LeuyacdBoundary Value Problems

(2023) 2023:39 ® Boundary Value Problems

https://doi.org/10.1186/s13661-023-01725-2 a SpringerOpen Journal

RESEARCH Open Acces

A class of Schrddinger elliptic equations

l‘)

Check for
updates

Involving supercritical exponential growth

Yony Raul Santaria Leuyacc!”

“Correspondence:
ysantarial@unmsm.edu.pe
!Facultad de Ciencias Matematicas,
Universidad Nacional Mayor de San
Marcos, Lima, Pert

@ Springer

Abstract

This paper studies the existence of nontrivial solutions to the following class of
Schrodinger equations:

—diviw(x) u)=f(x,u), x B1(0),
u=0, x  9B1(0),

where w(x) = (In(1/|x|))? forsome B [0,1), the nonlinearity f(x, s) behaves like
2

exp(]s| w5t IXD), and h is a continuous radial function such that h(r) can be
unbounded as r tends to 1. Our approach is based on a new Trudinger-Moser-type
inequality for weighted Sobolev spaces and variational methods.
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1 Introduction
Let consider the following Schrédinger equation:

JAu=f(xu), x Q,
u=0, X 08,

(1.1)

where Q is a bounded smooth domain irRN. In the caseN 3, some pioneering works
developed by Brézis7], Brézis & Nirenberg B], Bartsh & Willem [6], and Capozzi, For-
tunato & Palmieri [14] considered the assumptiorf (x,u)] o1 + |u|%}, with 1 <q

2 =2N/(N ... 2). The above growth of the nonlinearifyis related to the Sobolev embed-
ding H3(Q) LYRQ)forl g 2.Inthe limiting caseN =2, one has 2=+ |, thatis,
H3(Q) LYRQ)forq 1,inparticular, the nonlinear functionf in (1.1) may have arbitrary
polynomial growth. Also, some examples show thet3(2) L (). Animportant result
found independently by Yudovich 37], Pohozaev 28], and Trudinger [35] showed that
the maximal growth of the nonlinearity in the bivariate case is of exponential type. More
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precisely, it was stated that

2

¢ LYQ), forallu H(Q)anda>0. (1.2)

Furthermore, Moser R6] stated the existence of a positive constaft= C(«, 2) such that

2 C, o 4,
sup v dx (1.3)
u Hi@), @ =+ , a>4m.
uos 1

Estimates {.2) and (1.3) from now on be referred to as Trudinger...Moser inequalities. The
above results motivate us to say that the functiodnhas subcritical exponential growth if

. f(x9
lim

7 =0, foralla>0,
s + &

and critical exponential growth if there exists > 0 such that

f(x,9 0, a <o,

(1.4)
s e + o >ag.

Equations of the type {.1) considering nonlinearities involving subcritical and critical ex-
ponential growth were treated by Adimurthi [L], Adimurthi...YadavaZ], de Figueiredo,
Miyagaki, and Ruf 18] (see also1..4, 11, 13, 23, 27, 31]), and some results on Hamilto-
nian systems involving the above-mentioned growth can be found i, 17, 20, 24, 29, 33].
We shall writegi(s) (9 if there exist positive constant& and sy such thatgu(s) (k9
for s 5. Additionally, we shall say thaty and g are equivalent and writep(s) (9 if
a(® @(9andagp(s) (). Therefore,f possesses critical exponential growth if only if
f(x,9=g(9 with g9  &*.

Several extensions of the Trudinger...Moser inequalities were obtained considering
weighted Sobolev spaces, weighted Lebesgue measures, or Lorentz...Sobolev spaces (see
[3..5, 13, 15, 19, 24, 25, 34] among others). In the above-mentioned papers, the growth
of the nonlinearity is of the typef (x,5) = Q(x)g(s) whereg(s)  €9” with p=2 on Sobolev
spaces ang > 1 on Lorentz...Sobolev spaces and for some wei@fx). More precisely,
on Lorentz...Sobolev spaces, Brezis and Wain@hve shown the following: Lef2 be
a bounded domain inR? and s> 1. Then,e"Iulél belongs toL}(Q) for all u  WL2(Q)
anda > 0. Furthermore, Alvino f] obtained the following re“nement of (L.3): there exists
a positive constaniC = C(2,s «) such that

s C, o A s’(s...l?
sup ea|u|s...1dx ( ) (1-5)
u wizs@), 2 =+ , o> (471,)5/(5...1?
u2s 1

In order to extend equations {.1), we will study Schrddinger equations involving a dif-
fusion operator (seel0, 12, 32, 38, 39 among others). LeB; be the unit ball centered at
the origin in R? and Hé,rad(Bl,W) be the subspace of the radially symmetric functions in
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the closure ofC, (B1) with respect to the norm

1

2
U = U 2gw= Bw(x)| ul?dx . (1.6)
1

In particular, if w 1, we denote the above space bﬁé’rad(Bl). Trudinger...Moser-type in-
equalities for radial Sobolev spaces with logarithmic weights were considered by Calanchi
and Ruf in [L1]. More precisely, the above-mentioned authors used the weightx) =

(log 1/|x|)? for some “xed 0 B < 1, this logarithmic weight will be used in the rest of
this article.

Proposition 1.1 (Calanchi...Ruf,1[1]) Suppose that \{) = (log1/|[x|)? and 0 8 < 1.
Then,

2
el dx<+ , forallu HE Bi,w) anda >0.
B1

1
Furthermore settinge s = 2[27(1..8)] 1-#, there exists a positive constant€C(«, f) such
that

2 C
.8 ) o U,
sup elul ™" dx A
u Hé,rad(Bl’W)' B1 =+ 01>0[,3-
u 1

In order to establish a Trudinger...Moser inequality proved by Ngb and Nguye&][ we
consider a continuous radial functiorh : [0,1) R such that

(h1) h(0)=0and h(r)>0forr (0,1}

(hy) there exists c>0and y > 2 such that

near 0.

C
" Ty

Proposition 1.2 (Ng6...Nguyen,J7]) Suppose that h satis“eéh;) and (h,). Then, there
exists a positive constant € C(«, h) such that

[
sup exp a|ulZPD dx
u HJ 4B, B =+ , o>4m.
us 1

Next we establish a new version of the Trudinger...Moser inequality which will be used
throughout this paper.

Theorem 1.3 Suppose h satis“eg;) and (hy) and W(x) = (log 1/|x|)? for someg [0, 1).
Then, there exists a positive constant€C(«, 8, h) such that

2
sup exp oz|u|17‘+h(|xl) dx C. .7
u 1 B
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|foz>ozﬁ,then

2
sup exp a|u|17’+h(lxl) dx=+ . (1.8)
u 1 B

The proof of Theorem1.3will be presented in the next section. In this work, we are inter-
ested in “nding nontrivial weak solutions for the following class of Schrédinger equations:

diviw(x) u)=f(x,u), x By,
U:O, X 881,

(1.9)

where the growth of the nonlinearity of is motivated by the Trudinger...Moser inequality
given by Theoreml.3 More precisely, we assume the following conditions on the nonlin-
earityf:
(Hy) f:Bi1x R Risacontinuous and radially symmetric in the first variable function,
that is, f(x,9) =f(y,9) for |X| = |y|. Moreover, f (X, =0forallx Bjands 0.
(H2) There exists a constant > 2 such that

O<uF(x,9) sf(x,9, forallx B;ands>0,

where F(x,9 = ,f(x,t)dt.
(H3) There exists a constant M > 0 such that

0<F(x,9 Mf(x,9, foralls>0.

(H4) There holds

lims 2F(x,9)
imsu
sl &

<X1, uniformlyinx By,

where A1 is the first eigenvalue associated to (..div(w(x) u), Hé,rad(Bl’W))‘
(Hs) There exists a constant ag > 0 such that

. f(x,9 0, o >,
lim =

s exp(a|u|ﬁ+h(|xl)) 4 » o <ag,
(Hs) There exist constants p>2and Cp, > 0 such that
f(x,9 Cpd! foralls 0,

where

... 295 (1..8)(p...2)/2

Cp >
.2)I2
p®---2) o

and

(g WOl ul?dx)*?

S:= sup
P dx)L/p
0=u HJ 4(BLW) ( Bl|U| dx)
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Throughout, we denote the spack := Hgvrad(Bl,w) endowed with the inner product

uve= wX) u vdx, foralluyv E,
B1

to which corresponds the norm

1/2
u = w(x)| ul?dx
B

Also, we denote byE the dual space of with its usual norm. We say thau Eis a weak
solution of (1.9 if

w(x) u ¢dx= f(x,u)pdx, forall¢ E. (1.10)

B1 B1
Under the above assumptions oh, we consider the Euler...Lagrange functiodalE R
de“ned by

Ju) = w(x)| ul?dx... F(x,u)dx, forallu E.

By B

NI

Furthermore, using standard arguments (se21]), J belongs toC*(E,R) and

JWe=  wX) u ¢dx... f(xupdx, forallu,¢ E.
B1 By

Next, we present our existence result for the probleni (9).

Theorem 1.4 Suppose that f satis“efH;)..(Hg). Then, the problem(1.9) possesses a nhon-
trivial weak solution.

Notice that the class of Schrédinger equationsl Q) represents a natural extension
of the equation (L.1). Under assumption Hs), the nonlinearity f behaves likeexp((« +
h(|x|))|s|ﬁ) asstends to in“nity. Moreover, if 8 =0, we have thatv 1 and the equa-
tion (1.9 is reduced to problem {.1); the case withg =0 and h(x) = |x|® for somea >0
was studied in R7], and treated in many works consideringn = 0 (see [, 2, 18] among
others). Additionally, we observe thath;) and (h;) are conditions near the origin, in par-
ticular, h can tend to in“nity for values of|x| close to 1. Also, iff is close to 1, the power
of |4P wherep = 2/(1 ..,8) can be su ciently large. The above properties motivate us to
say thatf possesses supercritical exponential growth and represents an extension of other
previously studied works. Finally, note that the class of functions which satis“es the condi-
tions (H,)...Hsg) is not empty, for instance, consider the following functioh:B;x R R
de“ned by

AS-1+ (p+ [xng-- 1™ s,
0, s<0.

f(x,9 =

for some positive constantg, p=2/(1 ..,8), andA su ciently large.
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2 Preliminaries
The spaceH] ., (B1,w) wherew(x) = (log 1/|x|)? for some 0 B <1, endowed with the
norm given by (L.6), is a separable Banach space (s [Theorem 3.9]). Next, we present

a compactness result.

Lemma 2.1 The embedding I(J)I’,ad(Bl,w) < LP(By) is continuous and compact fol
P <
Proof From the Cauchy...Schwarz inequality, we have
1/2 1/2
| u]dx wx)| u?dx - w(x)ldx
1

B1 B1 B

Using the change of variabl§x| = e 5, we get

1 + 1 +
- W(X)ldX - e...ES..y ds= e...BS.y ds+ e...SS..y ds
2 g, 0 0 1
Note that
1 1 1
e-®s7 ds s7ds= ——
0 0 1.y
and
+ + e2
e %7 ds e ®ds= —.
1 1 2

Therefore, we can “nd a positive constant such that

1/2
u, C | ulPw(x) dx
By

Thus, H3(B1,w) < Wg%(By) continuously, which implies the continuous and compact
embedding

H3(Byw)< LP(By), forallp 1. O
Lemma 2.2 ([11]) Letu be a function in H(By,w). Then,

(.In|x)%

——~ . u, forallx B;j.
27(1..8)

u(x)

2.1 Proof of Theorem 1.3

Proof To prove the “rst statement of the theorem, it is su cient to considera = a5. From
Lemma2.2 foreachu Ewith u 1, we have

o u(r)2/(1“ﬂ) ...2nr, forallO<r<1, (2.1)
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wherer = |x|. Settingr, :=e*#"2, we have
u(r) 1, forallr ry. (2.2)
Thus,

2
exp a|u| T2 qx expay dx exp a, [Ba. (2.3)
Bl\Brl Bl\Brl

On the other hand, by 2.1), we can write

2
exp 06,3|U| ) gy

Br,
2
exp aglul T |u"D dx
Br,
2 anr 2000
exp aglultFf dx
Bry %p
2 2 anr 20D
exp ag|u|T# (exp aplult-? L1 1dx
Bry op

2
+ exp aglu|T# dx.
r1

Note that ...2n r/aﬁ 1forO<r ry.By (), there existc>0 and 0 <r, <r; such that

h || forall O <r <r,. (2.4)

_°
(..Inr)r’
Using (2.1) and 2.4), we have

anr CEN0D

exp(aﬂ|u|1%ﬁ 1.1
%p
oL.6)
...qnr 2007
exp(...2nr 1 11,
®p
Also,asr 0", one has
oL.8)
...2nr  2Cmn7 cl..8) ...2nr
=€X
ap P 2(..Inr)r o
14 (:(1..,;3)1 ...anr o 1 In ...2nr
2(..Inr) ag (..Inr)r g
Therefore, ag is close to zero, we have
ol.8)
2nr 2007 cl..8) anr
...anr =
o (..Inr)r-1 o
1 ..aqnr
+0 1
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Sincey > 2, we obtain

c1..8) ...2nr
( lnr)y---ln 0, asr O (2.5)
. Otﬁ
Consequently,
_ cl..8) ...2nr 1 ...2nr
K= ™ o, O Tt o, o
_ c1..8) N ...2nr o 1 In ...2nr
(..Inr)r-1 o (-.Inr)r--1 o
Set
_1..8) ...2nr
I(r)= (..lnr)V---lln 2,

In particular, k andl are continuous and positive in (0;2). Moreover, there exisC >0 and
0 <rz<r;, such that

k(r) CI(r), forallO<r rs. (2.6)

Therefore, by @.1), (2.6), and the de“nition of k(r), we have

2
exp aylu|T# " dx
3

2 2
exp alulTf K x| dx+ exp alulT# dx
p g p g

I'3 BI’3

c PR 1 - ) B

S PR G TY ) R
P31 2Inr 1

=27Cic(1..8) Fln dr+C;
0

ag  (.Inryr-1

+

2s 1
=27Cic(1..8) In — _ldS+ Cy,
..Inp3 g S

for some positive constant€; and C,. Using the fact thaty > 2, we have

2
exp a,lulT# " dx  C,. (2.7)
Br3

On the other hand, using 2.1), we have

2lnrg 2
1 u() nls , forallr3 r rq
%p

Combining the above inequality with the boundedness bfin By, \ B, we get

2
exp a,|ul T2 "M dx | B M. (2.8)
Bry\Brg



LeuyacdBoundary Value Problems  (2023) 2023:39 Page 9 of 17

Consequently, from 2.3), (2.7), and .8), we obtain

2
exp aﬁ|u|17+h(|xl) dx C,
B

which implies the “rst assertion of the theorem. In order to prove the sharpness, we con-
sider the following sequence given irLp]:

2

~ 1 1..8)12 kI8 ln(lxll. )1../3, 0 | Xl e..k/2,
Yi(x) = 1.8
Lp

ag k2, e¥2 | x| 1.

Then, yy =1forallk N.Moreover, fora >agz, we have

1

2 2
exp alud TE M dx  exp afyi]TF dx exp —k rdr.
B1 B1 ek aﬁ
Then,
20.5) k(2..1)
exp a+h|x |y?®® dx e &..1 + , ask ,
By
and the proof is complete. O

Corollary 2.3 Letn>0.Then,

exp el TP dx<+ | forallu HE 4(Brw)anda>0. (2.9)
By

Furthermore if @ ay, there exists a positive constant C such that

exp aly TE dx  C. (2.10)
By
If o >0, then
2 g
sup exp a|yy|TA dx=+ . (2.11)
u 1 B

As it was observed in27], the statements of Theoreni.3and its corollary are no longer
true if one considers the space of nonradial function:(B;, w). Additionally, using similar
arguments as in Theoreni.3 we can prove the natural extension ofl(2), that is, ifa >0
andu  H{ ,(B1,w), then

2
exp afulTA D gx <+ (2.12)
By

3 The geometry of the mountain pass theorem
This sectionis devoted to showing that the functionalsatis“es the geometry of the moun-
tain pass theorem.
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Lemma 3.1 Suppose thatH1), (H4), and (Hs) hold. Then, there existo, p > 0 such that
Ju) o, forallu Ewith u =p.

Proof Considerq> 2 and 0 <e <4/2. From (H;) and H,4), we can “ndc> 0 such that

+h(]x|)

2
F(x,9 e|d?+cg%exp 2uo|u|T7 forall (x,9 Byx R.

Integrating on B; and applying the Cauchy...Schwarz inequality, we obtain

1/2
2
F(x,u)dx e uj+cug,  exp dao|u| T8 D gy (3.1)
By B

Let hg =maxg  r, h(r) wherery is given by @.2). By Theorem1.3 we have

2 i 2. +h |ul £ 0
exp dagplu| T2 D gy exp 4o u 1B () 120 dx
Br, Br,
125 +h(x))
2 u 1.8 (32)
exp 4ag u 1AM lul dx
Bry u
Cy,

2 +h
providedthat u  pgforsome 0 <pg < 1 such that lbzopFJr °< ag. Using @.2, we have

125 +h(ix)) _
exp dag|u|T-# dx exp(dxo) dx = C,. 3.3)
B1\Brq B1\Bryq

Replacing 8.2) and (3.3) in (3.1), we get some > 0 such that

€
Fx,uydx — u 2+cu ¥,
B1 }\1

providedthat u  pg for somepg > 0. Then,

2

u?... F(xu)dx .cuq.

By

Ju) u

NI =

€
)\1

NI =

Therefore, we can “ndp > 0 ando >0 with 0 < p < pg su ciently small such that J(u)
o >0, forallu Esatisfying u =p. O

Lemma 3.2 Suppose thafH1)..(H>) hold. Then, there exists e E such that
Je<p and e >p,
wherep > 0is given by Lemm&.1

Proof It follows from (H>), that there existC > 0 ands, > 0 such that

F(x,9 Ce&M, foralls .
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Letegy 0 ande =0 “xed. Then, there existss > 0 such that|[{x Bj:e(x) 8} 3.
Thus, fort /8, we have

t2 t?
Jtey) — & 2. F(x,tep)dx — & 2..Cs&%M,
2 {x Brey 8} 2
which implies that J(tep) ... ,ast + . Therefore, we can take= tgey with tg>0
su ciently large such that Je)<Oand e >p. O

4 Palais...Smale sequence

By Lemmas3.1and 3.2 in the mountain pass theorem (se&p, 36]), we can “nd a Palais...
Smale sequence at levdl o, whereo is given by Lemma3.], that is, there exists a se-
qguence (1) Esuch that

Juy) d and  J(un) 0, 4.1)
whered > 0 can be characterized as

d = inf Jy), 4.2
gy’ 7O o

and
r=y CI[0,1],E :y(0)=0,y(1)=e.

Lemma 4.1 Let(u,) E be a Palais...Smale sequence for the functional J satisf¥ifig
Then, the sequencfu,) is bounden in E

Proof From (H;), we have

1
J(un) ...;J(un)un = Un 2. wF(X,un) .. (X, un)u, dx

NS

By

u, 2

NI NP
T~ TR

Using (4.1), for n su ciently large, we have
Jup) d+1 and J(un) o p.

Therefore, forn su ciently large, we obtain

U, 2 d+1+ uy,,

NI -
=R

which implies that the sequencel,) is bounded inE. O

Lemma 4.2 Let(u,) be a Palais...Smale sequence for the functional J satis{¢idgand
suppose that 4 — u weakly in E Then, there exists a subsequencgof), still denoted by
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(up), such that

f(x,uy)  f(x,u) inLY(By) (4.3)
and

F(x,un) F(x,u) inLYBy). (4.4)
Proof From Lemma?2.1, we can suppose thatu,) converges tou in LY(B,). By Theo-
rem 1.3 (H1), and H.), we have thatf (x,u,) L(B:). Using Lemma4.1, the sequence
( up )is bounded and the fact that J (u,) e 0 allows us to obtain

J(up)un J(un) £ Un 0, asn +

Thus,

u, 2

J(Un)un =

f(x,up)updx 0, asn +
B1

Therefore, the sequencé(x, un)u, is bounded inL(B;). Due to [18, Lemma 2.10], we
conclude thatf(x,un)  f(x,u) in LY(B1). On the other hand, by the convergencet(3),
there existsp  L(B,) such that

f(x,un) p(x), almosteverywhere irB; and forn su ciently large.
From (H3), we can write
F(x,un) Mp(x), almosteverywhere iB; and forn su ciently large.

By Lebesguees dominated convergence theorem, the convergefie follows. O

Lemma 4.3 Let(u,) E be a Palais...Smale sequence for the functional J satisf4ifig
Then,

1.8
d <} a_ﬂ ,
2 [045)

where d is the minimax level given k{#.2).
Proof Letu, E be a nonnegative function with u, , =1 such that

) (WOl ulZd)¥2

= m = Up .
P
o=u Hl . (Bw) (g [UIP dx)/e

From (He), we get

t2 t2 CytP
J(tup):E up 2. . F(x,tup) dx 5 Up 2..."T . |up|P dx.
1 1
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Therefore, by the estimate orC,, we have

t2 2 C.tP p/(p...2) 1 « 1.8
sup J(tup) max —Sp L2 = ( 23% <= £ . (4.5)
to

2 "Tp 202" "2 g

Take & = up in Lemma 3.2, that is, we considee = tou, with tg > 0 given by LemmeB.2
Setting yo(t) = ttoup, in particular, we havey, T ={y C([0,1],E):y(0)=0,y(1) =¢€}.
Using (4.2 and (4.5), we obtain

. 1 o LA
= = < - = .
d ;nlf_ trr%czi)i] Jy(t) tlr%g’)i] J yo(t) tm[gé] J(ttoup) max Jtup) ? o 0

5 Proof of Theorem 1.4
Let (u,) Ebe aPalais...Smale sequence of the functiqredtisfying é.1). Then,

JUung = wW(X) up, ¢dx... f(X,up)pdx=o0n(1), (5.1)

B1 By

forall ¢ Cj4(B1). By Lemma4.1, the sequencely) is bounded inE. Thus, up to a
subsequence, we can assume that there exists E such thatu, — u weakly inE, and
replacing the above convergence i () yields

wx) u ¢dx... f(xu)pdx=0, forall¢g Cg,q(B1)-
By B

SinceCy ,4(B1) is dense inE, we obtain

w(x) u ¢dx= f(x,u)pdx, forall¢ E.

B1 By

Therefore,u E s a critical point of J. Now, we prove thatu is nontrivial. Suppose, by
contradiction, thatu 0. From Lemma2.1, we can assume that

U, O inLP(By), forallp 1. (5.2)

Using the fact thatJ(u,) d, we have

U, 2

Jup) = F(x,up)dx=d + 0,(2). (5.3)

By

Since, we suppose that, — 0, by Lemma4.2, we obtain

F(x,un) dx F(x,0)dx=0.
B1 B1

Replacing the above limitin$.3), one has

u, 2

=d +0y(1). (5.4)
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By Lemma4.3 we get

o, LA
up 2=2d+o,(1)< £ +on(D).
(o70]

Thus, we can assume that there exisis> 0 su ciently small such that

2, Og
u, t# —..3, foralln 1.
oo

Now, we can “nd e > 0 su ciently small and m > 1 su ciently close to 1 such that

2 o
u, T £ 5 foralln 1, (5.5)
ap
and
“p
M(ao+te) — .8 <ag. (5.6)
Qo
From assumption Hs) there exists a positive constant such that
f(x9 Cexp (ao+e)gTa
, p (o +e€)|9T? , forall(x,9 BixR.
By Holder and the above inequalities, we have
1/m
f(x,up)upndx Cu ex 1 *h(x)
»Un)Un nm p M(ag + €)|uy| T-# dx (5.7)
By By
Sinceh is continuous andh(0) = 0, there existgy > 0 such that
h |x| <e, forall|x| ro.
Using (6.9, (5.6), and Theorem1.3 we obtainC; > 0 such that
2
exp M(ao + €)uq| 7" dx
Brg
2
B U] T thx)
exp M(ag+e€) Uy - th(X)) M dx
Brg Un
5.8
el 00 oo
exp(M(ag+€) Uy T8°° 1dx
Bfo Un
25 +h(x))
u B
exp o |Unl dx C;.
B,O Un

According to (2.2), we havdu(x)] 1forr; | x| <1.Thus, we can “ndC, >0 such that

exp(M(ap + €)dx = Co. (5.9)

2
exp M(ag+ e)|u|m+h(lxl) dx
B1\Bry

B1\Bry
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On the other hand, using the boundedness of, ) and Lemma2.2, we have
up(X) Mg, forallrg | x| rpandn 1.

By the continuity of h, we can “nd C3 > 0 such that

2
exp M(ao + €)|un| T2 gx  cs. (5.10)
Bry\Brg

Replacing 6.8, (5.9, and 6.10 in (5.7), we obtain

f(x,up)updx C up .
B1

By (6.2, we get

f(x,upupdx 0, asn + . (5.11)
Br

Using the fact that (u, ) is bounded and J(u,) e 0, we obtainC > 0 such that
J(un)un J(un) ¢ Un 0, asn + . (5.12)

Since,

2

J(up)un = up f (X, up)un dx.

B1

By (6.1 and (5.12), we have

Un 2=J@Unun+  f(xun)undx 0, asn  +
By

From (5.4, we have u, > 2d.Henced =0, which represents a contradiction with4.2).
Thus, u is a nontrivial critical point of J. Therefore,u is a nontrivial weak solution of the
problem (1.9). This completes the proof.
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