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Here, D¥ is the Caputo derivative. We obtain results on the existence and uniqueness
of (w, ¢)-periodic mild solutions assuming that —A generates an analytic semigroup on
a Banach space X and f, g, and k satisfy suitable conditions. Finally, an interesting
example that fits our framework is given.

MSC: 35R11;45K05; 34G20; 47D06

Keywords: (w,c)-periodic mild solutions; Fractional integrodifferential equations;
Nonlocal Cauchy problem; Fractional powers

1 Introduction

The aim of this paper is to investigate the existence of (w, ¢)-periodic mild solutions for a
class of fractional integrodifferential equations in Banach spaces. More precisely, let X be
a Banach space. Our objective is to study the following problem

DY u(t) + Aul(z) :f(t,u(t)) + (Ku)(t), teR. (1.1)

In (1.1), 0 < ¢ < 1, DY denotes the Caputo fractional derivative in the ¢ variable that is
defined by

1

DY u(z) := -

/t(t -0 (v)dr,
0

where —A generates an analytic semigroup S(¢) in X, and f, g are continuous functions
from R x X to X, and

t

(Ku)(t) := / k(t - s)g(s, u(s)) ds,

-0
where k is a continuous function from R* to R.
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In many areas of science and technology, the theory of fractional differential equations
and their applications is of significant importance because certain situations do not fit into
classical models, see [18, 25, 26] and the references therein.

Recently, Alvarez et al. presented the concept of vector-valued (w, c)-periodic solutions
and its properties in [6]. Moreover, they proved the existence and uniqueness of (v, ¢)-
periodic mild solutions to the problem (1.1) with K = 0. Then, several authors have studied
related problems, see, for example, [1, 4, 5,7,10-15,17, 22,23, 27]. Also, there exist various
generalizations of this kind of functions and applications to real-life problems [2, 3, 20, 21].

The problem of the existence and uniqueness of a pseudoalmost-periodic PC-mild so-
lution for

DY u(t) + Au(t) :f(t, u(t)) + /[ k(t - s)g(s, u(s)) ds + Z G; (u(t))é(t —-t), teR,

j=—00

where G; are continuous impulsive operators, §(-) is the Dirac delta function, and 7; are a
sequence in Z was investigated by Xia in [29] for 0 < @ < 1, and by Gu and Li in [19] for
1 < o < 2. The existence of almost-periodic mild solutions for the case without impulsive
effects was studied in [8].

It is worth mentioning that not much seems to be known about (w, ¢)-periodic mild
solutions for the integrodifferential equation (1.1). This is precisely our aim in this article.

We succeed in solving this open problem using Banach fixed-point arguments and the
fractional powers of operators to derive some sufficient conditions guaranteeing the exis-
tence and uniqueness of (w, ¢)-periodic mild solutions to (1.1).

The paper is structured as follows. In Sect. 2, we recall the definition of (v, ¢)-periodic
functions, the fractional power of an operator, and the definition of Mittag—Leffler func-
tions and their properties that will be used throughout the manuscript. In Sect. 3, we
investigate the main problem where we obtain a novel regularity result related to (w, c)-

periodic mild solutions of (1.1). Finally, an interesting example is given in Sect. 4.

2 Preliminaries
Throughout this paper, ¢ € C\ {0}, @ > 0, X will denote a Banach space with norm || - ||x
and we will denote the set of continuous functions on R by

CR,X):={f :R— X:f is continuous},
and the set of continuous functions on R x X by
CRx X,X):={f:R x X — X:f is continuous}.
We recall that a function f € C(R, X) is said to be (w, ¢)-periodic if f (¢ + w) = ¢f(¢) for all
t € R, see [6]. The collection of those functions with the same c-period w will be denoted

by P,.(R, X). Also, in the same article, it was proved that P, (R, X) is a Banach space with
the norm

I lleoc := sup]|||c|A(—t)f(t) I

te[0,w
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Definition 2.1 ([28, Sect. 2.6]) Assume that —A generates an analytic semigroup {S(¢)}:>0
in a Banach space X and 0 € p(A). For any B > 0, we define the fractional power A~# of the
operator A by

g L [T s

AP o —/ 515(2) dit.
I'B) Jo

We further define A= := 1.

Lemma 2.2 ([28, Lemma 6.3]) Let the operator —A be an infinitesimal generator of an
analytic semigroup {S(t)}:>0 in the Banach space X and 0 € p(A). There exists a constant
Cg such that

||A"gx||x < Cgllxllx, forallxeX,
where0 < B < 1.

Theorem 2.3 ([28, Theorem 6.13]) Let —A be an infinitesimal generator of an analytic
semigroup {S(£)};>0. If 0 € p(A), then

1. S(¢): X — D(AP) forall t >0 and B > 0;

2. Forall x € D(AP), it follows that S(t)APx = APS(t)x;

3. Forall t >0, the operator APS(t) is bounded and

AP s <MgtPe?™, Mg>0,1>0,

)HL(X)

where Mg is a positive constant and A > 0 satisfies that —A + Al remains the
infinitesimal generator of the analytic semigroup S(t).
4. For0< B <1 and x € D(AP), there exists Cg > 0 such that

[ s@a =] < Cpr[A%x] .

Theorem 2.4 ([28]) The space Xz := D(AP) C X with norm ||x||g := |APx||x is a Banach
space.

We recall that the Mittag—Leffler-type function (or the two-parameter Mittag—Leffler
function) is given by

oo

t}’l
Ea,ﬂ(t) = MZ(} m, (Ot > 0,,3 (S (C).

When B = 1, we write simply E, (¢) instead of E, 1(£). For more details about the Mittag—
Leffler function, the reader may want to consult [18].

Proposition 2.5 ([25]) Let 0 <« < 1. If0 > 0, the following properties are satisfied:
(a)

M,y (0) > 0.
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00 T+ 1
f oM @)do = LD
0 Ian+1)

f ~ M, (0)e™ do = E,(-t).
0

Lemma 2.6 ([25]) Let0 <« < 1.If—A is an infinitesimal generator of an analytic semigroup
{S(®)} =0 on X, 0 € p(A) and x € X, then

Ea(—t"‘A)x=/ M,(0)S(0t*)xdb, t>0
0
and
Eqo(-t*A)x = / aBM, (6)S(6¢*)xdb, t>0.
0

Theorem 2.7 ([9]) Let«, B € (0,1). If -A is the infinitesimal generator of an analytic semi-
group {S(t)}i>0 and 0 € p(A), there exists a constant Mg such that

|Ea(=tA)x] , < Met™Plixllx  and  |Eqa(-t"A)x|, < Mpt™ |lxllx
forallt>0.

Lemma 2.8 ([25]) The operators E, o(—t*A) and E,(—t*A) are strongly continuous, which
means that for all x € X and s,t > 0, we have that

|Eaa(-t°A)x - Eya(-s*A)x|, —> 0 and |E,(-t"A)x - E,(-s"A)x|, — 0
when s — t.

Proposition 2.9 ([26]) Let 0 <« < 1, t > 0. There are two asymptotic representations set
up for E,(—t*):

Eu(-t) ~ EQ(-t%) = exp(—rg): t—0;
@\ % sinfen) T@)
Ego(—ta) Sl T t — oQ.

3 (w, c)-periodic mild solutions
In this section we prove the main result of this article. Under suitable conditions, we show
the existence and uniqueness of (o, ¢)-periodic mild solutions for (1.1).

Let us consider the following Cauchy problem

DY u(t) + Au(t) = f(t, u(t)) + (Ku)(t), t>to,

u(tO) = Uo, ty € R, Uy € X,

(3.1)
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where the D¢ denotes the fractional Caputo derivative, 0 < <1, —A: D(-A) C X — X
generates an analytic semigroup S(¢) in a Banach space X, and f, g are continuous functions
from R x X to X and (Ku)(¢t) := f_too k(t — s)g(s, u(s)) ds. Here, k is a continuous function
from R* to R.
We assume the following:
(H1) —A is an infinitesimal generator of an analytic semigroup {S(¢)};>¢ such that
0 € p(A) and

”S(t) ”x <Ce™®" fort>0,

where o and C are positive constants.

(H2) |k(2)] < Cre ™ for some positive constants C, 1.

(H3) f € C(R x Xg,Xp) and there exists (w,c) € R* x (C\ {0}) such that
f(t+w,cx) =cf(t,x) forall £ € R and all x € Xp. Also, there exists a positive
constant Ly such that

Hf(t,u) —f(t,V)||X§Lf||u—V||,3, teR,u,veXp.

(H4) g e C(R x Xg,Xp) and g(t + o, cx) = cg(t,x) (where @ and c are the same as given in
(H3)) for all £ € R and all x € Xj. Also, there exists a positive constant L, such that

lgt:u) - gt V)|, < Lgllu—vllg, t€R,u,veXs.
The next definition is similar to [16, Definition 3.1] and [29, Definition 3.1].

Definition 3.1 A mild solution of (3.1) is a continuous function « from R to X that satis-

fies the following integral equation:
t
u(t) = E, (—(t - to)“A)uo + / (t—5)""Eyq (—(t - S)“A) (f(s, u(s)) + (Ku)(s)) ds. (3.2)
to
Proposition 3.2 Suppose that (H1) holds. If u is a mild solution of (3.1), then

\ lirzlw u(t) = /t (t—5)""E,, (—(t - s)“A) (f(s, u(s)) + (Ku)(s)) ds. (3.3)

Proof According to the definition of an improper integral, we have

lim (/t(t -8 E,, (—(t - s)"‘A) (f(s, u(s)) + (Ku)(s)) ds)

to—>—00 to

= /t (t—5)""Eyq (—(t - s)“A) (f(s, u(s)) + (Ku)(s)) ds.

Page 5 of 16
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On the other hand, we will prove that limy,—, _ Eo (—(£ — t9)*A)uo = 0. In fact, by Proposi-
tion 2.5 and (H1), we obtain

|Ea (~(t - t0)*A)uo] , = H /0 Mo (0)S((t — £0)*0)uo d6

X

< / Ma(6)Ce® 0 g
0

<ClluollxEo(—(c"* (£ - 20))%).

Now, by Proposition 2.9, we obtain

Eu(—(t — o) A)ito || <Clluo [ M@ T N
[ Ea( o] =Clluoll —

o (t—1to)”

which shows that limy,_, o Eq(—(t — 9)*A)uo = 0. Using this fact, together with (3.2) and
(3.4), we obtain the desired result. a

The previous proposition motivates the following definition.

Definition 3.3 A mild solution of (1.1) is a continuous function # from R to X that satis-

fies the following integral equation:

u(t) = / (t—s)""Eyq (—(t - S)“A) (f(s, u(s)) + (Ku)(s)) ds, (3.5)
provided that (H1) holds.

The next results are crucial for the proof of our main result.

Lemma 3.4 If (H3) and (H4) are satisfied and u € P,.(R,Xp), then f, = f(-,u(-)), gu =
g(-u(-)) lies in Py,c(R, Xp).

Proof Lett e R. Then,
Sult+ o) =f(t+ w,u(t + ) = f (¢t + o, cu(t)) = of (t, u(t)) = cfu(2).

By [6, Theorem 2.11] we have that f,, € P,.(R, Xz). Analogously, we can prove the claim
forg,. g

Lemma 3.5 Suppose that (H2)—(H4) are satisfied. If u € P,.(R, Xp), then

h(-) i=f (- u(-)) + (Ku)() € Poc(R, Xp). (3.6)
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Proof First, we will show that # € C(R, Xg). In order to prove that / is continuous for each
t € R, we claim that lim,_,o+ | 4(t + p) — h(t)||g = 0. Indeed, let p > 0. Then,

||h(t + p) — h(t) ||}3 = |Lf(t + o, u(t + p)) + (Ku)(t + p) —f(t,u(t)) — (Ku)(t) ||ﬁ

=< [f(e+ poutt + ) —f (£ u®)]

t+p
+ / |kt + p = s)g(s,u(s)) | , ds

1

+/: H (k(t+p -5) —k(t—s))g(s,u(s)))”ﬂds.

o0

11

Note that by (H3), we have ||f (¢ + p, u(t + p)) —f (£, u(t)) | g —— 0. Now, we estimate ] and
p—0*
1I separately. By (H2), (H4), and Lemma 3.4, we have

t+p
1= /; ||k(t +p —s)g(s, u(s)) ||ﬁ ds

—n(t+p) t+p S(ln\c\ﬂ]w)
= Cellgullwce™™” e

t
In|c|

@ In|c| Inje| _
= Ck”gu ”wc P (€(t+p) 0 - et @ Pn) 0.
Infc| + nw 0t

On the other hand, by (H4) and Lemma 3.4, we obtain

1= / || (k(t +p—58)—k(t- s))g(s, u(s))) ”,3 ds

o]

t
<gulloc / k(e + p - )" — k(e - )" | ds.

Since k € C(R*,R) and s < ¢ + p for p > 0, we have that

In|c|
)

s> k(t+p—s)e’ ‘:(—oo,t+,0)—>]R (3.7)

is continuous. In particular,

Injc In|c
’k(t +p —s)es% —k(t—s)es% — 0.

p—0%

Moreover, by (H2)

In|c|

In|c| In|c|
|k(t +p —s)esn<T —k(t —s)esn<T < Ck(e"’(t”’) + e_"t)es(T*”).

Due to the facts that p > 0 and 5 > 0, we have

e Nep) L gt

Page 7 of 16
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The above implies that

In| Injc]

Ck(e"’(”p) + efrzt)ES(T”'m) < 2Cke”’tes(7+"),
and therefore,
In|c| In|c| In|c|
|k(t +p- s)esnT —k(t- s)esnT | <2Cq (e‘”t)es(nT*").

In|c

. [+nwy . . .
Also, the function s — 2Cie "™ o ) is integrable in (—o00, £), since

4 In [c|+7w w tinje|
/ 2Ce e ) ds = 20 [ ——— e o < oo.
NS In|c| + nw

Hence, the criterion of comparison of improper integrals guarantees that

In|c|

s> |k(t +p —s)es¥ —k(t—s)e o |

is integrable in (o0, £). By virtue of the Dominated Convergence Theorem, it follows that

t
< ||g,4||w5/ |k(t+ 0 —s)es% —k(t—s)es% | ds —— 0,

00 p—>07*

obtaining the claim.

Analogously, we can show that lim,_,o- || (¢ + p) — h(t)|| s = 0.

Now, we will prove that 4(¢ + w) = ch(t) for all t € R. In fact, since u € P,.(R, X), by the
definition of (w, ¢)-periodicity, (H3), and (H4), we obtain

h(t + w) =f(t + o, u(t + a))) + (Ku)(t + w)
=f(t+o,cult)) + /t k(t - r)g(r + o, cu(r)) dr
=of (tu®) + /t k(t = r)eg(r, u(r)) dr = ch(?).

Consequently, /1 € P, (R, Xg). O

Lemma 3.6 Suppose that (H1)-(H4) are satisfied. If u € P,.(R, Xp), then

(Ou)(t) = / (t—5)""Eyq (—(t - S)“A) (f(s, u(s)) + (Ku)(s)) ds (3.8)

lies in Py,c(R, Xp).

Proof Define h(s) := f(s, u(s)) + (Ku)(s) for all s € R. According to Lemma 3.5, we have
he Py, (R, Xp).
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First, we will show that (©u) € C(R, Xp). For this, we claim that limg_,o+ [|[(®u)(£ + &) —
(®u)(?)|lg = 0. Indeed, let £ > 0. Then,

[©u)e+6) - ©uw],
t+&
= H / (t + ‘i: - S)a_lEoz,ot (_(t + S - S)aA)h(S) ds

_ / -9 E,, (~(t - 5)*A)h(s) ds

o0

B

< /_ H (t+&—5)""Ey, (—(t +& - s)"‘A)h(s) —(t-9)""Eyy (—(t - s)"‘A)h(s) || p ds

{o¢]

1

t+&
; f (6 +& =) Ewa(~(t + & — )" A)(s)] , ds.

i

We will estimate / and II. Indeed, for s € (—00,¢), by Theorem 2.7 and Lemma 3.5, we

have

[t +& =) Eqq (—(t + & = 5)*A)h(s) = (t = )* " Eq,a (= = $)*A) h(s) ”ﬂ
<[t +& =) Ewa(~(t + & = 5)*"A)h(s) = (t = 5)* " Eua(~(t + & = 5)*A)h(5)

4 [ (€= ) B (8 + & — ) AYh(s) ~ (£ = )" Enu (£~ ) A)h(5)],

3 <Mgcﬁ||h||mesl“af>‘< 1 ) ( 1 )
T\ (ks t+E-s)  \t-s

+ (¢ = 9" | v (=( + & = )" A)h(s) = Ev(~(t = 5)*A) ) | 4 P 0.

Therefore,
|| (t+&—5)""E,, (—(t +&- S)O‘A)h(s) —(t—95)""E,, (—(t - s)“A)h(s) || P ﬁ) 0.
Again, by Theorem 2.7 and Lemma 3.5, we obtain

” (t+&—5)""E,, (—(t +& - s)“A)h(s) —(t-9)""Ey, (—(t - s)"‘A)h(s) ”ﬂ

<[+ & =9 Euu(~( + & = )" A)R(s) |, + (¢ = 9" Eu (~(t = 5)* A)R(5)],

In|c| In|c|
)

(t+&— oo " ((—g)ewh

EMECﬂ”h”wc( )r S € (_Oo’t)'

Dueto&é>0and 0<1- o +af <1, we have

In|c| In|c| In|c|

MeCgllhl . . =MCglhll 72 .
@ + w, ’
E-B ¢ (t+§ _s)l—a+aﬁ (t S)l—ouotﬁ EV-p ¢ (t S)l—ouotﬁ
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and therefore,

” (t+&E—5)"1E,, (—(t +& - s)“A)h(s) —(t-5)""1E . (—(t - s)"‘A)h(s) ”ﬁ
Inc|

= 2MECﬁ”h”wC((t—s)m)’ s € (-00,1).

ln In|c|

In addition, the function s — 2M¢Cg ”h”"”(m) is integrable in (-0, t), since

¢ In|c|

2M:Cs | ¢ ds = 2MCplll|uee o [ — P
/:Oo eCgll ||wc(m> = eCll llwce’ @ (m) (Ol( —,3))'

Hence, the criterion of comparison of improper integrals guarantees that
— || (t+&—5)""Eyq (—(t +& - s)“A)h(s) —(t-5)""1E (—(t - s)“A)h(s) || p
is integrable in (—oo, t). Thus, by the Dominated Convergence Theorem, it follows that

I = /t (¢ +& =) Eqo (—(t + & —5)*A)h(s)
—(t-5)""Ey . (—(t - S)“A)h(s) || P ds
— 0.
§—~>0*
On the other hand, using similar arguments to those in the estimates of I, we obtain

+§
11=ft (¢ +& =) | By (~(t + & = 5)"A)(5) |, s
t

t+& i
SMECﬁHh”wc/ (t+& —s5)* P 1g sl
t
md [ L
<MEC/3”h”wce ) o pa—ap-l,-r=c8 1.
0

Note that, using a change of variable and the definition of the incomplete Gamma function
y, we have

£ Inldl ¢ a(1-p)-1
[[ et ane [ (_w) e g,
0 In In|c|
Inlc In|c
( ") (au—ﬁ), "s>.
w w

Thus,

vyl (e \ ) In|c|
11 < MpCp | oue ™" (—) a1, ") —,
w E%O*

Therefore, |(Ou)(t + £) — (Ou)(t)|lg — 0 when & — 0%, proving the claim. In a similar way,
we can show that limg_,o- [|(®u)(t + &) — (Ou)(t)||s = 0.

Page 10 of 16
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Now, we will show that (Ou)(t + @) = c(Ou)(¢) for all £ € R. Indeed, since /1 € P,.(R, Xp),
by the definition of (w, ¢)-periodicity, we have

Ou)(t +w) = ft (t—7)""Eyy (—(t - r)"‘A)h(r +w)dr

—00

=c /t (t = 1)* " Eqo (—(t = r)*A)h(r) dr = c(Ou)(?).

Hence, we deduce that (Ou) € P,.(R, X3). (]

Theorem 3.7 Suppose that (H1)—(H4) are satisfied and 1 < |c| < e". If § < 1 where

a(1-p)
5= ME<L> (a1 - B)) (Lf + M) (3.9)

In|c| nw + In|c|
then (1.1) has a unique mild solution u € P,.(R, Xp).

Proof Let us define the operator © : Py,.(R, Xg) = P,(R, Xp) given by

t
(©u)(t) = / (£ = ) Eua ({2 — 9)%A) (F (5, u(5)) + (Ku)(5)) ds.
According to Lemma 3.6, we have Ou € P,,(R, Xp) for all u € P,.(R, Xp).

Let us see that © is a contraction. In fact, let , v € P,,c(R, X;). By (H3) and Theorem 2.7,

we have

le|N(=2) / (t =) Eqa(=(t—)*A)(f (s, u(s)) - f (5, v(5))) ds

B
t
< MeLplltt = Ve / (t-5) TP )N (~(t~s)) ds
- a(1-B)
sMELf(m> T(e(1 = B)) et = Ve (3.10)

On the other hand, by (H2) and (H4), we obtain
|| (Ku)(s) — (Kv)(s) ”x < / |k(s - r)| ||g(r, u(r)) —g(r, v(r)) ||Xdr

§ Inc]
< Cilgllu—v|oce™ (/ 7 dr)
—00

w A
=< CkLg ||Ll - V||wc|c| (5)
nw + In|c|

Using this fact together with Theorem 2.7, we obtain

lc|M(~t) [ (t = 8)* " Eg o (—(t = 5)*A) ((Ku)(s) - (Kv)(s)) ds

o0

B

<Mg / e (=£)(£ = )P || (Ku)(s) - (Kv)(s) | , s

o0

Page 11 0of 16
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t
< ME/ le| N (=8)(t - )77 <CkLg(L> floe — VIIMICIA(S)) ds
_ nw + In|c|

(o ¢]

a(1-p)
SMECkLg< - )( = ) T (1= B)) st = V- (3.11)

nw + In|c| In|c|

Now, by (3.10) and (3.11), we have

|©@uw@) - ©v©)],,

< sup ( le|™ (=2) / (t=5)""E,, (= 9)%A)(f (s, uls)) —f (s, v(s))) ds
te[0,0] —o0 B
+ (e (=t) / (t =) Eqa(—(t —9)*A) ((Ku)(s) — (Kv)(s)) ds )
o 5

® a(1-B)
< sup (MELf(m> F(a(l—ﬂ))llu—vllwc

te[0,w]

w w a(1-p)
M CkL F(Ol(l—ﬂ))HM—Vch
T Ve nw +1In|c| / \In|c|

a(1-B)
w CrLow
M r _ _ e _
= ( E(ln |C|> (C((l ,3)) (Lf + e +In |C|)) lzt = Ve

=< 8”” - V”a)o

Since § < 1, ©® is a contraction. Therefore, Banach’s Fixed-Point Theorem guarantees the
existence of a unique fixed point u € P,(R, X) of the operator ®, which satisfies

t
(Ou)(t) = u(t) = / (t—5)*""Eyq (—(t - S)O‘A) (f(s, u(s)) + (Ku)(s)) ds.
This completes the proof of the theorem. d
4 An application

In this section we present an example that fits our framework.
Let X = (L%[0,1],] - ||,2). Consider the following problem:

aFw(t,x) + Bfw(t,x) =a(t) cos(b(t)w(t,x)) + Kw(t,x), teR,xe(0,1),
w(t,0) = w(¢,1) =0, teR,

(4.1)

where 0 <« < 1, 37 denotes the Caputo fractional derivative with respect to ¢ and
t
Kw(t,x) = / k(t—s) (a(s) sin(b(s)w(s,x))) ds.

The functions k and a, b will be specified later.
We define the linear operator —A on X by

D(-A) = {u € X :u,u’ € X are absolutely continuous, #” € X and #(0) = u(1) = 0},

—Au(x) =u"(x), VYxe€(0,1),u € D(-A).

Page 12 of 16
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It is well known that —A is an infinitesimal generator of an analytic semigroup {S(¢)};>0 on
X (see, for example, [24, Example 4.1.7] with a little modification). In addition, —A has a
discrete spectrum, namely, the eigenvalues -1, = -2, n € N. The associated normalized
eigenfunctions are given by e, (x) = /2 sin(nmx), n € N. Moreover, the semigroup is

SMu) =Y e (e 26 (x).
n=1

Also, ||S(®) |2 < et for t > 0. This shows that (H1) holds. This in turn implies that the
fractional powers of A can be defined as in Sect. 2. More precisely, since A has a compact
resolvent, we have that

9] o]
APy = Z(u, en)2enht = Z(u, en)2enn’,
n=1 n=1

with domain
o0
2
{u eX:Z|(u,en)Lz| n* <oof.
n=1

Now, let k(£) = e, Then, [e™*| < (2/3)e*. Thus, (H2) holds with C; = 2 and = 9.
Leta € P, (R,Xg) and b € P, 1 (R, Xp) with 1 <|c| < €.
Let us define f(¢,x) = a(t) cos(bc(t)x) and g(¢,x) = a() sin(b(t)x). Then, the problem (4.1)
can be reformulated as (1.1) with A, &, f, and g defined as above.
Next, we will show that (H3) and (H4) hold. Indeed,

St +w,cx) = a(t + w) cos(b(t + w)cx)
= ca(t) cos(%b(t)cx)
= ca(t) cos(b(t)x) = cf (¢, x).

Since a € P,(R,Xg), b € P, 1(R,Xp), we have f € C(R x Xg,Xp). Also, for x,y € Xz, we
obtain

If &%) = £ (& 9)] 2 < llallz2 | cos(b(2)x) — cos(b(2)y) |
, (b(t)x - b(’«‘))’) . (b(t)x + b(f))’)
sin[ ———>= sin[| ———

<|lall;22
< llallz2 ) )

‘ b(t)x — b(t)y
2

2 2

-1
12

< llall 22

< llall2[1bll 2 [1% = yll 2

< llall21bll2Cplix = yllp,  VEeRxyeXg,

obtaining (H3). The proof for (H4) is analogous. More precisely,

|, %) - gt 9)| 2 < lal 216l 2Csllx—yllg, Vi€ R,x,y € Xp.
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From the estimated

H AP “ llell L2 /m<i)ﬂ_1esé
2= (p) 2 2

1
S ﬁ”x”],zr xGXﬁ’

we see that the constant Cg can be chosen as %ﬁ (see Lemma 2.2).

The constant Mg of Theorem 2.3 can be taken as —- In fact, note that [|S(&)x(-) || ;2 <

e t||x||Lz for t > 0 and |AS(t)x(-)|l2 < tle™™ tllxlle for t > 0. Moreover, for x € Xg, we
have

|475(0x] ; = 40P AS (0] .

1 « -B 1 _—7m2(t+s)
<— sP(t+s)"e lx|l 2 ds
ra-sJo
—ﬂ -2t

1
< mt llell 2.

Finally, the constant Mg of Theorem 2.7 can be taken as Mg = n(;( a(l ﬁ) ) Indeed,

| Eaa (—t*A)x|| 5= HAﬂ / Ooa@Ma(O)S(Gt“)xdG
0

12

< / aOMq (0)|APS(01%)x ) » db
0

5/ afM, (9)( ! (et) -”29f“||x||L2>d9
0

o e 1
< W(/ M, (0)0'F de)t-"ﬂnanz.
0

Due to the Proposition 2.5, it is fulfilled that [~ 6"M,(0)d6 = Poel) for n > —1 and by

T(an+1)’

the definition of the Gamma function one has that I'(6 + 1) = 9T°(6).
Then,

N o rai-g+1) o
H&thA%wﬁsnﬂlm(rmu_ﬁ)+n)tﬂwwﬂ

1 TA-B) \ o
nﬂkm<rmu—ﬂ»)t Il

Consequently Mg = 2(1 = ( (a((ll ’Sﬁ))))

Now, by (3.9), we have

a(1-p)
w CrLgw
§=Me| — D(a(1-B) L+ —57 ),
E<MMJ (o ﬁ”(f+nw+mw0

and therefore,

8_( ra-p) >
~\ 72O (a(1 - B))
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a(1-pB) 1 03
X < . ) I‘(O[(l_ﬁ))'||‘l||L2||b||L2-7T—2ﬁ<1.|.&)

In|c| 9w + In|c|

SO bt (S (14 2
T2 Az 1o02 (In |c|)*1-A) +9a)+ln|c| ’

According to Theorem 3.7, the fractional problem (4.1) has a unique (w, ¢)-periodic mild

solution whenever § < 1. Moreover, the solution is given by

u(t) = / t (£ = )" By (~(t — 5)°A)

X <a(s) cos(b(s)u(s)) +/

—00

s

6”2(5_’)61(3) sin (b(s)u(s)) dr) ds.
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