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Abstract
Variable order differential equations are the natural extension of the said area. In many
situations, such problems have the ability to describe real-world problems more
concisely. Therefore, keeping this validity in mind, we have considered a class of
boundary value problems (BVPs) under the variable order differentiation. For the
suggested problems, we have developed the existence and uniqueness (EU) by using
some fixed point results due to Banach and Schauder. Sufficient adequate results
have been established for the required need. Some stability results have also been
elaborated based on the concepts of Ulam, Hyers, and Rassias. Proper examples have
also been provided with detailed analysis to verify our results.
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1 Introduction
Calculus devoted to non-integer order derivatives and integrals has gotten significant in-
terest in the last few decades from researchers in different fields of science and technology
because the derivative of the non-integer order derivative of a function produces its com-
plete spectrum, which involves the corresponding integer-order counterpart as a special
case. For some significant applications in various disciplines like rheology, fluid dynam-
ics, viscoelasticity, financial mathematics, distribution theory, etc. For instance, author
in [1] applied concepts of fractional calculus in bioengineering. For fractional dynamics
and physics, see [2], a chaos neuron model using fractional calculus in [3]. Similarly, see
the delay fractional order model for the malarial disease and HIV/AIDS in [4]. Basic con-
cepts, theory, and applications of fractional calculus, we refer to [5] and [6], respectively.
Further, the area devoted to deal differential equations of non-integer order has been con-
sidered by many researchers. Because using such equations in mathematical models of
real-world processes has a greater degree of freedom and produces comprehensive dy-
namics of the phenomenon. Some reputed results in this regard can be seen about appli-
cations viscoelasticity, physics, and dynamics in [7–9], and [10], respectively. Therefore,
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researchers have established various aspects like qualitative theory, stability analysis, and
numerical interpretation. For instance, some basic theories of the said can be read in [11]
and fundamental concepts we refer to [12].

It is remarkable that boundary value problems (BVPs) have numerous applications in
engineering disciplines. Therefore, qualitative aspects of the said area have been well in-
vestigated for arbitrary order differential equations. The required qualitative results for a
variety of BVPs under fractional calculus have been studied using a fixed-point approach.
Some significant results in this respect can be referred to as: for existence and unique-
ness of different boundary and initial value problems using fixed point theory we refer to
[13–16], and [17], respectively. Also, some authors have extended the fixed point approach
to study nonlocal, multi-point, and initial value problems for existence theory in [18–21],
and [22], respectively. It is important that connecting a present phenomenon with its past
can be investigated by delay-type equations of an integer as well as factional order. There
are three kinds of delay problems, including discreet delay, proportional, and continuous
delay equations. Therefore, in the last few years, the area of fractional order delay differen-
tial equations (FODDEs) has been considered very well. FODDEs play important roles in
modeling various physical and biological processes and phenomena. FODDEs have vari-
ous applications in different fields, including electrodynamics, probability theory of struc-
tures, growth cells, quantum mechanics, dynamics of both linear and non-linear systems,
and astrophysics. In this regard, various classes of fractional pantograph differential equa-
tions for numerical analysis have been investigated by wavelet method, polynomials, and
other tools in [23, 24], and [25], respectively. So far, the area devoted to fixed fractional
order derivatives has been explored very well. In this regard, various differential operators
have been introduced whose detail can be seen as for computational algorithm and exis-
tence uniqueness results of delay problems, we refer to [26] and [27]. Treating FODDEs
by decomposition method, see [28], numerical analysis of aforesaid problems by various
numerical methods, including wavelet, operational matrices, etc. we refer to [29, 30], and
[31], respectively. For qualitative theory by fixed point theory and degree method, we re-
fer to [32] and [33], respectively. In addition, here we cite some works where authors have
investigated different problems for qualitative analysis as [34–37].

Recently, another form of differential operator where the order is taken as a continuous
function has attracted attention. The said idea was given by Samko and his co-author in
1993 [38]. Selecting order as a variable makes the operator more flexible with more de-
gree of freedom. Also, a variety of problems whose dynamics cannot be well studied using
traditional type fractional order operators still exist. Therefore, in the last two decades,
researchers have increasingly used variable-order differential operators to derive EU, sta-
bility, and numerical results. Authors [39] have studied some problems under variable
order for theoretical analysis. Results about the existence theory, stability analysis, and
investigation of extremal solutions have been developed in [40, 41], and [42]. Also, some
useful applications in real-world problems of the said area have been given in [43] and
[44].

For dynamical problems, stability theory is usually demanded. For usual traditional
problems of fractional calculus, Lyapunov and Mittag-Leffler as well as exponential kinds
stabilities have been developed very well. Proper attention in recent times has been given
to H-U stability. For instance, the said stability result has been established for a class of Hil-
fer FODEs in [45]. Also, the mentioned stability for the FODDEs system of tumor-immune
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has been derived in [46]. The mentioned stability has also been derived for a coupled sys-
tem of FODEs in [47]. Some existence results by fixed point approach and stability results
have been studied in [48]. Existence theory and stability analysis of some FODDEs have
been investigated in [49] and [50], respectively. For a class of linear FODDEs, the men-
tioned stability has also derived in [51].

Here we claim that FODDEs involving mixed-type delays have not been properly in-
vestigated. Therefore, by overcoming this gap, here we consider the following BVPs of
mixed-type delays FODEs as

⎧
⎨

⎩

CD�(t)
+0 z(t) = f (t, z(ρt), z(t – τ )), 0 < ρ < 1, 0 < �(t) ≤ 1,

z(0) =
∫ T

0
(T–ς )δ–1

�(δ) g(z(ς )) dς + z0, 0 < δ ≤ 1,
(1)

where CD�(t)
+0 represents a variable order derivative using Caputo sense, J = [0, T], and f :

J × R2 → R and g : [0, T] → R are continuous function. Here, we state that recently
some improved results on variable order problems have been published in [52, 53]. We
will follow the same procedures as mentioned in these articles. In addition, the traditional
fixed point approach and nonlinear functional analysis are used to develop EU and stability
results to the above variable FODDEs involving mixed-type delay terms. We investigate
various kinds of UH stability, including generalized Hyers Ulam, Rassias and generalized
Hyers–Ulam Rassia abbreviated as gUH, UHR, and gUHR. Also, by proper test examples,
we justify our analysis. The concerned stability has been investigated for fixed fractional
order problems under boundary conditions [54–56]. We will use fixed point theory [57]
to develop our study.

2 Preliminaries results
Some axillary results we need as follow.

Definition 2.1 ([38]) The variable order fractional integral of z ∈ L(J) in the Riemann–
Liouville sense is recollected as

I�(t)
+0 z(t) =

1
�(�(t))

∫ t

0
(t – s)�(ς )–1z(ς ) dς , (2)

where � : J → (0, 1] is continuous function.

Definition 2.2 ([38]) The variable order fractional derivative in the sense of Caputo is
recollected as

cD�(t)
0 z(t) =

1
�(n – �(t))

∫ t

0
(t – ς )�(ς )–1z(n)(ς ) dς . (3)

Lemma 2.1 ([6]) For fractional order � ∈ (0, 1] of function z, the relation holds

I�
+0

CD�
+0z(t) = z(t) – z(0).

Theorem 2.3 ([57]) Let B �= ∅ be a closed, convex subset of a Banach space X, and if P :
B → B is a continuous function such that P(B) is a relatively compact subset of X, then
P has at least one fixed point in B.
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3 Main results
Here, we derive our main results about EU for the proposed problem (1). Let n ∈
{1, 2, 3, . . . .}, then consider a partition of J as

{
J1 = [0, t1], J2 = (t1, t2], J3 = (t2, t3], . . . , Jn = (tn–1, T]

}
,

and let � : J → (0, 1] be a piecewise function such that

�(t) =
n∑

i=1

�i(t)Ii(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

�1 if t ∈ J1,

�2 if t ∈ J2,
...

�n if t ∈ Jn,

where 0 < �i ≤ 1 represent constants, and Ii is the indicator function of Ji = (ti–1, tn] with
i = 1, 2, . . . , n, such that t0 = 0, tn = T and

Ii(t) =

⎧
⎨

⎩

1 for t ∈ Ji,

0 elsewhere.

Consider the Banach space Xi = C[Ji, R], with i = 1, 2, . . . , n, under the norm define as ‖z‖ =
maxt∈J |z(t)|. Therefore, we can write the left side of the considered problem as

CD�(t)
+0 z(t) =

∫ t1

0

(t – ς )–�1

�(1 – �1)
z(1)(ς ) dς + · · · +

∫ t

tn–1

(t – ς )–�i

�(1 – �i)
z(1)(ς ) dς . (4)

In view of (4), we can write our considered problem as

∫ t1

0

(t – ς )–�1

�(1 – �1)
z(1)(ς ) dς + · · · +

∫ t

tn–1

(t – ς )–�i

�(1 – �i)
z(1)(ς ) dς = f

(
t, z(ρt), z(t – τ )

)
. (5)

Therefore, let z ∈ C([0, T], R), such that we need to deal

⎧
⎨

⎩

CD�i
ti–1 z(t) = f (t, z(ρt), z(t – τ )), t ∈ Ji,

z(ti–1) =
∫ T

0
(T–ς )δ–1

�(δ) g(z(ς )) dς + z0.
(6)

Lemma 3.1 If h ∈ L(Ji), then the problem

⎧
⎨

⎩

CD�i
+0z(t) = h(t), t ∈ Ji,

z(ti–1) =
∫ T

0
(T–ς )δ–1

�(δ) g(ς , z(ς )) dς + z0
(7)

has solution as

z(t) = z0 +
∫ T

0

(T – ς )δ–1

�(δ)
g
(
ς , z(ς )

)
dς +

1
�(�i)

∫ t

ti–1

(t – ς )�i–1h(ς ) dς .
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Proof By applying the integral I�i
ti–1 to Problem (7) and then using Lemma 2.1, one has

z(t) = c +
1

�(�i)

∫ t

ti–1

(t – ς )�i–1h(ς ) dς (8)

Putting t → 0 in (8) and using the initial condition, we get

c = z0 +
∫ T

0

(T – ς )δ–1

�(δ)
g
(
ς , z(ς )

)
dς .

And hence we get

z(t) = z0 +
∫ T

0

(T – ς )δ–1

�(δ)
g
(
ς , z(ς )

)
dς +

1
�(�i)

∫ t

ti–1

(t – ς )�i–1h(ς ) dς . �

Corollary 1 Thank to Lemma 3.1, the proposed problem (1) has a solution given as

z(t) = z0 +
∫ T

0

(T – ς )δ–1

�(δ)
g
(
ς , z(ς )

)
dς

+
1

�(�i)

∫ t

ti–1

(t – ς )�i–1f
(
ς , z(ρς ), z(ς – τ )

)
dς

Next, for the EU of the problem (1), we define the given hypothesis:
(A1) If z, z̄, y, ȳ ∈ R , then for Lf > 0, one has

∣
∣f (t, z, y) – f (t, z̄, z̄)

∣
∣ ≤ Lf

(|z – z̄| + |y – ȳ|).

(A2) For Lg > 0, with z, z̄ ∈ R , we have

∣
∣g(z) – g(z̄)

∣
∣ ≤ Lg |z – z̄|.

Theorem 3.1 If hypothesis (A1, A2) holds, and TδLg
�(δ+1) + 2T�

i Lf
�(�i+1) < 1, then the considered prob-

lem (1) preserves a unique solution.

Proof Define the operator L : Xi →Xi by

L z(t) = z0 +
∫ T

0

(T – ς )δ–1

�(δ)
g
(
z(ς )

)
dς +

1
�(�i)

∫ t

ti–1

(t – ς )�i–1f
(
ς , z(ρς ), z(ς – τ )

)
dς .

Now to show that L is a condensing operator, for this let z, z̄ ∈ Xi, using (T – ti–1)�i ≤ T�,
and consider

‖L z – L z̄‖

= max
t∈J

∣
∣
∣
∣

{

z0 +
∫ T

0

(T – ς )δ–1

�(δ)
g
(
z(ς )

)
dς

+
1

�(�i)

∫ t

ti–1

(t – ς )�i–1f
(
ς , z(ρς ), z(ς – τ )

)
dς

}
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–
{

z0 +
∫ T

0

(T – ς )δ–1

�(δ)
g
(
z̄(ς )

)
dς

+
1

�(�i)

∫ t

ti–1

(t – ς )�i–1f
(
ς , z̄(ρς ), z̄(ς – τ )

)
dς

}∣
∣
∣
∣

≤ max
t∈J

{∫ T

0

(T – ς )δ–1

�(δ)
∣
∣g

(
z(ς )

)
– g

(
z̄(ς )

)∣
∣

+
1

�(�i)

∫ t

ti–1

(t – ς )�i–1∣∣f
(
ς , z(ρς ), z(ς – τ )

)
– f

(
ς , z̄(ρς ), z̄(ς – τ )

)∣
∣dς

}

≤ Lg‖z – z̄‖
�(δ)

∫ T

0
(T – ς )δ–1 dς +

2Lf ‖z – z̄‖
�(�i)

∫ T

ti–1

(T – ς )�i–1 dς

≤
{

LgTδ

�(δ + 1)
+

2Lf T�i

�(�i + 1)

}

‖z – z̄‖.

Hence proved. �

(A3) for Kf > 0, one has

∣
∣f (t, z, z̄)

∣
∣ ≤ Kf

{|z| + |z̄|}, for z, z̄ ∈ R;

(A4) If Kg > 0, then

∣
∣g(z)

∣
∣ ≤ Kg |z|, for z ∈ R;

Theorem 3.2 In view of assumptions (A1 – A4), the suggested problem (1) has at least one
solution in bounded set B = {z ∈ Xi : ‖z‖ ≤ γ }, with 	 = Lg Tδ

�(δ+1) + 2Lf T�i

�(�i+1) .

Proof Let us perform the given steps to establish the required result:
Step 1: We need to prove that P : B → B, is bounded. Let z ∈ B, one has

∥
∥P(z)

∣
∣ = max

t∈J

∣
∣
∣
∣z0 +

∫ T

0

(T – ς )δ–1

�(δ)
g
(
z(ς )

)
dς

+
1

�(�i)

∫ t

ti–1

(t – ς )�i–1f
(
ς , z(ρς ), z(ς – τ )

)
dς

∣
∣
∣
∣,

≤ z0 +
∫ T

0

(T – ς )δ–1

�(δ)
∣
∣g

(
z(ς )

)∣
∣dς

+
1

�(�i)

∫ T

ti–1

(T – ς )�i–1∣∣f
(
ς , z(ρς ), z(ς – τ )

)∣
∣dς ,

≤ z0 +
{

KgTδ

�(δ + 1)
+

2Kf T�i

�(�i + 1)

}

γ ≤ γ .

Hence P(z) ∈ B, therefore P maps bounded set into bounded in Xi.
Step 2: For the continuity of P , let a sequence zn converge to z in B, and for every t ∈ Ji,

we have

∥
∥P(zn) – P(z)

∥
∥
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= max
t∈Ji

∣
∣
∣
∣

{

z0 +
∫ T

0

(T – ς )δ–1

�(δ)
g
(
zn(ς )

)
dς

+
1

�(�i)

∫ t

ti–1

(t – ς )�i–1f
(
ς , zn(ρς ), zn(ς – τ )

)
dς

}

–
{

z0 +
∫ T

0

(T – ς )δ–1

�(δ)
g
(
z(ς )

)
dς

+
1

�(�i)

∫ t

ti–1

(t – ς )�i–1f
(
ς , z(ρς ), z(ς – τ )

)
dς

}∣
∣
∣
∣

≤ max
t∈Ji

{∫ T

0

(T – ς )δ–1

�(δ)
∣
∣g

(
zn(ς )

)
– g

(
z(ς )

)∣
∣dς

+
1

�(�i)

∫ t

ti–1

(t – ς )�i–1∣∣f
(
ς , zn(ρς ), zn(ς – τ )

)
– f

(
ς , z(ρς ), z(ς – τ )

)∣
∣dς

}

≤ max
t∈Ji

{

Kg

∫ T

0

(T – ς )δ–1

�(δ)
dς +

2Kf

�(�i)

∫ t

ti–1

(t – ς )�i–1 dς

}

‖zn – z‖.

As

‖zn – z‖ → 0 by n → 0.

Also, P is bounded. So, ‖P(zn) – P(z)‖ → 0 as n → 0. Therefore, P is continuous.
Step 3: P map bounded set into equi-continuous set in Xi. If t1, t2 ∈ J, t1 < t2, we have

∣
∣P

(
z(t1)

)
– P

(
z(t2)

)∣
∣

=
∣
∣
∣
∣

{

z0 +
∫ T

0

(T – ς )δ–1

�(δ)
g
(
z(ς )

)
dς

+
1

�(�i)

∫ t1

ti–1

(t1 – ς )�i–1f
(
ς , z(ρς ), z(ς – τ )

)
dς

}

–
{

z0 +
∫ T

0

(T – ς )δ–1

�(δ)
g
(
z(ς )

)
dς

+
1

�(�i)

∫ t2

ti–1

(t2 – ς )�i–1f
(
ς , z(ρς ), z(ς – τ )

)
dς

}∣
∣
∣
∣

≤
{

1
�(�i)

∫ t1

ti–1

(t1 – ς )�i–1 dς –
1

�(�i)

∫ t2

ti–1

(t2 – ς )�i–1 dς

}

2Kf γ .

As t1 → t2, then |Pz(t1) –Pz(t2)| → 0 and from Step 1–2 P is bounded and continuous.
Hence, ‖Pz(t1) – Pz(t2)‖ → 0. Hence, P is completely continuous.

Step 4: For a prior bounds, we need to show that the set Q = {z ∈ Xi : z = ηPz} for some
0 ≤ η ≤ 1, is bounded. Let for any z ∈ Q, we have

‖z‖ = max
ti∈Ji

∣
∣ηPz(t)

∣
∣,

≤ max
t∈Ji

∣
∣
∣
∣z0 +

∫ T

0

(T – ς )δ–1

�(δ)
g
(
z(ς )

)
dς

+
1

�(�i)

∫ t

ti–1

(t – ς )�i–1f
(
ς , z(ρς ), z(ς – τ )

)
dς

∣
∣
∣
∣,
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≤ z0 +
{

LgTδ

�(δ + 1)
+

2Lf T�i

�(�i + 1)

}

γ ≤ γ .

We see that γ ≥ z0
1–	

, which implies that

‖z‖ ≤ γ .

Hence by Theorem 2.3, the proposed problem (1) has at least one solution. �

4 Stability analysis
In this section, we discuss some basic results corresponding to stability analysis for our
proposed problem (1). To achieve the required result, we have the following results.

Definition 4.1 The solution z of the considered problem (1) is UH stable. If we can take
a constant Nf > 0, such that for every �̂ > 0, and each solution z ∈ Xi of the inequality

∣
∣CD�i

ti–1 z(t) – f
(
t, z(ρt), z(t – τ )

)∣
∣ ≤ �̂ for all t ∈ Ji, (9)

for the unique solution z∗ of problem (1) in Xi, such that

∥
∥z – z∗∥∥ ≤ Nf �̂.

Definition 4.2 The solution of the proposed problem (1) is gUH stable, if one can find
φ̂ ∈ C[R+,R+] with φ̂(0) = 0, and for any solution of the inequality (9), one has

∥
∥z – z∗∥∥ ≤ Nf φ̂ (̂�).

Remark 1 Let z be the solution in Xi for the inequality (9), if there exists β ∈ C(Ji), for
every t ∈ Ji, such that

(i) |β(t)| ≤ �̂;
(ii) CD�i

ti–1 z(t) = f (t, z(ρt), z(t – τ )) + β(t).

Definition 4.3 Problem (1) for z ∈Xi is UHR stable under ψ ∈Xi, if Nf > 0, such that

∣
∣CD�i

ti–1 z(t) – f
(
t, z(ρt), z(t – τ )

)∣
∣ ≤ ψ(t)̂�, for all t ∈ Ji, (10)

for unique z∗ ∈Xi of (1), one has

∥
∥z – z∗∥∥ ≤ Nf ψ(t)̂�.

Definition 4.4 The solution of the considered problem (1) will be gUHR stable if

∥
∥z – z∗∥∥ ≤ Nf ψ(t)φ̂(̂�), where φ̂(0) = 0.

Remark 2 For mapping β ∈ L(Ji), one has
(i) |β(t)| ≤ �̂ψ(t);

(ii) CD�i
ti–1 z(t) = f (t, z(ρt), z(t – τ )) + β(t).
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Lemma 4.1 Thank to Remarks 1 and Lemma 3.1, the solution of perturb problem

⎧
⎨

⎩

CD�i
ti–1 z(t) = f (t, z(ρt), z(t – τ )) + β(t), 0 < �i ≤ 1,

z(0) =
∫ T

0
(T–ς )δ–1

�(δ) g(z(ς )) dς + z0,
(11)

satisfies the following

∣
∣z(t) – L

(
z(t)

)∣
∣ ≤ T�i

�(�i + 1)
�̂, for all t ∈ Ji, (12)

with

L
(
z(t)

)
= z0 +

∫ T

0

(T – ς )δ–1

�(δ)
g
(
ς , z(ς )

)
dς +

1
�(�i)

∫ t

ti–1

(t – ς )�i–1y(ς ) dς .

Proof Using Lemma 3.1, problem (11) yields

z(t) = z0 +
∫ T

0

(T – ς )δ–1

�(δ)
g
(
ς , z(ς )

)
dς +

1
�(�i)

∫ t

0
(t – ς )�i–1y(ς ) dς

+
1

�(�i)

∫ t

ti–1

(t – ς )�i–1β(ς ) dς ,

which implies that

∣
∣z(t) – L

(
z(t)

)∣
∣ ≤ T�i

�(�i + 1)
�̂. �

Theorem 4.5 Under the hypothesis A1 – A4, the desired solution of concerned problem (1)
is UH and gUH stable, if 1 �= T�i

�(�i+1) .

Proof Thank to Lemma 4.1, if z and z∗ are solutions of (1), then

∣
∣z(t) – z∗(t)

∣
∣ =

∣
∣z(t) – L

(
z(t)

)∣
∣

=
∣
∣z(t) – L

(
z(t)

)
+ L

(
z(t)

)
– L

(
z ∗ (t)

)∣
∣

≤ ∣
∣z(t) – L

(
z(t)

)∣
∣ +

∣
∣L

(
z(t)

)
– L

(
z∗(t)

)∣
∣

≤ T�i

�(�i + 1)
�̂ +

{
LgTδ

�(δ + 1)
+

2Lf T�i

�(�i + 1)

}
∣
∣z(t) – z∗(t)

∣
∣,

which further yields that

∥
∥z – z∗∥∥ ≤ T�i

(1 – 	)�(�i + 1)
�̂.

Expressing by 	 = { Lg Tδ

�(δ+1) + 2Lf T�i

�(�i+1) }, then the required results hold. �
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Lemma 4.2 If Remark 2 holds, then from the solution of (11),

∣
∣z(t) – Pz(t)

∣
∣ ≤ T�i

�(�i + 1)
�̂, for all t ∈ Ji,

holds.

Proof Applying Lemma 3.1, problem (11) yields

z(t) = z0 +
∫ T

0

(T – ς )δ–1

�(δ)
g
(
ς , z(ς )

)
dς +

1
�(�(t))

∫ t

0
(t – ς )�(ς )–1y(ς ) dς

+
1

�(�i)

∫ t

ti–1

(t – ς )�i–1β(ς ) dς ,

which implies that

∣
∣z(t) – L

(
z(t)

)∣
∣ ≤ 1

�(�i)

∫ t

ti–1

(t – ς )�i–1∣∣β(ς )
∣
∣dς ,

≤ 1
�(�i)

∫ t

ti–1

(t – ς )�i–1�̂ψ(t) dς ,

≤ �̂

�(�(t))

∫ t

ti–1

(t – ς )�(ς )–1ψ(t) dς ,

≤ 1
�(�i)

�̂�(t),

where �(t) =
∫ t

ti–1
(t – ς )�i–1ψ(ς ) dς .

�

Theorem 4.6 In view of hypothesis (A1, A2), if �(�i) �= 1, then the problem (1) is UHR and
gUHR stable.

5 Examples
Here to demonstrate our results, some problems are treated as:

Example 1 Consider the delay fractional order problem as

⎧
⎨

⎩

CD�i
ti–1 z(t) = t2( z( 1

4 t)
13+|z( 1

4 t)| + z(t–0.35)
13+|z(t–0.35)| ), t ∈ [0, 2],

z(0) = 1
�(0.7)

∫ 1
0 (1 – ς )–0.3 z(ς )

12+|z(ς )| dς + 0.037.
(13)

Clearly T = 2, δ = 0.7, then

�(t) =

⎧
⎨

⎩

0.75, t ∈ [0, 1],

0.5, t ∈]1, 2],

clearly i = 1, 2, and f (t, z(ρt), z(t – τ ) = t2( z( 1
4 t)

13+|z( 1
4 t)| + z(t–0.35)

13+|z(t–0.35)| ) and g(z(t)) = z(t)
12+|z(t)| . So,

let z, z̄ ∈ Xi, i = 1, 2, one has

∣
∣f (t, z(ρt), z(t – τ ) – f (t, z̄(ρt), z̄(t – τ )

∣
∣
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≤ ∣
∣t2∣∣

∣
∣
∣
∣

z( 1
4 t)

13 + |z( 1
4 t)| –

z̄( 1
4 t)

13 + |z̄( 1
4 t)| +

z(t – 0.35)
13 + |z(t – 0.35)| –

z̄(t – 0.35)
13 + |z̄(t – 0.35)|

∣
∣
∣
∣

≤ 1
13

{∣
∣
∣
∣z

(
1
4

t
)

– z̄
(

1
4

t
)∣

∣
∣
∣ +

∣
∣z(t – 0.35) – z̄(t – 0.35)

∣
∣

}

and

∣
∣g

(
z(t)

)
– g

(
z̄(t)

)∣
∣ ≤ 1

10
∣
∣z(t) – z̄(t)

∣
∣.

Then, in the first case, we have
⎧
⎨

⎩

CD�1
0 z(t) = t2( z( 1

4 t)
13+|z( 1

4 t)| + z(t–0.35)
13+|z(t–0.35)| ), t ∈ [0, 1],

z(0) = 1
�(0.7)

∫ 1
0 (1 – ς )–0.3 z(ς )

12+|z(ς )| dς + 0.037.
(14)

Here, Lf = 1
13 , Lg = 1

10 . Hence clearly the assumptions A1 and A2 hold. We also examine
that

TδLg

�(δ + 1)
+

2T�1 Lf

�(�1 + 1)
≈ 0.277449 < 1.

Thus, problem (14) has a unique solution via Theorem 3.1. Moreover, one has T�1
�(�1+1) =

1.08807 �= 1, thus the solution of the stated problem (13) is UH and gUH stable. By the
same line if �(t) = t

2 , t ∈ [0, 1] is a mapping, then we deduce that the said problem is UHR
and gUHR stable. In addition, if i = 2, we have

⎧
⎨

⎩

CD�2
0 z(t) = t2( z( 1

4 t)
13+|z( 1

4 t)| + z(t–0.35)
13+|z(t–0.35)| ), t ∈ (1, 2],

z(0) = 1
�(0.7)

∫ 1
0 (1 – ς )–0.3 z(ς )

12+|z(ς )| dς + 0.037.
(15)

Following the same procedure as in (14), we can prove for T = 2 that

TδLg

�(δ + 1)
+

2T�2 Lf

�(�2 + 1)
≈ 0.89765 < 1.

The problem (15) has a unique solution using Theorem 3.1. Additionally, T�2
�(�2+1) =

1.595769 �= 1, hence (15) is UH and gUH stable using Theorem 4.5. Moreover, let �(t) =
t
2 , t ∈ (1, 2] be a function, then one can deduce that the said problem is UHR and gUHR
stable via Theorem 4.6.

Example 2 For further analysis, we also give the following example.

⎧
⎨

⎩

CD�i
ti–1 z(t) = exp(–t2)( z( 1

2 t)
130+|z( 1

2 t)| + z(t–0.25)
130+|z(t–0.25)| ), t ∈ [0, 3],

z(0) = 1
�(0.5)

∫ 1
0 (1 – ς )–0.5 z(ς )

40+|z(ς )| dς + 0.01.
(16)

Clearly T = 3, δ = 0.5, then

�(t) =

⎧
⎨

⎩

0.8, t ∈ [0, 1],

0.875, t ∈ (1, 3],
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clearly i = 1, 2, and f (t, z(ρt), z(t – τ ) = exp(–t2)( z( 1
2 t)

130+|z( 1
2 t)| + z(t–0.25)

130+|z(t–0.25)| ) and g(z(t)) =
z(t)

40+|z(t)| . So, let z, z̄ ∈ Xi, i = 1, 2, one has

∣
∣f (t, z(ρt), z(t – τ ) – f (t, z̄(ρt), z̄(t – τ )

∣
∣

≤
∣
∣
∣
∣

z( 1
2 t)

130 + |z( 1
2 t)| –

z̄( 1
2 t)

130 + |z̄( 1
2 t)| +

z(t – 0.25)
130 + |z(t – 0.25)| –

z̄(t – 0.25)
130 + |z̄(t – 0.25)|

∣
∣
∣
∣

≤ 1
130

{∣
∣
∣
∣z

(
1
2

t
)

– z̄
(

1
2

t
)∣

∣
∣
∣ +

∣
∣z(t – 0.25) – z̄(t – 0.25)

∣
∣

}

and

∣
∣g

(
z(t)

)
– g

(
z̄(t)

)∣
∣ ≤ 1

40
∣
∣z(t) – z̄(t)

∣
∣.

Let in the first case, one has

⎧
⎨

⎩

CD�1
0 z(t) = exp(–t2)( z( 1

2 t)
130+|z( 1

2 t)| + z(t–0.25)
130+|z(t–0.25)| ), t ∈ [0, 3],

z(0) = 1
�(0.5)

∫ 1
0 (1 – ς )–0.5 z(ς )

40+|z(ς )| dς + 0.01.
(17)

Here, Lf = 1
130 , Lg = 1

40 . Hence clearly the assumptions A1 and A2 hold. We also examine
that

TδLg

�(δ + 1)
+

2T�1 Lf

�(�1 + 1)
< 1.

The problem 17 has a unique solution using Theorem 3.1. Moreover, one can easily prove
the conditions of Theorem 3.2. T�1

�(�1+1) = 1.08807 �= 1, thus (16) is UH and gUH stable on
using Theorem 4.5. Obviously, one can prove the results for UHR and gUHR stabling using
Theorem 4.6. In addition, if i = 2, one has

⎧
⎨

⎩

CD�2
0 z(t) = exp(–t2)( z( 1

2 t)
130+|z( 1

2 t)| + z(t–0.25)
130+|z(t–0.25)| ), t ∈ (1, 3],

z(0) = 1
�(0.5)

∫ 1
0 (1 – ς )–0.5 z(ς )

40+|z(ς )| dς + 0.01.
(18)

Following the same procedure as in (17), we can prove for T = 3 that

TδLg

�(δ + 1)
+

2T�2 Lf

�(�2 + 1)
< 1.

Hence, we can deduce the conditions of Theorem 3.1 that problem (18) has a unique result.
Furthermore, it is easy to show the said problem using Theorem 3.2 has at least one result.
Moreover, one has T�2

�(�2+1) �= 1, hence we can deduce that problem (18) is UH and gUH
stable on using Theorem 4.5. Obviously, the result of UHR, and gUHR stabling also holds
using Theorem 4.6.

6 Conclusion
Keeping the useful applications in the mind of variable order problems, we have studied a
class of BVPs with integral boundary condition. Further, on the applications of Schauder
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and Banach theorems, we have established sufficient results for the EU of solution to the
proposed problem. In addition, using different concepts of UH, adequate results have been
deduced to discuss the stability analysis. Various results in this regard have been derived.
Moreover, considering pertinent test problems, all the derived results have been justified.
In the future, such kind of analysis can be performed for those problems involving non-
singular type kernels and fractal type variable order derivatives.
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