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Abstract
In this paper, we establish scaling invariant blow-up criteria for a classical solution to
the simplified Ericksen–Leslie system in terms of the positive part of the second
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1 Introduction
In this paper, we consider the following Cauchy problem for the three-dimensional sim-
plified Ericksen–Leslie system:

⎧
⎪⎪⎨

⎪⎪⎩

∂tu – �u + (u · ∇)u + ∇p = –∇ · (∇d � ∇d) in R
3 ×R+,

∂td + (u · ∇)d = �d + |∇d|2d in R
3 ×R+,

∇ · u = 0, |d| = 1 in R
3 ×R+,

(1.1)

where u : R3 ×R+ → R
3 is the unknown velocity field of the flow, p : R3 ×R+ → R is the

scalar pressure and d : R3 × R+ → S
2, is the macroscopic average of the nematic liquid-

crystal orientation field in R
3, ∇ · u = 0 represents the incompressible condition, and the

notation ∇d � ∇d denotes the 3 × 3 matrix whose (i, j)th component is given by ∂id ·
∂jd (1 ≤ i, j ≤ 3). We will consider the Cauchy problem (1.1) with the initial conditions

u|t=0 = u0(x), and d|t=0 = d0(x),
∣
∣d0(x)

∣
∣ = 1 in R

3

and far-field behaviors

u → 0, d → d̄0 as |x| → ∞,
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where u0 is a given initial velocity with ∇ · u0 = 0 in the distribution sense, d0 : R3 → S
2 is

a given initial liquid-crystal orientation field and d̄0 is a constant vector with |d̄0| = 1.
The parabolic system (1.1) was first proposed by Lin [25] as a simplification of the gen-

eral Ericksen–Leslie system that models the hydrodynamic flow of nematic liquid-crystal
material [11, 20]. The simplified Ericksen–Leslie system (1.1) can be viewed as the incom-
pressible Navier–Stokes equations coupling with the heat flow of a harmonic map, which
has been successful in modeling various dynamical behaviors for nematic liquid crystals.
When the velocity field u is identically vanishing, the system (1.1) becomes the heat flow
of harmonic maps. Chang, Ding, and Ye [6] proved that strong solution blowup in finite
time to the harmonic heat-flow equation. Wang [35] established a Serrin-type regularity
criteria, which implies that if the solution d blowup at time T∗, then

sup
0≤t<T∗

∥
∥∇d(·, t)

∥
∥

Ln = ∞.

For a more detailed physical background, please refer to [22, 24] and the references therein.
From the mathematical point of view, the simplified Ericksen–Leslie system (1.1) has

recently acquired much interest in the research community. Recently, Lin, Lin, and Wang
[23] and Hong [17] independently proved the global existence of Leray–Hopf-type weak
solutions to the system (1.1) for any smooth bounded domain in R

2 and the whole space
R

2, respectively. For the case of three dimensions, Li and Wang [21] established the exis-
tence of a local strong solution with large initial value and the global strong solution with
a small initial value for the initial boundary value problem of system (1.1). To characterize
the first singular time, Huang and Wang [18] considered the so-called Beale–Kato–Majda-
type blow-up criterion, more precisely, they proved 0 < T∗ < +∞ is the maximal time in-
terval if and only if

n = 3, |ω| + |∇d|2 /∈ L1
t L∞

x
(
R

3 × [0, T∗]
)
; (1.2)

and

n = 2, |∇d|2 /∈ L1
t L∞

x
(
R

2 × [0, T∗]
)
, (1.3)

where ω = ∇ ×u. Liu and Zhao [26] showed that the smooth solution (u, d) of system (1.1)
blows up at the time T∗ if and only if

∫ T∗

0

‖ω(·, t)‖Ḃ0∞,∞ + ‖∇d(·, t)‖2
Ḃ2∞,∞

√
1 + ln(e + ‖ω(·, t)‖Ḃ0∞,∞ + ‖∇d(·, t)‖Ḃ0∞,∞ )

dt = ∞. (1.4)

Chen, Tan, and Wu [9] obtained the Serrin-type regularity criterion [34], which states that

u ∈ Lq(0, T ; Lp), ∇d ∈ Lr(0, T ; Ls), (1.5)

with 2
q + 3

p = 1, 2
r + 3

s = 1, 3 < p ≤ ∞, 3 < s ≤ ∞. Lee [19] obtained the Beirão da Veiga-type
blow-up criterion [10], which states that

curl u ∈ Lq(0, T ; Lp), ∇d ∈ Lr(0, T ; Ls), (1.6)
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with 2
q + 3

p = 2, 2
r + 3

s = 1, 3
2 < p ≤ ∞, 3 < s ≤ ∞. For system (1.1), some refined blow-up

criteria of (1.5) and (1.6) are later proven in [13, 14, 41].
When the macroscopic average of the nematic liquid-crystal orientation field is ne-

glected, i.e., d = constant vector, system (1.1) reduces to the incompressible Navier–Stokes
equations (in short NSE). Many classical Serrin-type criteria and Beirão da Veiga-type cri-
teria for the regularity of weak solutions have been proved, please refer to [2–4, 7, 8, 12,
16, 32, 33, 37–40].

There is numerical evidence for the Navier–Stokes or Euler equation in [15] regarding
the tendency of the vorticity to align with the eigenvector of the strain tensor correspond-
ing to the intermediate eigenvalue λ2 and later Neustupa and Penel, Chae, and Miller inde-
pendently gave the analytical evidence of this fact in [5, 27, 29–31]. Specifically, Neustupa
and Penel [29–31] and Miller [27] proved that

λ+
2 ∈ Lq(0, T ; Lp(�)

)
,

2
q

+
3
p

= 2,
3
2

< p ≤ ∞ (1.7)

implies the smoothness of the solution to the Navier–Stokes equations, where λ+
2 (x) =

max{λ2(x), 0}, � be a bounded domain or � = R
3. Chae [5] proved that the dynamical

behaviors of the L2 norm of vorticity is controlled completely by the second largest eigen-
value λ+

2 of the deformation tensor for the 3D incompressible Euler equations. Recently,
the second named author [36] extended the above regularity criteria to the Multiplier
space and Besov space. More recently, Miller [28] extended the Serrin-type and the Beirão
da Veiga-type criteria to the Lebeguse sum spaces for singularities of a local smooth solu-
tion.

From the physical point of view, the fluid behavior can be different in different direc-
tions. Therefore, understanding the asymptotic behaviors of solutions to the simplified
Ericksen–Leslie system in anisotropic functional spaces seems to be an interesting topic.
This leads us to focus on the blow-up criteria for the 3D simplified Ericksen–Leslie system
(1.1) on the framework of the mixed-norm Lebesgue space.

It is well known that if the initial velocity u0 ∈ Hs(Rn,Rn) with ∇ · u0 = 0 and d0 ∈
Hs+1(Rn,S2) for s ≥ n, then there is T0 > 0 depending only on ‖u0‖Hs and ‖d0‖Hs+1 such
that (1.1) has a unique, classical solution (u, d) in R

n × [0, T0) satisfying

u ∈ C
(
[0, T], Hs(

R
n)) ∩ C1([0, T], Hs–1(

R
n)),

d ∈ C
(
[0, T], Hs+1(

R
n,S2)) ∩ C1([0, T], Hs(

R
n,S2))

(1.8)

for any 0 < T < T0. Assume T∗ > 0 is the maximum value such that (1.8) holds with T0 = T∗.
We would like to characterize such a T∗. To facilitate the presentation of the result, let us
first recall the definition of the mixed-norm Lebesgue space.

Definition 1.1 For a given �p = (p1, p2, p3) ∈ [1,∞)3, the mixed norm Lebesgue space
L�p(Rd) is defined to be the space consisting of all measurable functions f : R3 → R such
that the norm

‖f ‖L�p(R3) =
(∫ ∞

–∞

(∫ ∞

–∞

(∫ ∞

–∞

∣
∣f (x)

∣
∣p1 dx1

) p2
p1

dx2

) p3
p2

dx3

) 1
p3

< ∞.

Similar definitions can be formulated if any of {p1, p2, p3} is the same as ∞.
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Now, we state our main result as follows:

Theorem 1.1 For s ≥ 3, u0 ∈ Hs(R3,R3) with ∇ · u0 = 0 and d0 ∈ Hs+1(R3,S2), let T∗ > 0
be the maximum value such that system (1.1) has a unique solution (u, d) satisfying (1.8)
with T0 replaced by T∗, and let λ1(x) ≤ λ2(x) ≤ λ3(x) be the eigenvalues of the strain tensor
S = ∇symu = 1

2 (∂iuj + ∂jui). Let λ+
2 (x) = max{λ2(x), 0}. If T∗ < +∞, then

∫ T∗

0

‖λ+
2 (t)‖q

L�p + ‖∇d(t)‖2q
L2�p

1 + ln(e + ‖u‖L�s + ‖∇d‖L�s )
dt = ∞, (1.9)

with 2 < pi ≤ ∞, 2
q +

∑3
i=1

1
pi

= 2, 1 –
∑3

i=1
1
pi

≥ 0 and 2 < s3 < ∞,
∑3

i=1
1
si

= 1
2 .

Remark 1.1 We note that when p1 = p2 = p3 = p, the mixed-norm Lebesgue space L�p is
reduced to the usual Lebesgue space Lp. Theorem 1.1 naturally extends and improves the
blow-up criteria as stated in [18, 19, 27]. In addition, we show the logarithmic blow-up
criterion. To the authors’ knowledge, Theorem 1.1 is the improvement result on blow-up
criteria via the mixed Lebesgue norm in the denominator.

Remark 1.2 From Theorem 1.1, it is easy to see that if there exists a constant M > 0 such
that

∫ T∗

0

‖λ+
2 (t)‖q

L�p + ‖∇d(t)‖2q
L2�p

1 + ln(e + ‖u‖L�s + ‖∇d‖L�s )
dt ≤ M,

with 2 < pi ≤ ∞, 2
q +

∑3
i=1

1
pi

= 2, 1 –
∑3

i=1
1
pi

≥ 0, and 2 < s3 < ∞,
∑3

i=1
1
si

= 1
2 , then the local

smooth solution (u, d) can be extended beyond the time T∗.

The proof of Theorem 1.1 will be given in Sect. 2. Before concluding this section, we list
the following lemmas that are needed in Sect. 2.

Lemma 1.1 ([27]) For all – 3
2 < α < 3

2 and for all u divergence free in the sense that ξ · û(ξ ) =
0 almost everywhere,

‖S‖2
Ḣα = ‖A‖2

Ḣα =
1
2
‖ω‖2

Ḣα =
1
2
‖∇ ⊗ u‖2

Ḣα , (1.10)

where the symmetric part S = Sij = 1
2 ( ∂uj

∂xi
+ ∂ui

∂xj
), which we refer to as the strain tensor, and

the antisymmetric part A = Aij = 1
2 ( ∂uj

∂xi
– ∂ui

∂xj
), ω = ∇ × u.

Lemma 1.2 ([27]) Suppose S ∈ L∞([0, T]; L2(R3)) ∩ L2([0, T] : Ḣ1(R3)) is a local strong
solution to the Navier–Stokes strain equation and S(x) has eigenvalues λ1(x) ≤ λ2(x) ≤
λ3(x). Define

λ+
2 (x) = max

{
λ2(x), 0

}
,

then

– det(S) ≤ 1
2
|S|2λ+

2 .
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Lemma 1.3 ([42]) For p1, p2, p3 ∈ [2,∞) and 0 ≤ ∑3
i=1

1
pi

– 1
2 ≤ 1, there exists a positive

constant C such that

‖f ‖L�p(R3) ≤ C‖∂1f ‖
p1–2
2p1

L2(R3)‖∂2f ‖
p2–2
2p2

L2(R3)‖∂3f ‖
p3–2
2p3

L2(R3)‖f ‖
∑3

i=1
1

pi– 1
2

L2(R3)

≤ C‖∇f ‖
3
2 –

∑
i

1
pi

L2(R3) ‖f ‖
∑

i
1
pi

– 1
2

L2(R3) .

Lemma 1.4 ([1]) Let �s = (s1, s2, s3) ∈ [2,∞]3 satisfy

1
s1

+
1
s2

+
1
s3

=
1
2

and s3 ∈ (2,∞).

Then, there exist constants C = C(�s) such that

‖u‖L�s(R3) ≤ C
[‖Du‖L2(R3) + ‖u‖L2(R3)

]
, ∀u ∈ W 1,2(

R
3).

2 The proof of Theorem 1.1
This section is devoted to the proof of Theorem 1.1. We assume that (1.9) was not true,
then there exists a positive constant K such that

∫ T∗

0

‖λ+
2 (t)‖q

L�p + ‖∇d(t)‖2q
L2�p

1 + ln(e + ‖u‖L�s + ‖∇d‖L�s )
dt ≤ K . (2.1)

Due to the Beale–Kato–Majda-type blowup criterion (1.2) in [18], it suffices to present
the bound

∫ T∗

0

(∥
∥ω(t)

∥
∥

L∞ +
∥
∥∇d(t)

∥
∥2

L∞
)

dt ≤ C

under condition (2.1), which is enough to guarantee the extension of a local smooth solu-
tion (u, d) beyond the time T∗. That is to say, [0, T∗) is not a maximal existence interval,
and we obtain the desired contradiction.

Proposition 2.1 (Strain reformulation of the dynamics) Suppose (u, d) is a classical solu-
tion to the system (1.1). Then, strain tensor S = ∇sym(u) sastifies

∂tS + (u · ∇)S – �S + S2 +
1
4
ω ⊗ ω –

1
4
|ω|2I3 + Hess(P) = –∇sym(�d · ∇d),

where P = p + |∇d|2
2 .

Proof By Proposition 2.1 in [27] and noting that

∇ · (∇d ⊗ ∇d) = ∇
( |∇d|2

2

)

+ �d · ∇d,

this implies Proposition 2.1 immediately. �
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Proof of Theorem 1.1 First, we give the basic energy estimate of system (1.1). Taking the
inner product of (1.1)1 with u and (1.1)2 with –�d in L2(R3), respectively, and adding
together, one has

1
2

d
dt

∥
∥(u,∇d)

∥
∥2

L2 + ‖∇u‖2
L2 = –

∫

R3
�d · (�d + |∇d|2d

)
dx

and then, we discover that

1
2

d
dt

∥
∥(u,∇d)

∥
∥2

L2 + ‖∇u‖2
L2 +

∥
∥�d + |∇d|2d

∥
∥2

L2

=
∫

R3
|∇d|2d · (�d + |∇d|2d

)
dx = 0,

where we have used the facts that

|d|2 = 1 ⇒ 0 =
1
2
�|d|2 = d · �d + |∇d|2.

Next, we derive the H1 estimate for (u,∇d). Taking ∇× on the first equation of (1.1), we
obtain

∂tω + (u · ∇)ω – �ω = Sω – ∇ × (�d · ∇d) (2.2)

and then taking the operator ∇sym (i.e., S = ∇sym(u)ij = 1
2 ( ∂uj

∂xi
+ ∂ui

∂xj
)) to the (1.1)1, one obtains

∂tS + (u · ∇)S – �S + S2 +
1
4
ω ⊗ ω –

1
4
|ω|2I3 + Hess(P) = –∇sym(�d · ∇d), (2.3)

where P = p + |∇d|2
2 . Multiplying (2.2) by ω and integrating by parts over R3, we find

1
2

d
dt

‖ω‖2
L2 + ‖∇ω‖2

L2 =
∫

R3
Sω · ω dx –

∫

R3
∇ × (�d · ∇d) · ω dx

=
∫

R3
Sω · ω dx +

∫

R3
(�d · ∇d) · �u dx.

(2.4)

Multiplying (2.3) by S, we deduce that

d
dt

‖S‖2
L2 + 2‖∇S‖2

L2

= –2
∫

R3
tr
(
S3)dx –

1
2

∫

R3
ω ⊗ ω · S dx +

∫

R3
(�d · ∇d) · �u dx,

(2.5)

where we used the following facts that were proved by Proposition 2.4 and Theorem 4.5
in [27]

〈|ω|2I3, S
〉

L2 = 0,
〈
Hess(P), S

〉

L2 = 0,
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〈
S2, S

〉

L2 =
∫

R3
tr
(
S3),

2
〈∇sym(�d · ∇d), S

〉

L2 =
〈
(�d · ∇d), –�u

〉

L2 .

From Lemma 1.1, for the identity (2.4), it follows that

d
dt

‖S‖2
L2 + 2‖∇S‖2

L2 =
∫

R3
Sω ⊗ ω dx +

∫

R3
(�d · ∇d) · �u dx. (2.6)

Adding 2
3 (2.5) and 1

3 (2.6), we conclude that

d
dt

‖S‖2
L2 + 2‖∇S‖2

L2 = –
4
3

∫

R3
tr
(
S3) +

∫

R3
(�d · ∇d) · �u dx

def= I1 + I2,
(2.7)

where

I1 = –
4
3

∫

R3
tr
(
S3), I2 =

∫

R3
(�d · ∇d) · �u dx. (2.8)

We first estimate the term I1, since tr(S) = ∇ · u = 0, it follows from Lemma 1.2 and
Lemma 1.3 that

I1 = –
4
3

∫

R3
tr
(
S3)dx

= –
4
3

∫

R3
λ3

1 + λ3
2 + λ3

3 dx

= –
4
3

∫

R3
λ3

1 + λ3
2 + (–λ1 – λ2)3 dx

= –4
∫

R3
(–λ1 – λ2)λ1λ2 dx = –4

∫

R3
λ1λ2λ3 dx

= –4
∫

R3
det(S) dx ≤ 2

∫

R3
|S|2λ+

2 dx

≤ C
∥
∥λ+

2
∥
∥

L�p‖S‖
L

2p1
p1–2
1 L

2p2
p2–2
2 L

2p3
p3–2
3

‖S‖L2

≤ C
∥
∥λ+

2
∥
∥

L�p‖∇S‖
1

p1
+ 1

p2
+ 1

p3
L2 ‖S‖2–( 1

p1
+ 1

p2
+ 1

p3
)

L2

≤ C
∥
∥λ+

2
∥
∥q

L�p‖S‖2
L2 +

1
8
‖∇S‖2

L2 ,

(2.9)

where q = 2
2–( 1

p1
+ 1

p2
+ 1

p3
)
, 2 < pi ≤ ∞.

For the term I2, it follows from Lemma 1.3, Hölder’s inequality, and Young’s inequality
that

I2 ≤ C‖∇d‖L2�p‖�d‖
L

2p1
p1–1
1 L

2p2
p2–1
2 L

2p3
p3–1
3

‖�u‖L2

≤ C‖∇d‖L2�p‖∇�d‖
1

2p1
+ 1

2p2
+ 1

2p3
L2 ‖�d‖1–( 1

2p1
+ 1

2p2
+ 1

2p3
)

L2 ‖�u‖L2 (2.10)
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≤ C‖∇d‖2
L2�p‖∇�d‖

1
p1

+ 1
p2

+ 1
p3

L2 ‖�d‖2–( 1
p1

+ 1
p2

+ 1
p3

)

L2 +
1
8
‖∇S‖2

L2

≤ C‖�d‖2
L2‖∇d‖2q

L2�p +
1
8
‖∇�d‖2

L2 +
1
8
‖∇S‖2

L2 ,

where q = 2
2–( 1

p1
+ 1

p2
+ 1

p3
)
, 2 < pi ≤ ∞.

Inserting (2.9) and (2.10) into (2.7), it follows that

d
dt

‖S‖2
L2 + ‖∇S‖2

L2 ≤ C
∥
∥λ+

2
∥
∥q

L�p‖S‖2
L2 + C‖�d‖2

L2‖∇d‖2q
L2�p +

1
8
‖∇�d‖2

L2 . (2.11)

For the estimate of �d, taking � on the second equation of (1.1), multiplying by �d,
and integrating over R3, one obtains

1
2

d
dt

‖�d‖2
L2 + ‖∇�d‖2

L2 = –
∫

R3
�

(
(u · ∇)d

) · �d dx +
∫

R3
�

(|∇d|2d
) · �d dx

def= J1 + J2,
(2.12)

where

J1 = –
∫

R3
∂ll(ui∂idk)∂jjdk dx, J2 =

∫

R3
�

(|∇d|2d
) · �d dx. (2.13)

We now obtain the estimate of the term J1. Since

∫

R3
(u · ∇�d) · �d dx =

1
2

∫

R3
(u · ∇)

(|�d|2)dx = 0,

it follows from Lemma 1.3 and Young’s inequality that

J1 = –
∫

R3
∂ll(ui∂idk)∂jjdk dx

=
∫

R3
∂l(ui∂idk)∂l∂jjdk dx

=
∫

R3
∂lui∂idk∂l∂jjdk dx +

∫

R3
ui∂i∂ldk∂l∂jjdk dx

=
∫

R3
∂lui∂idk∂l∂jjdk dx –

∫

R3
∂lui∂l∂ldk∂jjdk dx

≤ C
∫

R3
|∇u||∇d||∇�d|dx

≤ C‖∇d‖L2�p‖∇u‖
L

2p1
p1–1
1 L

2p2
p2–1
2 L

2p3
p3–1
3

‖∇�d‖L2

≤ C‖∇d‖L2�p
∥
∥∇2u

∥
∥

1
2p1

+ 1
2p2

+ 1
2p3

L2 ‖∇u‖1–( 1
2p1

+ 1
2p2

+ 1
2p3

)

L2 ‖∇�d‖L2

≤ C‖S‖2
L2‖∇d‖2q

L2�p +
1
8
‖∇�d‖2

L2 +
1
4
‖∇S‖2

L2 ,

(2.14)

where q = 2
2–( 1

p1
+ 1

p2
+ 1

p3
)
, 2 < pi ≤ ∞.
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For the term J2, after integration by parts, by using the Young inequality and Lemma 1.3,
and the fact |d| = 1, one has

J2 ≤
∣
∣
∣
∣

∫

R3
�

(|∇d|2d
) · �d dx

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

R3
∇(|∇d|2d

) · ∇�d dx
∣
∣
∣
∣

≤
∣
∣
∣
∣

∫

R3
∇d|∇d|2 · ∇�d dx

∣
∣
∣
∣ +

∣
∣
∣
∣

∫

R3
d∇(|∇d|2) · ∇�d dx

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫

R3
∇(∇d|∇d|2) · �d dx

∣
∣
∣
∣ +

∣
∣
∣
∣

∫

R3
d∇(|∇d|2) · ∇�d dx

∣
∣
∣
∣

≤ C
∣
∣
∣
∣

∫

R3
|∇d|2∣∣∇2d

∣
∣2 dx

∣
∣
∣
∣ + C

∣
∣
∣
∣

∫

R3
|∇d|

∣
∣
∣
∣∇2d

∣
∣|∇�d|dx

∣
∣

≤ C‖∇d‖2
L2�p

∥
∥∇2d

∥
∥2

L
2p1

p1–1
1 L

2p2
p2–1
2 L

2p3
p3–1
3

+
1
8
‖∇�d‖2

L2

≤ C‖∇d‖2
L2�p‖∇�d‖

1
p1

+ 1
p2

+ 1
p3

L2 ‖�d‖2–( 1
p1

+ 1
p2

+ 1
p3

)

L2 +
1
8
‖∇�d‖2

L2

≤ C‖�d‖2
L2‖∇d‖2q

L2�p +
1
4
‖∇�d‖2

L2 .

(2.15)

Combining (2.12) and (2.14) with (2.15), we obtain

d
dt

‖�d‖2
L2 + ‖∇�d‖2

L2 ≤ C
(‖S‖2

L2 + ‖�d‖2
L2

)‖∇d‖2q
L2�p +

1
4
‖∇S‖2

L2 . (2.16)

Adding (2.11) and (2.16) together and using Lemma 1.4, we arrive at

d
dt

(‖S‖2
L2 + ‖�d‖2

L2
)

+
1
2
‖∇S‖2

L2 +
1
2
‖∇�d‖2

L2

≤ C
∥
∥λ+

2
∥
∥q

L�p‖S‖2
L2 + C

(‖S‖2
L2 + ‖�d‖2

L2
)‖∇d‖2q

L2�p

≤ C
‖λ+

2‖q
L�p + ‖∇d‖2q

L2�p
1 + ln(e + ‖u‖L�s + ‖∇d‖L�s )

(
1 + ln

(
e + ‖u‖L�s + ‖∇d‖L�s

))

· (‖S‖2
L2 + ‖�d‖2

L2
)

≤ C
‖λ+

2‖q
L�p + ‖∇d‖2q

L2�p
1 + ln(e + ‖u‖L�s + ‖∇d‖L�s )

· (1 + ln
(
e + ‖u‖2

L2 + ‖S‖2
L2 + ‖∇d‖2

L2 + ‖�d‖2
L2 + C

))

· (‖S‖2
L2 + ‖�d‖2

L2
)
.

(2.17)

Combining the basic energy estimates and (2.17), we see that

d
dt

(
1 + ln

(
e + ‖u‖2

L2 + ‖S‖2
L2 + ‖∇d‖2

L2 + ‖�d‖2
L2 + C

))

≤ C
‖λ+

2‖q
L�p + ‖∇d‖2q

L2�p
1 + ln(e + ‖u‖L�s + ‖∇d‖L�s )

· (1 + ln
(
e + ‖u‖2

L2 + ‖S‖2
L2 + ‖∇d‖2

L2 + ‖�d‖2
L2 + C

))
,

(2.18)
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which together with the Grönwall inequality leads to

sup
0≤t≤T∗

ln
(
e + ‖u‖2

L2 + ‖S‖2
L2 + ‖∇d‖2

L2 + ‖�d‖2
L2 + C

)

≤ (
1 + ln

(
e + ‖u0‖2

L2 + ‖S0‖2
L2 + ‖∇d0‖2

L2 + ‖�d0‖2
L2 + C

))

· exp C
∫ T∗

0

‖λ+
2‖q

L�p + ‖∇d‖2q
L2�p

1 + ln(e + ‖u‖L�s + ‖∇d‖L�s )
dt,

(2.19)

which implies that

u,∇d ∈ L∞(
0, T∗; H1(

R
3)) ∩ L2(0, T∗; H2(

R
3)). (2.20)

To estimate

∫ T∗

0

(∥
∥ω(t)

∥
∥

L∞ +
∥
∥∇d(t)

∥
∥2

L∞
)

dt ≤ C,

let us establish a higher-order estimate for (u,∇d). Applying � and ∇� to the first equa-
tion of (1.1) and the second equation of (1.2), respectively, and then multiplying the re-
sulting equations by �u and ∇�d, we have

1
2

d
dt

(‖�u‖2
L2 + ‖∇�d‖2

L2
)

+ ‖∇�u‖2
L2 +

∥
∥�2d

∥
∥2

L2

= –
∫

R3
�(u · ∇u) · �u dx –

∫

R3
�(∇d · �d) · �u dx

–
∫

R3
∇�(u · ∇d) · ∇�d dx +

∫

R3
∇�

(|∇d|2d
) · ∇�d dx

def= K1 + K2 + K3 + K4,

(2.21)

where

K1 = –
∫

R3
�(u · ∇u) · �u dx, K2 = –

∫

R3
�(∇d · �d) · �u dx (2.22)

and

K3 = –
∫

R3
∇�(u · ∇d) · ∇�d dx, K4 =

∫

R3
∇�

(|∇d|2d
) · ∇�d dx. (2.23)

Noting the fact that

u,∇d ∈ L∞(
0, T∗; H1(

R
3)) ∩ L2(0, T∗; H2(

R
3)),
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we shall establish the bounds of K1, K2, K3, and K4. By integrating by parts, Hölder’s in-
equality, and Young’s inequality, we can estimate K1 as

K1 ≤ ε‖∇�u‖2
L2 + C

(∥
∥(∇u · ∇)u

∥
∥2

L2 +
∥
∥(u · ∇)∇u

∥
∥2

L2
)

≤ ε‖∇�u‖2
L2 + C

(‖∇u‖4
L4 + ‖u‖2

L6‖�u‖2
L3

)

≤ ε‖∇�u‖2
L2 + C

(‖∇u‖ 5
2
L2‖∇�u‖ 3

2
L2 + ‖∇u‖2

L2‖�u‖L2‖∇�u‖L2
)

≤ ε‖∇�u‖2
L2 + C‖∇u‖10

L2 + ε‖∇�u‖2
L2 + C‖∇u‖4

L2‖�u‖2
L2 + ε‖∇�u‖2

L2

≤ 3ε‖∇�u‖2
L2 + C

(‖�u‖2
L2 + 1

)
.

(2.24)

For the term K2, by applying the Hölder inequality, the interpolation inequality, and the
Young inequality, we obtain

K2 =
∫

R3
∇(∇d · �d)∇�u dx

≤ (‖∇d‖L4‖∇�d‖L4 + ‖�d‖L4
∥
∥∇2d

∥
∥

L4
)‖∇�u‖L2

≤ C
(‖�d‖ 3

4
L2‖∇�d‖L4 + ‖�d‖L4

∥
∥∇2d

∥
∥

L4
)‖∇�u‖L2

≤ C‖∇�d‖2
L4 + C

∥
∥∇2d

∥
∥4

L4 + ε‖∇�u‖2
L2

≤ C‖∇�d‖ 1
2
L2

∥
∥�2d

∥
∥

3
2
L2 + C‖�d‖ 5

2
L2

∥
∥�2d

∥
∥

3
2
L2 + ε‖∇�u‖2

L2

≤ C
(‖∇�d‖2

L2 + 1
)

+ ε
∥
∥�2d

∥
∥2

L2 + ε‖∇�u‖2
L2 .

(2.25)

Similarly, for the terms K3 and K4, we discover that

K3 =
∫

R3
�

(
(u · ∇)d

) · �2d dx

≤ ε
∥
∥�2d

∥
∥2

L2 + C
(∥
∥(�u · ∇)d

∥
∥2

L2 +
∥
∥(∇u · ∇)∇d

∥
∥2

L2 +
∥
∥(u · ∇)�d

∥
∥2

L2
)

≤ ε
∥
∥�2d

∥
∥2

L2 + C
(‖�u‖2

L3‖∇d‖2
L6 + ‖∇u‖2

L4‖�d‖2
L4 + ‖u‖2

L6‖∇�d‖2
L3

)

≤ ε
∥
∥�2d

∥
∥2

L2 + C
(‖�u‖L2‖∇�u‖L2 + ‖∇u‖ 5

4
L2‖∇�u‖ 3

4
L2‖�d‖ 5

4
L2

∥
∥�2d

∥
∥

3
4
L2

+ ‖∇�d‖L2
∥
∥�2d

∥
∥

L2
)

≤ 2ε
∥
∥�2d

∥
∥2

L2 + ε‖∇�u‖2
L2 + C

(‖�u‖2
L2 + ‖∇�d‖2

L2 + 1
)

(2.26)

and

K4 = –
∫

R3
�

(|∇d|2d
)
�2d dx

=
∫

R3

[
�

(|∇d|2)d + 2∇|∇d|2∇d + |∇d|2�d
]
�2d

≤ C
(‖�d�d‖L2 + ‖∇d∇�d‖L2 + ‖∇d∇d�d‖L2 + ‖d�d�d‖L2

)∥
∥�2d

∥
∥

L2 (2.27)
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≤ C
(‖�d‖2

L4 + ‖∇d‖L4‖∇�d‖L4
)∥
∥�2d

∥
∥

L2

≤ C‖�d‖ 5
4
L2

∥
∥�2d

∥
∥

3
4
L2

∥
∥�2d

∥
∥

L2 + C‖∇�d‖ 1
4
L2

∥
∥�2d

∥
∥

3
4
L2

∥
∥�2d

∥
∥

L2

≤ C
(‖∇�d‖2

L2 + 1
)

+ ε
∥
∥�2d

∥
∥2

L2 .

Inserting the above estimates (2.24)–(2.27) into (2.21), we conclude that

d
dt

(‖�u‖2
L2 + ‖∇�d‖2

L2
)

+ ‖∇�u‖2
L2 +

∥
∥�2d

∥
∥2

L2

≤ C
(‖�u‖2

L2 + ‖∇�d‖2
L2 + 1

)
,

(2.28)

which leads to

u,∇d ∈ L∞(
0, T∗; H2(

R
3)) ∩ L2(0, T∗; H3(

R
3)). (2.29)

Due to Sobolev embedding H2(R3) → L∞(R3), we have

∫ T∗

0

(∥
∥ω(t)

∥
∥

L∞ +
∥
∥∇d(t)

∥
∥2

L∞
)

dt ≤ C.

This completes the proof of Theorem 1.1. �
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