = .If (...)3Up >ro, thenT < ;
2. Assume that 2 <| ;, <l q and E[ug] < (1 ...%p)r%, where 11 is defined in (9.2). If
(...)3Up <ry,thenT = If (...)3Ug >ry,thenT <
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3. Assume that | y>1 4> 2and E[ug] < (1 ...qu)r%, where r1 is defined in (9.2). If
(..)3up <ry,thenT = If (... )3Ug >ry,thenT <

Remarks2.16
1. The above result is in the spirit of the ground state threshold pioneered by Kenig and
Merle [16] in the NLS case.
2. In the first case, where the source term contains a mass-critical component, an extra
assumption is needed by comparison with the second and third cases, which are

mass-supercritical.

Now let us investigate the case of an attractive and repulsive component in the source
term.

Theorem 2.17 Let >..8 1+ 2%20} <p<pfandl<qg<gandletu Cr (HS)bea
maximal solution to (1.1).

1. Take 1=1=...5, max{2,l g} <Ip, and E[ug] < (1 ___ILP)XZ, where Xy is defined in
(10.1). If (... )3up <xp then T = .If (... )3ug >Xp, then T <

2. Take 1=...1=..p, max{2,l p}<lg, and E[ug] < (1 ...qu)xz, where Xq is defined in
(10.1). If (... )3ug <Xq thenT = .If (... )3Ug >Xg then T <

Remark2.18 In the above result, where the components of nonlinearity have di erent
kinds, the threshold depends of the term that has the higher exponent.

Finally, we consider the scattering of energy global solutions in the defocusing regime.

Theorem 2.19 Take ;= ,=..lletx~ s<1let..8< <O0,orN>6sand0<
<min{s 5 ...8,orN>8ands< <% ..3andletp<p<p°®and g <qg<q’ Let

u C(R,H}) be aglobal solution tq1.1). Then there existu  HS satisfying
: (.. )® —
Jim u(t)..e*u,  =0.

Remarks2.20
1. Inthe case >0, some technical difficulties yield the restriction N > 6s which gives
N 4or N >8s which in turn gives N 5 because S %1
2. The above result is based on a Morawetz estimate and a decay result in the spirit of
(31];

3. The previous restrictions are not required in the decay result in Proposition 11.2.

2.4 Useful estimates
Let us give a fractional Strauss-type estimaté]]

Lemma2.21 LetN 2and 3 <s<3.Then

sup[x[ZSux)  C(N,9 (... )3u (2.3)
x=0
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for every u HS(RN), where

2. )% .9 @) 2
2% 5 2y (V.14

C(N,9 =

and is the gamma function
The next fractional chain rule p] will be useful.
Lemma 2.22 Lets (0,1],andlet1<p,p;i,q < satisfy% = p_l, + q_l. forl i 2.Then
L ()36U) pS (v )Bu g G(U) pfor G CHC);
S S S
20 ()2uv) pS (e )2Uup Vgt (L )2V g, U g

The next result gives a vector-valued Leibniz rule for fractional derivativels].

Lemma 2.23 Lets +s:=s (0,1),0 § sandletl<p,p;,q,q <

i { 1,2, satisfy
= i2=1p—1i and ; = izzlq—li.Then
s s s S 2
(... )2@uv) ..u(... )2v..v(... )2u L%p)g (...)2v L% Lp1) (-..)7Zu L2 LP2)-
Moreoverfor g =0,the value g = is allowed

Let us recall a generalized Gagliardo...Nirenberg-type estima.|

Proposition 2.24 Letl q,p be such that

=41 5 D)

1. q S N
pS * g pe on Lt HYRY.

The following Gagliardo...Nirenberg-type estimate will be further useful.

Lemma 2.25 Let Q;(Xo) be the square with centerpand edge length arhen

2s 1+28
2+ N

2+2NS§ *Hs Sl]g’)\‘ T L2(Q1(¥) on Hs. (24)
X

Proof We coverRN with disjoint Qy(x;). Let

; i=1beanassociated positive unity par-
tition. By Proposition 2.24

2s 2s
u(t,x) 2N gx = u(t,x) N jdx
RN i RN

2s
1+

O ws@uegy YO 2y
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1+
5 U(t) HS(RN) sup U(t) L2(Q1(x) *
x RN
The proof is “nished. O

We end this section by the following Bootstrap-type resulffl].

Lemma 2.26 Letb>0, >1,and0<a<(1..2)( b)l%.Takef C([0,T], R+) satisfying
f(t) a+b(f(t)) forallt [0,T]andf(0) ( b)ﬁ.Then f(t) —aforallt [O,T].

Finally, we recall some Strichartz estimate$)] for the fractional Schrodinger problem.

Definition 2.27 A couple of real numbers§,r) such thatg,r 2 is said to be admissible

if
AN +2 2 2N..1 1
, —+ N ..o,
2N ... 1 q r 2
or
AN +2 2 2N...1 1
2 —+ <N ...
2N ... 1 q r 2

Proposition 2.28 LetN 2,y R,z —<sandu, Hly.Then

H S
U 90 1, iy S Uo e iU ()U S

if (q,r) and (q,r) are admissible pairs such thafg,r,N)=(2, ,2)or(q,r,N)=(2, ,2)
and satisfy the condition

25+ =N 1 1 2s =N 1 1
a M= 5T q..u— 5T
Remarks2.29

1. For simplicity, we define the set

H:= (q,r), admissible, (g,r,N)=(2, ,2)and %S+ H=N % .

=’

.- 0

2. If we take P = 0 in the previous inequality, then we obtain the classical Strichartz
estimate.

3. In the non-radial case, there is a loss of regularity in Strichartz estimates [15].
3 Localized variance-type identity

This section is devoted to prove Theorer2.5 Take ;= , =1 for simplicity and de“ne
the nonlinearity

G=G+Gy:=-Ix [u]Pb. Jult.
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Lemma 3.1

M u(t) = ns 4Up & Un... 2 ugl?® dxdn
0 RN

4 1
T N L R o S ™| dx
l+p RN l+p RN
1
L Ul dx.
1+q ]RN

Proof Using (1.1) and denoting A, B] := AB .. BA, we compute

| ®

M u(t) = ut), .—i u@) +u@), (...)5 u).

c

According to computation done in B], we have

u), (.. )% ut)= N 4 Un 3 Un... 2 |upl? dxdn.
0 RN
Compute
— G .
(Np) == u, ..?,l u
=u JuPix oo
= u, JJuPix Ldiv( )+ - U
= x| JulPtdiv( u)+ u +udiv |x |ul”b
+ IX| JulPb .
So
(Np) =0, x| [uP¥ u+2  u)+u, X |ufPbi+2 X ulP
=u, X |uPu+2 IX| JulP-b x| JuP¥ u+2  u)
=2u, x| [ulP~t x| JulPt
=2u, x| JulP~b+|x qulPtu .

By integration by parts we have

(Np)=2 Ix| u*Pdx+2 x| Ut |ul® dx
RN RN
1
=2 X ut*® dx+ 2P U™ x| dx
RN 1+p RN
1
=2 I |u|1+de...% W x| +x dx
RN TP grN
4 » 1 »
=— [X| |ul Pax ... 2 [X] |u]*™Pdx

1+p RN 1+p RN
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4 1
2L Ut . 2 Ju*P|x| dx.
1+p ]RN 1+p ]RN

Taking =0 in the previous calculation, we get the second term of the source term and

“nish the proof. d

Now we establish Theoren2.5. Since =N on |x| <R, we have

L1
Np)? = ... 20 ul**P|x| dx
(No)*:= . 300 lulPIN
B El 14p 14p
_”'1+p N o [ul="PIx| dx+ IIR( r--N)U*"P|x] dx .
X|>

1 N . L .
For 5 < <s< 3, recall the interpolation inequality

S

(.)z- < - s o()Zes,

So by @.3 and properties of g we get for 0 < land := % + o

C( ,N) 1
1+p p 2
|X|>R( r--N)U["P|x| dx R(p...n@g...)...( )2u u
C( !N) s . (p--1x
R(p...l){%...)... (. )2u
CN,s ) s opl
E.10-0) o (..)2u =

Since gr(X) =xo0n |X| <R, we write

4
Np)t:i=—— x-  glul™x ~%x
(Np) T4p o rIU[T(X]
4 14 X+ R 1+
= — [ul*™P|x] dx+ ——— - L|u["P|x| dx
1+p gn xR X
4 Ni S p...1
A g axs oS )y B
1+p an R Py

Thus, thanks to the estimate inJ],

s 2 1
. ns " 4Up 3 R 1Un ... 2Rlunl? dxdn 4s (... )Zu +CR_25'
and by Lemma3.1we have
M u(t) = n® 4Up & R Un... 2 Rlugl? dxdn
0 RN
4 .1
T "'de...% RIUIE*PIX] dx
1+p gn +p N

1
L Rlu[ 9 dx

1+q RN
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: 1 4d 4sl
4s (.. )3u P+C= .. =P quMPIx| dx..—2  |u**9dx
RZS 1+p RN 1+q ]RN
C S p"'1+ C S q--l+
e (...)2u B P )2u =9
R(p...lm...l)_sp__ R(q...l)l(\l...l)nsq

The proof is completed.

4 Re"ned localized variance-type identity
In this section, we take 1 = , =1 for simplicity and establish Theoren®.6. Recall the

identities [3]
n kUp & R jUpdxdn=  n® 2 &l upl?dxdn;
0 RN 0 RN

s (... )3u = n® | upl®dxdn.
RN

o

Then Lemma3.1gives

M _ut) =4s (.. )fu ®...4 n°  1..2g]| up?dxdn
0 RN
.oon 2 Rlun|?dxdn
0 RN
4d 4l
2 uMPIx| dx..—F |ultYdx
+p RN 1+q gn
1
i ( r..N)Jul¥P|x] dx
1+p IX|>R l | l |
4 X

) R 1+
——— .1 |ulPPIx| dx
1+p xsr X2 Ul

L1
LA . N)ulF9dx.
1+ |x|>R( r--N)Jul

Now, in view of the estimate 8]
C
ns 2 Qup?dxdn =,
0 BN Rl nl RZS

we get

M u(t) =4sHuo]...4 n° 1| up|?dxdn
0 RN

2.1 2.1
+45—"P  |u|**P|x| dx+ 4 g |u**9 dx
1+p RN 1+q N

R
1 4
P HU[EPIX] A olx| Ul dx
1+p xR 1+p xR
1
49 Judx+0 =
1+q IX|>R Res
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Now, since  Oandl =2,

1
Alu[**PIx| dx = Pu) Pupix dx
X|>R IX|>R

R JuPl o’
2 L (x>R

CF%;...p...l)g..s) (... )g 2p...1u p...

1
_ CR-(+29W.E) (. ) Py 2.2

Rzs '

where we usedthe Young inequalitgb %q + 290 gor g land >0.Thus by the

q L
estimate 3]
S r% 2 s pil 2 2 4
s(..)2 2u = n ) 2 up)?dxdn+0 1+R% R
0 R
we get
Ll
JquiPIx| dx - nS 2 upl?dxdn
[x|>R S o RN

s 2 4
+0 R_25+ 1+R“+R
Thus there existsC :=C(N,s, ) >0 such that

M u(t) =4sHug]..4 n° 1l unl?dxdn
0 RN

2.1 2.1
+45— P |u|**P|x| dx+4s——3  |u|**9dx
p rN 1+gq gn

1+
1 4
4P SU|EPIx| dx .. AulH*PIx| dx
1+p R 1+p xR
1
w2dtutdxe0 =
1+q IX|>R Res
N N 2
4sHuo]...4 n® 1.C L%+ |37+ 71| up?dxdn
0 RN

+0 i+ Nﬁgi+ 1+R-24 R4
RZS RZS

This ends the proof.

5 Blowup criterion

In this section, we prove Propositior2.8 Taking into account the conservation laws, the
. . 1 1 .

inequality - 5 - b . % and LemmaA.lin ], we get

M, ut) Cgr uf) i%+ u U@
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1 1
Cr u(t) S+ ut) > -
Now we claim that
%ng ut) ,s C>0.

By contradiction, assume thatthere ik 0 suchthat u(tk) 4s 0. By the conservation
laws we have

u(t) PIx| dx+ " u(td) “dx 0,
which gives the contradiction
0=E[ug]=E u(ty) O.
So

1

M R U(t) CR U(t) |:S|Sl

M,utt) .Ck Mu() d.
to
Then, for s> 1 and “nite t; >0,
M, ut) .Cglt.t)*2® ... ast t.

Finally, T <

6 Blowup for negative energy
This section contains a proof of Propositior2.9, which we do in two steps.
1. Casel.Since 1(lg..1p) O, by Theorem 2.5 we have

4s
M [ul 29 E[ug] ... (1 q... 2)(-.. )Bu 2+ = 2(lq.d ) Jul**PIx| dx
l+p RN
s .1, s 1
+R£25+7R(p”mi)s ()% = +7R(qm1§._l)s L)fu EY
T2 Spe T2 Sa
s 2
29 4E[Ug] ... (1 4 ... 2)(... )3u
p..1
+R£25+ R(p.._l)!(xlc...:.l)S (.. )%u ="
(Y VI
C o g
e (.)Eu B
R(q...l)ﬂ...l)usq

Thanks to Young inequality, since max{p,q} <1 + 4sand E[ug] <0, we get, for large
R>0,

M [u] 29 E[ug]... (1 q... 2)(-.. )3u 2
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p...1 qg...1
32+ ( l)Ncl) (... )Su =y ( 1)5 ) )Su =
Res R‘Z—p"‘ S pee R‘Z—q"‘ =S q
s 2
s qElug] ... (g ... 2)(... )2u (6.1)

Since | g>2, M [u(t)] M g[uo] + 29 qE[up]t. So there is t; > 0 such that
M Llu(t)]<Oforallt t;. Now by integrating (6.1) it follows that

t
Mout) ..lg..2) (..)%u()?d forallt t,.
t1
We conclude by Proposition 2.8.
2. Case 2. Similar to case 1.

7 Mass-critical blowup
In this section, we prove Propositior2.11

7.1 Casel
Proposition2.1gives

_ S 2 2 1+p 2 1+q
E[uo]l = (... )2u(t) +—1+p o u®) " x| dx...—1+q o u(t) = dx

s 2 2Cngs A

(... )2u(t) 11—+q u "a

4

s 2 u N

..)2u(t 1...—

(... )2u(t) o

This proves thatT =

7.2 Case?2
Taking into account Theorem2.6and the Pohozaev identity, for any,R> 0, we have

N N 2

M_ut) 4sHug..4 n° 1..C L%+ |37+ 71| up?dxdn
0 RN

+2s

1 51 2, pd
+0 mt st 1+R“+R

By taking the particular choice of asin [26] there exists 0< 1 such that

N N 2
2 2 q...1
1.C 7+ 3™+ 0 R>0.

Thus, takingR 1, we get
M, u(t) <2sHug]<O0.
Indeed, with the assumptions, the next term is negative:

Elugl= ¢ °% (... )8Qq °
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2|C|1+q 2s - 2|c|1+p sTp
— ddx+ X 1 gx
1+q  an |Qal 1T RN| | 1Qal

— 2 5 2 2 s 2
=¢ %% (...)2Qq .. 0dM9 = (... )2Qq “dx

2|C|1+p Zp

+ o X 1QqlMPdx
P N

|C|...113
1+p

To2 1. oot BT (L )EQq “+2 Qs P

Assume thatT = . Then there existc> 0 andty > 0 such that

Myut) .ct t fto
LemmaA.lin 3] and the conservation laws, via the estimate Gy Logs . fs,give

Mou®) G u@® u® 3+ u(® a%

Cr u(t) i%+1

1

Cr u(t) 354‘1.

So

uit) 2t° forallt t;>0.

~

This ends the proof.

8 Inhomogeneous mass-critical blowup
In this section, we establish the third point of Propositior2.13 Let us start with a com-
pactness result25].

Lemma 8.1 Leta sequence of,v H}, be such thatup, v, ps< .Assume that

limsup (... )3vy M,  limsup  |x| |[va|**Pedx ml*Pe.
n n RN

Then a subsequencdenoted also byv,), satis“es

Vo V inHY;

N
2 20429 4, N
— +2!
(1+pM?2 me = Qp

As a consequence, we prove the next concentration result.

1
s

Lemma 8.2 If lim; 1 f(t) (... )2u(t) s= ,then

liminf ut,x) 2dx Q2
tT ot
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Proof De“ne the quantities

_ g F
(...)3u
V= Zu(-, ),
t, T, ni= (th), Vi = V().
Thus
Vo 2=M(u);

Using the identity | , =2 >1 ¢ and Proposition2.1, we have

s 2 2

(- )3Qp Zrm al™™IX| lx

1+p

) 2 2 1+
= (...)2v, T ..— Vol 7PIX| dx
(b " el

n

S 3 2 2
2 (... )2u(tp) 175

P rN

B EU)+C (... )3u(t,) ™

Thus
+p

1
N [Va|*PIx| dx — (..

Denote
+
ml"'p ::% ( )SQP 2,

By Lemma8.1it follows that

Vo V inHY, Vv
Moreover,
f(t )3
) iy Co)Pun
n (.. )ZQp

So, foranyR>0, thereisng N such thatf(t,) >R , for n>ng. Then

liminf U(tn,x) 2dx  liminf
n

n x| f(tn)

1
S

u(ts) “Px| dx

2 1+
2s q
& E(u) "'_1+q o u(t,) = dx

0.
)2Q, °.
M= ()3 2
Qp .

Xl Rn

u(tn,x) % dx

Page 17 of 31
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= liminf V(tn, X) 2 dx
n X R

liminf V(x) 2dx.
n x| R

Thus

liminf ut,) ’dx v 2 Q2
T X ()

This “nishes the proof.

Now we are ready to prove PropositioR.13 Let us write
Qp Vv lin%inf Vhn = Ug = Qp .
Thus with the weak convergence, we have
lirr1n Vh ..V =0.
Moreover, by Lemma2.4, via the assumption <2gN ... 1), we have
lim  |X| |Vn..V|**Pdx=0.
NN
Now taking into account the previous calculus and Propositich 1, we write

: 2
0=tlim (..)3Qp 2= val*x| dx
N

l1+p g
. 2 N
= (..)3Q, 2...1—+p " IVI¥*|x| dx
s V p...1 s
(..)3Q %... 5 (.)3v 2
p

2

(. )2Qy 2. (L )BV

Thus by the lower semicontinuity of - we have

S

()3 = ()2Qy = (..)EV .
So we get

Von V inHS
So, by the Pohozaev identities,

(- )PQ = (. )BV
Qp =V,

Page 18 of 31
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1 — 1
QI dx=VIER dx

Then V is a minimizer of 2.1). Thus, using the Euler...Lagrange equation and a scaling,
by Assumption1 we have

V =aQy(b:).
SoV =€ Q,, and
n€ U(tn, n)  Qp inHS
This “nishes the proof.

9 Global/nonglobal existencefor A;=A,=1
In this section, we prove Theoren2.15 Thanks to Proposition2.1,

_ S 2 2 1+p 1+q
Efug] = (... )2u(t) 1—+p o u(t) = TIx| dx...l—+q N u(t) = dx
s 2 2Cnp, s s 7
(... )2u(t) “Tep u “r (...)2u(t)
2Cnas | 74 s 4
...—1+q u (... )z2u(t)
2 3, *
S z S
= (...)3u() 2...J— Q) i
p Ip
2 3, 7
Z S
J_ I_ Qq q1)u Jq ( )Zu(t) g
q 'q
=g ()R

Let us consider three cases.

9.1 Casel
In this case,| ¢ =2. Then

u N 2 3, *
gX)= 1... o x2...E |_§ Qp ~*BYu FexTe;
v J 2.1
u
gX)=2 1... — x...2|—p Qp #Yu TpxTe-l
q p

Since ug < Qq , the unique positive root ofg is

1. ()N o
g(ro)=9 —— =0. (9.1)
(I_E)T...l Qp By Jb
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Thus
1.2 0y
u
max g=g(rg) = — 1... r2.
R+ I Qq 0
Thus

g (..)3ut)  Eluel<g(ro).

1. Subcase 1. Since (... )2Ug <To, by a continuity argument we get
supg g (.- )fu(t) <ro.SoT =

2. Subcase 2. Now if (... )5 Ug >To, then, similarly, infy o1 ) (... )5 u(t) >ro. Thus
the Gagliardo—Nirenberg inequality, Theorem 2.5, 2=1 4 <1l p,and »=1give

52432

1+
M [u] 29 pE[uo] ... &I p... 2)(... )2u "+ 1_+q(| p--dq) " |ul*"dx
C C s Pl C s Gl
25 25
+R_2S+7R(p---l)"“---1)..sp... (...)2u +7R(q---1)’(“---1)..5q (...)2u
u % s 2
29 oE[ug] ... Al p...2)1... — (... )2u
Qq
.1
R 7% ~-Sp-
C s G-l
e (...)2u =9
R(q.ul)(\l.nl)__sq

u

Since 55— <1, max{p, 0} <1 +4s E[ug] < (1 %p)(l ((5'—q)4ﬁs)(1 ... )ré for some

>0,andC(R) OasR , we have
4s
u N s 2
M [ul 29 Eugl... (1 p...2) 1. —— (...)%u
Qq
+C(R) 1+ (... )3u ?
u N
251 p...2)1... — @2 (..)%u?
Qq
+C(R 1+ (...)%u ?
4s
u N s 2

.21 o

where we used the inequality (... )2u >1g> 0. This proof is achieved via
Proposition 2.8.

9.2 Case?2
Compute
3 Tp 3 Iq
2 z 2 z
_,2 £ Yp )y Topy S Y4 ~4-1)  JayZa-
rN=re... u Jerte . u Jars;
or) T, % Iy T,
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. .1
-1 - Qp Dy TorTe-2, ~I]_q Qq 4Dy JarTa-2
P q

Thus h is nonincreasing orR, andh(0) = 1. So it has a unique root; > 0, that is,
h(ry) =0. (9.2)

Thussup, 9(r) =9(r1). So

Jp 77 Tp..2 Jg 21 )
ﬁ Qp D)y \7Pr1P =1 .. G Qq 41) |y TapTa
This gives
Ip 1
2 J, 7
g(fl):rf 1..- Z°P Qp 1) |y Tpplee?
lp Ip
Iq...l
.“3 J_q z Qq ql)u jququ
I
Za 1
:rf 1|3 1 # z Q 1) jquq 2
p q
l'q. 1
3 ‘]_ z Qq 4 Du qulzq...z
lqg lq
Iq
: 2 2 2 3 TN gy dopte
=ri 1.— + — .. — 1 Qq ...... u qu .

I p I p | q | q

By the assumptionsE[uo] < (1 ...Iip)rf andl p <1 4 we get

g (..)3u(t)  Efug]< 1|3 r2<g(ry).
p

1. Subcase 1.If (... )2Up <ry, then, by the time continuity, sup; ¢ (... Y2u(t) <ry,
and the solution is global.

2. Subcase 2. If (... )Suo >ry, theninfy o7y (... )gu(t) >r;. Since
EJup] < (1 %p)(l )2, >0,and | p <| g, by Theorem 2.5 it follows that for

C(R OasR ,
M 2d LE| | 2 3 2+ 4s | | u1+qu
rLU] pElUo] ... &lp ... 2)(... )2u 1—_‘_q( p-dq) RNl |
C C s Pl C s 9ol
= s
R pem,, o O T e ()0 E
2 2

<29l p.. 2. )2 (.)3u 2+ 1+C(R (... )%u

<. lp..2) (..)2u?
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where we used (... )S u 2>r;>0viachoosingR 1. Proposition 2.8 closes the
proof.

9.3 Case 3
It follows similarly to the case 2.

10 Global/nonglobal existence for A;Ao=...1
In this section, we prove Theoren2.17.

10.1 Case 1l

1. Subcase 1. Proposition 2.1 gives

_ s 2 2 1+p 2 1+q
Elug] = (... )2u(t) 1—+p " u(t) ~ x| dX+l—+q " u(t) ~ dx
s 2 Cup s s 1
(R *L ST 0 R
2 3, ?
S z S
(... )3u() 2...J— I—p Q - Du P (. )Rut) TP
p lp
=f, (... )3u()
Compute
Ip 1
fp(y)zzy 1.. o) Qp pl)u prlp...Z )

I p
Sof has the unique positive root such that f(xp) = (1 ...I%)Xg and

. Fd g,

o= e Q “&Du b _ (10.1)

Then fo( (... )3u(t) ) E[ug] <f(Xp).So (... )3Uyp <Xp. Then, as previously,
sup; o (.- )gu(t) Xp, and the solution is global.

2. Subcase 2. Like before, inf; ¢ (... )gu(t) >Xp. Since 2 =...1l p >max{2,] 4}, and
E[up] < (1 %p)(l ... )X2, where >0, Theorem 2.5 gives for R 1and C(R) Oas

R )
M [u] 29 E[ug]... (1 p ... 2)( )§u2+432(| lg)  |ul**@dx
R p of .- p--- l+q p--dq N
C C s bl C s Gl
t—t——7— ()2 F o+ ———— (... )2u &
R2s R(p"‘l)‘(""‘l)..sp... ( ) R(q"‘l)'(""‘l)..sq( )

290 p . (L. 2 (o )Eu 2+ 14CR) (.. )Eu ?

<.5(p...2)(... )%u 2%

where one used (... )3 u 2>rp > 0. Proposition 2.8 finishes the proof.
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10.2 Case 2
It follows as in case 1.

11 Scattering
In this section, we prove Theoren2.19 In the rest of this section, 1 = ,=...1. Letus start
with a Morawetz identity.

11.1 Morawetz estimate
The next estimate is essential for proving the scattering.

Lemma 11.1 Let...2< <1,1 +2hlf%g‘” <p<ptandl<g<gandletu C(R,HS)be
a global solution to(1.1). Then

2(...1) 2
|ul**P-NE dxdlt + |ul**4* N2 dx dt < E[uo].
R RN R RN

Proof Using Lemma3.1, we have

M u(t) = n® 43Uy & Un... 2 |ugl?® dxdn
0 RN

4 L4ppol ... p..1 14p
“Trp ]RNX [u|**P|x| 2dx+21—+p " [u|**P|x| dx
L1
44 u[- dx.
l+q RN
We pick :=|-|and compute =, :%1, and
2 _ LA (xLLy) if N =3,
KDL 3KyB iEN 4
So
d 4 L4ppol ... (p...1N ... 1) L4ppol ...
dtMH u(t) “THD [ul**|x| ~Ydx+2 T+p i [ul**P|x| ~Tdx
1+q
+2(q...1)l(\l 1) dx
p O D2
1+p RN
1+q
+2(q...1)|(\l 1) dx.
1+q v (X

Now by Strauss inequalityZ.3),if ...1<0Oandg...1){ ...1)...2>0, then

(p...1NM...1)...2 ulE*P|x] dx
1+p RN

1+q
+2(q...1)|(\l L1 |y dx
1+q RN [X]

d
aMH u(t) 2
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Z |U|l+p“'2’\(“-::.§l)dx+ |u|1+q+|\%_g dx.
RN RN

Lemma 2.3 in B] gives|M,[u]| < u i% < U 3. Thus

u@) 2o =My ug)

~

2( ...1)
> Ul T8 dxdt + |u M eCE dxdit. 0
R RN R RN

11.2 Decay of global solutions
Let us establish the extinction of global solutions.

Proposition 11.2 Let %1 s<1,..8< <1,1 +% <p<pfandl<g<d’ Let

u C(R,H}) be aglobal solution tq1.1). Then

t11m ut) ,=0 forall2<r<N &

The proof is based on the next result.

Lemma 11.3 Let C, (RV). Take a sequence of functions such that
Sup n Hs< n inHSs.
n

Let uy, u be solutions tq1.1) such that y,(0,-) = ,and u(0,-)= .Thenforany >0,there
areT >0andn N satisfying

(un ..u) IE) < n>n.
Proof of Lemmadl1.3 Denotev:= U, V,:= Up, Wy =V, ..V, andz, :=u, ..u. Then

iv.. ()= iu. )+ (UL (L)Y
= x| JulPru+ u% b+ G )Bu. ()5

By the Strichartz estimate, for some admissible couples (),( 1, 1) ,we get

Wh L (L3 L) ,S (n...) + IUan'“lun |U|qh

Lr (L)
+ x| JuplPn L JulP i
oz ()W 1y (11.1)
The Rellich theorem gives, for a subsequence,
n= (n...) 0 asn . (11.2)

By Lemma2.23we write

S. < S S
(oor )20 oon ()W ETERS Z(...) e (...) 1l Zn L P
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S ey tT Zn Loy
S UL @HSFTSUp Up L rHS T
n
=NT. (11.3)
Take (1, )= (gr—g o @-D= 2N andq<g°, by Sobolev embed-
dings via the Holder estlmate we get
1 q...1
unl® b Jul®b S un Tyt U @n Wn o o
T L R, L)
2 qg...1 q...1
ST Un gt ULy Wn o)
STENTTw, | ) (11.4)
Let us estimate the term| x| (Jun]®t, .. Ju[Pt) " 1).If 0, then the estimation
LA

follows like for the homogeneous term. Assume that s < 0. Without loss of gener-
ality, assume also thasupp( ) B(0,1). Take := (lN—l)---:: |N—| ... forsome >0 closeto
zeroand ;:= 11—+ff Sincep <pf, we cantake 0< 1 suchthat ; (2, z) and 1>2.

Thus by the Hélder and Sobolev inequalities,

x| JunlP b JulPb < X un P ou Pt e
Ly ! 1 Lt
1..2
g...1 L1
S T 1 Un LT (HS) + U LT (HS) Wh LTl(L 1)

1.
ST N twe oy (11.5)

As a consequence ofi(l.2...11.5, we get

< —Zpd -2 g...1
Wh Ly (L2) LT(L ) LTl(L 1) S n+NT + T N +T 1 N Wh LT(L ) LTl(L 1)

< n+NT

e, T NG
The proof is achieved.

Now we prove the decay of global solutions following the method &1].

Proof of Propositiori1.2 We prove the decay in.2*% and conclude with the conservation
laws.

Suppose that there exist, and >0 satisfying

u(tn) L2+72VS(]RN) n N.

Thus by (2.4) there are >0 and a sequence, RN satisfying

Utn) | 2(q; () n N
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Arguing as in [31], we get, for allt  [t,,t,+ T]andn n,

U®) 2@y 7

Sincelim, ty= ,assumethaty.;..1,>T forn n .Thus Propositionll.1gives

2(..1) 2
Eluo] = u(t,x) " NIE dxdt + u(t,x) TR dxdt
R RN R RN

th+T L2
> u(t,x) N2 dxdt
n tn Q2(xn)
> L2 T =
n
This completes the proof of Propositioril.2 O

11.3 Proof of Theorem2.19
We de“ne

S

)= LIl and (..)2-:=-+(.. )3
(ar)

We start with some nonlinear estimates.

Lemma 11.4 Let -~ s<1,..8< <0,orN>6sand0< <min{s ... 3, orN>8s

2N...1
ands< < % .3 pc<p<p’andg<qg<qg’lLetu C(R,H})beasolutiontql.1). Then
there are real numberg <rq,r,,r3 < NZ—NE 0< 1<q...1and0< ,, 3<p... Isuch that

(...)2 u..€ ug o

g...1..4 S 1+ p...1..0 S 1+ 2
5 u LT (Lrl) ( )2 u S(O,T)+ u |__|_ (er) ( ' )2 u S0.T)

p...1..3 S 1+ 3
+ )2 .
Uy ()20 g

Proof of Lemmadl1.4 Using the Strichartz estimate, we write

()2 u®) .. Tut) gy < ()F ultd ()2 I ulPb

spt SO

Denotel := (0,T) and take the admissible coupley,r;) := (ﬁgf‘ﬂ) 1+g)and 1:=q;...1
(1,9). Then, becausg. < q<d°, we get

2N
2<r1<N and 1 (1,0).

Thanks to the Holder estimate, write

_ g...1 1
ud a1+q)  14q = u L1+q u Llvq __ _4dl+q)
LA+ N@-1y LT ) L Asba)- NG Ty
<y o u ! 4
S 1 1 S(1+0)
L (L) L+ L4s1+9)-N(g.- 1))
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g...1 1
SoU ey U oag gy

By Lemma2.22we get

(1):= (..)%u*tl 4(1+q) l+q)

|_4S(l+q)..N(q...1)(| ,LT

g...1
,S ( )Su L1+ u L1+q __ Al
|_43(1+q)..N(q...l)(|)
< ( )Su i1 u q...1 i u 1...1
S G q 29 1...1)(16)
LN(@-1)) L 1+9) L LW-NW---D(I,L“‘D
< (U aqasg) ull g u L
S G q 491+q)
LN@... Iy L1+a) Lo LN(q--(-]l)(|,L1+‘4)
< u ! u -l
~ L9L(1,WS'1) L (I,L")"

To estimate the inhomogeneous term, we discuss three cases.
1. Casel:...3< <0
Take := (IN_I)’ rp:= 11%, the admissible couple (gp,r2), and 2:=03 ... 1Since

pc<p<p°,weget2<r2<%and2<q2: ﬁ <1+p.Thus 2 (1,p),and

by the Holder estimate,
. p . p...2 2
10 o) A )

< p...2 2
~ u ry u ra qu(l)

p... 2
S U Ui

Now, using the identity on RN, we have
5 .. .1 5
G2 1L Pt S SuP+] ] quPi(e. )2

It is sufficient to estimate, for (3, rs)  , theterm |-| -SuP L L3)’ Take
1+p '

= (%), r3.= TIg the admissible couple (gs,rs) ,and 3:=0Q3 ... 2Because

Pc <P <p° we have

2<r3<N2N and 3:=03...2 (0,p...1).

Using the Holder and Sobolev estimates, write

.S P .S p...1..3 3
. u . u u U n
Il LT T A T S ()
< ubeley 3y
~ 3 T e L%BO)
p...1..3 3
5 u, (1,L73) u L93(1,WSr3) u L93(1,L'3)

p...1.3 u 1+ 3
L (1,L"3) L93(1,WSr3)*

A
c

The proof of the first case is achieved by regrouping the previous computation.
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2. Case2:0< <min{s % ... 8.
Take (q,r) , :=(... land a> 1satisfying rl = p%l+ %. This necessarily gives
r>panda= ﬁ Using the Gagliardo-Nirenberg inequality in Proposition 2.1, we get

i p i p...1...
1 U e [-lu,ur Ut Lag

N
c
-
T
T
c
-
c

Here we need the assumptions

o4 2a <a<2+2(25+a) 2(N ... 3 ca< 2N ;
N N..3 N..3...2 N..3...2
oer< 2N <a< 2(N ... 3 :
N+2s...2 N..6...2
2N 2N
1< <p...1 ———<a< —————.
N+2s...2 N+4S"'NN..;

A direct computation gives no contradiction in the previous inequalities. The second
one gives N >6sand < % ... 8 The third one gives

+2s
N..2

(N+49)(N ...3)>2N( +29) and N+2s...2>N+4s... N
This is equivalent to
(N+49)(N ...8)>2N( +29>2(N ... 3)( +59).

SoN2...2( +9N ... 8 >0, which is satisfied if N > 4sand < % ..s...%. This is
weaker than the condition 0< < % ... 8 The quantity | -] (... )§(|u|p“'h) LagLr)
can be controlled similarly. Moreover, since  <s, by the previous calculations,

S ,P p..1.3 1+ 3
N g risy > UL ) U Lasg wes):

3. Third case: sS< < % ..3
Theterm [-| uP 4 (L) can be controlled as in the second case. To estimate
[-] ~SuP , we have the three previous assumptions for ..Srather than for
Thus the necessary conditionis 0 < ..s< % ...3and0< < % ... 3 Thus

s< <%...3 O

Now we prove the scattering.

Proof of Theoren2.19 Using Lemmall.4 Proposition11.2 and Lemma2.2§ it follows
that (... )2 u SR). This implies that

(.)2 u.€ ug SR
OF -] U+ SR).



Saanouni et alBoundary Value Problems  (2023) 2023:32 Page 29 of 31

Then, ast,t , we have

e Pu) L CPut < )R ] Pl upb 0.

H S(tt)

Takingus :=lim;»  €t¢-u(t) in HS, we get

Jim - u(t) Lot Py, =0,

The scattering is proved. O
Appendix
In this section, we prove Lemm&.4 Let >0 and 1 +2N_‘%B°) <p < p°. Take a bounded

sequenceyy) in HS. Without loss of generality, we assume that, 0in HS. The purpose
is to prove that oy |ua|**P|x| dx 0.
A. Casel:...8< <0 Take R> .By the Holder inequality, if (9,q) satisfiesq| | <N,

then we get
1+p 1+p
lun=PIx] dx  up L(1+P)d(|x|<R) X (x R
X R
Cun i L
n L(1+p)q(|X|<R) 0 t-a LWN+1
C up 1+ RN+q .

LA+P)a(|x|<R)
Now, since 1 <p <p°, we take 1 <q< %N and get 2< (1 +p)q < N2—Ng Thus by

compact Sobolev embeddings it follows that

1+p 14p +q
y R|un| x| dx C uy, |_(1+p)q(|x|<R)RN 0.

Furthermore, by Sobolev embeddings,

lun[**PIx| dx R un b C.
X R

The proof is ended.
B. Case 2: 0. Uusing Compact Sobolev embeddings, write

1
[un|**?IX| dx C uy 1 0.

I

Furthermore, by the Rellich theorem and Strauss inequality we have

1+p p...1 2
u x| dx Cu up|cdx 0.
el Uy ol

Now, by the Strauss inequality,

.8 N..3
PP dx= T T ] P funl?dx
x| = X =



Saanouni et alBoundary Value Problems  (2023) 2023:32 Page 30 of 31

C P ax

x| =

Since ...p... 15‘%2 <0, the proof is ended.
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