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Abstract
In this paper, a nonclassical sinc collocation method is constructed for the numerical
solution of systems of second-order integro-differential equations of the Volterra and
Fredholm types. The novelty of the approach is based on using the new nonclassical
weight function for sinc method instead of the classic ones. The sinc collocation
method based on nonclassical weight functions is used to reduce the system of
integro-differential equations to a system of algebraic equations. Furthermore, the
convergence of the method is proposed theoretically, showing that the method
converges exponentially. By solving some examples, including problems with a
non-smooth solution, the results are compared with other existing results to
demonstrate the efficiency of the new method.

Keywords: Nonclassical sinc collocation; Integro-differential systems; Volterra
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1 Introduction
In the definition of integro-differential equations, the unknown function is under the sign
of integration, and its derivatives also appear in the equation. Such a problem can be clas-
sified into the Fredholm and Volterra types. The upper bound of an integral part in the
Volterra type is variable while it is a constant for the Fredholm type [1, 2].

Many important problems can be modeled by a system of integral or integro-differential
equations. So, solving the integro-differential equations has attracted much attention from
applied mathematics researchers [3].

Finding the exact solution of the integro-differential systems is quite challenging, so it
is often necessary to propose efficient numerical techniques.

Recently, several numerical methods, such as single term walsh series [1], Legendre
wavelets operational method [4], Bernstein operation matrix method [5], Chebyshev col-
location method [6], Fibonacci polynomials method [7], spectral Legendre-Chebyshev
[8], spectral method based on orthogonal polynomials [9], differential transform [10] and
Chebyshev quadrature collocation method [11] have been used to approximate the solu-
tion of integro-differential equations. In [12–15], the stochastic integro-differential equa-
tions have been solved using moving least squares, cubic B-spline, meshless discrete collo-
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cation, and orthonormal Bernstein polynomials method. In addition, some good attempts
have been made to approximate the solution of integro-differential equations based on hy-
brid parabolic and block-pulse functions, the truncated Fibonacci series, Bernoulli poly-
nomials, and rationalized Haar functions [14, 16–21].

In this paper, we considered the general form of he second-order linear Fredholm
integro-differential system

2∑

γ =0

Aγ Y(γ )(x) = F(x) +
∫ 1

0

2∑

γ =0

Bγ Y(γ )(t) dt, (1.1)

and the second-order Volterra integro-differential system

2∑

γ =0

Aγ Y(γ )(x) = F(x) +
∫ x

0

2∑

γ =0

Bγ Y(γ )(t) dt, (1.2)

subjected to the initial conditions

Y(0) = [α1, . . . ,αm]T , Y′(0) = [β1, . . . ,βm]T (1.3)

where

Aγ =
[
p(γ )

i,j (x)
]

m×m, Bγ =
[
q(γ )

i,j (x, t)
]

m×m, γ = 0, 1, 2,

F(x) =
[
f1(x), . . . , fm(x)

]T ,

and Y(x) = [y1(x), . . . , ym(x)]T are unknown functions to be determined. The functions fi(x)
and the coefficients p(γ )

i,j (x) and q(γ )
i,j (x) should be continues on [0, 1] but do not need to be

differentiable on [0, 1]. It is known that such a model problem can be used to simulate
the wind ripple in the desert [22], the fractal model of dropwise condensation [23], the
glass-forming composition for bulk metallic glasses [24], and many other phenomena. So,
constructing the reliable algorithms for solving the problem is of high importance.

Frank Stenger introduced numerical approximations based on sinc function [25, 26], and
then they were expanded for many applications in numerical analysis [27]. The classical
sinc basis functions have been widely used to solve the linear Fredholm integro-differential
equations [28], the Volterra integral and integro-differential equations [29], and the non-
linear second-order integro-differential equations system with Dirichlet conditions [30].

For the first time, Shizgal extended the nonclassical weight functions to approximate the
solution of the Boltzmann equation [31]. Then the method has been used to approximate
the eigenvalues and eigenfunction of the Schrödinger equation [32]. Our method consists
of reducing the solution of the problems (1.1) or (1.2) with initial conditions (1.3) to a
system of algebraic equations. To do this, we will use the nonclassical sinc collocation
method. It is known that the classical translated sinc basis functions are not differentiable
at zero, so we will try to construct the nonclassical sinc basis functions such that they
are differentiable at zero. Also, we will use some proper weight functions that produce
more accurate results compared to the classical basis functions to solve the problem above.
It will be proved that the nonclassical sinc method converges to the exact solution with
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exponential rates of convergence. Since the method does not need differentiability of the
solution on the boundary, the method is also applicable for problems with the non-smooth
solution.

The paper is organized as follows: In Sect. 2, the sinc basis functions are introduced to
be used in the subsequent sections. In Sect. 3, the nonclassical sinc collocation method
is used to approximate the solution of systems (1.1) and (1.2) along with the initial con-
ditions (1.3). In Sect. 4, we discussed the convergence and error analysis of the proposed
method. In Sect. 5, the methods have been used to solve some problems to demonstrate
the applicability and accuracy of the methods computationally. Finally, Sect. 6 is devoted
to the conclusion of the paper.

2 Sinc function preliminaries
To be used in the next section, we will recall the following results taken from [27, 29, 33–
38].

One can define the sinc function for the whole real numbers as follows

sinc(x) =

⎧
⎨

⎩

sin(πx)
πx , x �= 0,

1, x = 0.

Also, the translated sinc functions for h > 0 can be defined as

S(j, h)(x) = sinc

(
x – jh

h

)
, j = 0,±1,±2, . . . .

The cardinality of the translated sinc basis functions at the interpolating points xk = kh is
obvious, i.e.,

S(j, h)(kh) = δjk =

⎧
⎨

⎩
1, j = k,

0, j �= k.

For the function f defined on real line with h > 0, the following series

C(f , h)(x) =
∞∑

j=–∞
f (jh)S(j, h)(x)

is called the Whittaker cardinal expansion of f if this series converges. It is clear that the
cardinal function is an interpolant for f at the points {jh}∞j=–∞ in the infinite strip

Ds ≡ {
w = u + iv : |v| < d ≤ π/2

}
,

which is a subset of the complex plane. To use the sinc basis functions on the finite interval
(0, 1), we can apply the conformal map

φ(z) = ln

(
z

1 – z

)
,



Ghasemi et al. Boundary Value Problems         (2023) 2023:38 Page 4 of 24

with the eye-shaped domain

DE =
{

z = x + iy :
∣∣∣∣arg

(
z

1 – z

)∣∣∣∣ < d ≤ π/2
}

,

and the range Ds.
We will combine the translated sinc functions with the conformal mapping φ to obtain

the basis functions

Sj(z) = S(j, h)oφ(z) = sinc

(
φ(z) – jh

h

)
, z ∈ DE. (2.1)

The inverse mapping of w = φ(z) is as follows

z = φ–1(w) =
ew

1 + ew .

For the evenly spaced knots {kh}∞k=–∞ on the real line, their corresponding images xk ∈
(0, 1), which are real in DE , are

xk = φ–1(kh) =
ekh

1 + ekh , k = 0,±1,±2, . . . . (2.2)

Let DE be a simply connected domain in the complex plane with boundary points a �= b
and φ be a conformal map from DE onto Ds with φ(a) = –∞ and φ(b) = ∞. Also, let us
denote by ψ the inverse map of φ and define

	 =
{

z ∈C : z = ψ(u), u ∈R
}

and

zj = ψ(jh), j = 0,±1,±2, . . . .

Definition 1 Let B(DE) be the class of functions f , which are analytic in DE , and

∫

ψ(L+u)

∣∣f (z) dz
∣∣ → 0, u → ±∞,

where L = {iv : |v| < d} and on the boundary of DE (denoted by ∂DE)

N(f , DE) ≡
∫

∂DE

∣∣f (z) dz
∣∣ < ∞.

Theorem 2 Let f ∈ B(DE), and let n be a positive integer then

sup
–∞<x<∞

∣∣∣∣∣f (x) –
n∑

j=–n

f (xj)S(k, h)oφ(x)

∣∣∣∣∣ ≤ k1n
1
2 e–

√
πdαn,

for some constant c > 0 in which the mesh-size h is chosen as:

h =
√

πd
αn

. (2.3)
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Proof See [33]. �

Theorem 3 Let for f ∈ B(DE) and some positive constants α, β , and C we have

∣∣∣∣
f (x)
φ′(x)

∣∣∣∣ ≤ c

⎧
⎨

⎩
e–α|φ(x)|, x ∈ 	a,

e–β|φ(x)|, x ∈ 	b,

with

	a =
{

x ∈ 	 : φ(x) ∈ (–∞, 0)
}

, (2.4)

and

	b =
{

x ∈ 	 : φ(x) ∈ [0,∞)
}

. (2.5)

If h is selected as (2.3), then for all x ∈ 	,

∣∣∣∣∣

∫ 1

0
f (t) dt – h

n∑

j=–n

f (xj)
φ′(xj)

∣∣∣∣∣ ≤ k2e–
√

π dαn, (2.6)

Proof See [34]. �

If we suppose that
q(0)

i,j (x,.)
φ′ ,

q(1)
i,j (x,.)
φ′ ,

q(2)
i,j (x,.)
φ′ ∈ B(DE), then using (2.6) on the right-hand side

of (1.1), we have

∫ 1

0

(
q(0)

i,j (x, t)y1(t) + q(1)
i,j (x, t)y′

j(t) + q(2)
i,j (x, t)y′′

j (t)
)

dt

= h
n∑

g=–n

(q(0)
i,j (x, tg)
φ′(tg)

yj(tg) +
q(1)

i,j (x, tg)
φ′(tg)

y′
j(tg) +

q(2)
i,j (x, tg)
φ′(tg)

y′′
j (tg)

)
. (2.7)

Theorem 4 Let for f ∈ B(DE) and the positive constants α, β , and C we have

∣∣∣∣
f (x)
φ′(x)

∣∣∣∣ ≤ c

⎧
⎨

⎩
e–α|φ(x)|, x ∈ 	a,

e–β|φ(x)|, x ∈ 	b,

where 	a and 	b are defined in (2.4) and (2.5). If h is selected as (2.3), then for all x ∈ 	, we
have

∣∣∣∣∣

∫ xl

0
f (t) dt – h

n∑

j=–n

δ
(–1)
lj

f (xj)
φ′(xj)

∣∣∣∣∣ ≤ k3e–
√

π dαn, (2.8)

where

δ
(–1)
lj =

1
2

+
∫ l–j

0

sin(π t)
π t

dt. (2.9)
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Proof See [29, 35]. �

Also, if we suppose that
q(0)

i,j (x,.)
φ′ ,

q(1)
i,j (x,.)
φ′ ,

q(2)
i,j (x,.)
φ′ ∈ B(DE), then using (2.8) on the right-hand

side of (1.2), we obtain

∫ xl

0

(
q(0)

i,j (x, t)y1(t) + q(1)
i,j (x, t)y′

j(t) + q(2)
i,j (x, t)y′′

j (t)
)

dt

= h
n∑

g=–n
δ

(–1)
lg

(q(0)
i,j (x, tg)
φ′(tg)

yj(tg) +
q(1)

i,j (x, tg)
φ′(tg)

y′
j(tg) +

q(2)
i,j (x, tg)
φ′(tg)

y′′
j (tg)

)
(2.10)

Lemma 5 For the simply connected domains DE and Ds and the one-to-one conformal
mapping φ : DE → Ds, we have

δ
(0)
j,k =

[
S(j, h)oφ(x)

]|x=xk =

⎧
⎨

⎩
1, j = k,

0, j �= k,
(2.11)

δ
(1)
j,k = h

d
dφ

[
S(j, h)oφ(x)

]|x=xk =

⎧
⎨

⎩
0, j = k,
(–1)k–j

k–j , j �= k,
(2.12)

δ
(2)
j,k = h2 d2

dφ2

[
S(j, h)oφ(x)

]|x=xk =

⎧
⎨

⎩

–π2

3 , j = k,
–2(–1)k–j

(k–j)2 , j �= k.
(2.13)

Proof See [36]. �

Using the nonclassical sinc basis functions, f (x) can be approximated on the whole real
line as follows [37]

f (x) 
 f̂ (x) =
∞∑

j=–∞

W (x)
W (jh)

f (jh) sinc

(
x – jh

h

)
, (2.14)

where W (x) is a positive weight function. Obviously, for the points xk = kh, the interpola-
tion conditions

f̂ (kh) = f (kh), k = 0,±1,±2, . . . ,

hold.

Theorem 6 Let φ′2f ∈ B(DE), and for some constant c1, the weight function W satisfies
W (x)
W (xj)

< c1. Also, let for some positive constants α, β , and c we have

∣∣(φ′f
)
(x)

∣∣ ≤ c

⎧
⎨

⎩
e–α|φ(x)|, x ∈ 	a,

e–β|φ(x)|, x ∈ 	b,
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where 	a and 	b are defined in (2.4) and (2.5). If h is satisfied in (2.3), then for all x ∈ 	,
we have, [37]

∣∣∣∣∣f (x) –
n∑

j=–n

φ′(xj)f (xj)
W (x)
W (xj)

sinc( φ(x)–jh
h )

φ′(x)

∣∣∣∣∣ ≤ c1k4n1/2e–
√

π dαn. (2.15)

Proof See [37]. �

3 The nonclassical sinc collocation method
Consider the Fredholm integro-differential system (1.1) as well as the Volterra integro-
differential system (1.2) connected with initial conditions (1.3). Let Y = [y1(x), ·, yj(x), . . . ,
ym(x)]T ∈ B(DE) be the exact solution of (1.1)-(1.3) or (1.2)-(1.3). The translated sinc func-
tions Sk(x) are not differentiable at zero, so we define the new functions

{
Sk(x)
φ′(x)

}n

k=–n
(3.1)

and call them the modified sinc basis functions. The new basis functions are satisfied in
the relations

lim
x→0

Sk(x)
φ′(x)

= 0, lim
x→0

(
Sk(x)
φ′(x)

)′
= 0,

so they are well defined and differentiable at zero now. Using the new basis (3.1), we define
uj,n(x) as

uj,n(x) =
n∑

k=–n

cj,k
wj(x)
wj(xk)

Sk(x)
φ′(x)

, j = 1, . . . , m (3.2)

to approximate the exact solution yj(x), where cj,k are unknown constants to be deter-
mined. Since the basis functions are zero at the initial point, and the initial conditions of
the problem are not homogenous, we need to add the polynomials

vj(x) = (2αj + βj)x3 – (3αj + 2βj)x2 + βjx + αj

+ Aj
(
3x2 – 2x3) + Bj

(
x3 – x2), j = 1, . . . m, (3.3)

to the approximate solution (3.2), to be satisfied in the initial conditions (1.3). So, the new
approximate solution can be defined as

Yn(x) =
[
y1,n(x), . . . , ym,n(x)

]T (3.4)

where

yj,n(x) = uj,n(x) + vj(x), j = 1, . . . , m (3.5)

It should be noted that the approximate solution Yn(x) now satisfies the initial conditions
(1.3), i.e.,

yj,n(0) = αj, j = 1, . . . , m,
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y′
j,n(0) = βj, j = 1, . . . , m.

3.1 Fredholm integro-differential system
Substituting Yn(x) into (1.1) and multiplying both sides by h2

φ′ , we have a relation that can
be discretized at the sinc grid points xl , l = –n, . . . , n, to obtain

h2
n∑

k=–n

(
A2T(2)

k (xl) +
1

φ′(xl)
A1T(1)

k (xl) +
1

φ′2 (xl)
A0T(0)

k (xl)
)

ck

+
h2

φ′(xl)
(
A2v′′(xl) + A1v′(xl) + A0v(xl)

)

–
h2

φ′(xl)

∫ 1

0

n∑

k=–n

(
φ′(t)B2T(2)

k (t) + B1T(1)
k (t) +

1
φ′(t)

B0T(0)
k (t)

)
ck dt

–
h2

φ′(xl)

∫ 1

0

(
B2v′′(t) + B1v′(t) + B0v(t)

)
dt =

h2

φ′(xk)
f(xl), (3.6)

where

ck = [c1,k , . . . , cm,k], T(γ )
k =

[
T (γ )

1,k , . . . , T (γ )
m,k

]
, (3.7)

with

T (0)
j,k (x) =

Wj(x)
Wj(xk)

Sj(x),

T (γ )
j,k (x) =

1
(φ′(x))γ –1

dγ

dxγ

(
Wj(x)Sj(x)

Wj(xk)φ′(x)

)
, γ = 1, 2. (3.8)

Simplifying (3.6), we obtain the following system of linear equations

m∑

j=1

n∑

k=–n

[(
p(2)

i,j (xl)
Wj(xl)
Wj(xk)

)
δ

(2)
kl + h

(
Wj(xl)
Wj(xk)

(
p(1)

i,j (xl)
1

φ′(xl)
– p(2)

i,j (xl)
φ′′(xl)
φ′2 (xl)

)

+
W ′

j (xl)
Wj(xk)

(
2p(2)

i,j (xl)
1

φ′(xl)

))
δ

(1)
kl + h2

(
Wj(xl)
Wj(xk)

(
p(0)

i,j (xl)
1

φ′2 (xl)
– p(1)

i,j (xl)
φ′′(xl)
φ′3 (xl)

+ p(2)
i,j (xl)

(
2φ′′2 (xl) – φ′′′(xl)φ′(xl)

φ′4 (xl)

))
+

W ′
j (xl)

Wj(xk)

(
p(1)

i,j (xl)
1

φ′2 (xl)
– 2

φ′′(xl)
φ′2 (xl)

)

+
W ′′

j (xl)
Wj(xk)

1
φ′2 (xl)

)
δ

(0)
kl

]
cj,k +

m∑

j=1

h2

φ′(xl)
(
p(0)

i,j (xl)vj(xl) + p(1)
i,j (xl)v′

j(xl)

+ p(2)
i,j (xl)v′′

j (xl)
)

–
h3

φ′(xl)

n∑

g=–n

1
φ′(tg)

[ m∑

j=1

n∑

k=–n

1
h2

(
q(2)

i,j (xl, tg)φ′(tg)
Wj(tg)
Wj(xk)

)
δ

(2)
kg

+
1
h

(
Wj(tg)
Wj(xk)

(
q(1)

i,j (xl, tg) – q(2)
i,j (xl, tg)

(
φ′′(tg)
φ′(tg)

))
+

W ′
j (tg)

Wj(xk)
(
2q(2)

i,j (xl, tg)
))

δ
(1)
kg

+
(

Wj(tg)
Wj(xk)

(
q(0)

i,j (xl, tg)
1

φ′(tg)
– q(1)

i,j (xl, tg)
φ′′(tg)
φ′(tg)
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+ q(2)
i,j (xl, tg)

(
2φ′′(tg) – φ′′′(tg)φ′(tg)

φ′3 (tg)

))

+
W ′

j (tg)
Wj(xk)

(
q(1)

i,j (xl, tg)
1

φ′(tg)
– 2q(2)

i,j (xl, tg)
φ′′(tg)
φ′2 (tg)

)

+
W ′′′

j (tg)
Wj(xk)

1
φ′(tg)

)
δ

(0)
kg )cj,k

]
–

h3

φ′(xl)

m∑

j=1

n∑

g=–n

1
φ′(xk)

(
q(2)

i,j (xl, tg)v′′
j (tg)

+ q(1)
i,j (xl, tg)v′

j(tg) + q(0)
i,j (xl, tg)vj(tg)

)
=

h2

φ′(xl)
fi(xl),

l = –n, . . . , n, i = 1, . . . , m, (3.9)

where we used cj,–n = cj,n = 0, j = 1, . . . , m. Now, the unknowns cj,k , Aj, Bj and thus the
approximate solutions yj,n(x), j = 1, . . . , m can be determined via the solution of the linear
system (3.9).

3.2 Volterra integro-differential system
In a similar manner, substituting Yn(x) from (3.4) into (1.2) and multiplying both sides by
h2

φ′ , we have a relation for which after discretizing at the sinc grid points xl , l = –n, . . . , n,
can be written as

h2
n∑

k=–n

(
A2T(2)

k (xl) +
1

φ′(xl)
A1T(1)

k (xl) +
1

φ′2 (xl)
A0T(0)

k (xl)
)

ck

+
h2

φ′(xl)
(
A2v′′(xl) + A1v′(xl) + A0v(xl)

)

–
h2

φ′(xl)

∫ xl

0

n∑

k=–n

(
φ′(t)B2T(2)

k (t) + B1T(1)
k (t) +

1
φ′(t)

B0T(0)
k (t)

)
ck dt

–
h2

φ′(xl)

∫ 1

0

(
B2v′′(t) + B1v′(t) + B0v(t)

)
dt =

h2

φ′(xk)
f(xl), (3.10)

where ck ant T(γ )
k were already defined in (3.7).

Simplifying (3.10), we obtain the following system of linear equations with the un-
knowns cj,k , k = –n, . . . , n,

m∑

j=1

n∑

k=–n

[(
p(2)

i,j (xl)
Wj(xl)
Wj(xk)

)
δ

(2)
kl + h

(
Wj(xl)
Wj(xk)

(
p(1)

i,j (xl)
1

φ′(xl)
– p(2)

i,j (xl)
φ′′(xl)
φ′2 (xl)

)

+
W ′

j (xl)
Wj(xk)

(
2p(2)

i,j (xl)
1

φ′(xl)

))
δ

(1)
kl + h2

(
Wj(xl)
Wj(xk)

(
p(0)

i,j (xl)
1

φ′2 (xl)
– p(1)

i,j (xl)
φ′′(xl)
φ′3 (xl)

+ p(2)
i,j (xl)

(
2φ′′2 (xl) – φ′′′(xl)φ′(xl)

φ′4 (xl)

))
+

W ′
j (xl)

Wj(xk)

(
p(1)

i,j (xl)
1

φ′2 (xl)
– 2

φ′′(xl)
φ′2 (xl)

)

+
W ′′

j (xl)
Wj(xk)

1
φ′2 (xl)

)
δ

(0)
kl

]
cj,k +

m∑

j=1

h2

φ′(xl)
(p(0)

i,j (xl)vj(xl) + p(1)
i,j (xl)v′

j(xl))

+ p(2)
i,j (xl)v′′

j (xl) –
h3

φ′(xl)

n∑

g=–n
δ

(–1)
lg

1
φ′(tg)

[ m∑

j=1

n∑

k=–n

1
h2

(
q(2)

i,j (xl, tg)φ′(tg)
Wj(tg)
Wj(xk)

)
δ

(2)
kg
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+
1
h

(
Wj(tg)
Wj(xk)

(
q(1)

i,j (xl, tg) – q(2)
i,j (xl, tg)

(
φ′′(tg)
φ′(tg)

))
+

W ′
j (tg)

Wj(xk)
(
2q(2)

i,j (xl, tg)δ(1)
kg
))

+
(

Wj(tg)
Wj(xk)

(
q(0)

i,j (xl, tg)
1

φ′(tg)
– q(1)

i,j (xl, tg)
φ′′(tg)
φ′(tg)

+ q(2)
i,j (xl, tg)

×
(

2φ′′(tg) – φ′′′(tg)φ′(tg)
φ′3 (tg)

))
+

W ′
j (tg)

Wj(xk)

(
q(1)

i,j (xl, tg)
1

φ′(tg)
– 2q(2)

i,j (xl, tg)
φ′′(tg)
φ′2 (tg)

)

+
W ′′′

j (tg)
Wj(xk)

1
φ′(tg)

)
δ

(0)
kg )cj,k

]
–

h3

φ′(xl)

m∑

j=1

n∑

g=–n
δ

(–1)
lg

1
φ′(xk)

(
q(2)

i,j (xl, tg)v′′
j (tg)

+ q(1)
i,j (xl, tg)v′

j(tg) + q(0)
i,j (xl, tg)vj(tg)

)
=

h2

φ′(xl)
fi(xl),

l = –n, . . . , n, i = 1, . . . , m, (3.11)

where we used cj,–n = cj,n = 0j = 1, . . . , m. Solving the system of linear equations (3.11), the
unknowns cj,k , Aj, Bj and therefore the approximate solution yj,n(x) for j = 1, . . . , m can be
obtained.

4 Error analysis
To be used in the following, let us define I(s) = [δ(s)

kl ] for s = 0, 1, 2, where δs
kl = (–1)sδs

lk , based
on (2.11)-(2.13). Also, from (3.3), we get

Aj = yj(0), Bj = y′
j(0), j = 1, . . . , m,

and

vj(x) = (2αj + βj)x3 – (3αj + 2βj)x2 + βjx + αj

+ yj(0)
(
3x2 – 2x3) + y′

j(0)
(
x3 – x2), j = 1, . . . , m.

First, we will establish the error analysis for the case of Fredholm-type problems, and it
will be almost similar to the Volterra type.

4.1 Fredholm integro-differential system
With the above notations, the system of equations (3.9) can be rewritten in the following
matrix form

Ac = q, (4.1)

where

c = [0, c1,–n+1, . . . , c1,n–1, 0, . . . , 0, cm,–n+1, . . . , cm,n–1, 0]T ,

q = [q1,–n, . . . , q1,n, . . . , qm,–n, . . . , qm,n]T ,
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with

qi,l = –
m∑

j=1

h2

φ′(xl)
(
p(0)

i,j (xl)vj(xl) + p(1)
i,j (xl)v′

j(xl) + p(2)
i,j (xl)v′′

j (xl)
)

+
h3

φ′(xl)

m∑

j=1

n∑

g=–n

1
φ′(xk)

(
q(0)

i,j (xl, tg)vj(tg) + q(1)
i,j (xl, tg)v′

j(tg)

+ q(2)
i,j (xl, tg)v′′

j (tg)
)

+
h2

φ′(xl)
fi(xl),

and A is the m × m block matrix

A =

⎡

⎢⎢⎢⎢⎣

A11 A12 . . . A1m

A21 A22 . . . A2m
...

...
. . .

...
Am1 Am2 . . . Amm

⎤

⎥⎥⎥⎥⎦

where Aij = [a(l,k)
i,j ](2n+1)×(2n+1) are the square matrices with

a(l,k)
i,j =

(
p(2)

i,j (xl)
Wj(xl)
Wj(xk)

)
I(2) – h

(
Wj(xl)
Wj(xk)

(
p(1)

i,j (xl)
1

φ′(xl)
– p(2)

i,j (xl)
φ′′(xl)
φ′2 (xl)

)

+
W ′

j (xl)
Wj(xk)

(
2p(2)

i,j (xl)
1

φ′(xl)

))
I(1)

+ h2
(

Wj(xl)
Wj(xk)

(
p(0)

i,j (xl)
1

φ′2 (xl)
– p(1)

i,j (xl)
φ′′(xl)
φ′3 (xl)

+ p(2)
i,j (xl)

(
2φ′′2 (xl) – φ′′′(xl)φ′(xl)

φ′4 (xl)

))

+
W ′

j (xl)
Wj(xk)

(
p(1)

i,j (xl)
1

φ′2 (xl)
– 2

φ′′(xl)
φ′2 (xl)

)
+

W ′′
j (xl)

Wj(xk)
1

φ′2 (xl)

)
I(0)

–
h3

φ′(xl)

n∑

g=–n

1
φ′(tg)

[
1
h2

(
q(2)

i,j (xl, tg)φ′(tg)
Wj(tg)
Wj(xk)

)
I(2)

–
1
h

(
Wj(tg)
Wj(xk)

(
q(1)

i,j (xl, tg) – q(2)
i,j (xl, tg)

(
φ′′(tg)
φ′(tg)

))
+

W ′
j (tg)

Wj(xk)
(
2q(2)

i,j (xl, tg)
))

I(1)

+
(

Wj(tg)
Wj(xk)

(
q(0)

i,j (xl, tg)
1

φ′(tg)
– q(1)

i,j (xl, tg)
φ′′(tg)
φ′(tg)

+ q(2)
i,j (xl, tg)

(
2φ′′(tg) – φ′′′(tg)φ′(tg)

φ′3 (tg)

))

+
W ′

j (tg)
Wj(xk)

(
q(1)

i,j (xl, tg)
1

φ′(tg)
– 2q(2)

i,j (xl, tg)
φ′′(tg)
φ′2 (tg)

)
+

W ′′′
j (tg)

Wj(xk)
1

φ′(tg)

)
I(0))

]
,

k, l = –n, . . . , n.
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To be able to find a bound on the error |Y(x) – Yn(x)|, we need to obtain a bound on
‖AŶ∗ – q‖ where

Ŷ∗ =
[
ŷ∗

1,–n, . . . , ŷ∗
1,n, . . . , ŷ∗

m,–n, . . . , ŷ∗
m,n

]T

and

ŷ∗
j,n =

(
φ′y∗

j
)
(xn) = φ′(xn)(yj – vj)(xn), j = 1, . . . , m.

Lemma 7 Let φ′2 y∗
j ∈ B(DE) for j = 1, . . . , m, and for positive constants α, β , and c, we have

∣∣(φ′y∗
j
)
(x)

∣∣ =
∣∣(φ′(yj – vj)

)
(x)

∣∣ ≤ c

⎧
⎨

⎩
e–α|φ(x)|, x ∈ 	a,

e–β|φ(x)|, x ∈ 	b,
(4.2)

Let h be selected as (2.3), and the weight functions Wj, j = 1, . . . , m are defined such that
Wj(x)

Wj(xk ) < c1,
W ′

j (x)
Wj(xk ) < c1 and

W ′′
j (x)

Wj(xk ) < c1, then we have

∥∥AŶ∗ – q
∥∥ ≤ k8n

1
2 e–

√
π dαn (4.3)

with the previously defended A, Ŷ∗, and q.

Proof Assume that the kernels kj,γ , j = 1, . . . , m, γ = 0, 1, 2, defined as

kj,γ (x, z) =
1

2π i(φ′(x))γ –1
∂γ

∂xγ

(
sin( πφ(x)

h )Wj(x)
φ′(x)(φ(z) – φ(x))Wj(z)

)
(4.4)

are associated with the modified nonclassical sinc functions. We can expand ŷ∗
j (x) =

y∗
j (x)φ′(x) as follows

y∗
j (x) –

∞∑

k=–∞
ŷ∗

j (xk)
T (0)

j,k (x)
φ′(x)

=
∫

∂D

kj,0(x, z)
φ′(x) sin( πφ(z)

h )
φ′(z)ŷ∗

j (z) dz,

where T (0)
j,k (x) are defined by (3.8). Thus, we have

dγ

dxγ
y∗

j (x) –
∞∑

k=–∞

(
φ′(x)

)γ –1T (γ )
j,k (x)ŷ∗

j (xk)

=
∫

∂D

(φ′(x))γ –1kj,γ (x, z)
sin( πφ(z)

h )
φ′(z)ŷ∗

j (z) dz, γ = 0, 1, 2.

Let us define the form of the residual vector r = AŶ∗ – q by

r = [r1,–n, . . . , r1,n, . . . , rm,–n, . . . , rm,n]T ,
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then, by replacing cj,k with ŷ∗
j (xk) in (3.9), we have

ri,l =
{

AŶ∗ – q
}

i,l

= h2
m∑

j=1

n∑

k=–n

(
p(2)

i,j (xl)T (2)
j,k (xl) +

q(1)
i,j (xl)
φ′(xl)

T (1)
j,k (xl) +

p(0)
i,j (xl)

φ′2 (xl)
T (0)

j,k (xl)
)

ŷ∗
j (xk)

+
m∑

j=1

h2

φ′(xl)
(
p(2)

i,j (xl)v′′
j (xl) + p(1)

i,j (xl)v′
j(xl) + p(0)

i,j (xl)vj(xl)
)

–
h2

φ′(xl)

∫ 1

0

m∑

j=1

n∑

k=–n

(
q(2)

i,j (xl, t)φ′(t)T (2)
j,k (t) + q(1)

i,j (xl, t)T (1)
j,k (t)

+
q(0)

i,j (xl, t)
φ′(t)

T (0)
j,k (t)

)
ŷ∗

j (xk) dt –
h2

φ′(xl)

∫ 1

0

m∑

j=1

(
q(2)

i,j (xl, t)v′′
j (t)

+ q(1)
i,j (xl, t)v′

j(t) + q(0)
i,j (xl, t)vj(t)

)
dt –

h2

φ′(xk)
fi(xl). (4.5)

Since h2

φ′ (Lyj – fi) = 0, by subtracting this relation from (4.5), we have

ri,l =
{

AŶ∗ – q
}

i,l –
h2

φ′(xl)
(Lyj – fi)(xl)

= h2
m∑

j=1

n∑

k=–n

(
p(2)

i,j (xl)T (2)
j,k (xl) +

p(1)
i,j (xl)
φ′(xl)

T (1)
j,k (xl) +

p(0)
i,j (xl)

φ′2 (xl)
T (0)

j,k (xl)
)

ŷ∗
j (xk)

+
m∑

j=1

h2

φ′(xl)
(
p(2)

i,j (xl)v′′
j (xl) + p(1)

i,j (xl)v′
j(xl) + p(0)

i,j (xl)vj(xl)
)

–
h2

φ′(xl)

∫ 1

0

m∑

j=1

n∑

k=–n

(
q(2)

i,j (xl, t)φ′(t)T (2)
j,k (t) + q(1)

i,j (xl, t)T (1)
j,k (t) +

q(0)
i,j (xl, t)
φ′(t)

T (0)
j,k (t)

)

ŷ∗
j (xk) dt –

h2

φ′(xl)

∫ 1

0

m∑

j=1

(
q(2)

i,j (xl, t)v′′
j (t) + q(1)

i,j (xl, t)v′
j(t) + q(0)

i,j (xl, t)vj(t)
)

dt

–
h2

φ′(xl)
fi(xl) –

h2

φ′(xl)

m∑

j=1

(
p(2)

i,j (xl)y′′
j (xl) + p(2)

i,j (xl)y′
j(xl) + p(0)

i,j (xl)yj(xl)
)

+
h2

φ′(xl)

∫ 1

0

m∑

j=1

(
q(2)

i,j (xl, t)y′′
j (t) + q(1)

i,j (xl, t)y′
j(t) + q(0)

i,j (xl, t)yj(t)
)

dt +
h2

φ′(xk)
fi(xl)

=r(1)
i,l + r(2)

i,l + r(3)
i,l + r(4)

i,l ,

where

r(1)
i,l = –

h2

φ′(xl)

m∑

j=1

(
p(2)

i,j (xl)y′′
j (xl) + p(1)

i,j (xl)y′
j(xl) + p(0)

i,j (xl)yj(xl)
)

+
m∑

j=1

h2

φ′(xl)
(
p(2)

i,j (xl)v′′
j (xl) + p(1)

i,j (xl)v′
j(xl) + p(0)

i,j (xl)vj(xl)
)
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+ h2
m∑

j=1

∞∑

k=–∞

(
p(2)

i,j (xl)T (2)
j,k (xl) +

p(1)
i,j (xl)
φ′(xl)

T (1)
j,k (xl) +

p(0)
i,j (xl)

φ′2 (xl)
T (0)

j,k (xl)
)

ŷ∗
j (xk)

= –
h2

φ′(xl)

( m∑

j=1

(
p(2)

i,j (xl)y∗′′
j (xl) + p(1)

i,j (xl)y∗′
j (xl) + p(0)

i,j (xl)y∗
j (xl)

)
)

+ h2
m∑

j=1

∞∑

k=–∞

(
p(2)

i,j (xl)T (2)
j,k (xl) +

p(1)
i,j (xl)
φ′(xl)

T (1)
j,k (xl) +

p(0)
i,j (xl)

φ′2 (xl)
T (0)

j,k (xl)
)

ŷ∗
j (xk)

= –h2
m∑

j=1

∫

∂DE

[
p(2)

i,j (xl)k2,j(xl, z) +
p(1)

i,j (xl)
φ′(xl)

k1,j(xl, z)

+
p(0)

i,j (xl)
φ′2 (xl)

k0,j(xl, z)
]

φ′(z)ŷ∗
j (z)

sin( πφ(z)
h )

dz,

r(2)
i,l = –h2

m∑

j=1

–n–1∑

k=–∞

(
p(2)

i,j (xl)T (2)
j,k (xl) +

p(1)
i,j (xl)
φ′(xl)

T (1)
j,k (xl) +

p(0)
i,j (xl)

φ′2 (xl)
T (0)

j,k (xl)
)

ŷ∗
j (xk)

– h2
m∑

j=1

∞∑

k=n+1

(
p(2)

i,j (xl)T (2)
j,k (xl) +

p(1)
i,j (xl)
φ′(xl)

T (1)
j,k (xl) +

p(0)
i,j (xl)

φ′2 (xl)
T (0)

j,k (xl)
)

ŷ∗
j (xk),

r(3)
i,l =

h2

φ′(xl)
(
fi(xl) – fi(xl)

)
= 0,

r(4)
i,l =

h2

φ′(xl)

∫ 1

0

m∑

j=1

n∑

k=–n

(
q(2)

i,j (xl, t)φ′(t)T (2)
j,k (t)

+ q(1)
i,j (xl, t)T (1)

j,k (t) +
q(0)

i,j (xl, t)
φ′(t)

T (0)
j,k (t)

)
ŷ∗

j (xk) dt

+
h2

φ′(xl)

∫ 1

0

m∑

j=1

(
q(2)

i,j (xl, t)y′′
j (t) + q(1)

i,j (xl, t)y′
j(t) + q(0)

i,j (xl, t)yj(t)
)

dt

–
h2

φ′(xl)

∫ 1

0

m∑

j=1

(
q(2)

i,j (xl, t)v′′
j (t) + q(1)

i,j (xl, t)v′
j(t) + q(0)

i,j (xl, t)vj(t)
)

dt

=
h2

φ′(xl)

∫ 1

0

m∑

j=1

(
q(2)

i,j (xl, t)y∗′′
j (t) + q(1)

i,j (xl, t)y∗′
j (t) + q(0)

i,j (xl, t)y∗
j (t)

)
dt

–
h3

φ′(xl)

n∑

g=–n

m∑

j=1

n∑

k=–n

(
q(2)

i,j (xl, tg)T (2)
j,k (tg) +

q(1)
i,j (xl, tg)
φ′(tg)

T (1)
j,k (tg)

+
q(0)

i,j (xl, tg)
φ′2 (tg)

T (0)
j,k (tg)

)
ŷ∗

j (xk).

From (4.4), we deduce that

kj,0(xl, z) = 0,

kj,1(xl, z) =
(–1)lWj(xl)

2ih(φ(z) – lh)Wj(z)
,
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kj,2(xl, z) =
(–1)l

2ih(φ(z) – lh)2

(
2 +

(
φ(z) – lh

)( 1
φ′

)′
(xl)

)
Wj(xl)
Wj(z)

× (–1)lW ′
j (xl)

2ih(φ(z) – lh)Wj(z)

(
2
φ′

)
(xl).

Also, for the mapping φ(x), we have the following bounds

∣∣∣∣
1

φ′(x)

∣∣∣∣ ≤ 1
4

,
∣∣∣∣

(
1

φ′(x)

)′∣∣∣∣ ≤ 1,

∣∣∣∣

(
1

φ′(x)

)′′∣∣∣∣ ≤ 2,
∣∣∣∣

(
1
φ′

)(
1
φ′

)′′∣∣∣∣ ≤ 1
2

,
(4.6)

Note that on ∂DE , we have |Iφ(z)| = d, thus by defining u(z) = Rφ(z) and using the bounds
in (4.6) and lemmas assumptions on Wj, we have

∣∣kj,1(xl, z)
∣∣ ≤ c1c′

1h–1

((u(z) – lh)2 + d2) 1
2

,
∣∣kj,2(xl, z)

∣∣ ≤ c1c′
2h–1

((u(z) – lh)2 + d2) 1
2

,

which results in

h2
∣∣∣∣p

(2)
i,j (xl)kj,2(xl, z) +

p(1)
i,j (xl)
φ′(xl)

kj,1(xl, z)
∣∣∣∣ ≤ c1c2h

((u(z) – lh)2 + d2) 1
2

, (4.7)

where the constant c2 is depending on h, d, and the on bounds in (4.6). Thus, we have

∥∥AŶ∗ – q
∥∥ =

( m∑

i=1

n∑

l=–n

|ri,l|2
) 1

2

≤
( m∑

i=1

n∑

l=–n

∣∣r(1)
i,l
∣∣2
) 1

2

+

( m∑

i=1

n∑

l=–n

∣∣r(2)
i,l
∣∣2
) 1

2

+

( m∑

i=1

n∑

l=–n

∣∣r(3)
i,l
∣∣2
) 1

2

+

( m∑

i=1

n∑

l=–n

∣∣r(4)
i,l
∣∣2
) 1

2

. (4.8)

For the first term on right-hand side, we have

( m∑

i=1

n∑

l=–n

∣∣r(1)
i,l
∣∣2
) 1

2

≤
( m∑

i=1

n∑

l=–n

m∑

j=1

∣∣∣∣
∫

∂DE

c1c2h
((u(z) – kh)2 + d2) 1

2

|φ′(z)ŷ∗
j (z)

| sin( πφ(z)
h )|

∣∣∣∣dz||2
) 1

2

≤ k5c1

(sinh( πd
h ))

, (4.9)

which the last inequality is obtained using (4.7), the bound sinh( πd
h ) ≤ sin( πφ(z)

h ) on ∂DE

and the integrability of |φ′ŷ∗
j |.
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Now for the second term on the right-hand side of (4.8), we can use relations (4.2) and
(4.6) as follows

( m∑

i=1

n∑

l=–n

∣∣r(2)
i,l
∣∣2
) 1

2

=

( m∑

i=1

n∑

l=–n

∣∣∣∣∣

m∑

j=1

∑

k<–n,k>n

[(
p(2)

i,j (xl)
Wj(xl)
Wj(xk)

)
δ

(2)
kl

+ h
(

Wj(xl)
Wj(xk)

(
p(1)

i,j (xl)
1

φ′(xl)
– p(2)

i,j (xl)
φ′′(xl)
φ′2 (xl)

)

+
W ′

j (xl)
Wj(xk)

(
2p(2)

i,j (xl)
1

φ′(xl)

))
δ

(1)
kl +

+ h2
(

Wj(xl)
Wj(xk)

(
p(0)

i,j (xl)
1

φ′(xl)
– p(1)

i,j (xl)
φ′′(xl)
φ′3 (xl)

+ p(2)
i,j (xl)

(
2φ′′2 (xl) – φ′′′(xl)φ′(xl)

φ′4 (xl)

))

+
W ′

j (xl)
Wj(xk)

(
p(1)

i,j (xl)
1

φ′2 (xl)
– 2

φ′′(xl)
φ′2 (xl)

)

+
W ′′

j (xl)
Wj(xk)

1
φ′2 (xl)

)
δ

(0)
kl

]
ŷ∗

j (xk)

∣∣∣∣∣

2)

≤
(

c2
1c′

3

m∑

i=1

n∑

l=–n

(
∑

k<–n,k>n

γ 2
kl

m∑

j=1

∑

k<–n,k>n

∣∣ŷ∗
j (xk)

∣∣2
)) 1

2

≤ c1k6

h
e–αnh, (4.10)

where γkl is defined by

γkl = max
{∣∣δ(0)

kl
∣∣,
∣∣δ(1)

kl
∣∣,
∣∣δ(2)

kl
∣∣}.

Also, for the third term on the right-hand side of (4.8), we have

( m∑

i=1

n∑

l=–n

∣∣r(3)
i,l
∣∣2
) 1

2

= 0. (4.11)

Finally, the fourth term on the right-hand side of (4.8) can be bounded using (2.6) as fol-
lows

( m∑

i=1

n∑

l=–n

∣∣r(4)
i,l
∣∣2
) 1

2

=

( m∑

i=1

n∑

l=–n

∣∣∣∣∣
h2

φ′(xl)

∫ 1

0

m∑

j=1

(
q(2)

i,j (xl, t)y∗′′
j (t)

+ q(1)
i,j (xl, t)y∗′

j (t) + q(0)
i,j (xl, t)y∗

j (t)
)

dt

–
h3

φ′(xl)

m∑

i=1

n∑

g=–n

m∑

j=1

n∑

k=–n

(
q(2)

i,j (xl, tg)T (2)
j,k (tg)

+
q(1)

i,j (xl, tg)
φ′(tg)

T (1)
j,k (tg) +

q(0)
i,j (xl, tg)
φ′2 (tg)

T (0)
j,k (tg)

)
ŷ∗

j (xk)

∣∣∣∣∣

2) 1
2
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≤ k7n
1
2 e–

√
π dαn. (4.12)

Now using (4.9)-(4.12), we obtain the result

∥∥AŶ∗ – q
∥∥ ≤ k8n

1
2 e–

√
π dαn. �

Theorem 8 Let Y(x) and Yn(x) be the exact and the sinc-approximate solutions of (1.1)-
(1.3), respectively. If all assumptions of lemma 7 are holds, then we have the following bound

∣∣Y(x) – Yn(x)
∣∣ ≤ c1

(
k4 +

1
4
ρk8

)
n

1
2 e–

√
π dαn, x ∈ 	.

Proof Let η(x) = [η1,n(x), . . . ,ηm,n(x)]T , where functions ηj,n((x)) are

ηj,n(x) =
1

φ′(x)

n∑

k=–n

Wj(x)
Wj(xk)

y∗
j (xk)φ′(xk)Sk(x) =

1
φ′(x)

n∑

k=–n

Wj(x)
Wj(xk)

ŷ∗
j (xk)Sk(x).

From (3.5), we have

Y(x) – Yn(x) = Y(x) – Yn(x) + ηn(x) – ηn(x)

= Y(x) – un(x) – v(x) + ηn(x) – ηn(x),

where un(x) and v(x) are the vectors defined before. Since Y∗(x) = Y(x) – v(x), we obtain

Y(x) – Yn(x) =
(
Y∗(x) – ηn(x)

)
+
(
ηn(x) – un(x)

)
.

Now we can use the triangular inequality on the relation above to obtain

∣∣Y(x) – Yn(x)
∣∣ ≤ ∣∣Y∗(x) – ηn(x)

∣∣ +
∣∣ηn(x) – un(x)

∣∣. (4.13)

By theorem 6 and the results in [39], we get

sup
x∈	

∣∣Y∗(x) – ηn(x)
∣∣ ≤ c1k4n

1
2 e–

√
π dαn. (4.14)

To find a bound on

∣∣ηn(x) – un(x)
∣∣ =

∣∣∣∣∣
1

φ′(x)

n∑

k=–n

W(x)
W(xk)

(
Ŷ∗(xk) – ck

)
Sk(x)

∣∣∣∣∣,

we can use the Cauchy–Schwartz inequality to obtain

∣∣ηn(x) – un(x)
∣∣ ≤

( n∑

k=–n

∣∣Ŷ∗(xk) – ck
∣∣2
) 1

2
( n∑

k=–n

∣∣∣∣
W(x)
W(xk)

Sk(x)
φ′

∣∣∣∣
2
) 1

2

≤ c1

4

( n∑

k=–n

∣∣Ŷ∗(xk) – ck
∣∣2
) 1

2

=
c1

4
∥∥Ŷ∗ – c

∥∥, (4.15)
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where the boundedness of 1
φ′(x) and W(x)

W(xk ) < c1 are used to obtain the last relation. Now,
from (4.3), we have

∥∥Ŷ∗ – c
∥∥ =

∥∥A–1(AŶ∗ – q
)∥∥ ≤ ‖A‖–1∥∥AŶ∗ – q

∥∥ ≤ ρk8n
1
2 e–

√
π dαn. (4.16)

where ρ = ‖A‖–1. Finally, combining the results (4.13)-(4.16), we deduce that

∣∣Y(x) – Yn(x)
∣∣ ≤ c1

(
k4 +

1
4
ρk8

)
n

1
2 e–

√
π dαn. �

4.2 Volterra integro-differential system
The error analysis procedure for the Volterra case can be done similarly, except that in this
case, the matrices Aij are defined by Aij = [a(l,k)

i,j ](2n+1)×(2n+1), where

a(l,k)
i,j =

(
p(2)

i,j (xl)
Wj(xl)
Wj(xk)

)
I(2) – h

(
Wj(xl)
Wj(xk)

(
p(1)

i,j (xl)
1

φ′(xl)

– p(2)
i,j (xl)

φ′′(xl)
φ′2 (xl)

)
+

W ′
j (xl)

Wj(xk)

(
2p(2)

i,j (xl)
1

φ′(xl)

))
I(1)

+ h2
(

Wj(xl)
Wj(xk)

(
p(0)

i,j (xl)
1

φ′2 (xl)
– p(1)

i,j (xl)
φ′′(xl)
φ′3 (xl)

+ p(2)
i,j (xl)

(
2φ′′2 (xl) – φ′′′(xl)φ′(xl)

φ′4 (xl)

))

+
W ′

j (xl)
Wj(xk)

(
p(1)

i,j (xl)
1

φ′2 (xl)
– 2

φ′′(xl)
φ′2 (xl)

)
+

W ′′
j (xl)

Wj(xk)
1

φ′2 (xl)

)
I(0)

–
h3

φ′(xl)

n∑

g=–n
δ

(–1)
lg

1
φ′(tg)

[
1
h2

(
q(2)

i,j (xl, tg)φ′(tg)
Wj(tg)
Wj(xk)

)
I(2)

–
1
h

(
Wj(tg)
Wj(xk)

(
q(1)

i,j (xl, tg) – q(2)
i,j (xl, tg)

(
φ′′(tg)
φ′(tg)

))
+

W ′
j (tg)

Wj(xk)
(
2q(2)

i,j (xl, tg)
))

I(1)

+
(

Wj(tg)
Wj(xk)

(
p(0)

i,j (xl, tg)
1

φ′(tg)
– q(1)

i,j (xl, tg)
φ′′(tg)
φ′(tg)

+ q(2)
i,j (xl, tg)

(
2φ′′(tg) – φ′′′(tg)φ′(tg)

φ′3 (tg)

))

+
W ′

j (tg)
Wj(xk)

(
q(1)

i,j (xl, tg)
1

φ′(tg)
– 2q(2)

i,j (xl, tg)
φ′′(tg)
φ′2 (tg)

)
+

W ′′′
j (tg)

Wj(xk)
1

φ′(tg)

)
I(0))

]
,

k, l = –n, . . . , n.

5 Numerical experiments
In this section, some problems will be tested using the nonclassical sinc collocation
method, and the results will be compared with other existing methods. We choose α = 1

2
and d = π

2 to solve the examples.
To be able to compare the results with other existing methods, we obtain maximum

absolute errors at equally spaced points


 ≡ {kj, j = 0, . . . , 100, k = 0.01}.
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Table 1 The maximum absolute errors at the equidistant point for Example 1

Presented method Method in [5]

w1 = w2 = 1 w1 = 1 + x, w2 = 0.1 + sin(πx)

n E1 E2 E1 E2 m E1 E2

4 1.2(–4) 1.6(–4) 7.6(–5) 9.5(–5) 3 5.3(–3) 1.4(–2)
10 1.6(–6) 2.3(–6) 1.7(–6) 2.8(–6) 4 4.5(–3) 2.9(–1)
20 3.6(–8) 4.8(–8) 3.0(–8) 4.6(–8) 5 5.8(–5) 1.0(–4)
40 1.8(–10) 1.8(–10) 9.1(–11) 1.4(–10) – – –

in the following form

Ei = max
0≤j≤100

∣∣yi,n(kj) – yi(kj)
∣∣, 1 ≤ i ≤ m

where yi(x) and yi,n(x) are the exact and approximate solutions, respectively. All programs
are written in Maple 2020, on a system with Intel Core i3 CPU and 4 GB of RAM.

Example 1 Consider the following problem

⎧
⎨

⎩
y′′

1(x) – xy′
2(x) – y1(x) = f1(x) +

∫ 1
0 (x cos(t)y1(t) – x sin(t)y2(t)) dt,

y′′
2(x) – 2xy′

1(x) + y2(x) = f2(x) +
∫ 1

0 (sin(x) cos(t)y1(t) – sin(x) sin(t)y2(t)) dt,

along with the initial conditions

y1(0) = 0, y2(0) = 1, y′
1(0) = 1, y′

2(0) = 0.

The exact solution is y1(x) = sin(x), y2(x) = cos(x). We solved this problem for various val-
ues of n with different kinds of weight functions and tabulated the maximum absolute
errors at the equidistant points in Table 1. The errors have been compared with those in
[5] based on a Laguerre approach. We solved the problem with n = 10 with different kinds
of weight functions and tabulated the numerical approximations at equidistant points in
Table 2. Table 3 shows the numerical results obtained by the Laguerre approach [5] with
m = 5 to be compared with our results. The log-plot of the errors are plotted in Figs. 1
and 2 for different types of weight functions w1 and w2 to show the exponential rates of
convergence.

Example 2 Consider the following problem

⎧
⎪⎪⎨

⎪⎪⎩

4xy′′
1(x) + y′′

2(x) + y′
3(x) = f1(x) +

∫ x
0 (ty′

2(t) + x2y′
3(t) + xty1(t) + exy2(t)) dt,

x3y′′
2(x) + exy′′

3(x) + y′
2(x) = f2(x) +

∫ x
0 (y1(t) + y2(t) + 4ty3(t)) dt,

2y′′
1(x) + xy′′

2(x) + y′′
3(x) = f3(x) +

∫ x
0 (y′

3(t) + 2y2(t)) dt,

connected with initial conditions

y1(0) = 1, y2(0) = 0, y3(0) = 0, y′
1(0) = –1, y′

2(0) = 0, y′
3(0) = 1.

The exact solution is y1(x) = e–x, y2(x) = x2ex, y3(x) = x. By defining w1(x) = 1 + x, w2(x) =
0.1 + sin(πx), w3(x) = 1 + x, we solved this problem with n = 20 and tabulated the approxi-
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Table 2 Approximate solutions with n = 10 using the presented method for Example 1

w1 = w2 = 1 w1 = 1 + x, w2 = 0.1 + sin(πx)

x y1,10(x) y2,10(x) y1,10(x) y2,10(x)

0.0 0 1 0 1
0.1 0.0998334982 0.9950042188 0.0998333812 0.9950038932
0.2 0.1986684935 0.9800655577 0.1986690503 0.9800660565
0.3 0.2955209998 0.9553361997 0.2955198294 0.9553357200
0.4 0.3894199298 0.9210614037 0.3894180020 0.9210599737
0.5 0.4794260733 0.8775836332 0.4794256663 0.8775813131
0.6 0.5646418992 0.8253370370 0.5646429865 0.8253341966
0.7 0.6442169865 0.7648422145 0.6442174149 0.7648405476
0.8 0.7173554835 0.6967045272 0.7173544570 0.6967046643
0.9 0.7833263536 0.6216087634 0.7833258557 0.6216074794
1.0 0.8414701784 0.5403006405 0.8414695666 0.5402994905

Table 3 Approximate solutions withm = 5 in [5] for Example 1

Method in [5] withm = 5 Exact solution

x y1 y2 y1(x) y2(x)

0.0 2.3× 10–13 1 0 1
0.1 – – 0.099833417 0.995004165
0.2 0.198669 0.980066 0.198669331 0.980066578
0.3 – – 0.295520207 0.955336489
0.4 0.389419 0.92106 0.389418342 0.921060994
0.5 – – 0.479425539 0.877582562
0.6 0.564646 0.825337 0.564642473 0.825335615
0.7 – – 0.644217687 0.764842187
0.8 0.717369 0.696719 0.717356091 0.696706709
0.9 – – 0.783326910 0.621609968
1.0 0.841529 0.540404 0.841470985 0.540302306

Figure 1 The log-plot of errors for Example 1 with w1 = w2 = 1

mate and exact solutions at equidistant points in Table 4. Table 5 contains the results ob-
tained in [1] and [40] based on a single term Walsh series technique and spectral method
at equidistant points. Comparing the results in Tables 4 and 5, we observe that our method
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Figure 2 The log-plot of errors for Example 1 with w1 = 1 + x, w2 = 0.1 + sin(πx)

Table 4 Approximate solutions using the presented method with n = 20 for Example 2

Approximate solutions Exact solutions

x y1,20(x) y2,20(x) y3,20(x) y1(x) y2(x) y3(x)

0.0 1 0 0 1 0 0
0.1 0.904837410 0.011051575 0.099999998 0.904837418 0.011051709 0.1
0.2 0.818730742 0.048855893 0.200000027 0.818730753 0.048856110 0.2
0.3 0.740818189 0.121486820 0.300000027 0.740818220 0.121487292 0.3
0.4 0.670319932 0.238691510 0.399999997 0.670320046 0.238691951 0.4
0.5 0.606530562 0.412179924 0.500000043 0.606530659 0.412180317 0.5
0.6 0.548811564 0.655962099 0.600000135 0.548811636 0.655962768 0.6
0.7 0.496585144 0.986737911 0.700000152 0.496585303 0.986738826 0.7
0.8 0.449328731 1.424345303 0.800000121 0.449328964 1.424346194 0.8
0.9 0.406569307 1.992277792 0.900000095 0.406569659 1.992278552 0.9
1.0 0.367878796 2.718281815 0.999999866 0.367879441 2.718281828 1.0

Table 5 Numerical results in references for Example 2

STWS in [1] withm = 40 SM in [40] with n = 20

x y1(x) y2(x) y3(x) y1(x) y2(x) y3(x)

0.1 0.90483 0.01109 0.10000 0.90366 0.00876 0.09933
0.2 0.81873 0.04893 0.19999 0.81820 0.04665 0.19951
0.3 0.74082 0.12160 0.29999 0.74093 0.11934 0.29968
0.4 0.67034 0.23885 0.39998 0.67108 0.23658 0.39984
0.5 0.60656 0.41240 0.49997 0.60794 0.41005 0.49999
0.6 0.54887 0.65624 0.59997 0.55089 0.65379 0.60013
0.7 0.49668 0.98707 0.69997 0.49932 0.98447 0.70028
0.8 0.44947 1.42474 0.79998 0.45273 1.42193 0.80044
0.9 0.40678 1.99271 0.90002 0.41065 1.98967 0.90061
1.0 0.36814 2.71884 1.00006 0.37263 2.71541 1.00081

is much more efficient. Finally, in Table 6, we tabulated the errors obtained by our method
for different weight functions with n = 20 at equidistant points.
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Table 6 Absolute errors of the presented method with n = 20 for Example 2

w1 = 1, w2 = 1, w3 = 1 w1 = 1 + x, w2 = 0.1 + sin(πx), w3 = 1 + x

x |y1 – y1,20| |y2 – y2,20| |y3 – y3,20| |y1 – y1,20| |y2 – y2,20| |y3 – y3,20|
0.0 0 0 0 0 0 0
0.1 9.6(–9) 1.2(–7) 4.2(–9) 7.4(–9) 1.3(–7) 1.2(–9)
0.2 8.9(–9) 3.6(–7) 1.5(–8) 1.1(–8) 2.2(–7) 2.8(–8)
0.3 6.2(–8) 9.6(–7) 6.1(–8) 3.1(–8) 4.7(–7) 2.7(–8)
0.4 5.7(–8) 1.3(–6) 9.6(–9) 1.1(–7) 4.4(–7) 2.1(–9)
0.5 1.5(–8) 1.1(–6) 1.0(–7) 9.7(–8) 3.9(–7) 4.4(–8)
0.6 7.7(–9) 1.1(–7) 5.5(–8) 7.2(–8) 6.7(–7) 1.4(–7)
0.7 1.2(–7) 1.3(–6) 2.3(–8) 1.6(–7) 9.2(–7) 1.5(–7)
0.8 1.0(–7) 2.9(–7) 2.8(–8) 2.3(–7) 8.9(–7) 1.2(–7)
0.9 3.1(–7) 1.9(–7) 2.1(–7) 3.5(–7) 7.3(–7) 9.6(–8)
1.0 8.2(–7) 1.6(–7) 7.4(–7) 6.4(–7) 1.3(–8) 1.3(–7)

Table 7 Absolute errors of the presented method with n = 30 for Example 3

w1 = 1, w2 = 1 w1 = 1 + sin(x), w2 = 1 + x

x |y1 – y1,30| |y2 – y2,30| |y1 – y1,30| |y2 – y2,30|
0.0 0 0 0 0
0.1 3.9(–4) 9.2(–5) 3.9(–4) 9.2(–5)
0.2 7.8(–4) 3.9(–4) 7.8(–4) 3.9(–4)
0.3 1.2(–3) 8.4(–4) 1.2(–3) 8.4(–4)
0.4 1.8(–3) 1.4(–3) 1.8(–3) 1.4(–3)
0.5 2.5(–3) 2.0(–3) 2.5(–3) 2.0(–3)
0.6 3.4(–3) 2.6(–3) 3.4(–3) 2.6(–3)
0.7 4.6(–3) 3.2(–3) 4.6(–3) 3.2(–3)
0.8 6.1(–3) 3.7(–3) 6.1(–3) 3.7(–3)
0.9 7.8(–3) 3.9(–3) 7.8(–3) 3.9(–3)
1.0 9.7(–3) 3.9(–3) 9.7(–3) 3.9(–3)

Example 3 Consider the following problem

⎧
⎨

⎩
y′′

1(x) + 2y′
2(x) + 5y2(x) – y1(x) = f1(x) +

∫ 1
0 (–ty1(t) + y2(t)) dt,

y′′
2(x) + 3y′

1(x) + 7y2(x) – 9y1(x) = f2(x) +
∫ 1

0 (–t2y1(t) + 4y2(t)) dt,

along with the initial conditions

y1(0) = 0, y2(0) = 0, y′
1(0) = 0, y′

2(0) = 0.

The exact solution is y1(x) = 3√x4, y2(x) =
√

x3. It is obvious that the exact solution y1 is
not differentiable at zero, indeed y1 ∈ C[0, 1] only. So, many of the existing methods will
get into trouble while trying to approximate the solution. The new sinc method based on
nonclassical basis functions does not need the exact solution to be differentiable at the
boundaries. Thus, it is expected to obtain good accuracy using the presented method for
this problem. We approximated the solution with n = 30 using various kinds of weight
functions, w1 = 1, w2 = 1 and w1 = 1 + sin(x), w2 = 1 + x, and tabulated the absolute errors
at equidistant points in Table 7.

6 Conclusion
A method based on the nonclassical sinc collocation was used to solve the system of
second-order linear integro-differential equations of both Volterra and Fredholm types.
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The classic sinc basis functions are not differentiable at zero, so we define the new non-
classical basis functions that are differentiable with zero derivative at zero. The new basis
functions have been used to approximate the solution. Based on a theoretical analysis, it
was shown that the new method achieves exponential convergence. It could be proved
that, if accuracy is desired in the solution of a differential or integral equation, the com-
plexity of solving a differential equation problem via a finite difference or finite element
method is usually far larger than the corresponding complexity for sinc methods [41]. Also,
it is proved that, while the h–p finite element method also enabled sinc-like exponential
convergence, these methods do not converge as fast as sinc methods (see [42]). Some nu-
merical examples with various kinds of basis functions have been solved and compared
with existing methods confirming the theory in a good manner. It should be noted that
the method could be easily extended to solve the fractional integro-differential equations
based on the approach introduced in our previous papers [43, 44], and it is the subject of
our future research.
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