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Abstract
In this paper, we consider a mathematical model of a coronavirus disease involving
the Caputo–Fabrizio fractional derivative by dividing the total population into the
susceptible population S(t), the vaccinated population V (t), the infected population
I(t), the recovered populationR(t), and the death classD(t). A core goal of this study
is the analysis of the solution of a proposed mathematical model involving nonlinear
systems of Caputo–Fabrizio fractional differential equations. With the help of Lipschitz
hypotheses, we have built sufficient conditions and inequalities to analyze the
solutions to the model. Eventually, we analyze the solution for the formed
mathematical model by employing Krasnoselskii’s fixed point theorem, Schauder’s
fixed point theorem, the Banach contraction principle, and Ulam–Hyers stability
theorem.
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1 Introduction
Nowadays, various researchers have an intense interest in the mathematical construction
of epidemic models and have suggested that the significance of a mathematical model
for the purpose of examination and study is a modest method to deliberate the features
of transferable diseases. However, as numerous researchers have demonstrated, a mathe-
matical model emerges in many scientific and real-world problems, particularly nonlinear
systems, and describing different natural phenomena using only differential equations of
integer order is insufficient. Hence, in recent decades, different types of fractional deriva-
tives, which are an extension of an integer order derivative to any random order derivative,
have been employed for the designation and modification of various difficult solutions to
several multifaceted real-life problems. Therefore, to overcome the difficulty that arises
in the classic integer-order mathematical models, an extension of ordinary calculus was
given by Leibniz and L’Hospital in 1695 [1], where integrals and derivatives are defined
for arbitrary real order. Despite the fact that many research studies have shown that the
application of the fractional derivative has gained significant acceptance and importance
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in a variety of widely used fields of science and epidemic problems, mathematical models
are required to overcome the difficulties involved in differential equations of integer or-
der. One can refer to [2] for the use of different types of fractional derivatives to model
numerous epidemic problems mathematically.

Recently, a new fractional operator with a nonsingular kernel in its fractional derivatives
without Gamma function was introduced by Caputo and Fabrizio (see [3]). The necessity
of this type of fractional derivative is to express a class of nonlocal systems that cannot be
defined by classical local theories or by fractional models with singular kernels. Moreover,
this new operator is very useful for practical applications in the class of C[a, b] (the space of
continuous real-valued functions on the interval [a, b]) or C1[a, b] (the space of continuous
differentiable functions on [a, b]), since the dynamic processes are smooth and have no
discontinuities. Also, the furthermost sustaining character of this operator is that if we
use the Laplace transformation, then any real power can be turned into an integer order.
As a result, this property assists us in finding solutions to several associated problems.
Thus, the Caputo–Fabrizio fractional derivative is employed in the investigation of various
realistic mathematical models of epidemic problems [4].

In recent years, a lot of literature and research studies have suggested the importance of
mathematical models to analyze and manage various types of infectious disease. To study
and control the broad development of COVID-19, several applied mathematical analysts
and researchers have mathematically modeled a number of infectious diseases, in partic-
ular COVID-19. One can refer to [5–7]. The authors in [8, 9] investigated a mathemati-
cal model of COVID-19 via the Atangana–Baleanu–Caputo (ABC) fractional derivative
with a nonsingular kernel. The susceptible–infected–recovered (SIR) model of the dy-
namical behavior of COVID-19 was studied in [10] by classifying the total population into
the susceptible, exposed, infectious, recovered, the quarantine population, the recovered-
exposed population, and the dead population. As a result, the authors investigated the
stability of the equilibrium point, the theoretical effect of quarantine strategies, and nu-
merical simulations of the model. The feast of the COVID-19 mathematical model was
studied in the work [11] by portioning out the transmissibility of superspreader individu-
als and duplicate numbers, the stability of the disease-free equilibrium, and the sensitivity.

Many remarkable research studies point out that investigating the solutions of nonlinear
differential equations that involve fractional derivatives by applying fixed point theorems
is one of the most influential methods. In [12], the Krasnoselskii’s fixed point theorems
and the Banach contraction principle were used to analyze the existence and uniqueness of
solutions for a nonlinear system of fractional differential equations involving the Caputo–
Hadamard fractional derivative. The fixed point theorems of Krasnoselskii and Banach
were used to analyze solutions to differential equations involving nonsingular fractional
derivatives in [13] and [14]. The Schauder’s and Mônch’s fixed point theorems and the
technique of the measure of noncompactness were applied to investigate the solutions for
a class of Caputo–Fabrizio fractional differential equations (see [15]). The analysis of so-
lutions for nonlinear Caputo fractional differential equations using fixed point theorems
based on Schauder’s fixed point theorem, the Banach contraction principle, and Kras-
noselskii’s fixed point theorem was studied in [16]. The subject of the stability of func-
tional equations was introduced in 1940 by Stanisaw Ulam, and the first substantial par-
tial solution was provided in 1941 by D.H. Hyers. Following this, the Ulam–Hyers stability
theorem was used by a number of authors to study the stability issues and can be applied
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to the solution analysis of a wide variety of fractional differential equations [17]. In [18], a
family of generalized nonlinear fractional differential equations of order alpha (1 < α < 2)
were subjected to the Ulam–Hyers stability theorem. For solutions to fractional differen-
tial equations in the unit disk, [19] looked at the Hyers–Ulam stability for fractional differ-
ential equations in a complex Banach space. The existence, uniqueness, and Ulam–Hyers
stability of solutions for nonlocal and multiple-point fractional boundary value problems
in the framework of a generalized Hilfer derivative were studied in [20]. In the recent
paper [21], the authors formulated a mathematical model of SIQR under the ABC frac-
tional operator and analyzed its solution by using fixed point theorems. In [22], the qual-
itative analysis and stability in the occurrence of the basic reproduction number for the
COVID-19 epidemic model with Atangana–Baleanu derivative have been studied. By em-
ploying Krasnoselskii’s and Banach fixed point theorems, the existence, uniqueness, and
Ulam–Hyers stability result for BVPs of nonlinear fractional differential equations involv-
ing the generalized Caputo fractional derivative and Riemann–Liouville fractional integral
boundary conditions were proven in [23]. In the research work [24], boundary value prob-
lems of nonlinear hybrid fractional differential equations through generalized Caputo op-
erators have been studied by setting sufficient conditions for the existence of solutions by
applying Dhage fixed point theorem for the sum of three operators. The existence and sta-
bility of fixed points, by introducing bifurcation theory and the corresponding numerical
simulations for the complex dynamics of the Kopel model with nonsymmetric responses
between oligopolists, Li, Liang, Shi, and He [25] investigated the existence of fold, tran-
scritical, pitchfork, flip, and Neimark–Sacker bifurcations, from which various types of
competition and cooperation between oligopolists emerge. By concentrating on the bi-
furcation analysis of a discrete-time Lotka–Volterra model utilizing a nonstandard finite
difference discretization method, the paper [26] examined the demonstration of one in-
terior fixed point in terms of its complicated dynamics. Li, Liang, and He [27] examined
the existence of bifurcations, curve illustrations of fixed points, and one-parameter bi-
furcations with various periods for the multiperiodic dynamical behaviors of the planar
Hindmarsh–Rose oscillator model.

Inspired by the above discussion, we consider, in this study, a system of nonlinear frac-
tional derivative equations of the COVID-19 mathematical model involving the Caputo–
Fabrizio fractional derivative by classifying epidemiological states of the total population
based on individuals’ health status as follows: the susceptible population S(t), the vacci-
nated population V(t), the infected population I(t), the recovered population R(t), and
the death class D(t) (death due to coronavirus or natural) at time t. Then the total popu-
lation is

N (t) = S(t) + V(t) + I(t) + R(t) + D(t),

where t ∈ I = [0, T], T > 0. We investigate the solution of the modeled equation based on
the arguments of fixed point theorems. To analyze the solution for the proposed model,
we transform the equation into a fixed point problem, we build the required conditions to
examine the existence, uniqueness and stability of solution by applying Banach contraction
principle, Krasnoselskii’s fixed point theorem, Schauder’s fixed point theorem, and Ulam–
Hyers stability theorem.
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Table 1 Description of the parameter described in the provided Model (1)

Notations Description

ν Vaccination rate
ω Natural death rate
� Death rate in the infected class
ε Infection reduction of vaccinated individuals
μ Transmission rate of disease
η Recovery rate

The primary goal of this study is to investigate the existence, uniqueness, and stability
of the solution for the following systems of nonlinear fractional differential equations in-
volving Caputo–Fabrizio fractional derivatives of order α ∈ (0, 1), as shown in model (1)
below:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

CFDα
0+S(t) = –(ω + ν)S – μIS ,

CFDα
0+V(t) = νS – (1 – ε)μV ,

CFDα
0+I(t) = μSI – (η + ω)I ,

CFDα
0+R(t) = νS + ηI ,

CFDα
0+D(t) = �I ,

(1)

with the initial conditions

S(0) = S0, V(0) = V0, I(0) = I0, R(0) = R0, D(0) = D0,

where the parameters in the given model (1) are defined in Table 1.
This research study is organized as follows: In Sect. 2, the required fixed point theorems

are stated, and the necessary fractional operators are defined with their properties. Sec-
tion 3 concerns the main results, which analyze the solution of a formulated mathematical
model of COVID-19 involving the Caputo–Fabrizio fractional derivative. Furthermore,
the existence, uniqueness, and stability of solutions are proved by applying fixed point
theorems. This work ends with a conclusion and a list of some interesting articles.

2 Preliminaries
The necessary fractional differential operators and their properties are given in this sec-
tion. Additionally, we state some basic fixed point theorems and spaces that are needed to
analyze the stability, existence and uniqueness of solution.

Definition 2.1 ([13]) If X is a Banach space, then E ⊂ C(X) is equicontinuous if ∀ε > 0,
∃δ > 0, ∀x, y ∈ X:

‖x – y‖ < δ �⇒ ∥
∥T(x) – T(y)

∥
∥ < ε, ∀T ∈ E.

Definition 2.2 ([13]) A map T : X → X is completely continuous if the set T(E) is rela-
tively compact for any bounded subset E of X.

Theorem 2.1 (Arzela–Ascoli theorem [13]) Let X be a compact space. If E is an equicon-
tinuous and bounded subset of C(X), then the operator E is relatively compact.
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Theorem 2.2 (Schauder’s fixed point theorem [13]) Assume that (X, d) is a complete met-
ric space and D is a closed convex subset of X. If the map T : D → D is relatively compact,
then the operator T has at least one fixed point x∗ ∈ D such that

Tx∗ = x∗. (2)

Theorem 2.3 (Krasnoselskii’s fixed point theorem [28]) Assume that D is a nonempty
closed convex subset of a Banach space X, L and K are two operators that map D into X
such that:

1. Lv + Kz ∈ D, ∀v, z ∈ D,
2. L is a contraction, and
3. K is compact and continuous.

Then, Lv + Kv = v has at least one solution.

Definition 2.3 ([29]) If f ∈ H1(a, b) = {f : f ∈ L2(a, b) and f ′ ∈ L2(a, b)} and β ∈ [0, 1], then
the Caputo–Fabrizio fractional derivative is defined as

CFDβ
a
(
f (t)

)
=
M(β)
1 – β

∫ t

a
f ′(τ ) exp

[

–β
t – τ

1 – β

]

dτ , (3)

where M(α) is a normalization function with the property that M(0) = M(1) = 1.

According to Definition 2.3, when f (t) is constant, CFDβ
a is zero, but the kernel does not

have a singularity for t = τ .

Definition 2.4 ([29]) The definition in equation (3) can be written for any β ∈ [0, 1] and
any f ∈ L1(–∞, b) as

CFDβ
–∞

(
f (t)

)
=

βM(β)
1 – β

∫ t

–∞

(
f (t) – f (τ )

)
exp

[

–β
t – τ

1 – β

]

dτ .

Losada and Nieto improved the Caputo–Fabrizio fractional derivative as follows:

CFDβ
a
(
f (t)

)
=

(2 – β)M(β)
2(1 – β)

∫ t

a
f ′(τ ) exp

[

–β
t – τ

1 – β

]

dτ . (4)

Also, Losada and Nieto defined the fractional integral corresponding to the derivative in
equation (4) as follows.

Definition 2.5 Let 0 < β < 1. The fractional Caputo–Fabrizio integral of order β of a func-
tion f is defined by

CF Iβ
0
(
f (t)

)
=

2(1 – β)
(2 – β)M(β)

f (t) +
2β

(2 – β)M(β)

∫ t

0
f (τ ) dτ , t ≥ 0. (5)

Remark 2.1 The fractional integral of the Caputo–Fabrizio type of a function f of order
0 < β < 1 is a mean between the function f and its integral of order one, according to
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Eq. (5),

2(1 – β)
(2 – β)M(α)

+
2β

(2 – β)M(β)
= 1, (6)

and therefore M(β) = 2
2–β

, 0 < β < 1.

Losada and Nieto also proposed a new Caputo–Fabrizio derivative and its correspond-
ing integral using M(β) = 2

2–β
.

Definition 2.6 ([29]) Let 0 < β < 1. The fractional Caputo–Fabrizio derivative of order β

of a function f is given by

CFDβ
0
(
f (t)

)
=

1
1 – β

∫ t

0
f ′(τ ) exp

[

–β
t – τ

1 – β

]

dτ , t ≥ 0, (7)

and its corresponding fractional integral is defined as

CF Iβ
0
(
f (t)

)
= (1 – β)f (t) + β

∫ t

0
f (τ ) dτ , t ≥ 0, (8)

such that

(CF Iβ
0
)(CFDα

0
(
f (t)

))
= f (t) – f (0). (9)

The fundamental difference between the Caputo–Fabrizio operator and the old Caputo
operator is that the new kernel has no singularity for t = τ .

Lemma 2.1 ([30]) The initial value problem

⎧
⎨

⎩

CFDβ

0+ u(t) = φ(t), t ≥ 0, 0 < β < 1,

u(0) = u0,
(10)

has a solution given by

u(t) = u0 +
2(1 – β)

(2 – β)M(β)
(
φ(t) – φ(0)

)
+

2β

(2 – β)M(β)

∫ t

0
φ(τ ) dτ . (11)

3 Main results
In this section, we investigate the existence of at least one solution, the uniqueness, and
the stability of the solution for the model (1). Let us begin by defining notations that are
useful for our theorems. Denote

X =
{

u ∈ C
(
[0, T],R5) : ‖u‖ < ∞}

the Banach space with the norm

‖u‖ =
∥
∥(S ,V ,I ,R,D)

∥
∥ = max

t∈[0,T]

{∣
∣S(t)

∣
∣ +

∣
∣V(t)

∣
∣ +

∣
∣I(t)

∣
∣ +

∣
∣R(t)

∣
∣ +

∣
∣D(t)

∣
∣
}

.
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Rewrite the right-hand side of (1) as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ1(t, u(t)) = –(ω + ν)S – μIS ,

φ2(t, u(t)) = νS – (1 – ε)μV ,

φ3(t, u(t)) = μSI – (η + ω)I ,

φ4(t, u(t)) = νS + ηI ,

φ5(t, u(t)) = �I .

(12)

By applying Lemma 2.1 to equation (1) and using (12), we obtain the following integral
equations:

S(t) = S0 +
2(1 – α)

(2 – α)M(α)
[
φ1

(
t, u(t)

)
– φ1

(
0, u(0)

)]
+

2α

(2 – α)M(α)

∫ t

0
φ1

(
τ , u(τ )

)
dτ ,

V(t) = V0 +
2(1 – α)

(2 – α)M(α)
[
φ2

(
t, u(t)

)
– φ2

(
0, u(0)

)]
+

2α

(2 – α)M(α)

∫ t

0
φ2

(
τ , u(τ )

)
dτ ,

I(t) = I0 +
2(1 – α)

(2 – α)M(α)
[
φ3

(
t, u(t)

)
– φ3

(
0, u(0)

)]
+

2α

(2 – α)M(α)

∫ t

0
φ3

(
τ , u(τ )

)
dτ ,

R(t) = R0 +
2(1 – α)

(2 – α)M(α)
[
φ4

(
t, u(t)

)
– φ4

(
0, u(0)

)]
+

2α

(2 – α)M(α)

∫ t

0
φ4

(
τ , u(τ )

)
dτ ,

D(t) = D0 +
2(1 – α)

(2 – α)M(α)
[
φ5

(
t, u(t)

)
– φ5

(
0, u(0)

)]
+

2α

(2 – α)M(α)

∫ t

0
φ5

(
τ , u(τ )

)
dτ .

Denote

w0 = (S0,V0,I0,R0,D0),

w(t) =
(
S(t),V(t),I(t),R(t),D(t)

)
,

and



(
t, w(t)

)
=

(
φ1

(
t, w(t)

)
,φ2

(
t, w(t)

)
,φ3

(
t, w(t)

)
,φ4

(
t, w(t)

)
,φ5

(
t, w(t)

))
,

hence, the systems of the above integral equations can be written in the following form:

w(t) = w0 +
2(1 – α)

(2 – α)M(α)



(
t, w(t) – w0

)
+

2α

(2 – α)M(α)

∫ t

0



(
τ , w(τ )

)
dτ . (13)

We assume the following hypotheses:
(H1) There exists a constant λ ∈ (0, 1) such that

∣
∣
(t, w) – 
(t, w)

∣
∣ ≤ λ|w – w|,

for all w, w ∈R and t ∈ [0, T].
(H2) There exist two positive functions a, b ∈ C[0, T] such that

∣
∣
(t, w)

∣
∣ ≤ a(t) + b(t)|w|, for all t ∈ [0, T], w ∈R.
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Denote

M0 = sup
t∈[0,T]

a(t), M1 = sup
t∈[0,T]

b(t).

Taking equation (13) into account, we define two operators L and K as follows:

Lw(t) = w0 +
2(1 – α)

(2 – α)M(α)



(
t, w(t) – w0

)
, (14)

Kw(t) =
2α

(2 – α)M(α)

∫ t

0



(
τ , w(τ )

)
dτ . (15)

Now, we can state the main theorems of this research study.

Theorem 3.1 The problem (1) has at least one solution if the hypotheses (H1) and (H2)
hold and the following condition is satisfied:

2λ(1 – α)
(2 – α)M(α)

< 1. (16)

Proof We use Krasnoselskii’s fixed point theorem (Theorem 2.3).
(i) Let

Xγ =
{

u ∈ X : ‖u‖ ≤ γ ,γ > 0
}

,

with

γ ≥ |w0| +
2(1 – α)

(2 – α)M(α)
(
2M0 + 2M1γ + M1|w0|

)
, (17)

be a closed and convex set of X . Then, for w, w ∈ Xγ , we have

∣
∣Lw(t) – Lw(t)

∣
∣

=
∣
∣
∣
∣w0 +

2(1 – α)
(2 – α)M(α)



(
t, w(t) – w0

)
–

[

w0 +
2(1 – α)

(2 – α)M(α)



(
t, w(t) – w0

)
]∣
∣
∣
∣

≤ 2(1 – α)
(2 – α)M(α)

∣
∣


(
t, w(t) – w0

)
– 


(
t, w(t) – w0

)∣
∣

≤ 2(1 – α)λ
(2 – α)M(α)

∣
∣w(t) – w(t)

∣
∣,

hence

‖Lw – Lw‖ ≤ 2λ(1 – α)
(2 – α)M(α)

‖w – w‖. (18)

Thanks to inequality (16), the operator L is a contraction, and then property 2 of
Theorem 2.3 is satisfied.

(ii) Now, we have to show that K is equicontinuous and uniformly bounded.
Obviously, K is continuous, as is 
, and for all of w ∈ Xγ one has

∣
∣Kw(t)

∣
∣ ≤ 2α

(2 – α)M(α)

∫ t

0

∣
∣


(
τ , w(τ )

)∣
∣dτ ≤ 2α

(2 – α)M(α)
[M0 + M1γ ],



Kebede and Lakoud Boundary Value Problems         (2023) 2023:44 Page 9 of 17

so

‖Kw‖ ≤ 2α

(2 – α)M(α)
[M0 + M1γ ]. (19)

Thus, from (19), we observe that K is uniformly bounded.
To prove the equicontinuity of K, assume t1 < t2 ∈ [0, T], w ∈ Xγ , then

∣
∣Kw(t1) – Kw(t2)

∣
∣ =

2α

(2 – α)M(α)

∣
∣
∣
∣

∫ t2

0



(
τ , w(τ )

)
dτ –

∫ t1

0



(
τ , w(τ )

)
dτ

∣
∣
∣
∣

≤ 2α

(2 – α)M(α)

∣
∣
∣
∣

∫ t2

t1



(
τ , w(τ )

)
dτ

∣
∣
∣
∣

≤ 2α

(2 – α)M(α)
(M0 + M1γ )(t2 – t1).

(20)

The right-hand side in (20) goes to zero as t1 → t2, therefore, K is equicontinuous.
Hence, by Arzela–Ascoli theorem, K is relatively compact.

(iii) Let w, z ∈ Xγ , then

∣
∣Lw(t)

∣
∣ = |w0| +

2(1 – α)
(2 – α)M(α)

∣
∣


(
t, w(t) – w0

)∣
∣

≤ |w0| +
2(1 – α)

(2 – α)M(α)
(
M0 + M1

∣
∣w(t) – w0

∣
∣
)

≤ |w0| +
2(1 – α)

(2 – α)M(α)
(
M0 + M1

(
γ + |w0|

))
.

Taking (17) and (19) into account, the latter estimate yields

∣
∣Lw(t) – Kz(t)

∣
∣ ≤ ∣

∣Lw(t)
∣
∣ +

∣
∣Kz(t)

∣
∣

≤ |w0| +
2(1 – α)

(2 – α)M(α)
(
2M0 + 2M1γ + M1|w0|

) ≤ γ .

Since all statements of Theorem 2.3 are satisfied, the problem (1) has at least one
solution. �

Now we give the uniqueness result.

Theorem 3.2 If the hypotheses (H1) and (H2) hold and the following inequality is satisfied:

2λ(1 – α + αT)
(2 – α)M(α)

< 1, (21)

then the problem (1) has a unique solution.

Proof Define the operator F on X by

Fw(t) = w0 +
2(1 – α)

(2 – α)M(α)
(



(
t, w(t)

)
– 
(0, w0)

)

+
2α

(2 – α)M(α)

∫ t

0



(
τ , w(τ )

)
dτ .

(22)
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Let w, w ∈ X, then

∣
∣Fw(t) – Fw(t)

∣
∣ ≤ 2(1 – α)

(2 – α)M(α)
∣
∣


(
t, w(t)

)
– 


(
t, w(t)

)∣
∣

+
2α

(2 – α)M(α)

∫ t

0

∣
∣


(
τ , w(τ )

)
– 


(
τ , w(τ )

)∣
∣dτ

≤ 2λ(1 – α + αT)
(2 – α)M(α)

‖w – w‖.

Hence

‖Fw – Fw‖ ≤ 2λ(1 – α + αT)
(2 – α)M(α)

‖w – w‖. (23)

From inequality (23), we observe that F is a contraction, thus from Banach’s contraction
principle we conclude that F has a unique fixed point, which is the unique solution of
equation (13), and thus problem (1) has a unique solution. �

Again, in the following theorems, we can investigate the solution to problem (1) by using
another type of fixed point theorem known as Schauder’s fixed point theorem.

Theorem 3.3 Assume that

T <
(

2(1 – α)M(α)
5 max((ω + ν), (ν + (1 – ε)μ), (η + ω), (ν + η),ω)

+
α – 1

α

)

. (24)

Then, the problem (1) has at least one solution.

Proof Set

Fiu(t) = u0 +
2(1 – α)

(2 – α)M(α)
(
φi

(
t, u(t)

)
– φi

(
0, u(0)

))
+

2α

(2 – α)M(α)

∫ t

0
φi

(
τ , u(τ )

)
dτ ,

then

Fu(t) =
(
F1u(t),F2u(t),F3u(t),F4u(t),F5u(t)

)
.

(i) Operator F is continuous. In fact, for the sequence un = (Sn,Vn,In,Rn,Dn) such that
limn→∞ un = u we have, for all t ∈ [0, T],

∣
∣Fiun(t) – Fiu(t)

∣
∣

=
∣
∣
∣
∣u0 +

2(1 – α)
(2 – α)M(α)

(
φi

(
t, un(t)

)
– φi

(
0, u(0)

))

+
2α

(2 – α)M(α)

∫ t

0
φi

(
τ , un(τ )

)
dτ

∣
∣
∣
∣

–
[

u0 +
2(1 – α)

(2 – α)M(α)
(
φi

(
t, u(t)

)
– φi

(
0, u(0)

))
(25)

+
2α

(2 – α)M(α)

∫ t

0
φi

(
τ , u(τ )

)
dτ

]



Kebede and Lakoud Boundary Value Problems         (2023) 2023:44 Page 11 of 17

=
∣
∣
∣
∣

2(1 – α)
(2 – α)M(α)

φi
(
t, un(t) – u(t)

)
+

2α

(2 – α)M(α)

∫ t

0
φi

(
τ , un(τ ) – u(τ )

)
dτ

∣
∣
∣
∣

≤ 2(1 – α)
(2 – α)M(α)

∣
∣φi

(
t, un(t) – u(t)

)∣
∣ +

2α

(2 – α)M(α)

∫ t

0

∣
∣φi

(
τ , un(τ ) – u(τ )

)
dτ

∣
∣,

where φi satisfies (12) for each 1 ≤ i ≤ 5. This implies that φi(t, un(t)) → φi(t, u(t)) in
[0, T] ×R

5. In fact, we have

∣
∣φ1

(
t, un(t)

)
– φ1

(
t, u(t)

)∣
∣

=
∣
∣
(
–(ω + ν)Sn(t) – μIn(t)Sn(t)

)
–

(
–(ω + ν)S(t) – μI(t)S(t)

)∣
∣

≤ (ω + ν)
∣
∣Sn(t) – S(t)

∣
∣ + μ

∣
∣In(t)Sn(t) – I(t)S(t)

∣
∣

≤ {(
ω + ν + μIn(t)

)∣
∣Sn(t) – S(t)

∣
∣ + μS(t)

∣
∣In(t) – I(t)

∣
∣
}

≤ {
ω + ν + μ

(‖In‖ + ‖S‖)}‖un – u‖.

Then,

∣
∣F1un(t) – F1u(t)

∣
∣

≤
(

2(1 – α)
(2 – α)M(α)

+
2αT

(2 – α)M(α)

)
{
ω + ν + μ

(‖In‖ + ‖S‖)}‖un – u‖

→ 0, as n → ∞.

(26)

Similarly, we show that

∣
∣Fiun(t) – Fiu(t)

∣
∣ → 0, as n → ∞, i = 2, 3, 4, 5,

and hence,

lim
n→∞‖Fun – Fu‖ = 0,

implying the continuity of F .
(ii) Define the set B as a subset of X given by

B =
{

u ∈ X : ‖u‖ ≤ ξ
}

,

where ξ satisfies

ξ ≥ 10(1 – α + αT)
(2 – α)M(α)

(
max

(
(ω + ν),

(
ν + (1 – ε)μ

)
, (η + ω), (ν + η),ω

)
ξ + μξ 2). (27)

Then, for all t ∈ [0, T] we have

∣
∣φ1

(
t, u(t)

)∣
∣ =

∣
∣–(ω + ν)S – μIS

∣
∣ ≤ (ω + ν)‖S‖ + μ‖I‖‖S‖ ≤ (ω + ν)ξ + μξ 2,

∣
∣φ2

(
t, u(t)

)∣
∣ =

∣
∣νS – (1 – ε)μV

∣
∣ ≤ (ν)‖S‖ + (1 – ε)μ‖V‖ ≤ (

ν + (1 – ε)μ
)
ξ ,

∣
∣φ3

(
t, u(t)

)∣
∣ =

∣
∣μSI – (η + ω)I

∣
∣ ≤ μ‖S‖‖I‖ + (η + ω)‖I‖ ≤ μξ 2 + (η + ω)ξ ,
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∣
∣φ4

(
t, u(t)

)∣
∣ = |νS + ηI| ≤ ν‖S‖ + η‖I‖ ≤ (ν + η)ξ ,

∣
∣φ5

(
t, u(t)

)∣
∣ = |ωI| ≤ ω‖I‖ ≤ ωξ .

Thus

∣
∣φi

(
t, u(t)

)∣
∣ ≤ max

(
(ω + ν),

(
ν + (1 – ε)μ

)
, (η + ω), (ν + η),ω

)
ξ + μξ 2. (28)

As a result of (28), we can conclude that

ξ ≥ 10(1 – α + αT)
(2 – α)M(α)

(
max

(
(ω + ν),

(
ν + (1 – ε)μ

)
, (η + ω), (ν + η),ω

)
ξ + μξ 2),

∣
∣Fiu(t))

∣
∣

≤ 2(1 – α + αT)
(2 – α)M(α)

(
max

(
(ω + ν),

(
ν + (1 – ε)μ

)
, (η + ω), (ν + η),ω

)
ξ + μξ 2)

≤ ξ

5
.

(29)

Thus

‖Fu‖ =
5∑

i=1

‖Fiu‖ ≤ ξ .

Consequently, F (B) ⊂ B.
(iii) We show that F (B) is relatively compact. Let t1, t2 ∈ [0, T], t1 < t2 and u ∈ B. Then,

for all i = 1, 2, 3, 4, 5, we get

∣
∣Fiu(t2) – Fiu(t1)

∣
∣

=
∣
∣
∣
∣

(

u0 +
2(1 – α)

(2 – α)M(α)
[
φi

(
t2, u(t2)

)
– φi

(
0, u(0)

)]

+
2α

(2 – α)M(α)

∫ t2

0
φi

(
τ , u(τ )

)
dτ

)

–
(

u0 +
2(1 – α)

(2 – α)M(α)
[
φi

(
t1, u(t1)

)
– φi

(
0, u(0)

)]

+
2α

(2 – α)M(α)

∫ t1

0
φi

(
τ , u(τ )

)
dτ

)∣
∣
∣
∣

≤
∣
∣
∣
∣

2(1 – α)
(2 – α)M(α)

[
φi

(
t2, u(t2)

)
– φi

(
t1, u(t1)

)]
∣
∣
∣
∣

+
2α

(2 – α)M(α)

∣
∣
∣
∣

∫ t2

0
φi

(
τ , u(τ )

)
dτ –

∫ t1

0
φi

(
τ , u(τ )

)
dτ

∣
∣
∣
∣

≤ 2(1 – α)
(2 – α)M(α)

λ
∣
∣u(t2) – u(t1)

∣
∣ +

2α

(2 – α)M(α)

∫ t2

t1

∣
∣φi

(
τ , u(τ )

)∣
∣dτ

≤ 2(1 – α)λ
(2 – α)M(α)

∣
∣u(t2) – u(t1)

∣
∣

+
2α

(2 – α)M(α)
(
max

(
(ω + ν),

(
ν + (1 – ε)μ

)
, (η + ω), (ν + η),ω

)
ξ + μξ 2)(t2 – t1).
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The right-hand side of the above inequality tends to zero if t1 → t2, ∀i = 1, 2, 3, 4, 5. There-
fore, from Ascoli–Arzela theorem and steps (i) to (iii), we observe that F is relatively com-
pact. Since all the conditions of Schauder’s fixed point theorem are satisfied, operator F
has at least one fixed point, which is a solution for the problem (1). �

We give a uniqueness theorem under another hypothesis.

Theorem 3.4 Assume that the following inequality holds:

[
10(1 – α + αT)δ

(2 – α)M(α)

]

< 1, (30)

where

δ = max
{
ω + ν + 2μ,ν + (1 – ε)μ, 2μ + η + ω,ν + η,ω

}
,

then the problem (1) has a unique solution.

Proof Let u = (S ,V ,I ,R,D) and ũ = (S̃ , Ṽ , Ĩ , R̃, D̃) be two solutions for the problem (1).
Then for each t ∈ [0, T], we have

∣
∣Fiu(t) – Fĩu(t)

∣
∣ ≤ 2(1 – α)

(2 – α)M(α)
∣
∣φi

(
t, u(t)

)
– φi

(
t, ũ(t)

)∣
∣

+
2α

(2 – α)M(α)

∫ t

0

∣
∣φi

(
τ , u(τ )

)
– φi

(
τ , ũ(τ )

)∣
∣dτ .

Particularly, we obtain

∣
∣φ1

(
t, u(t)

)
– φ1

(
t, ũ(t)

)∣
∣ ≤ (ω + ν)

∣
∣S(t) – S̃(t)

∣
∣ + μ

∣
∣I(t)S(t) – Ĩ(t)S̃(t)

∣
∣

≤ max
[0,T]

{
(ω + ν)

∣
∣S(t) – S̃(t)

∣
∣ + μI(t)

∣
∣S(t) – S̃(t)

∣
∣

+ μS̃(t)
∣
∣I(t) – Ĩ(t)

∣
∣
}

≤ max
[0,T]

{(
ω + ν + μ

∣
∣I(t)

∣
∣
)∣
∣u(t) – ũ(t)

∣
∣ + μ

∣
∣S̃(t)

∣
∣
∣
∣u(t) – ũ(t)

∣
∣
}

≤ {ω + ν + 2μ}‖u – ũ‖.

Similarly, we get

∣
∣φ2

(
t, u(t)

)
– φ2

(
t, ũ(t)

)∣
∣ ≤ {

ν + (1 – ε)μ
}‖u – ũ‖,

∣
∣φ3

(
t, u(t)

)
– φ3

(
t, ũ(t)

)∣
∣ ≤ {

2μ + (η + ω)
}‖u – ũ‖,

∣
∣φ4

(
t, u(t)

)
– φ4

(
t, ũ(t)

)∣
∣ ≤ (ν + η)‖u – ũ‖,

∣
∣φ5

(
t, u(t)

)
– φ5

(
t, ũ(t)

)∣
∣ ≤ ω‖u – ũ‖.

Then

∣
∣φi

(
t, u(t)

)
– φi

(
t, ũ(t)

)∣
∣ ≤ δ‖u – ũ‖, ∀i = 1, 2, 3, 4, 5.
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Hence

‖Fu – F ũ‖ ≤
[

10(1 – α) + αT)δ
(2 – α)M(α)

]

‖u – ũ‖, ∀i = 1, 2, 3, 4, 5,

thus F is a contraction. We conclude that F has a unique point as a consequence of the
Banach contraction principle, which is the unique solution for the problem (1). �

Let us study the Ulam–Hyers stability of the considered problem.

Definition 3.1 The problem (1) is Ulam–Hyers stable if for any ε > 0 such that the in-
equality

∣
∣CFDα

0+ w(t) – 

(
t, w(t)

)∣
∣ ≤ ε (31)

holds, there exist a constant c > 0 and a unique solution z of problem (1) such

‖w – z‖ ≤ cε.

Remark 3.1 If inequality (31) holds then there exists a function κ depending on w ∈ X
such that κ(0) = 0, |κ(t)| ≤ ε for all t ∈ [0, T], and

CFDα
0+ w(t) = 


(
t, w(t)

)
+ κ(t), t ∈ [0, T]. (32)

Lemma 3.1 The solution of the problem

CFDα
0+ w(t) = 


(
t, w(t)

)
+ κ(t), t ∈ [0, T], (33)

w(0) = w0 (34)

is

w(t) = w0 +
2(1 – α)

(2 – α)M(α)
(
φ
(
t, w(t)

)
– φ(0, w0)

)
+

2α

(2 – α)M(α)

∫ t

0
φ
(
τ , w(τ )

)
dτ

+
2(1 – α)

(2 – α)M(α)
κ(t) +

2α

(2 – α)M(α)

∫ t

0
κ(τ ) dτ .

Moreover, the solution satisfies the following inequality:
∣
∣
∣
∣w(t) – [w0 +

2(1 – α)
(2 – α)M(α)

(
φ
(
t, w(t)

)
– φ(0, w0)

)

+
2α

(2 – α)M(α)

∫ t

0
φ
(
τ , w(τ )

)
dτ

∣
∣
∣
∣

≤ 2(1 – α + αT)
(2 – α)M(α)

ε.

(35)

Theorem 3.5 The problem (1) is Ulam–Hyers stable if the hypotheses (H1) and (H2) are
satisfied and the following inequality holds:

(2 – α + αT)M(α)
(2 – α)M(α) – 2δ(1 – α + αT)

< 1. (36)
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Proof Let u be a solution of inequality (31) and ũ be a solution of problem (1), then we
have

‖u – ũ‖ = max
t∈[0,T]

∣
∣
∣
∣u(t) –

[

ũ0 +
2(1 – α)

(2 – α)M(α)
(
φ(t, ũ) – φ(0, ũ0)

)

+
2α

(2 – α)M(α)

∫ t

0

(
φ
(
τ , ũ(τ )

))
dτ

]∣
∣
∣
∣

≤ max
t∈[0,T]

∣
∣
∣
∣u –

[

u0 +
2(1 – α)

(2 – α)M(α)
(
φ(t, u) – φ(0, u0)

)

+
2α

(2 – α)M(α)

∫ t

0

(
φ
(
τ , u(τ )

))
dτ

]∣
∣
∣
∣

+
2(1 – α)

(2 – α)M(α)
max

t∈[0,T]

{∣
∣φ(t, u) – φ(t, ũ)

∣
∣
}

+
2α

(2 – α)M(α)
max

t∈[0,T]

{∫ t

0

∣
∣φ

(
τ , u(τ )

)
– φ

(
τ , ũ(τ )

)∣
∣dτ

}

.

Since

∣
∣φ

(
t, u(t)

)
– φ

(
t, ũ(t)

)∣
∣ ≤ δ‖u – ũ‖,

we get

‖u – ũ‖ ≤ 2(1 – α + αT)
(2 – α)M(α)

ε +
2δ(1 – α + αT)

(2 – α)M(α)
‖u – ũ‖. (37)

From (37) we get

‖u – ũ‖ ≤ (2 – α + αT)M(α)
(2 – α)M(α) – 2δ(1 – α + αT)

ε. (38)

From inequality (38), we deduce that the solution of problem (1) is Ulam–Hyers stable. �

4 Conclusions
We investigated the solution of the developed mathematical model (1) of COVID-19 in-
volving nonlinear Caputo–Fabrizio fractional derivative systems in this study. First, we
have constructed an existence, uniqueness, and stability criterion with the aid of the Lips-
chitz condition to analyze the solution of a generated model (1). We have transformed the
proposed mathematical model (1) to a fixed point problem, and the existence of a solution
was investigated based on the arguments of the Krasnoselskii’s and Schauder’s fixed point
theorems. Also, we have examined the uniqueness of the solution to the given problem
by employing the Banach contraction principle, then the stability of the solution has been
proved by using the Ulam–Hyers stability theorem. We have determined the significance
and effectiveness of fixed point theorems in the qualitative analysis of solutions to systems
of nonlinear fractional differential equations. This study can be extended to more general
epidemic models involving other types of fractional derivative and using numerical meth-
ods.



Kebede and Lakoud Boundary Value Problems         (2023) 2023:44 Page 16 of 17

Acknowledgements
The authors would like to thank the referees for their valuable comments and suggestions which helped improve the
manuscript.

Funding
Not applicable.

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
The study is purely a mathematical analysis used for academic purpose. So it is free from any ethical consideration.

Competing interests
The authors declare no competing interests.

Author contributions
All authors have the same contribution.

Author details
1Mathematics Department, College of Natural Science, Arba Minch University, Arba Minch, Ethiopia. 2Mathematics
Department, Faculty of Sciences, Badji Mokhtar Annaba University, Annaba, Algeria.

Received: 2 December 2022 Accepted: 6 April 2023

References
1. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations. In: North-Holland

Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)
2. Chen, Y., Liu, F., Yu, Q., Li, T.: Review of fractional epidemic models. Appl. Math. Model. 97, 281–307 (2021)
3. Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1,

73–85 (2015)
4. Sahoo, S.K., Mohammed, P.O., Kodamasingh, B., Tariq, M., Hamed, Y.S.: New fractional integral inequalities for convex

functions pertaining to Caputo–Fabrizio operator. Fractal Fract. 6, 171 (2022)
5. Shaikh, A.S., Shaikh, I.N., Nisar, K.S.: A mathematical model of COVID-19 using fractional derivative: outbreak in India

with dynamics of transmission and control. Adv. Differ. Equ. 2020, 373 (2020)
6. Ndairou, F., Area, I., Nieto, J.J., Torres, D.F.M.: Mathematical modeling of COVID-19 transmission dynamics with a case

study of Wuhan. Chaos Solitons Fractals 135, 109846 (2020)
7. Panwar, V.S., Uduman, P.S., Gómez-Aguilar, J.F.: Mathematical modeling of coronavirus disease COVID-19 dynamics

using CF and ABC non-singular fractional derivatives. Chaos Solitons Fractals 145, 110757 (2021)
8. Din, A., Khan, A., Torres, D.F.M.: Hybrid method for simulation of a fractional COVID-19 model with real case

application. Axioms 10, 290 (2021)
9. Alqahtani, R.T.: Mathematical model of SIR epidemic system (COVID-19) with fractional derivative: stability and

numerical analysis. Adv. Differ. Equ. 2021, 2 (2021)
10. Fredj, H.B., Cherif, F.: Novel Corona virus disease infection in Tunisia: mathematical model and the impact of the

quarantine strategy. Chaos Solitons Fractals 138, 109969 (2020)
11. Hasan, A., Susanto, H., Tjahjono, V., et al.: A new estimation method for COVID-19 time-varying reproduction number

using active cases. Sci. Rep. 12, 1–9 (2022)
12. Khan, Z.A., Ahmad, I., Shah, K.: Applications of fixed point theory to investigate a system of fractional order differential

equations. J. Funct. Spaces 2021, Article ID 1399764 (2021)
13. Arioua, Y., Basti, B., Benhamidouche, N.: Initial value problem for nonlinear implicit fractional differential equations

with Katugampola derivative. Appl. Math. E-Notes 19, 397–412 (2019)
14. Shah, K., Sarwar, M., Baleanu, D., et al.: Study on Krasnoselskii’s fixed point theorem for Caputo–Fabrizio fractional

differential equations. Adv. Differ. Equ. 2020, 178 (2020)
15. Abbas, S., Benchohra, M., Nieto, J.J.: Caputo–Fabrizio fractional differential equations with instantaneous impulses.

AIMS Math. 6, 2932–2946 (2021)
16. Butt, R.I., Abdeljawad, T., et al.: Stability analysis by fixed point theorems for a class of non-linear Caputo nabla

fractional difference equation. Adv. Differ. Equ. 2020, 209 (2020)
17. Rassias, T.M.: On the stability of functional equations and a problem of Ulam. Acta Appl. Math. 62(1), 23–130 (2000)
18. Boucenna, D., Ben Makhlouf, A., El-hady, E.S., Hammami, M.A.: Ulam–Hyers–Rassias stability for generalized fractional

differential equations. Math. Methods Appl. Sci. 44(13), 10267–10280 (2021)
19. Ibrahim, R.W.: Generalized Ulam–Hyers stability for fractional differential equations. Int. J. Math. 23(05), 1250056 (2012)
20. Shatanawi, W., Boutiara, A., Abdo, M.S., Jeelani, M.B., Abodayeh, K.: Nonlocal and multiple-point fractional boundary

value problem in the frame of a generalized Hilfer derivative. Adv. Differ. Equ. 1, 1–19 (2021)
21. Liu, X., Arfan, M., Ur Rahman, M., Fatima, B.: Analysis of SIQR type mathematical model under Atangana–Baleanu

fractional differential operator. Comput. Methods Biomech. Biomed. Eng. 26, 98–112 (2023)
22. Liu, P., Rahman, M.U., Din, A.: Fractal fractional based transmission dynamics of COVID-19 epidemic model. Comput.

Methods Biomech. Biomed. Eng. 25, 1852–1869 (2022)
23. Adjimi, N., Boutiara, A., Abdo, M.S., Benbachir, M.: Existence results for nonlinear neutral generalized Caputo fractional

differential equations. J. Pseudo-Differ. Oper. Appl. 12(2), 1–17 (2021)



Kebede and Lakoud Boundary Value Problems         (2023) 2023:44 Page 17 of 17

24. Suwan, I., Abdo, M., Abdeljawad, T., Mater, M., Boutiara, A., Almalahi, M.: Existence theorems for Psi-fractional hybrid
systems with periodic boundary conditions. AIMS Math. 7, 171–186 (2022)

25. Li, B., Liang, H., Shi, L., He, Q.: Complex dynamics of Kopel model with nonsymmetric response between oligopolists.
Chaos Solitons Fractals 156, 111860 (2022)

26. Eskandari, Z., Avazzadeh, Z., Khoshsiar Ghaziani, R., Li, B.: Dynamics and bifurcations of a discrete-time Lotka–Volterra
model using nonstandard finite difference discretization method. Math. Methods Appl. Sci. (2022).
https://doi.org/10.1002/mma.8859

27. Li, B., Liang, H., He, Q.: Multiple and generic bifurcation analysis of a discrete Hindmarsh–Rose model. Chaos Solitons
Fractals 146, 110856 (2021)

28. Bragdi, A., Frioui, A., Guezane Lakoud, A.: Existence of solutions for nonlinear fractional integro-differential equations.
Adv. Differ. Equ. 2020, 418 (2020)

29. Losada, J., Nieto, J.J.: Properties of a new fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1, 87–92
(2015)

30. Shaikh, A., Tassaddiq, A., Nisar, K.S., Baleanu, D.: Analysis of differential equations involving Caputo–Fabrizio fractional
operator and its applications to reaction–diffusion equations. Adv. Differ. Equ. 2019, 178 (2019)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1002/mma.8859

	Analysis of mathematical model involving nonlinear systems of Caputo-Fabrizio fractional differential equation
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Main results
	Conclusions
	Acknowledgements
	Funding
	Availability of data and materials
	Declarations
	Ethics approval and consent to participate
	Competing interests
	Author contributions
	Author details
	References
	Publisher's Note


