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Abstract
This paper studies the existence of nontrivial solutions to the following class of
Schrödinger equations:

{
–div(w(x)∇u) = f (x,u), x ∈ B1(0),

u = 0, x ∈ ∂B1(0),

where w(x) = (ln(1/|x|))β for some β ∈ [0, 1), the nonlinearity f (x, s) behaves like

exp(|s| 2
1–β +h(|x|)), and h is a continuous radial function such that h(r) can be

unbounded as r tends to 1. Our approach is based on a new Trudinger–Moser-type
inequality for weighted Sobolev spaces and variational methods.
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1 Introduction
Let consider the following Schrödinger equation:

⎧⎨
⎩–�u = f (x, u), x ∈ �,

u = 0, x ∈ ∂�,
(1.1)

where � is a bounded smooth domain in R
N . In the case N ≥ 3, some pioneering works

developed by Brézis [7], Brézis & Nirenberg [8], Bartsh & Willem [6], and Capozzi, For-
tunato & Palmieri [14] considered the assumption |f (x, u)| ≤ c(1 + |u|q–1), with 1 < q ≤
2∗ = 2N/(N – 2). The above growth of the nonlinearity f is related to the Sobolev embed-
ding H1

0 (�) ⊂ Lq(�) for 1 ≤ q ≤ 2∗. In the limiting case N = 2, one has 2∗ = +∞, that is,
H1

0 (�) ⊂ Lq(�) for q ≥ 1, in particular, the nonlinear function f in (1.1) may have arbitrary
polynomial growth. Also, some examples show that H1

0 (�) 	⊂ L∞(�). An important result
found independently by Yudovich [37], Pohozaev [28], and Trudinger [35] showed that
the maximal growth of the nonlinearity in the bivariate case is of exponential type. More
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precisely, it was stated that

eαu2 ∈ L1(�), for all u ∈ H1
0 (�) and α > 0. (1.2)

Furthermore, Moser [26] stated the existence of a positive constant C = C(α,�) such that

sup
u∈H1

0 (�),
‖∇u‖2≤1

∫
�

eαu2
dx

⎧⎨
⎩≤ C, α ≤ 4π ,

= +∞, α > 4π .
(1.3)

Estimates (1.2) and (1.3) from now on be referred to as Trudinger–Moser inequalities. The
above results motivate us to say that the function f has subcritical exponential growth if

lim
s→+∞

f (x, s)
eαs2 = 0, for all α > 0,

and critical exponential growth if there exists α0 > 0 such that

lim
s→+∞

f (x, s)
eαs2 =

⎧⎨
⎩0, α < α0,

+∞, α > α0.
(1.4)

Equations of the type (1.1) considering nonlinearities involving subcritical and critical ex-
ponential growth were treated by Adimurthi [1], Adimurthi–Yadava [2], de Figueiredo,
Miyagaki, and Ruf [18] (see also [1–4, 11, 13, 23, 27, 31]), and some results on Hamilto-
nian systems involving the above-mentioned growth can be found in [16, 17, 20, 24, 29, 33].
We shall write g1(s) ≺ g2(s) if there exist positive constants k and s0 such that g1(s) ≤ g2(ks)
for s ≥ s0. Additionally, we shall say that g1 and g2 are equivalent and write g1(s) ∼ g2(s) if
g1(s) ≺ g2(s) and g2(s) ≺ g1(s). Therefore, f possesses critical exponential growth if only if
f (x, s) = g(s) with g(s) ∼ e|s|2 .

Several extensions of the Trudinger–Moser inequalities were obtained considering
weighted Sobolev spaces, weighted Lebesgue measures, or Lorentz–Sobolev spaces (see
[3–5, 13, 15, 19, 24, 25, 34] among others). In the above-mentioned papers, the growth
of the nonlinearity is of the type f (x, s) = Q(x)g(s) where g(s) ∼ e|s|p with p = 2 on Sobolev
spaces and p > 1 on Lorentz–Sobolev spaces and for some weight Q(x). More precisely,
on Lorentz–Sobolev spaces, Brezis and Wainger [9] have shown the following: Let � be
a bounded domain in R

2 and s > 1. Then, eα|u| s
s–1 belongs to L1(�) for all u ∈ W 1

0 L2,s(�)
and α > 0. Furthermore, Alvino [5] obtained the following refinement of (1.3): there exists
a positive constant C = C(�, s,α) such that

sup
u∈W 1

0 L2,s(�),
‖∇u‖2,s≤1

∫
�

eα|u| s
s–1 dx

⎧⎨
⎩≤ C, α ≤ (4π )s/(s–1),

= +∞, α > (4π )s/(s–1).
(1.5)

In order to extend equations (1.1), we will study Schrödinger equations involving a dif-
fusion operator (see [10, 12, 32, 38, 39] among others). Let B1 be the unit ball centered at
the origin in R

2 and H1
0,rad(B1, w) be the subspace of the radially symmetric functions in
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the closure of C∞
0 (B1) with respect to the norm

‖u‖ := ‖∇u‖L2(B1,w) =
(∫

B1

w(x)|∇u|2 dx
) 1

2
. (1.6)

In particular, if w ≡ 1, we denote the above space by H1
0,rad(B1). Trudinger–Moser-type in-

equalities for radial Sobolev spaces with logarithmic weights were considered by Calanchi
and Ruf in [11]. More precisely, the above-mentioned authors used the weight w(x) =
(log 1/|x|)β for some fixed 0 ≤ β < 1, this logarithmic weight will be used in the rest of
this article.

Proposition 1.1 (Calanchi–Ruf, [11]) Suppose that w(x) = (log 1/|x|)β and 0 ≤ β < 1.
Then,

∫
B1

eα|u|
2

1–β dx < +∞, for all u ∈ H1
0,rad(B1, w) and α > 0.

Furthermore, setting α∗
β = 2[2π (1 – β)]

1
1–β , there exists a positive constant C = C(α,β) such

that

sup
u∈H1

0,rad(B1,w),
‖u‖≤1

∫
B1

eα|u|
2

1–β dx

⎧⎨
⎩≤ C, α ≤ α∗

β ,

= +∞, α > α∗
β .

In order to establish a Trudinger–Moser inequality proved by Ngô and Nguyen [27], we
consider a continuous radial function h : [0, 1) →R such that

(h1) h(0) = 0 and h(r) > 0 for r ∈ (0, 1);
(h2) there exists c > 0 and γ > 2 such that

h(r) ≤ c
(– ln r)γ

near 0.

Proposition 1.2 (Ngô–Nguyen, [27]) Suppose that h satisfies (h1) and (h2). Then, there
exists a positive constant C = C(α, h) such that

sup
u∈H1

0,rad(B1),
‖∇u‖2≤1

∫
B1

exp
(
α|u|2+h(|x|))dx

⎧⎨
⎩≤ C, α ≤ 4π ,

= +∞, α > 4π .

Next we establish a new version of the Trudinger–Moser inequality which will be used
throughout this paper.

Theorem 1.3 Suppose h satisfies (h1) and (h2) and w(x) = (log 1/|x|)β for some β ∈ [0, 1).
Then, there exists a positive constant C = C(α,β , h) such that

sup
‖u‖≤1

∫
B1

exp
(
α|u| 2

1–β
+h(|x|))dx ≤ C. (1.7)
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If α > α∗
β , then

sup
‖u‖≤1

∫
B1

exp
(
α|u| 2

1–β
+h(|x|))dx = +∞. (1.8)

The proof of Theorem 1.3 will be presented in the next section. In this work, we are inter-
ested in finding nontrivial weak solutions for the following class of Schrödinger equations:

⎧⎨
⎩– div(w(x)∇u) = f (x, u), x ∈ B1,

u = 0, x ∈ ∂B1,
(1.9)

where the growth of the nonlinearity of f is motivated by the Trudinger–Moser inequality
given by Theorem 1.3. More precisely, we assume the following conditions on the nonlin-
earity f :

(H1) f : B1 ×R →R is a continuous and radially symmetric in the first variable function,
that is, f (x, s) = f (y, s) for |x| = |y|. Moreover, f (x, s) = 0 for all x ∈ B1 and s ≤ 0.

(H2) There exists a constant μ > 2 such that

0 < μF(x, s) ≤ sf (x, s), for all x ∈ B1 and s > 0,

where F(x, s) =
∫ s

0 f (x, t) dt.
(H3) There exists a constant M > 0 such that

0 < F(x, s) ≤ Mf (x, s), for all s > 0.

(H4) There holds

lim sup
s→0

2F(x, s)
s2 < λ1, uniformly in x ∈ B1,

where λ1 is the first eigenvalue associated to (– div(w(x)∇u), H1
0,rad(B1, w)).

(H5) There exists a constant α0 > 0 such that

lim
s→∞

f (x, s)

exp(α|u| 2
1–β

+h(|x|))
=

⎧⎨
⎩0, α > α0,

+∞, α < α0,

(H6) There exist constants p > 2 and Cp > 0 such that

f (x, s) ≥ Cpsp–1, for all s ≥ 0,

where

Cp >
(p – 2)(p–2)/2Sp

p

p(p–2)/2

(
α0

α∗
β

)(1–β)(p–2)/2

and

Sp := sup
0 	=u∈H1

0,rad(B1,w)

(
∫

B1
w(x)|∇u|2 dx)1/2

(
∫

B1
|u|p dx)1/p .
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Throughout, we denote the space E := H1
0,rad(B1, w) endowed with the inner product

〈u, v〉E =
∫

B1

w(x)∇u∇v dx, for all u, v ∈ E,

to which corresponds the norm

‖u‖ =
(∫

B1

w(x)|∇u|2 dx
)1/2

.

Also, we denote by E∗ the dual space of E with its usual norm. We say that u ∈ E is a weak
solution of (1.9) if

∫
B1

w(x)∇u∇φ dx =
∫

B1

f (x, u)φ dx, for all φ ∈ E. (1.10)

Under the above assumptions on f , we consider the Euler–Lagrange functional J : E →R

defined by

J(u) =
1
2

∫
B1

w(x)|∇u|2 dx –
∫

B1

F(x, u) dx, for all u ∈ E.

Furthermore, using standard arguments (see [21]), J belongs to C1(E,R) and

J ′(u)φ =
∫

B1

w(x)∇u∇φ dx –
∫

B1

f (x, u)φ dx, for all u,φ ∈ E.

Next, we present our existence result for the problem (1.9).

Theorem 1.4 Suppose that f satisfies (H1)–(H6). Then, the problem (1.9) possesses a non-
trivial weak solution.

Notice that the class of Schrödinger equations (1.9) represents a natural extension
of the equation (1.1). Under assumption (H5), the nonlinearity f behaves like exp((α +
h(|x|))|s| 2

1–β ) as s tends to infinity. Moreover, if β = 0, we have that w ≡ 1 and the equa-
tion (1.9) is reduced to problem (1.1); the case with β = 0 and h(x) = |x|a for some a > 0
was studied in [27], and treated in many works considering h = 0 (see [1, 2, 18] among
others). Additionally, we observe that (h1) and (h2) are conditions near the origin, in par-
ticular, h can tend to infinity for values of |x| close to 1. Also, if β is close to 1, the power
of |s|p where p = 2/(1 – β) can be sufficiently large. The above properties motivate us to
say that f possesses supercritical exponential growth and represents an extension of other
previously studied works. Finally, note that the class of functions which satisfies the condi-
tions (H1)–(H6) is not empty, for instance, consider the following function f : B1 ×R →R

defined by

f (x, s) =

⎧⎨
⎩Asp–1 + (p + |x|η)sp–1+|x|η esp+|x|η , s ≥ 0,

0, s < 0.

for some positive constants η, p = 2/(1 – β), and A sufficiently large.
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2 Preliminaries
The space H1

0,rad(B1, w) where w(x) = (log 1/|x|)β for some 0 ≤ β < 1, endowed with the
norm given by (1.6), is a separable Banach space (see [22, Theorem 3.9]). Next, we present
a compactness result.

Lemma 2.1 The embedding H1
0,rad(B1, w) ↪→ Lp(B1) is continuous and compact for 1 ≤

p < ∞.

Proof From the Cauchy–Schwarz inequality, we have

∫
B1

|∇u|dx ≤
(∫

B1

w(x)|∇u|2 dx
)1/2

·
(∫

B1

w(x)–1 dx
)1/2

.

Using the change of variable |x| = e–s, we get

1
2π

∫
B1

w(x)–1 dx =
∫ +∞

0
e–2ss–γ ds =

∫ 1

0
e–2ss–γ ds +

∫ +∞

1
e–2ss–γ ds.

Note that

∫ 1

0
e–2ss–γ ds ≤

∫ 1

0
s–γ ds =

1
1 – γ

and

∫ +∞

1
e–2ss–γ ds ≤

∫ +∞

1
e–2s ds =

e–2

2
.

Therefore, we can find a positive constant C such that

‖∇u‖1 ≤ C
(∫

B1

|∇u|2w(x) dx
)1/2

.

Thus, H1
0 (B1, w) ↪→ W 1,1

0 (B1) continuously, which implies the continuous and compact
embedding

H1
0 (B1, w) ↪→ Lp(B1), for all p ≥ 1. �

Lemma 2.2 ([11]) Let u be a function in H1
0 (B1, w). Then,

∣∣u(x)
∣∣ ≤ (– ln |x|) 1–β

2√
2π (1 – β)

· ‖u‖, for all x ∈ B1.

2.1 Proof of Theorem 1.3

Proof To prove the first statement of the theorem, it is sufficient to consider α = α∗
β . From

Lemma 2.2, for each u ∈ E with ‖u‖ ≤ 1, we have

α∗
β

∣∣u(r)
∣∣2/(1–β) ≤ –2 ln r, for all 0 < r < 1, (2.1)
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where r = |x|. Setting r1 := e–α∗
β /2, we have

∣∣u(r)
∣∣ ≤ 1, for all r ≥ r1. (2.2)

Thus,∫
B1\Br1

exp
(
α∗

β |u| 2
1–β

+h(|x|))dx ≤
∫

B1\Br1

exp
(
α∗

β

)
dx ≤ exp

(
α∗

β

)|B1|. (2.3)

On the other hand, by (2.1), we can write
∫

Br1

exp
(
α∗

β |u| 2
1–β

+h(|x|))dx

≤
∫

Br1

exp
(
α∗

β |u| 2
1–β |u|h(|x|))dx

≤
∫

Br1

exp

(
α∗

β |u| 2
1–β

(
–2 ln r

α∗
β

) (1–β)
2 h(|x|))

dx

≤
∫

Br1

exp
(
α∗

β |u| 2
1–β

)
(exp

(
α∗

β |u| 2
1–β

((
–2 ln r

α∗
β

) (1–β)
2 h(|x|)

– 1
)

– 1
)

dx

+
∫

Br1

exp
(
α∗

β |u| 2
1–β

)
dx.

Note that –2 ln r/α∗
β ≥ 1 for 0 < r ≤ r1. By (h2), there exist c > 0 and 0 < r2 < r1 such that

h
(|x|) ≤ c

(– ln r)γ
, for all 0 < r < r2. (2.4)

Using (2.1) and (2.4), we have

exp(α∗
β |u| 2

1–β

((
–2 ln r

α∗
β

) (1–β)
2 h(|x|)

– 1
)

– 1

≤ exp(–2 ln r
((

–2 ln r
α∗

β

) c(1–β)
2(– ln r)γ

– 1
)

– 1 := k(r).

Also, as r → 0+, one has

(
–2 ln r

α∗
β

) c(1–β)
2(– ln r)γ

= exp

[
c(1 – β)

2(– ln r)γ
ln

(
–2 ln r

α∗
β

)]

= 1 +
c(1 – β)

2(– ln r)γ
ln

(
–2 ln r

α∗
β

)
+ o

(
1

(– ln r)γ
ln

(
–2 ln r

α∗
β

))
.

Therefore, as r is close to zero, we have

–2 ln r
((

–2 ln r
α∗

β

) c(1–β)
2(– ln r)γ

– 1
)

=
c(1 – β)

(– ln r)γ –1 ln

(
–2 ln r

α∗
β

)

+ o
(

1
(– ln r)γ –1 ln

(
–2 ln r

α∗
β

))
.



Leuyacc Boundary Value Problems         (2023) 2023:39 Page 8 of 17

Since γ > 2, we obtain

c(1 – β)
(– ln r)γ –1 ln

(
–2 ln r

α∗
β

)
→ 0, as r → 0+. (2.5)

Consequently,

k(r) = exp

[
c(1 – β)

(– ln r)γ –1 ln

(
–2 ln r

α∗
β

)
+ o

(
1

(– ln r)γ –1 ln

(
–2 ln r

α∗
β

))]
– 1

=
c(1 – β)

(– ln r)γ –1 ln

(
–2 ln r

α∗
β

)
+ o

(
1

(– ln r)γ –1 ln

(
–2 ln r

α∗
β

))
.

Set

l(r) =
c(1 – β)

(– ln r)γ –1 ln

(
–2 ln r

α∗
β

)
.

In particular, k and l are continuous and positive in (0, r2). Moreover, there exist C > 0 and
0 < r3 < r2 such that

k(r) ≤ Cl(r), for all 0 < r ≤ r3. (2.6)

Therefore, by (2.1), (2.6), and the definition of k(r), we have
∫

Br3

exp
(
α∗

β |u| 2
1–β

+h(|x|))dx

≤
∫

Br3

exp
(
α∗

β |u| 2
1–β

)
k
(|x|)dx +

∫
Br3

exp
(
α∗

β |u| 2
1–β

)
dx

≤ C1

∫
Br3

1
|x|2 ln

(
–2 ln |x|

α∗
β

)
c(1 – β)

(– ln |x|)γ –1 dx + C2

= 2πC1c(1 – β)
∫ ρ3

0

1
r

ln

(
–

2 ln r
α∗

β

)
1

(– ln r)γ –1 dr + C2

= 2πC1c(1 – β)
∫ +∞

– lnρ3

ln

(
2s
α∗

β

)
1

sγ –1 ds + C2,

for some positive constants C1 and C2. Using the fact that γ > 2, we have
∫

Br3

exp
(
α∗

β |u| 2
1–β

+h(|x|))dx ≤ C2. (2.7)

On the other hand, using (2.1), we have

1 ≤ ∣∣u(r)
∣∣ ≤

(
–

2 ln r3

α∗
β

) 1–β
2

, for all r3 ≤ r ≤ r1

Combining the above inequality with the boundedness of h in Br1\Br3 , we get

∫
Br1 \Br3

exp
(
α∗

β |u| 2
1–β

+h(|x|))dx ≤ |Br1 |M. (2.8)
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Consequently, from (2.3), (2.7), and (2.8), we obtain

∫
B1

exp
(
α∗

β |u| 2
1–β

+h(|x|))dx ≤ C,

which implies the first assertion of the theorem. In order to prove the sharpness, we con-
sider the following sequence given in [15]:

ψk(x) =
(

1
α∗

β

)(1–β)/2
⎧⎨
⎩k

2
1–β ln( 1

|x|2 )1–β , 0 ≤ |x| ≤ e–k/2,

k
1–β

2 , e–k/2 ≤ |x| ≤ 1.

Then, ‖ψk‖ = 1 for all k ∈ N. Moreover, for α > α∗
β , we have

∫
B1

exp
(
α|ψk|

2
1–β

+h(|x|)dx ≥
∫

B1

exp
(
α|ψk|

2
1–β

)
dx ≥

∫ 1

e–k /2
exp

(
α

α∗
β

k
)

r dr.

Then,

∫
B1

exp
((

α + h
(|x|))|ψk|2/(1–β))dx ≥ e

k( α
α∗
β

–1)(
ek – 1

) → +∞, as k → ∞,

and the proof is complete. �

Corollary 2.3 Let η > 0. Then,

∫
B1

exp
(
α|ψk|

2
1–β

+|x|η)dx < +∞, for all u ∈ H1
0,rad(B1, w) and α > 0. (2.9)

Furthermore, if α ≤ α∗
β , there exists a positive constant C such that

∫
B1

exp
(
α|ψk|

2
1–β

+|x|η)dx ≤ C. (2.10)

If α > α∗
β , then

sup
‖u‖≤1

∫
B1

exp
(
α|ψk|

2
1–β

+|x|η)dx = +∞. (2.11)

As it was observed in [27], the statements of Theorem 1.3 and its corollary are no longer
true if one considers the space of nonradial functions H1

0 (B1, w). Additionally, using similar
arguments as in Theorem 1.3, we can prove the natural extension of (1.2), that is, if α > 0
and u ∈ H1

0,rad(B1, w), then

∫
B1

exp
(
α|u| 2

1–β
+h(|x|))dx < +∞. (2.12)

3 The geometry of the mountain pass theorem
This section is devoted to showing that the functional J satisfies the geometry of the moun-
tain pass theorem.
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Lemma 3.1 Suppose that (H1), (H4), and (H5) hold. Then, there exist σ ,ρ > 0 such that

J(u) ≥ σ , for all u ∈ E with ‖u‖ = ρ.

Proof Consider q > 2 and 0 < ε < λ1/2. From (H1) and (H4), we can find c > 0 such that

∣∣F(x, s)
∣∣ ≤ ε|s|2 + c|s|q exp

(
2α0|u| 2

1–β
+h(|x|)), for all (x, s) ∈ B1 ×R.

Integrating on B1 and applying the Cauchy–Schwarz inequality, we obtain

∫
B1

F(x, u) dx ≤ ε‖u‖2
2 + c‖u‖q

2q

(∫
B1

exp
(
4α0|u| 2

1–β
+h(|x|))dx

)1/2

. (3.1)

Let h0 = max0≤r≤r1 h(r) where r1 is given by (2.2). By Theorem 1.3, we have

∫
Br1

exp
(
4α0|u| 2

1–β
+h(|x|))dr ≤

∫
Br1

exp

[
4α0‖u‖ 2

1–β
+h(|x|)

( |u|
‖u‖

) 2
1–β

+h(|x|)]
dx

≤
∫

Br1

exp

[
4α0‖u‖ 2

1–β
+h0

( |u|
‖u‖

) 2
1–β

+h(|x|)]
dx

≤ C1,

(3.2)

provided that ‖u‖ ≤ ρ0 for some 0 < ρ0 < 1 such that 4α0ρ
2

1–β
+h0

0 < α∗
β . Using (2.2), we have

∫
B1\Br1

exp
(
4α0|u| 2

1–β
+h(|x|))dx ≤

∫
B1\Br1

exp(4α0) dx = C2. (3.3)

Replacing (3.2) and (3.3) in (3.1), we get some c > 0 such that

∫
B1

F(x, u) dx ≤ ε

λ1
‖u‖2 + c‖u‖q,

provided that ‖u‖ ≤ ρ0 for some ρ0 > 0. Then,

J(u) ≥ 1
2
‖u‖2 –

∫
B1

F(x, u) dx ≥
(

1
2

–
ε

λ1

)
‖u‖2 – c‖u‖q.

Therefore, we can find ρ > 0 and σ > 0 with 0 < ρ < ρ0 sufficiently small such that J(u) ≥
σ > 0, for all u ∈ E satisfying ‖u‖ = ρ . �

Lemma 3.2 Suppose that (H1)–(H2) hold. Then, there exists e ∈ E such that

J(e) < ρ and ‖e‖ > ρ,

where ρ > 0 is given by Lemma 3.1.

Proof It follows from (H2), that there exist C > 0 and s0 > 0 such that

F(x, s) ≥ Ces/M, for all s ≥ s0.
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Let e0 ≥ 0 and e0 	= 0 fixed. Then, there exists δ > 0 such that |{x ∈ B1 : e0(x) ≥ δ}| ≥ δ.
Thus, for t ≥ s0/δ, we have

J(te0) ≥ t2

2
‖e0‖2 –

∫
{x∈B1:e0≥δ}

F(x, te0) dx ≥ t2

2
‖e0‖2 – Cδetδ/M,

which implies that J(te0) → –∞, as t → +∞. Therefore, we can take e = t0e0 with t0 > 0
sufficiently large such that J(e) < 0 and ‖e‖ > ρ . �

4 Palais–Smale sequence
By Lemmas 3.1 and 3.2, in the mountain pass theorem (see [30, 36]), we can find a Palais–
Smale sequence at level d ≥ σ , where σ is given by Lemma 3.1, that is, there exists a se-
quence (un) ⊂ E such that

J(un) → d and
∥∥J ′(un)

∥∥
E∗ → 0, (4.1)

where d > 0 can be characterized as

d = inf
γ∈�

max
t∈[0,1]

J
(
γ (t)

)
, (4.2)

and

� =
{
γ ∈ C

(
[0, 1], E

)
: γ (0) = 0,γ (1) = e

}
.

Lemma 4.1 Let (un) ⊂ E be a Palais–Smale sequence for the functional J satisfying (4.1).
Then, the sequence (un) is bounden in E.

Proof From (H2), we have

J(un) –
1
μ

J ′(un)un =
(

1
2

–
1
μ

)
‖un‖2 –

1
μ

∫
B1

(
μF(x, un) – f (x, un)un

)
dx

≥
(

1
2

–
1
μ

)
‖un‖2.

Using (4.1), for n sufficiently large, we have

J(un) ≤ d + 1 and
∥∥J ′(un)

∥∥
E∗ ≤ μ.

Therefore, for n sufficiently large, we obtain

(
1
2

–
1
μ

)
‖un‖2 ≤ d + 1 + ‖un‖,

which implies that the sequence (un) is bounded in E. �

Lemma 4.2 Let (un) be a Palais–Smale sequence for the functional J satisfying (4.1) and
suppose that un ⇀ u weakly in E. Then, there exists a subsequence of (un), still denoted by
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(un), such that

f (x, un) → f (x, u) in L1(B1) (4.3)

and

F(x, un) → F(x, u) in L1(B1). (4.4)

Proof From Lemma 2.1, we can suppose that (un) converges to u in L1(B1). By Theo-
rem 1.3, (H1), and (H4), we have that f (x, un) ∈ L1(B1). Using Lemma 4.1, the sequence
(‖un‖) is bounded and the fact that ‖J ′(un)‖E∗ → 0 allows us to obtain

∣∣J ′(un)un
∣∣ ≤ ∥∥J ′(un)

∥∥
E∗‖un‖ → 0, as n → +∞.

Thus,

J ′(un)un =
‖un‖2

2
–

∫
B1

f (x, un)un dx → 0, as n → +∞.

Therefore, the sequence f (x, un)un is bounded in L1(B1). Due to [18, Lemma 2.10], we
conclude that f (x, un) → f (x, u) in L1(B1). On the other hand, by the convergence (4.3),
there exists p ∈ L1(B1) such that

f (x, un) ≤ p(x), almost everywhere in B1 and for n sufficiently large.

From (H3), we can write

F(x, un) ≤ Mp(x), almost everywhere in B1 and for n sufficiently large.

By Lebesgue’s dominated convergence theorem, the convergence (4.4) follows. �

Lemma 4.3 Let (un) ⊂ E be a Palais–Smale sequence for the functional J satisfying (4.1).
Then,

d <
1
2

(
α∗

β

α0

)1–β

,

where d is the minimax level given by (4.2).

Proof Let up ∈ E be a nonnegative function with ‖up‖p = 1 such that

Sp = inf
0 	=u∈H1

0,rad(B1,w)

(
∫

B1
w(x)|∇u|2 dx)1/2

(
∫

B1
|u|p dx)1/p = ‖up‖.

From (H6), we get

J(tup) =
t2

2
‖up‖2 –

∫
B1

F(x, tup) dx ≥ t2

2
‖up‖2 –

Cptp

p

∫
B1

|up|p dx.
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Therefore, by the estimate on Cp, we have

sup
t≥0

J(tup) ≤ max
t≥0

{ t2S2
p

2
–

Cptp

p

}
=

(p – 2)S2p/(p–2)
p

2pC2/(p–2)
p

<
1
2

(
α∗

β

α0

)1–β

. (4.5)

Take e0 = up in Lemma 3.2, that is, we consider e = t0up with t0 > 0 given by Lemma 3.2.
Setting γ0(t) = tt0up, in particular, we have γ0 ∈ � = {γ ∈ C([0, 1], E) : γ (0) = 0,γ (1) = e}.
Using (4.2) and (4.5), we obtain

d = inf
γ∈�

max
t∈[0,1]

J
(
γ (t)

) ≤ max
t∈[0,1]

J
(
γ0(t)

)
= max

t∈[0,1]
J(tt0up) ≤ max

t≥0
J(tup) <

1
2

(
α∗

β

α0

)1–β

. �

5 Proof of Theorem 1.4
Let (un) ⊂ E be a Palais–Smale sequence of the functional J satisfying (4.1). Then,

J ′(un)φ =
∫

B1

w(x)∇un∇φ dx –
∫

B1

f (x, un)φ dx = on(1), (5.1)

for all φ ∈ C∞
0,rad(B1). By Lemma 4.1, the sequence (un) is bounded in E. Thus, up to a

subsequence, we can assume that there exists u ∈ E such that un ⇀ u weakly in E, and
replacing the above convergence in (5.1) yields

∫
B1

w(x)∇u∇φ dx –
∫

B1

f (x, u)φ dx = 0, for all φ ∈ C∞
0,rad(B1).

Since C∞
0,rad(B1) is dense in E, we obtain

∫
B1

w(x)∇u∇φ dx =
∫

B1

f (x, u)φ dx, for all φ ∈ E.

Therefore, u ∈ E is a critical point of J . Now, we prove that u is nontrivial. Suppose, by
contradiction, that u ≡ 0. From Lemma 2.1, we can assume that

un → 0 in Lp(B1), for all p ≥ 1. (5.2)

Using the fact that J(un) → d, we have

J(un) =
‖un‖2

2
–

∫
B1

F(x, un) dx = d + on(1). (5.3)

Since, we suppose that un ⇀ 0, by Lemma 4.2, we obtain

∫
B1

F(x, un) dx →
∫

B1

F(x, 0) dx = 0.

Replacing the above limit in (5.3), one has

‖un‖2

2
= d + on(1). (5.4)
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By Lemma 4.3, we get

‖un‖2 = 2d + on(1) <
(

α∗
β

α0

)1–β

+ on(1).

Thus, we can assume that there exists δ > 0 sufficiently small such that

‖un‖
2

1–β ≤ α∗
β

α0
– 2δ, for all n ≥ 1.

Now, we can find ε > 0 sufficiently small and m > 1 sufficiently close to 1 such that

‖un‖
2

1–β
+ε ≤ α∗

β

α0
– δ, for all n ≥ 1, (5.5)

and

m(α0 + ε)
(

α∗
β

α0
– δ

)
< α∗

β . (5.6)

From assumption (H5) there exists a positive constant C such that

∣∣f (x, s)
∣∣ ≤ C exp

(
(α0 + ε)|s| 2

1–β
+h(|x|)), for all (x, s) ∈ B1 ×R.

By Hölder and the above inequalities, we have

∫
B1

f (x, un)un dx ≤ C‖un‖m′
(∫

B1

exp
(
m(α0 + ε)|un|

2
1–β

+h(|x|))dx
)1/m

. (5.7)

Since h is continuous and h(0) = 0, there exists r0 > 0 such that

h
(|x|) < ε, for all |x| ≤ r0.

Using (5.5), (5.6), and Theorem 1.3, we obtain C1 > 0 such that

∫
Br0

exp
(
m(α0 + ε)|un|

2
1–β

+h(|x|))dx

≤
∫

Br0

exp

[
m(α0 + ε)‖un‖

2
1–β

+h(|x|)
( |un|

‖un‖
) 2

1–β
+h(|x|)]

dx

≤
∫

Br0

exp(m(α0 + ε)‖un‖
2

1–β
+ε

( |un|
‖un‖

) 2
1–β

+h(|x|)
] dx

≤
∫

Br0

exp

[
α∗

β

( |un|
‖un‖

) 2
1–β

+h(|x|)]
dx ≤ C1.

(5.8)

According to (2.2), we have |u(x)| ≤ 1 for r1 ≤ |x| < 1. Thus, we can find C2 > 0 such that

∫
B1\Br1

exp
(
m(α0 + ε)|u| 2

1–β
+h(|x|))dx ≤

∫
B1\Br1

exp(m(α0 + ε) dx = C2. (5.9)
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On the other hand, using the boundedness of (‖un‖) and Lemma 2.2, we have

∣∣un(x)
∣∣ ≤ M0, for all r0 ≤ |x| ≤ r1 and n ≥ 1.

By the continuity of h, we can find C3 > 0 such that

∫
Br1 \Br0

exp
(
m(α0 + ε)|un|

2
1–β

+h(|x|))dx ≤ C3. (5.10)

Replacing (5.8), (5.9), and (5.10) in (5.7), we obtain

∫
B1

f (x, un)un dx ≤ C‖un‖m′ .

By (5.2), we get

∫
BR

f (x, un)un dx → 0, as n → +∞. (5.11)

Using the fact that (‖un‖) is bounded and ‖J ′(un)‖E∗ → 0, we obtain C > 0 such that

∣∣J ′(un)un
∣∣ ≤ ∥∥J ′(un)

∥∥
E∗‖un‖ → 0, as n → +∞. (5.12)

Since,

J ′(un)un = ‖un‖2 –
∫

B1

f (x, un)un dx.

By (5.11) and (5.12), we have

‖un‖2 = J ′(un)un +
∫

B1

f (x, un)un dx → 0, as n → +∞.

From (5.4), we have ‖un‖2 → 2d. Hence, d = 0, which represents a contradiction with (4.2).
Thus, u is a nontrivial critical point of J . Therefore, u is a nontrivial weak solution of the
problem (1.9). This completes the proof.
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