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Abstract

This paper studies the existence of nontrivial solutions to the following class of
Schrödinger equations:

�
– div(w(x)� u) = f (x,u), x � B1(0),

u = 0, x � ∂B1(0),

where w(x) = (ln(1/|x|))β for some β � [0, 1), the nonlinearity f (x, s) behaves like

exp(|s|
2

1–β +h(|x|)), and h is a continuous radial function such that h(r) can be
unbounded as r tends to 1. Our approach is based on a new Trudinger–Moser-type
inequality for weighted Sobolev spaces and variational methods.
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1 Introduction
Let consider the following Schrödinger equation:

�
�

�
…�u = f (x,u), x � �,

u = 0, x � ∂�,
(1.1)

where� is a bounded smooth domain inRN . In the caseN � 3, some pioneering works

developed by Brézis [7], Brézis & Nirenberg [8], Bartsh & Willem [6], and Capozzi, For-

tunato & Palmieri [14] considered the assumption|f (x,u)| � c(1 + |u|q…1), with 1 < q �

2� = 2N/(N … 2). The above growth of the nonlinearityf is related to the Sobolev embed-

ding H1
0(�) � Lq(�) for 1 � q � 2� . In the limiting caseN = 2, one has 2� = +� , that is,

H1
0(�) � Lq(�) for q � 1, in particular, the nonlinear functionf in (1.1) may have arbitrary

polynomial growth. Also, some examples show thatH1
0(�) 	� L� (�). An important result

found independently by Yudovich [37], Pohozaev [28], and Trudinger [35] showed that

the maximal growth of the nonlinearity in the bivariate case is of exponential type. More
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precisely, it was stated that

eαu2
� L1(�), for all u � H1

0(�) andα > 0. (1.2)

Furthermore, Moser [26] stated the existence of a positive constantC = C(α,�) such that

sup
u� H1

0(�),


� u
 2� 1

�

�

eαu2
dx

�
�

�
� C, α � 4π ,

= +� , α > 4π .
(1.3)

Estimates (1.2) and (1.3) from now on be referred to as Trudinger…Moser inequalities. The

above results motivate us to say that the functionf has subcritical exponential growth if

lim
s� +�

f (x,s)

eαs2
= 0, for all α > 0,

and critical exponential growth if there existsα0 > 0 such that

lim
s� +�

f (x,s)

eαs2
=

�
�

�
0, α < α0,

+� , α > α0.
(1.4)

Equations of the type (1.1) considering nonlinearities involving subcritical and critical ex-

ponential growth were treated by Adimurthi [1], Adimurthi…Yadava [2], de Figueiredo,

Miyagaki, and Ruf [18] (see also [1…4, 11, 13, 23, 27, 31]), and some results on Hamilto-

nian systems involving the above-mentioned growth can be found in [16,17,20,24,29,33].

We shall writeg1(s) � g2(s) if there exist positive constantsk ands0 such thatg1(s) � g2(ks)

for s� s0. Additionally, we shall say thatg1 andg2 are equivalent and writeg1(s) 
 g2(s) if

g1(s) � g2(s) and g2(s) � g1(s). Therefore,f possesses critical exponential growth if only if

f (x,s) = g(s) with g(s) 
 e|s|2.

Several extensions of the Trudinger…Moser inequalities were obtained considering

weighted Sobolev spaces, weighted Lebesgue measures, or Lorentz…Sobolev spaces (see

[3…5, 13, 15, 19, 24, 25, 34] among others). In the above-mentioned papers, the growth

of the nonlinearity is of the typef (x,s) = Q(x)g(s) whereg(s) 
 e|s|p with p = 2 on Sobolev

spaces andp > 1 on Lorentz…Sobolev spaces and for some weightQ(x). More precisely,

on Lorentz…Sobolev spaces, Brezis and Wainger [9] have shown the following: Let� be

a bounded domain inR2 and s> 1. Then,eα|u|
s

s…1 belongs toL1(�) for all u � W 1
0 L2,s(�)

andα > 0. Furthermore, Alvino [5] obtained the following re“nement of (1.3): there exists

a positive constantC = C(�,s,α) such that

sup
u� W1

0 L2,s(�),


� u
 2,s� 1

�

�

eα|u|
s

s…1dx

�
�

�
� C, α � (4π)s/(s…1),

= +� , α > (4π)s/(s…1).
(1.5)

In order to extend equations (1.1), we will study Schrödinger equations involving a dif-

fusion operator (see [10, 12, 32, 38, 39] among others). LetB1 be the unit ball centered at

the origin in R2 and H1
0,rad(B1,w) be the subspace of the radially symmetric functions in
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the closure ofC �
0 (B1) with respect to the norm


 u
 := 
� u
 L2(B1,w) =
� �

B1

w(x)|� u|2 dx
� 1

2

. (1.6)

In particular, if w � 1, we denote the above space byH1
0,rad(B1). Trudinger…Moser-type in-

equalities for radial Sobolev spaces with logarithmic weights were considered by Calanchi

and Ruf in [11]. More precisely, the above-mentioned authors used the weightw(x) =

(log 1/|x|)β for some “xed 0� β < 1, this logarithmic weight will be used in the rest of

this article.

Proposition 1.1 (Calanchi…Ruf, [11]) Suppose that w(x) = (log 1/|x|)β and 0 � β < 1.

Then,

�

B1

eα|u|
2

1…β
dx < +� , for all u � H1

0,rad(B1,w) and α > 0.

Furthermore, settingα�
β = 2[2π(1 …β)]

1
1…β , there exists a positive constant C= C(α,β) such

that

sup
u� H1

0,rad(B1,w),


 u
� 1

�

B1

eα|u|
2

1…β
dx

�
�

�
� C, α � α�

β ,

= +� , α > α�
β .

In order to establish a Trudinger…Moser inequality proved by Ngô and Nguyen [27], we

consider a continuous radial functionh : [0, 1)� R such that

(h1) h(0) = 0 and h(r) > 0 for r � (0, 1);
(h2) there exists c> 0 and γ > 2 such that

h(r) �
c

(…ln r)γ
near 0.

Proposition 1.2 (Ngô…Nguyen, [27]) Suppose that h satis“es(h1) and (h2). Then, there

exists a positive constant C= C(α,h) such that

sup
u� H1

0,rad(B1),


� u
 2� 1

�

B1

exp
	
α|u|2+h(|x|)
 dx

�
�

�
� C, α � 4π ,

= +� , α > 4π .

Next we establish a new version of the Trudinger…Moser inequality which will be used

throughout this paper.

Theorem 1.3 Suppose h satis“es(h1) and (h2) and w(x) = (log 1/|x|)β for someβ � [0, 1).

Then, there exists a positive constant C= C(α,β,h) such that

sup

 u
� 1

�

B1

exp
	
α|u|

2
1…β

+h(|x|)
 dx � C. (1.7)
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If α > α�
β , then

sup

 u
� 1

�

B1

exp
	
α|u|

2
1…β

+h(|x|)
 dx = +� . (1.8)

The proof of Theorem1.3will be presented in the next section. In this work, we are inter-
ested in “nding nontrivial weak solutions for the following class of Schrödinger equations:

�
�

�
…div(w(x)� u) = f (x,u), x � B1,

u = 0, x � ∂B1,
(1.9)

where the growth of the nonlinearity off is motivated by the Trudinger…Moser inequality
given by Theorem1.3. More precisely, we assume the following conditions on the nonlin-
earity f :

(H1) f : B1 × R � R is a continuous and radially symmetric in the first variable function,
that is, f (x,s) = f (y,s) for |x| = |y|. Moreover, f (x,s) = 0 for all x � B1 and s� 0.

(H2) There exists a constant μ > 2 such that

0 <μF(x,s) � sf(x,s), for all x � B1 and s> 0,

where F(x,s) =
� s

0 f (x,t)dt .
(H3) There exists a constant M > 0 such that

0 <F(x,s) � Mf (x,s), for all s> 0.

(H4) There holds

lim sup
s� 0

2F(x,s)
s2

< λ1, uniformly in x � B1,

where λ1 is the first eigenvalue associated to (…div(w(x)� u),H1
0,rad(B1,w)).

(H5) There exists a constant α0 > 0 such that

lim
s��

f (x,s)

exp(α|u|
2

1…β
+h(|x|))

=

�
�

�
0, α > α0,

+� , α < α0,

(H6) There exist constants p > 2 and Cp > 0 such that

f (x,s) � Cpsp…1, for all s� 0,

where

Cp >
(p … 2)(p…2)/2Sp

p

p(p…2)/2

�
α0

α�
β

� (1…β)(p…2)/2

and

Sp := sup
0	=u� H1

0,rad(B1,w)

(
�

B1
w(x)|� u|2 dx)1/2

(
�

B1
|u|p dx)1/p

.
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Throughout, we denote the spaceE := H1
0,rad(B1,w) endowed with the inner product

�u,v�E =
�

B1

w(x)� u� v dx, for all u,v � E,

to which corresponds the norm


 u
 =
� �

B1

w(x)|� u|2 dx
� 1/2

.

Also, we denote byE� the dual space ofE with its usual norm. We say thatu � E is a weak
solution of (1.9) if

�

B1

w(x)� u� φ dx =
�

B1

f (x,u)φ dx, for all φ � E. (1.10)

Under the above assumptions onf , we consider the Euler…Lagrange functionalJ: E � R
de“ned by

J(u) =
1
2

�

B1

w(x)|� u|2 dx …
�

B1

F(x,u)dx, for all u � E.

Furthermore, using standard arguments (see [21]), Jbelongs toC1(E,R) and

J�(u)φ =
�

B1

w(x)� u� φ dx …
�

B1

f (x,u)φ dx, for all u,φ � E.

Next, we present our existence result for the problem (1.9).

Theorem 1.4 Suppose that f satis“es(H1)…(H6). Then, the problem(1.9) possesses a non-
trivial weak solution.

Notice that the class of Schrödinger equations (1.9) represents a natural extension
of the equation (1.1). Under assumption (H5), the nonlinearity f behaves likeexp((α +
h(|x|))|s|

2
1…β ) ass tends to in“nity. Moreover, if β = 0, we have thatw � 1 and the equa-

tion (1.9) is reduced to problem (1.1); the case withβ = 0 andh(x) = |x|a for somea > 0
was studied in [27], and treated in many works consideringh = 0 (see [1, 2, 18] among
others). Additionally, we observe that (h1) and (h2) are conditions near the origin, in par-
ticular, h can tend to in“nity for values of |x| close to 1. Also, ifβ is close to 1, the power
of |s|p wherep = 2/(1 …β) can be su�ciently large. The above properties motivate us to
say thatf possesses supercritical exponential growth and represents an extension of other
previously studied works. Finally, note that the class of functions which satis“es the condi-
tions (H1)…(H6) is not empty, for instance, consider the following functionf : B1 × R � R
de“ned by

f (x,s) =

�
�

�
Asp…1+ (p + |x|η)sp…1+|x|ηesp+|x|η

, s� 0,

0, s< 0.

for some positive constantsη, p = 2/(1 …β), andA su�ciently large.



LeuyaccBoundary Value Problems        (2023) 2023:39 Page 6 of 17

2 Preliminaries
The spaceH1

0,rad(B1,w) where w(x) = (log 1/|x|)β for some 0� β < 1, endowed with the

norm given by (1.6), is a separable Banach space (see [22, Theorem 3.9]). Next, we present

a compactness result.

Lemma 2.1 The embedding H10,rad(B1,w) ↪� Lp(B1) is continuous and compact for1 �

p < � .

Proof From the Cauchy…Schwarz inequality, we have

�

B1

|� u| dx �
� �

B1

w(x)|� u|2 dx
� 1/2

·
� �

B1

w(x)…1dx
� 1/2

.

Using the change of variable|x| = e…s, we get

1
2π

�

B1

w(x)…1dx =
� +�

0
e…2ss…γ ds=

� 1

0
e…2ss…γ ds+

� +�

1
e…2ss…γ ds.

Note that

� 1

0
e…2ss…γ ds�

� 1

0
s…γ ds=

1
1 …γ

and

� +�

1
e…2ss…γ ds�

� +�

1
e…2sds=

e…2

2
.

Therefore, we can “nd a positive constantC such that


� u
 1 � C
� �

B1

|� u|2w(x)dx
� 1/2

.

Thus, H1
0(B1,w) ↪� W 1,1

0 (B1) continuously, which implies the continuous and compact

embedding

H1
0(B1,w) ↪� Lp(B1), for all p � 1. �

Lemma 2.2 ([11]) Let u be a function in H1
0(B1,w). Then,

�
�u(x)

�
� �

(…ln |x|)
1…β

2



2π(1 …β)
· 
 u
 , for all x � B1.

2.1 Proof of Theorem 1.3

Proof To prove the “rst statement of the theorem, it is su�cient to considerα = α�
β . From

Lemma2.2, for eachu � E with 
 u
 � 1, we have

α�
β

�
�u(r)

�
�2/(1…β)

� …2ln r, for all 0 <r < 1, (2.1)
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wherer = |x|. Settingr1 := e…α�
β /2, we have

�
�u(r)

�
� � 1, for all r � r1. (2.2)

Thus,

�

B1\ Br1

exp
	
α�

β |u|
2

1…β
+h(|x|)
 dx �

�

B1\ Br1

exp
	
α�

β



dx � exp

	
α�

β



|B1|. (2.3)

On the other hand, by (2.1), we can write

�

Br1

exp
	
α�

β |u|
2

1…β
+h(|x|)
 dx

�
�

Br1

exp
	
α�

β |u|
2

1…β |u|h(|x|)
 dx

�
�

Br1

exp

�
α�

β |u|
2

1…β

�
…2ln r

α�
β

� (1…β)
2 h(|x|)�

dx

�
�

Br1

exp
	
α�

β |u|
2

1…β


(exp

�
α�

β |u|
2

1…β

��
…2ln r

α�
β

� (1…β)
2 h(|x|)

… 1
�

… 1
�

dx

+
�

Br1

exp
	
α�

β |u|
2

1…β


dx.

Note that …2ln r/α�
β � 1 for 0 <r � r1. By (h2), there existc> 0 and 0 <r2 < r1 such that

h
	
|x|



�

c
(…ln r)γ

, for all 0 <r < r2. (2.4)

Using (2.1) and (2.4), we have

exp(α�
β |u|

2
1…β

��
…2ln r

α�
β

� (1…β)
2 h(|x|)

… 1
�

… 1

� exp(…2ln r
��

…2ln r
α�

β

� c(1…β)
2(…ln r)γ

… 1
�

… 1 :=k(r).

Also, asr � 0+, one has

�
…2ln r

α�
β

� c(1…β)
2(…ln r)γ

= exp

�
c(1 …β)
2(…ln r)γ

ln

�
…2ln r

α�
β

��

= 1 +
c(1 …β)
2(…ln r)γ

ln

�
…2ln r

α�
β

�
+ o

�
1

(…ln r)γ
ln

�
…2ln r

α�
β

��
.

Therefore, asr is close to zero, we have

…2ln r
��

…2ln r
α�

β

� c(1…β)
2(…ln r)γ

… 1
�

=
c(1 …β)

(…ln r)γ …1
ln

�
…2ln r

α�
β

�

+ o
�

1
(…ln r)γ …1

ln

�
…2ln r

α�
β

��
.
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Sinceγ > 2, we obtain

c(1 …β)
(…ln r)γ …1

ln

�
…2ln r

α�
β

�
� 0, asr � 0+. (2.5)

Consequently,

k(r) = exp

�
c(1 …β)

(…ln r)γ …1
ln

�
…2ln r

α�
β

�
+ o

�
1

(…ln r)γ …1
ln

�
…2ln r

α�
β

���
… 1

=
c(1 …β)

(…ln r)γ …1
ln

�
…2ln r

α�
β

�
+ o

�
1

(…ln r)γ …1
ln

�
…2ln r

α�
β

��
.

Set

l(r) =
c(1 …β)

(…ln r)γ …1
ln

�
…2ln r

α�
β

�
.

In particular, k andl are continuous and positive in (0,r2). Moreover, there existC > 0 and
0 <r3 < r2 such that

k(r) � Cl(r), for all 0 <r � r3. (2.6)

Therefore, by (2.1), (2.6), and the de“nition of k(r), we have

�

Br3

exp
	
α�

β |u|
2

1…β
+h(|x|)
 dx

�
�

Br3

exp
	
α�

β |u|
2

1…β


k
	
|x|



dx +

�

Br3

exp
	
α�

β |u|
2

1…β


dx

� C1

�

Br3

1
|x|2

ln

�
…2ln |x|

α�
β

�
c(1 …β)

(…ln |x|)γ …1
dx + C2

= 2πC1c(1 …β)
� ρ3

0

1
r

ln

�
…

2 ln r
α�

β

�
1

(…ln r)γ …1
dr + C2

= 2πC1c(1 …β)
� +�

…lnρ3

ln

�
2s
α�

β

�
1

sγ …1
ds+ C2,

for some positive constantsC1 andC2. Using the fact thatγ > 2, we have

�

Br3

exp
	
α�

β |u|
2

1…β
+h(|x|)
 dx � C2. (2.7)

On the other hand, using (2.1), we have

1 �
�
�u(r)

�
� �

�
…

2 ln r3

α�
β

� 1…β
2

, for all r3 � r � r1

Combining the above inequality with the boundedness ofh in Br1\ Br3, we get

�

Br1\ Br3

exp
	
α�

β |u|
2

1…β
+h(|x|)
 dx � | Br1|M. (2.8)
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Consequently, from (2.3), (2.7), and (2.8), we obtain

�

B1

exp
	
α�

β |u|
2

1…β
+h(|x|)
 dx � C,

which implies the “rst assertion of the theorem. In order to prove the sharpness, we con-

sider the following sequence given in [15]:

ψk(x) =
�

1
α�

β

� (1…β)/2
�
�

�
k

2
1…β ln( 1

|x|2
)1…β , 0 � | x| � e…k/2,

k
1…β

2 , e…k/2 � | x| � 1.

Then, 
 ψk
 = 1 for all k � N. Moreover, forα > α�
β , we have

�

B1

exp
	
α|ψk|

2
1…β

+h(|x|
 dx �
�

B1

exp
	
α|ψk|

2
1…β



dx �

� 1

e…k/2
exp

�
α

α�
β

k
�

r dr .

Then,

�

B1

exp
		

α + h
	
|x|




|ψk|2/(1…β)
 dx � e

k( α
α�
β

…1)	
ek … 1



� +� , ask � � ,

and the proof is complete. �

Corollary 2.3 Letη > 0.Then,

�

B1

exp
	
α|ψk|

2
1…β

+|x|η 

dx < +� , for all u � H1

0,rad(B1,w) and α > 0. (2.9)

Furthermore, if α � α�
β , there exists a positive constant C such that

�

B1

exp
	
α|ψk|

2
1…β

+|x|η 

dx � C. (2.10)

If α > α�
β , then

sup

 u
� 1

�

B1

exp
	
α|ψk|

2
1…β

+|x|η 

dx = +� . (2.11)

As it was observed in [27], the statements of Theorem1.3and its corollary are no longer

true if one considers the space of nonradial functionsH1
0(B1,w). Additionally, using similar

arguments as in Theorem1.3, we can prove the natural extension of (1.2), that is, if α > 0

andu � H1
0,rad(B1,w), then

�

B1

exp
	
α|u|

2
1…β

+h(|x|)
 dx < +� . (2.12)

3 The geometry of the mountain pass theorem
This section is devoted to showing that the functionalJsatis“es the geometry of the moun-

tain pass theorem.
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Lemma 3.1 Suppose that(H1), (H4), and (H5) hold. Then, there existσ ,ρ > 0 such that

J(u) � σ , for all u � E with 
 u
 = ρ.

Proof Considerq > 2 and 0 <ε < λ1/2. From (H1) and (H4), we can “ndc> 0 such that

�
�F(x,s)

�
� � ε|s|2 + c|s|q exp

	
2α0|u|

2
1…β

+h(|x|)
 , for all (x,s) � B1 × R.

Integrating onB1 and applying the Cauchy…Schwarz inequality, we obtain

�

B1

F(x,u)dx � ε
 u
 2
2 + c
 u
 q

2q

� �

B1

exp
	
4α0|u|

2
1…β

+h(|x|)
 dx
� 1/2

. (3.1)

Let h0 = max0� r� r1 h(r) wherer1 is given by (2.2). By Theorem1.3, we have

�

Br1

exp
	
4α0|u|

2
1…β

+h(|x|)
 dr �
�

Br1

exp

�
4α0
 u


2
1…β

+h(|x|)
�

|u|

 u


� 2
1…β

+h(|x|)�
dx

�
�

Br1

exp

�
4α0
 u


2
1…β

+h0

�
|u|

 u


� 2
1…β

+h(|x|)�
dx

� C1,

(3.2)

provided that
 u
 � ρ0 for some 0 <ρ0 < 1 such that 4α0ρ
2

1…β
+h0

0 < α�
β . Using (2.2), we have

�

B1\ Br1

exp
	
4α0|u|

2
1…β

+h(|x|)
 dx �
�

B1\ Br1

exp(4α0)dx = C2. (3.3)

Replacing (3.2) and (3.3) in (3.1), we get somec> 0 such that

�

B1

F(x,u)dx �
ε

λ1

 u
 2 + c
 u
 q,

provided that 
 u
 � ρ0 for someρ0 > 0. Then,

J(u) �
1
2


 u
 2 …
�

B1

F(x,u)dx �
�

1
2

…
ε

λ1

�

 u
 2 …c
 u
 q.

Therefore, we can “ndρ > 0 andσ > 0 with 0 <ρ < ρ0 su�ciently small such that J(u) �
σ > 0, for allu � E satisfying
 u
 = ρ. �

Lemma 3.2 Suppose that(H1)…(H2) hold. Then, there exists e� E such that

J(e) < ρ and 
 e
 > ρ,

whereρ > 0 is given by Lemma3.1.

Proof It follows from (H2), that there existC > 0 ands0 > 0 such that

F(x,s) � Ces/M , for all s� s0.
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Let e0 � 0 and e0 	= 0 “xed. Then, there existsδ > 0 such that|{x � B1 : e0(x) � δ}| � δ.

Thus, for t � s0/δ, we have

J(te0) �
t2

2

 e0
 2 …

�

{x� B1:e0� δ}
F(x,te0)dx �

t2

2

 e0
 2 …Cδetδ/M ,

which implies that J(te0) � …� , ast � +� . Therefore, we can takee= t0e0 with t0 > 0

su�ciently large such that J(e) < 0 and
 e
 > ρ. �

4 Palais…Smale sequence
By Lemmas3.1and3.2, in the mountain pass theorem (see [30, 36]), we can “nd a Palais…

Smale sequence at leveld � σ , whereσ is given by Lemma3.1, that is, there exists a se-

quence (un) � E such that

J(un) � d and
�
� J�(un)

�
�

E� � 0, (4.1)

whered > 0 can be characterized as

d = inf
γ � �

max
t � [0,1]

J
	
γ (t)



, (4.2)

and

� =
�
γ � C

	
[0, 1],E



: γ (0) = 0,γ (1) = e

�
.

Lemma 4.1 Let (un) � E be a Palais…Smale sequence for the functional J satisfying(4.1).

Then, the sequence(un) is bounden in E.

Proof From (H2), we have

J(un) …
1
μ

J�(un)un =
�

1
2

…
1
μ

�

 un
 2 …

1
μ

�

B1

	
μF(x,un) …f (x,un)un



dx

�
�

1
2

…
1
μ

�

 un
 2.

Using (4.1), for n su�ciently large, we have

J(un) � d + 1 and
�
� J�(un)

�
�

E� � μ.

Therefore, forn su�ciently large, we obtain

�
1
2

…
1
μ

�

 un
 2 � d + 1 + 
 un
 ,

which implies that the sequence (un) is bounded inE. �

Lemma 4.2 Let (un) be a Palais…Smale sequence for the functional J satisfying(4.1) and

suppose that un ⇀ u weakly in E. Then, there exists a subsequence of(un), still denoted by
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(un), such that

f (x,un) � f (x,u) in L1(B1) (4.3)

and

F(x,un) � F(x,u) in L1(B1). (4.4)

Proof From Lemma2.1, we can suppose that (un) converges tou in L1(B1). By Theo-

rem 1.3, (H1), and (H4), we have thatf (x,un) � L1(B1). Using Lemma4.1, the sequence

(
 un
 ) is bounded and the fact that
 J�(un)
 E� � 0 allows us to obtain

�
�J�(un)un

�
� �

�
� J�(un)

�
�

E� 
 un
 � 0, asn � +� .

Thus,

J�(un)un =

 un
 2

2
…

�

B1

f (x,un)un dx � 0, asn � +� .

Therefore, the sequencef (x,un)un is bounded inL1(B1). Due to [18, Lemma 2.10], we

conclude that f (x,un) � f (x,u) in L1(B1). On the other hand, by the convergence (4.3),

there existsp � L1(B1) such that

f (x,un) � p(x), almost everywhere inB1 and for n su�ciently large.

From (H3), we can write

F(x,un) � Mp(x), almost everywhere inB1 and for n su�ciently large.

By Lebesgue•s dominated convergence theorem, the convergence (4.4) follows. �

Lemma 4.3 Let (un) � E be a Palais…Smale sequence for the functional J satisfying(4.1).

Then,

d <
1
2

�
α�

β

α0

� 1…β

,

where d is the minimax level given by(4.2).

Proof Let up � E be a nonnegative function with
 up
 p = 1 such that

Sp = inf
0	=u� H1

0,rad(B1,w)

(
�

B1
w(x)|� u|2 dx)1/2

(
�

B1
|u|p dx)1/p

= 
 up
 .

From (H6), we get

J(tup) =
t2

2

 up
 2 …

�

B1

F(x,tup)dx �
t2

2

 up
 2 …

Cptp

p

�

B1

|up|p dx.
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Therefore, by the estimate onCp, we have

sup
t � 0

J(tup) � max
t � 0

� t2S2
p

2
…

Cptp

p

�
=

(p … 2)S2p/(p…2)
p

2pC2/(p…2)
p

<
1
2

�
α�

β

α0

� 1…β

. (4.5)

Take e0 = up in Lemma3.2, that is, we considere= t0up with t0 > 0 given by Lemma3.2.

Settingγ0(t) = tt0up, in particular, we haveγ0 � � = {γ � C([0, 1],E) : γ (0) = 0,γ (1) = e}.

Using (4.2) and (4.5), we obtain

d = inf
γ � �

max
t � [0,1]

J
	
γ (t)



� max

t � [0,1]
J
	
γ0(t)



= max

t � [0,1]
J(tt0up) � max

t � 0
J(tup) <

1
2

�
α�

β

α0

� 1…β

. �

5 Proof of Theorem 1.4
Let (un) � E be a Palais…Smale sequence of the functionalJ satisfying (4.1). Then,

J�(un)φ =
�

B1

w(x)� un� φ dx …
�

B1

f (x,un)φ dx = on(1), (5.1)

for all φ � C �
0,rad(B1). By Lemma4.1, the sequence (un) is bounded inE. Thus, up to a

subsequence, we can assume that there existsu � E such that un ⇀ u weakly in E, and

replacing the above convergence in (5.1) yields

�

B1

w(x)� u� φ dx …
�

B1

f (x,u)φ dx = 0, for all φ � C �
0,rad(B1).

SinceC �
0,rad(B1) is dense inE, we obtain

�

B1

w(x)� u� φ dx =
�

B1

f (x,u)φ dx, for all φ � E.

Therefore,u � E is a critical point of J. Now, we prove thatu is nontrivial. Suppose, by

contradiction, that u � 0. From Lemma2.1, we can assume that

un � 0 in Lp(B1), for all p � 1. (5.2)

Using the fact thatJ(un) � d, we have

J(un) =

 un
 2

2
…

�

B1

F(x,un)dx = d + on(1). (5.3)

Since, we suppose thatun ⇀ 0, by Lemma4.2, we obtain

�

B1

F(x,un)dx �
�

B1

F(x, 0)dx = 0.

Replacing the above limit in (5.3), one has


 un
 2

2
= d + on(1). (5.4)
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By Lemma4.3, we get


 un
 2 = 2d + on(1) <
�

α�
β

α0

� 1…β

+ on(1).

Thus, we can assume that there existsδ > 0 su�ciently small such that


 un

2

1…β �
α�

β

α0
… 2δ, for all n � 1.

Now, we can “nd ε > 0 su�ciently small and m > 1 su�ciently close to 1 such that


 un

2

1…β
+ε �

α�
β

α0
…δ, for all n � 1, (5.5)

and

m(α0 + ε)
�

α�
β

α0
…δ

�
< α�

β . (5.6)

From assumption (H5) there exists a positive constantC such that

�
�f (x,s)

�
� � Cexp

	
(α0 + ε)|s|

2
1…β

+h(|x|)
 , for all (x,s) � B1 × R.

By Hölder and the above inequalities, we have

�

B1

f (x,un)un dx � C
 un
 m�

� �

B1

exp
	
m(α0 + ε)|un|

2
1…β

+h(|x|)
 dx
� 1/m

. (5.7)

Sinceh is continuous andh(0) = 0, there existsr0 > 0 such that

h
	
|x|



< ε, for all |x| � r0.

Using (5.5), (5.6), and Theorem1.3, we obtainC1 > 0 such that

�

Br0

exp
	
m(α0 + ε)|un|

2
1…β

+h(|x|)
 dx

�
�

Br0

exp

�
m(α0 + ε)
 un


2
1…β

+h(|x|)
�

|un|

 un


� 2
1…β

+h(|x|)�
dx

�
�

Br0

exp(m(α0 + ε)
 un

2

1…β
+ε

�
|un|

 un


� 2
1…β

+h(|x|)

] dx

�
�

Br0

exp

�
α�

β

�
|un|

 un


� 2
1…β

+h(|x|)�
dx � C1.

(5.8)

According to (2.2), we have|u(x)| � 1 for r1 � | x| < 1. Thus, we can “ndC2 > 0 such that

�

B1\ Br1

exp
	
m(α0 + ε)|u|

2
1…β

+h(|x|)
 dx �
�

B1\ Br1

exp(m(α0 + ε)dx = C2. (5.9)
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On the other hand, using the boundedness of (
 un
 ) and Lemma2.2, we have

�
�un(x)

�
� � M0, for all r0 � | x| � r1 andn � 1.

By the continuity of h, we can “ndC3 > 0 such that

�

Br1\ Br0

exp
	
m(α0 + ε)|un|

2
1…β

+h(|x|)
 dx � C3. (5.10)

Replacing (5.8), (5.9), and (5.10) in (5.7), we obtain

�

B1

f (x,un)un dx � C
 un
 m� .

By (5.2), we get

�

BR

f (x,un)un dx � 0, asn � +� . (5.11)

Using the fact that (
 un
 ) is bounded and
 J�(un)
 E� � 0, we obtainC > 0 such that

�
�J�(un)un

�
� �

�
� J�(un)

�
�

E� 
 un
 � 0, asn � +� . (5.12)

Since,

J�(un)un = 
 un
 2 …
�

B1

f (x,un)un dx.

By (5.11) and (5.12), we have


 un
 2 = J�(un)un +
�

B1

f (x,un)un dx � 0, asn � +� .

From (5.4), we have
 un
 2 � 2d. Hence,d = 0, which represents a contradiction with (4.2).

Thus, u is a nontrivial critical point of J. Therefore,u is a nontrivial weak solution of the

problem (1.9). This completes the proof.
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