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Abstract
The aim of this article is twofold. The first goal is to give a new characterization of
the Kato class of functions K∞(Rd

+) that was defined in (Bachar et al. 2002:41, 2002)
for d = 2 and in (Bachar and Mâagli 9(2):153–192, 2005) for d ≥ 3 and adapted to
study some nonlinear elliptic problems in the half space. The second goal is to prove
the existence of positive continuous weak solutions, having the global behavior of
the associated homogeneous problem, for sufficiently small values of the
nonnegative constants λ and μ to the following system: �u = λf (x,u, v),
�v =μg(x,u, v) in R

d
+, limx→(ξ ,0) u(x) = a1φ1(ξ ), limx→(ξ ,0) v(x) = a2φ2(ξ ) for all ξ ∈R

d–1,
limxd→∞ u(x)

xd
= b1, limxd→∞ v(x)

xd
= b2, where φ1 and φ2 are nontrivial nonnegative

continuous functions on ∂Rd
+ =R

d–1 × {0}, a1,a2,b1,b2 are nonnegative constants
such that (a1 + b1)(a2 + b2) > 0. The functions f and g are nonnegative and belong to
a class of functions containing in particular all functions of the type
f (x,u, v) = p(x)uαg1(v) and g(x,u, v) = q(x)g2(u)vβ with α ≥ 1, β ≥ 1, g1, g2 are
continuous on [0,∞), and p,q are nonnegative functions in K∞(Rd

+).
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1 Introduction
In this paper, we study the existence of positive continuous solutions in the upper half
space R

d
+ = {x = (x1, x2, . . . , xd) ∈ R

d : xd > 0}, d ≥ 2, for the following semilinear elliptic
system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�u = λf (·, u, v) in R
d
+ (in the sense of distributions),

�v = μg(·, u, v) in R
d
+ (in the sense of distributions),

limx→(ξ ,0) u(x) = a1φ1(ξ ) limx→(ξ ,0) v(x) = a2φ2(ξ ), ∀ξ ∈R
d–1,

limxd→∞ u(x)
xd

= b1 limxd→∞ v(x)
xd

= b2,

(1.1)

where φ1 and φ2 are nontrivial nonnegative continuous functions on ∂Rd
+ = R

d–1 × {0},
a1, a2, b1, b2 are nonnegative constants such that (a1 + b1)(c2 + b2) > 0, λ ≥ 0, μ ≥ 0, and
f , g are two nontrivial nonnegative functions on R

d
+ × [0,∞) × [0,∞).
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This problem has been investigated recently, in particular the cases of nonlinearities f ,
g , by many authors (see for example [17, 19, 20] and the references therein). In [20], the
author considered the particular case where f (x, u, v) = p(x)g1(v) and g(x, u, v) = q(x)g2(u),
where g1, g2 are nonnegative continuous functions that are both nondecreasing or both
nonincreasing and p, q are nonnegative measurable functions belonging to the Kato class
K∞(Rd

+) introduced and studied in [5] for d = 2 and in [4] for d ≥ 3. Under some conditions
on φ1 and φ2, the existence of positive continuous solutions having the global behavior of
the associated homogeneous system is established. This also was done by investigating
the properties of the Kato class K∞(Rd

+). System (1.1) has been also studied in [17] for
the particular cases λ = μ = 1, f (x, u, v) = p(x)uαvr , and g(x, u, v) = q(x)usvβ , where α ≥ 1,
β ≥ 1, r ≥ 0, s ≥ 0 and p, q are two nonnegative measurable functions that belong to the
class K∞(Rd

+), and some results of existence similar to those in [20] have been obtained.
Our aim in this paper is twofold. The first goal is to give a new characterization of the

Kato class K∞(Rd
+), as it will be stated in Theorem 2.2 in the sequel. This explains in a

certain manner the optimality of the 3G-inequality (2.5), satisfied by the Green function
and established in [4] and [5]. The second goal is to extend the results of [17, 20] to a class of
nonlinearities f and g , including in particular those where f is nondecreasing with respect
to u but not necessarily monotone with respect to v and g is nondecreasing with respect
to v but not necessarily monotone with respect to u. This will be done after establishing
and exploiting an existence result of a positive continuous solution for the problem

⎧
⎪⎪⎨

⎪⎪⎩

�u = λf (x, u) in R
d
+ (in the sense of distributions),

limx→(ξ ,0) u(x) = aφ(ξ ), ∀ξ ∈R
d–1,

limxd→∞ u(x)
xd

= b,

(1.2)

where λ ≥ 0, a ≥ 0, b ≥ 0 with a + b > 0, φ is a nontrivial nonnegative continuous function
on ∂Rd

+ and the function f belongs to a class of functions containing in particular those of
the form p(x)uα with α ≥ 1, and this will be an extension of the results of [17] established
in the case where f (x, u) = p(x)uα . We note that elliptic equations have been extensively
studied, we refer the readers to [1, 13, 15] and other papers in the literature.

Our paper is organized as follows. Section 2 is devoted to giving a new characterization
of the Kato class K∞(Rd

+) and to recalling some properties of this class that will be used
in the study of (1.2) and (1.1). In Sect. 3, we prove the existence of a positive continu-
ous solution for (1.2). The last section is devoted to the study of the existence of positive
continuous solutions for system (1.1).

Next, we give some notations that will be used in the sequel. We denote by B(Rd
+) the set

of all Borel measurable functions in R
d
+, by B+(Rd

+) the set of nonnegative ones, by Bb(Rd
+)

the set of bounded ones, and by C(Rd
+) the set of continuous functions u in R

d
+. We denote

also by C0(Rd
+) the set of functions u ∈ C(Rd

+) satisfying limx→ξ∈∂Rd
+

u(x) = lim|x|→∞ u(x) = 0
and by C0(Rd

+) the set of all functions u ∈ B(Rd
+) that are continuous in Rd

+ and satisfy
lim|x|→∞ u(x) = 0.

Let G be the Green function of the Laplace operator in R
d
+ with Dirichlet boundary

conditions. For any p ∈ B+(Rd
+), we denote by Vp the Green potential of p defined on R

d
+

by

Vp(x) =
∫

R
d
+

G(x, y)p(y) dy,
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and we recall that if p ∈ L1
loc(Rd

+) and Vp ∈ L1
loc(Rd

+), then we have in the sense of distribu-
tions (see [10] p. 52)

�(Vp) = –p in R
d
+. (1.3)

For any nonnegative bounded continuous function φ onR
d–1, we denote by Hφ the unique

bounded continuous solution of the Dirichlet problem

⎧
⎨

⎩

�u = 0 in R
d
+,

limx→(ξ ,0) u(x) = φ(ξ ), ∀ξ ∈R
d–1.

It follows by the Herglotz representation theorem (see [2, 3, 12]) that

Hφ(x) = cd

∫

Rd–1

xd

|x – ξ |d φ(ξ ) dξ for every x ∈R
d
+.

Using the inequality |x – ξ | ≤ |x| + |ξ | ≤ (1 + |x|)(1 + |ξ |), the fact that φ is nonnegative,
bounded, and that

∫

Rd–1
dξ

(1+|ξ |)d < ∞, we obtain

Hφ(x) ≥ cd
xd

(1 + |x|)d

∫

Rd–1

φ(ξ )
(1 + |ξ |)d dξ = c

xd

(1 + |x|)d . (1.4)

Let (Xt)t≥0 be the canonical Brownian motion defined on C([0,∞);Rd), Px be the proba-
bility measure on the Brownian continuous paths starting at x, and τ = inf{t > 0 : Xt /∈ R

d
+}

be the first exist time of (Xt)t≥0 from R
d
+. For any q ∈ B+(Rd

+), we define (see [9] or [10]
p. 84) the subordinate q-Green potential kernel Vq by

Vq(p)(x) =
1
2

Ex
(∫ τ

0
e– 1

2
∫ t

0 q(Xs) dsp(Xt) dt
)

for p ∈ B
(
R

d
+
)
, (1.5)

where Ex is the expectation on Px. Moreover, for q ∈ B+(Rd
+) such that Vq < ∞, we have,

see [8, 10, 14], the resolvent equation

V = Vq + Vq(qV ). (1.6)

So, for each u ∈ B(Rd
+) such that V (q|u|) < ∞, we have

[
I + V (q·)][I – Vq(q·)]u =

[
I – Vq(q·)][I + V (q·)]u = u, (1.7)

and for every u ∈ B+(
R

d
+
)

we have 0 ≤ Vq(u) ≤ V (u). (1.8)

We close this section by adopting the following notation. If S is a nonempty set and
f , g are two nonnegative functions defined on S, we write f ∼ g if there exists a positive
constant C such that 1

C f (x) ≤ g(x) ≤ Cf (x) for every x ∈ S. We note also that throughout
this paper the positive constant C may vary from line to line.
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2 The Kato class of functions
Let G be the Green function of the Dirichlet Laplacian in R

d
+, (d ≥ 2). Then it was proved

in [6] that G has the following integral representation:

G(x, y) = Cd|x – y|2–d
∫ |x–y|

|x–y|

1

dv
vd–1 , (2.1)

where y = (y1, y2, . . . , yd–1, –yd) for y = (y1, y2, . . . , yd–1, yd) and Cd = 
( d
2 )

2π
d
2

. Moreover, the au-
thors in [5] and [4] proved that G has the following global estimates:

G(x, y) ∼
⎧
⎨

⎩

Log(1 + x2y2
|x–y|2 ) if d = 2,

1
|x–y|d–2 min(1, xdyd

|x–y|2 ) if d ≥ 3.
(2.2)

Moreover, there exists C > 0 such that for every x, y ∈R
d
+ we have

xdyd

(|x| + 1)d(|y| + 1)d ≤ CG(x, y). (2.3)

Using the fact that ab
a+b ≤ min(a, b) ≤ 2ab

a+b for a > 0 and b > 0, it follows from (2.2) that

G(x, y) ∼
⎧
⎨

⎩

Log(1 + xdyd
|x–y|2 ) if d = 2,

xdyd
|x–y|d–2(|x–y|2+xdyd) if d ≥ 3.

(2.4)

These estimates have been used to prove the following important 3G-inequality. Namely,
there exists a positive constant C0 such that for each x, y, z ∈R

d
+ we have

G(x, z)G(z, y)
G(x, y)

≤ C0

[
zd

xd
G(x, z) +

zd

yd
G(y, z)

]

. (2.5)

This 3G-inequality was exploited by the authors in [5] for d = 2 and in [4] for d ≥ 3 to
define a new Kato class on the half space Rd

+, which has been adapted to study some semi-
linear elliptic boundary value problems using some potential theory tools. More precisely,
this class was defined as follows.

Definition 2.1 ([5] and [4]) A measurable function q belongs to the Kato class K∞(Rd
+) if

q satisfies the following conditions:

lim
α→0

(

sup
x∈Rd

+

∫

R
d
+∩B(x,α)

zd

xd
G(x, z)

∣
∣q(z)

∣
∣dz

)

= 0 (2.6)

and

lim
M→∞

(

sup
x∈Rd

+

∫

R
d
+∩[|z|≥M]

zd

xd
G(x, z)

∣
∣q(z)

∣
∣dz

)

= 0. (2.7)

Our main goal in this section is to give a new characterization of this class of functions
by means of the left-hand side term of inequality (2.5). This gives an affirmative answer to
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the question on the possibility of considering the left-hand term of inequality (2.5) in the
definition of the Kato class. More precisely, we prove the following.

Theorem 2.2 Let q be a Borel measurable function in R
d
+. Then q ∈ K∞(Rd

+) if and only if

lim
α→0

(

sup
(x,y)∈Rd

+×R
d
+

∫

R
d
+∩(B(x,α)∪B(y,α))

G(x, z)G(z, y)
G(x, y)

∣
∣q(z)

∣
∣dz

)

= 0 (2.8)

and

lim
M→∞

(

sup
(x,y)∈Rd

+×R
d
+

∫

R
d
+∩([|z|≥M])

G(x, z)G(z, y)
G(x, y)

∣
∣q(z)

∣
∣dz

)

= 0. (2.9)

The following lemma will be also used in the proof.

Lemma 2.3 Let x, y ∈R
d
+. Then we have the following properties:

(1) If xdyd ≤ |x – y|2, then max(xd, yd) ≤ 1+
√

5
2 |x – y|.

(2) If |x – y|2 ≤ xdyd , then 3–
√

5
2 yd ≤ xd ≤ 3+

√
5

2 yd .
(3) 1

2 (|x – y|2 + x2
d + y2

d) ≤ |x – y|2 + xdyd ≤ |x – y|2 + x2
d + y2

d .

Proof (1) and (2) were proved in [4].
(3) Squaring the inequality |xd – yd| ≤ |x – y|, we obtain x2

d + y2
d ≤ |x – y|2 + 2xdyd . This

together with the fact that ab ≤ a2 + b2 gives

|x – y|2 + x2
d + y2

d ≤ 2
[|x – y|2 + xdyd

] ≤ 2
[|x – y|2 + x2

d + y2
d
]
.

This achieves the proof. �

The following result is the key to the proof of Theorem 2.2.

Proposition 2.4 There exists a constant C > 0 such that for all α > 0 and all x, y ∈ R
d
+ we

have
∫

R
d
+∩(B(x,α)∪B(y,α))

G(x, z)G(z, y)
G(x, y)

∣
∣q(z)

∣
∣dz ≤ C

∫

R
d
+∩B(x,3α)

zd

xd
G(x, z)

∣
∣q(z)

∣
∣dz

+ C
∫

R
d
+∩B(y,3α)

zd

yd
G(y, z)

∣
∣q(z)

∣
∣dz.

Proof Let α > 0 and x, y ∈R
d
+. Then we have

∫

R
d
+∩(B(x,α)∪B(y,α))

G(x, z)G(z, y)
G(x, y)

∣
∣q(z)

∣
∣dz =

∫

R
d
+∩B(x,α)∩B(y,α)

G(x, z)G(z, y)
G(x, y)

∣
∣q(z)

∣
∣dz

+
∫

R
d
+∩B(x,α)∩Bc(y,α)

G(x, z)G(z, y)
G(x, y)

∣
∣q(z)

∣
∣dz

+
∫

R
d
+∩B(y,α)∩Bc(x,α)

G(x, z)G(z, y)
G(x, y)

∣
∣q(z)

∣
∣dz

= I1(x, y) + I2(x, y) + I3(x, y).
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Using inequality (2.5), we obtain

I1(x, y) :=
∫

R
d
+∩B(x,α)∩B(y,α)

G(x, z)G(z, y)
G(x, y)

∣
∣q(z)

∣
∣dz

≤ C0

∫

R
d
+∩B(x,α)∩B(y,α)

[
zd

xd
G(x, z) +

zd

yd
G(y, z)

]
∣
∣q(z)

∣
∣dz

≤ C0

[∫

R
d
+∩B(x,α)

zd

xd
G(x, z)

∣
∣q(z)

∣
∣dz +

∫

R
d
+∩B(y,α)

zd

yd
G(y, z)

∣
∣q(z)

∣
∣dz

]

.

Next, we estimate I2(x, y) and I3(x, y). To this aim, we will discuss two cases as follows.
Case 1: B(x,α) ∩ B(y,α) �= ∅.
Choose z0 ∈ B(x,α) ∩ B(y,α). Then, for every z ∈ B(x,α) ∩ Bc(y,α), we have

|z – y| ≤ |z – x| + |x – z0| + |z0 – y| ≤ 3α.

Similarly, for every z ∈ B(y,α) ∩ Bc(x,α), we have

|z – x| ≤ |z – y| + |y – z0| + |z0 – x| ≤ 3α.

Hence B(x,α) ∩ Bc(y,α) ⊂ B(x,α) ∩ B(y, 3α) and B(y,α) ∩ Bc(x,α) ⊂ B(y,α) ∩ B(x, 3α). So
we obtain

I2(x, y) :=
∫

R
d
+∩B(x,α)∩Bc(y,α)

G(x, z)G(z, y)
G(x, y)

∣
∣q(z)

∣
∣dz

≤
∫

R
d
+∩B(x,α)∩B(y,3α)

G(x, z)G(z, y)
G(x, y)

∣
∣q(z)

∣
∣dz

≤ C0

∫

R
d
+∩B(x,α)∩B(y,3α)

[
zd

xd
G(x, z) +

zd

yd
G(y, z)

]
∣
∣q(z)

∣
∣dz

≤ C0

[∫

R
d
+∩B(x,α)

zd

xd
G(x, z)

∣
∣q(z)

∣
∣dz +

∫

R
d
+∩B(y,3α)

zd

yd
G(y, z)

∣
∣q(z)

∣
∣dz

]

and

I3(x, y) :=
∫

R
d
+∩B(y,α)∩Bc(x,α)

G(x, z)G(z, y)
G(x, y)

∣
∣q(z)

∣
∣dz

≤
∫

R
d
+∩B(y,α)∩B(x,3α)

G(x, z)G(z, y)
G(x, y)

∣
∣q(z)

∣
∣dz

≤ C0

∫

R
d
+∩B(y,α)∩B(x,3α)

[
zd

xd
G(x, z) +

zd

yd
G(y, z)

]
∣
∣q(z)

∣
∣dz

≤ C0

[∫

R
d
+∩B(x,3α)

zd

xd
G(x, z)

∣
∣q(z)

∣
∣dz +

∫

R
d
+∩B(y,α)

zd

yd
G(y, z)

∣
∣q(z)

∣
∣dz

]

.

Case 2: B(x,α) ∩ B(y,α) = ∅.
In this case B(x,α) ⊂ Bc(y,α) and B(y,α) ⊂ Bc(x,α). For every z ∈ B(x,α), we have

|y – z| ≤ |y – x| + |x – z| ≤ |y – x| + α ≤ 2|x – y|
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and

|x – y| ≤ |x – z| + |y – z| ≤ α + |y – z| ≤ 2|y – z|.

So, in this case

1
2
|y – z| ≤ |x – y| ≤ 2|y – z|. (2.10)

Similarly, for every z ∈ B(y,α), we have

|x – z| ≤ |x – y| + |y – z| ≤ |x – y| + α ≤ 2|x – y|

and

|x – y| ≤ |x – z| + |y – z| ≤ |x – z| + α ≤ 2|x – z|.

Also, in this case

1
2
|x – z| ≤ |x – y| ≤ 2|x – z|. (2.11)

Now, using (2.4) we obtain

G(x, z)G(z, y)
G(x, y)

∼

⎧
⎪⎨

⎪⎩

Log(1+ ydzd
|z–y|2 )

Log(1+ xdyd
|x–y|2 )

G(x, z) if d = 2,

|x–y|d–2

|z–y|d–2
(|x–y|2+xdyd)
(|z–y|2+zdyd)

zd
xd

G(x, z) if d ≥ 3,

and

G(x, z)G(z, y)
G(x, y)

∼

⎧
⎪⎨

⎪⎩

Log(1+ xdzd
|z–x|2 )

Log(1+ xdyd
|x–y|2 )

G(y, z) if d = 2,

|x–y|d–2

|z–x|d–2
(|x–y|2+xdyd)
(|z–x|2+zdxd)

zd
yd

G(y, z) if d ≥ 3.

So we will discuss two subcases.
Subcase 1: If xdyd ≤ |x – y|2.
In this case we have |x – y|2 + xdyd ≤ 2|x – y|2. So, for d ≥ 3, we use this fact and (2.10)

to obtain

|x – y|d–2

|z – y|d–2
(|x – y|2 + xdyd)
(|z – y|2 + zdyd)

≤ |x – y|d–2(|x – y|2 + xdyd)
|z – y|d ≤ 2

|x – y|d
|z – y|d ≤ 2d+1.

On the other hand, for d = 2 we use (2.10), the inequalities 1
2 t ≤ Log(1 + t) for t ∈ [0, 1]

and Log(1 + t) ≤ t for t ≥ 0 to obtain

Log(1 + ydzd
|z–y|2 )

Log(1 + xdyd
|x–y|2 )

≤ 2
|x – y|2

xdyd

ydzd

|z – y|2 ≤ 8
zd

xd
.
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Consequently, for every z ∈ B(x,α), we have

G(x, z)G(z, y)
G(x, y)

≤ C
zd

xd
G(x, z)

and

I2(x, y) =
∫

R
d
+∩B(x,α)

G(x, z)G(z, y)
G(x, y)

∣
∣q(z)

∣
∣dz ≤ C

∫

R
d
+∩B(x,α)

zd

xd
G(x, z)

∣
∣q(z)

∣
∣dz.

Similarly, for every z ∈ B(y,α), we obtain by using (2.11) that

G(x, z)G(z, y)
G(x, y)

≤ C
zd

yd
G(y, z)

and

I3(x, y) =
∫

R
d
+∩B(y,α)

G(x, z)G(z, y)
G(x, y)

∣
∣q(z)

∣
∣dz ≤ C

∫

R
d
+∩B(y,α)

zd

yd
G(y, z)

∣
∣q(z)

∣
∣dz.

Subcase 2: If |x – y|2 ≤ xdyd .
In this case we obtain from Lemma 2.3 that

3 –
√

5
2

yd ≤ xd ≤ 3 +
√

5
2

yd. (2.12)

Next we will treat the cases d ≥ 3 and d = 2 separately. If d ≥ 3, then we deduce from
(2.12), (2.10) and property 3 of Lemma 2.3 that for every z ∈ B(x,α) we have

|x – y|d–2

|z – y|d–2
(|x – y|2 + xdyd)
(|z – y|2 + zdyd)

≤ 2d–2 |x – y|2 + xdyd

|z – y|2 + zdyd

≤ 2d |x – y|2 + x2
d + y2

d
|z – y|2 + z2

d + y2
d

≤ 2d (1 + ( 3+
√

5
2 )2)(|x – y|2 + y2

d)
|z – y|2 + z2

d + y2
d

≤ 2d
(

9 + 3
√

5
2

) |x – y|2 + y2
d

|z – y|2 + y2
d

≤ 2d+1(9 + 3
√

5).

Consequently, for every z ∈ B(x,α), we have

G(x, z)G(z, y)
G(x, y)

≤ C
zd

xd
G(x, z)

and

I2(x, y) =
∫

R
d
+∩B(x,α)

G(x, z)G(z, y)
G(x, y)

∣
∣q(z)

∣
∣dz ≤ C

∫

R
d
+∩B(x,α)

zd

xd
G(x, z)

∣
∣q(z)

∣
∣dz.
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Similarly, for z ∈ B(y,α), we use (2.11) and similar arguments as above to obtain

G(x, z)G(z, y)
G(x, y)

≤ C
zd

yd
G(y, z)

and

I3(x, y) =
∫

R
d
+∩B(y,α)

G(x, z)G(z, y)
G(x, y)

∣
∣q(z)

∣
∣dz ≤ C

∫

R
d
+∩B(y,α)

zd

yd
G(y, z)

∣
∣q(z)

∣
∣dz.

Finally, for d = 2 we will discuss two subcases:
(i) If |x – z|2 ≤ xdzd or |y – z|2 ≤ ydzd . Then, taking into account (2.12) and using Lemma

2.3, we obtain in this case that

3 –
√

5
2

xd ≤ zd ≤ 3 +
√

5
2

xd and
(

3 –
√

5
2

)2

yd ≤ zd ≤
(

3 +
√

5
2

)2

yd,

or

3 –
√

5
2

yd ≤ zd ≤ 3 +
√

5
2

yd and
(

3 –
√

5
2

)2

xd ≤ zd ≤
(

3 +
√

5
2

)2

xd.

Using the above facts, (2.10), and the fact that for λ > 0 and t ≥ 0 we have

min(1,λ) Log(1 + t) ≤ Log(1 + λt) ≤ max(1,λ) Log(1 + t),

we obtain for z ∈ B(x,α) that

Log(1 + ydzd
|z–y|2 )

Log(1 + xdyd
|x–y|2 )

≤
Log(1 + ( 3+

√
5

2 ) xdzd
|z–y|2 )

Log(1 + ( 3–
√

5
2 )2 xdzd

4|z–y|2 )

≤
(

3 +
√

5
2

)
16

(3 –
√

5)2

Log(1 + xdzd
|z–y|2 )

Log(1 + xdzd
|z–y|2 )

≤ (3 +
√

5)3

≤ (3 +
√

5)3
(

3 +
√

5
2

)2 zd

xd
.

Hence, for every z ∈ B(x,α), we obtain

G(x, z)G(z, y)
G(x, y)

≤ C
zd

xd
G(x, z)

and

I2(x, y) =
∫

R
d
+∩B(x,α)

G(x, z)G(z, y)
G(x, y)

∣
∣q(z)

∣
∣dz ≤ C

∫

R
d
+∩B(x,α)

zd

xd
G(x, z)

∣
∣q(z)

∣
∣dz.
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Similarly, for z ∈ B(y,α), we use (2.11) to obtain

G(x, z)G(z, y)
G(x, y)

≤ C
zd

yd
G(y, z)

and

I3(x, y) =
∫

R
d
+∩B(y,α)

G(x, z)G(z, y)
G(x, y)

∣
∣q(z)

∣
∣dz

≤ C
∫

R
d
+∩B(y,α)

zd

yd
G(y, z)

∣
∣q(z)

∣
∣dz.

(ii) If |x – z|2 ≥ xdzd and |y – z|2 ≥ ydzd , then in this case we have max(xd, zd) ≤ |x – z| and
max(yd, zd) ≤ |y – z|. Hence it follows from the inequalities t

1+t ≤ Log(1 + t) ≤ t for t ≥ 0
that

xdyd

|x – y|2 + xdyd
≤ Log

(

1 +
xdyd

|x – y|2
)

.

Hence

Log(1 + ydzd
|z–y|2 )

Log(1 + xdyd
|x–y|2 )

≤ |x – y|2 + xdyd

|y – z|2
zd

xd

≤ |x – y|2 + ( 3+
√

5
2 )y2

d

|y – z|2
zd

xd

≤
(

3 +
√

5
2

) |x – y|2 + y2
d

|y – z|2
zd

xd

≤
(

3 +
√

5
2

) |x – y|2 + |y – z|2
|y – z|2

zd

xd
,

and similarly

Log(1 + xdzd
|x–z|2 )

Log(1 + xdyd
|x–y|2 )

≤
(

3 +
√

5
2

) |x – y|2 + |x – z|2
|x – z|2

zd

yd
.

So, using (2.10), for z ∈ B(x,α), we get

G(x, z)G(z, y)
G(x, y)

≤ C
zd

xd
G(x, z)

and

I2(x, y) =
∫

R
d
+∩B(x,α)

G(x, z)G(z, y)
G(x, y)

∣
∣q(z)

∣
∣dz ≤ C

∫

R
d
+∩B(x,α)

zd

xd
G(x, z)

∣
∣q(z)

∣
∣dz.

Now, for z ∈ B(y,α), we use (2.11) and similar arguments as above to obtain

G(x, z)G(z, y)
G(x, y)

≤ C
zd

yd
G(y, z)
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and

I3(x, y) =
∫

R
d
+∩B(y,α)

G(x, z)G(z, y)
G(x, y)

∣
∣q(z)

∣
∣dz ≤ C

∫

R
d
+∩B(y,α)

zd

yd
G(y, z)

∣
∣q(z)

∣
∣dz.

This achieves the proof of the proposition. �

Proof of Theorem 2.2 Assume that q ∈ K∞(Rd
+). Clearly, we deduce from (2.5) and (2.7)

that (2.9) is satisfied. Moreover, using Proposition 2.4 and equation (2.6), we deduce that
(2.8) is also satisfied. To prove the converse, we remark that by considering in (2.1) the
substitution

v2 = 1 +
4xdyd

|x – y|2 (1 – t) =
|x – y|2
|x – y|2 – 4

xdyd

|x – y|2 t,

we obtain

G(x, y) = 2Cd
xdyd

|x – y|d
∫ 1

0

dt

( |x–y|2
|xy|2 – 4 xdyd

|x–y|2 t) n
2

.

Hence, for each ξ ∈ ∂Rd
+ and x, z ∈R

d
+, we have

lim
y→ξ

G(z, y)
G(x, y)

=
zd

xd

|x – ξ |d
|z – ξ |d .

Now, if we choose α > 0 and x ∈R
d
+, then we deduce from the Fatou lemma that

∫

R
d
+∩B(x,α)

zd

xd

|x – ξ |d
|z – ξ |d G(x, z)

∣
∣q(z)

∣
∣dz

≤ lim inf
y→ξ

∫

R
d
+∩B(x,α)

G(x, z)G(z, y)
G(x, y)

∣
∣q(z)

∣
∣dz

≤ lim inf
y→ξ

∫

R
d
+∩(B(χ ,α)∪B(ζ ,α))

G(x, z)G(z, y)
G(x, y)

∣
∣q(z)

∣
∣dz

≤ sup
(χ ,ζ )∈Rd

+×R
d
+

∫

R
d
+∩(B(χ ,α)∪B(ζ ,α))

G(χ , z)G(z, ζ )
G(χ , ζ )

∣
∣q(z)

∣
∣dz.

Using this fact and the Fatou lemma again, we obtain

∫

R
d
+∩B(x,α)

zd

xd
G(x, z)

∣
∣q(z)

∣
∣dz =

∫

R
d
+∩B(x,α)

lim|ξ |→∞
ξ∈∂Rd

+

|x – ξ |d
|z – ξ |d

zd

xd
G(x, z)

∣
∣q(z)

∣
∣dz

≤ lim inf|ξ |→∞
ξ∈∂Rd

+

∫

R
d
+∩B(x,α)

zd

xd

|x – ξ |d
|z – ξ |d G(x, z)

∣
∣q(z)

∣
∣dz

≤ sup
(χ ,ζ )∈Rd

+×R
d
+

∫

R
d
+∩(B(χ ,α)∪B(ζ ,α))

G(χ , z)G(z, ζ )
G(χ , ζ )

∣
∣q(z)

∣
∣dz.

This shows that if (2.8) is satisfied then (2.6) is also satisfied. In the same manner, we prove
that if (2.9) is satisfied then (2.7) is also satisfied. This achieves the proof. �
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Next, we recall some important properties that will be used in the study of the boundary
value problems (1.2) and (1.1). The proofs of these properties can be found in references
[4, 5], and [7].

Proposition 2.5 Let q ∈ K∞(Rd
+). Then the following statements hold:

(1)

αq := sup
(x,y)∈Rd

+×R
d
+

∫

R
d
+

G(x, z)G(z, y)
G(x, y)

∣
∣q(z)

∣
∣dz < ∞. (2.13)

(2) For any nonnegative superharmonic function ω and every x ∈R
d
+, we have

∫

R
d
+

G(x, z)ω(z)
∣
∣q(z)

∣
∣dz ≤ αqω(x). (2.14)

(3) The function y −→ yd
(|y|+1)d q(y) ∈ L1(Rd

+). In particular, q ∈ L1
loc(Rd

+).
(4) The Green potential Vq belongs to C0(Rd

+).

The following results are also stated in [4, 5, 7], and [17], and they will also play an
important role in the sequel.

Proposition 2.6 Let ω be a nonnegative superharmonic function in R
d
+ and q be a non-

negative function in K∞(Rd
+). Then, for each x ∈R

d
+ such that 0 < ω(x) < ∞, we have

exp(–αq)ω(x) ≤ ω(x) – Vq(qω)(x) ≤ ω(x). (2.15)

Proposition 2.7 Let q be a nonnegative function in K∞(Rd
+) and let h̃(x) = bxd + a for

a ≥ 0, b ≥ 0 with a + b > 0. Then:
(1) The family of functions

Eq =
{

Vp; p ∈ B
(
R

d
+
)

with |p| ≤ q
}

is equicontinuous in Rd
+ ∪ {∞} and consequently it is relatively compact in C0(Rd

+).
(2) The family of functions

Fq =
{

x →
∫

R
d
+

yd

xd
G(x, y)p(y) dy; p ∈ B

(
R

d
+
)

with |p| ≤ q
}

is relatively compact in C0(Rd
+).

(3) The family of functions

Gq =
{

x →
∫

R
d
+

h̃(y)
h̃(x)

G(x, y)p(y) dy; p ∈ B
(
R

d
+
)

with |p| ≤ q
}

is relatively compact in C0(Rd
+).

(4) limx→ξ V (̃hq)(x) = 0,∀ξ ∈ ∂Rd
+.

Next, we recall a fundamental example of functions in K∞(Rd
+) studied in [4] and [5].
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Example 2.1 Let β , δ ∈R and define q(x) = 1
xβ

d (|x|+1)δ–β
for x ∈R

d
+. Then

q ∈ K∞(
R

d
+
)

if and only if β < 2 < δ.

3 Existence of positive solutions for some semilinear elliptic equations
The aim of this section is to study the existence of positive continuous weak solutions for
problem (1.2). First, we define the notion of continuous weak solutions for this problem.

Definition 3.1 A function u is called a continuous weak solution of (1.2) if
(i) u ∈ C(Rd

+,R).
(ii)

∫

R
d
+

u(x)�ϕ(x) – λf (x, u(x))ϕ dx = 0 for every ϕ ∈ C∞
c (Rd

+): the set of all infinitely
differentiable functions in R

d
+ with compact support in R

d
+.

(iii) limx→ξ∈∂Rd
+

x∈Rd
+

u(x) = aφ(ξ ) and limxd→∞ u(x)
xd

= b.

To state an existence result for (1.2) for λ sufficiently small, we define h(x) = bxd +aHφ(x)
and h̃(x) = bxd + a for x ∈ R

d
+, and we assume that f satisfies the following hypotheses:

(H1) f (·, 0) ∈ K∞(Rd
+).

(H2) f : Rd
+ × [0,∞) −→ [0,∞) is a Borel measurable function such that for each x ∈ R

d
+

the map t → f (x, t) is continuous and satisfies the following condition: For each
M > 0, there exists a nonnegative function qM ∈ K∞(Rd

+) such that for each x ∈ R
d
+

the map t → t̃h(x)qM(x) – f (x, t̃h(x)) is continuous and nondecreasing on [0, M].
(H3) σ0 := inf

x∈Rd
+
[ h(x)

Vf (·,0)(x) ] > 0.

Remarks 3.2 (1) Conditions (H1) and (H2) are satisfied in the particular case f (x, t) =
p(x)g(t), where p ∈ K∞(Rd

+) and g(t) = tα , α ≥ 1 or more generally g : [0,∞) → [0,∞)
is continuous and satisfying for each M > 0, there exists a constant b = b(M) ≥ 0 such that
g(t) – g(s) ≤ b(t – s) for 0 ≤ s < t ≤ M. Indeed in this case (H2) is satisfied with qM = b(M)p.

(2) Hypothesis (H3) is satisfied in the particular case where f (·, 0) = 0 with σ0 = ∞.

Under conditions (H1)–(H2), we will prove in the next that continuous weak solutions
u of (1.2) in R

d
+ satisfying 0 ≤ u ≤ h are those satisfying the integral equation (3.1).

Lemma 3.3 (see [17]) Let p1 and p2 be two nonnegative measurable functions in R
d
+ such

that p1 ≤ p2 and Vp2 is continuous in R
d
+. Then Vp1 is also continuous in R

d
+

Lemma 3.4 Assume that hypotheses (H1)–(H2) are satisfied, let u ∈ B+(Rd
+) satisfying 0 ≤

u(x) ≤ h(x) for x ∈R
d
+, and assume that λ > 0. Then u is a continuous weak solution of (1.2)

if and only if

u(x) = h(x) – λV
(
f (·, u)

)
(x) for x ∈ R

d
+. (3.1)

Proof Assume that u is a continuous weak solution of (1.2). We define |φ|∞ = sup
ξ∈∂Rd

+
φ(ξ )

and M = max(1, |φ|∞). Then 0 ≤ u ≤ h ≤ Mh̃. From hypothesis (H2), there exists q = qM ∈
K∞(Rd

+) such that for each x ∈ R
d
+ the map t → t̃h(x)q(x) – f (x, t̃h(x)) is nondecreasing on

[0, M]. Hence

–f (·, 0) ≤ qu – f (·, u) ≤ Mh̃q – f (·, Mh̃). (3.2)
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In particular, we obtain

0 ≤ f (·, u) ≤ Mh̃q + f (·, 0). (3.3)

Since the functions q, f (·, 0) ∈ K∞(Rd
+), then it follows from Proposition 2.5 that V (f (·, 0)) ∈

C0(Rd
+) and 1

h̃ V (̃hq) ∈ C0(Rd
+). This implies that V (̃hq) ∈ C(Rd

+) and V (Mh̃q + f (·, 0)) ∈
C(Rd

+). This together with Lemma 3.3 implies that V (f (·, u)) ∈ C(Rd
+). Put v(x) = u +

λV (f (·, u)) – aHφ. Then v ∈ C(Rd
+) and is harmonic in the sense of distributions in R

d
+.

It follows from Weyl’s theorem (see [11] p.250) that v is a harmonic function in R
d
+. More-

over, v ≥ –a|φ|∞ in R
d
+ and limx→ξ∈∂Rd

+
v(x) = 0. Using Theorem 1.1 in [18], we deduce

that there exists C∗ ≥ 0 such that v(x) = C∗xd in R
d
+. Since limxd→∞ v(x)

xd
= limxd→∞ v(x)

xd
= b,

then C∗ = b, and consequently u satisfies (3.1).
Conversely, since q, f (·, 0) ∈ K∞(Rd

+), then Mh̃q + f (·, 0) ∈ L1
loc(Rd

+). So from (3.3) we ob-
tain f (·, u) ∈ L1

loc(Rd
+). Again from (3.3) and the fact that V (Mh̃q+ f (·0)) ∈ C(Rd

+) we deduce
from Lemma 3.3 that V (f (·, u)) ∈ C(Rd

+) and from (3.1) that u ∈ C(Rd
+). Using (1.3) we ob-

tain �u = �h – λ�V (f (·, u)) = λf (·, u) in the sense of distributions. On the other hand,
using (3.3) we obtain

0 ≤ V
(
f (·, u)

) ≤ MV (̃hq) + V
(
f (·, 0)

)
. (3.4)

Hence it follows from property 4 of Propositions 2.5 and 2.7 that
limx→ξ∈∂Rd

+
V (f (·, u))(x) = 0, and consequently limx→ξ∈∂Rd

+
u(x) = aφ(ξ ). Finally, using

(3.4), the fact that 1
h̃ V (̃hq) ∈ C0(Rd

+), and that lim|x|→∞ 1
h̃(x) V (f (·, 0))(x) = 0, we obtain

lim|x|→∞ 1
h̃(x) V (f (·, u))(x) = 0. In particular, limxd→∞ 1

h̃(x) V (f (·, u))(x) = 0. Consequently,

limxd→∞ u(x)
xd

= limxd→∞ h(x)
xd

– λ limxd→∞ V (f (·,u))(x)
xd

= b – λ limxd→∞ V (f (·,u))(x)
h̃(x)

h̃(x)
xd

= b. This
achieves the proof. �

Next we establish a uniqueness result for an eventual continuous weak solution u, sat-
isfying 0 ≤ u ≤ h for (1.2) in the case where λ ≥ 0 and the nonlinearity f is nonnegative,
nondecreasing, and continuous with respect to the second variable.

Proposition 3.5 Let f : Rd
+ × [0,∞) −→ [0,∞) be a Borel measurable function satisfying

(H1)–(H2) and assume further that for each x ∈ R
d
+ the function t → f (x, t) is nondecreas-

ing on [0,∞). Then, for any nontrivial nonnegative continuous bounded function φ on the
boundary ∂Rd

+, any nonnegative real numbers a, b with a + b > 0 and λ ≥ 0, problem (1.2)
has at most one nonnegative continuous weak solution satisfying 0 ≤ u ≤ h.

Proof Assume that there exist two nonnegative continuous weak solutions u1, u2 of (1.2)
with 0 ≤ u1 ≤ h and 0 ≤ u1 ≤ h. Let M = max(1, |φ|∞). Then 0 ≤ u1 ≤ h ≤ Mh̃ and 0 ≤
u2 ≤ h ≤ Mh̃.

Since f satisfies (H1)–(H2), it follows from Lemma 3.4 that

(u2 – u1) + λV
(
f (·, u2) – f (·, u1)

)
= 0. (3.5)
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Let q = qM ∈ K∞(Rd
+) be the function given in hypothesis (H2) and define

k(x) =

⎧
⎨

⎩

f (x,u2(x))–f (x,u1(x))
u2(x)–u1(x) if u2(x) �= u1(x),

0 if u2(x) = u1(x).

Then we have 0 ≤ k(x) ≤ q(x) for every x ∈ R
d
+. Hence k ∈ K∞(Rd

+) and using (H1), (3.3),
and properties 2 and 4 of Proposition 2.5, we obtain

V
(
λk|u2 – u1|

) ≤ λV
(
f (·, u2)

)
+ λV

(
f (·, u1)

) ≤ 2λMV (̃hq) + 2λV
(
f (·, 0)

)

≤ 2λMαqh̃ + 2λV
(
f (·, 0)

)
< ∞.

Applying (I – Vλk(λk·)) on both sides of equality (3.5), we obtain from (1.7) that u2 = u1. �

The second main result of this paper is the following.

Theorem 3.6 Let φ be a nontrivial nonnegative bounded continuous function on ∂Rd
+ and

assume that hypotheses (H1), (H2), and (H3) are satisfied. Then there exists λ0 > 0 such
that for λ ∈ [0,λ0) problem (1.2) has a positive continuous weak solution u satisfying the
following global behavior:

cλh(x) ≤ u(x) ≤ h(x) for each x ∈Rd
+, (3.6)

where cλ ∈ (0, 1].

Proof We will adapt the proof in [7]. Put M = max(1, |Hφ|∞). Since Hφ is harmonic and
bounded in R

d
+ with boundary value φ, it follows from the maximum principle that M =

max(1, |φ|∞). From hypothesis (H2), there exists q = qM ∈ K∞(Rd
+) such that for each x ∈

R
d
+ we have

f (x, t̃h(x)) – f (x, s̃h(x))
t – s

≤ h̃(x)q(x) for every 0 ≤ s < t ≤ M. (3.7)

Consider the function θ : λ → λ exp(λαq). Then θ is a bijection from [0,∞) to [0,∞). Put
λ0 = θ–1(σ0) > 0, with the convention that λ0 = ∞ if σ0 = ∞. For λ ∈ [0,λ0), we define the
nonempty closed convex set

� =
{

u ∈ B+(
R

d
+
)

:
(

1 –
θ (λ)
σ0

)

exp(–λαq)h(x) ≤ u(x) ≤ h(x)
}

.

We mention that for u ∈ � we have u ≤ h ≤ Mh̃. So it follows from (3.7) that

0 ≤ f (·u) ≤ qu + f (·, 0). (3.8)

Let T be the operator defined on � by

Tu = h – Vλq(λqh) + λVλq
(
qu – f (, u)

)
.



Alsaedi et al. Boundary Value Problems         (2023) 2023:45 Page 16 of 35

We will prove that � is invariant under T and T has a fixed point in �, which is a solution
of the integral equation (3.1).

For each u ∈ �, we have

Tu = h – λVλq(qh) + λVλq
(
qu – f (·, u)

)

≤ h – λVλq(qh) + λVλq(qu)

≤ h.

Using Proposition 2.6, hypothesis (H1), and (1.8) we get

Tu = h – Vλq(λqh) – λVλq
(
f (·, 0)

)
+ λVλq

(
qu + f (·, 0) – f (·, u)

)

≥ e–λαq h – λVλq
(
f (·, 0)

)

≥ e–λαq h – λV
(
f (·, 0)

)

≥ e–λαq h – λ
V (f (·, 0))

h
h

≥ e–λαq h – λ sup
x∈Rd

+

[
Vf (·, 0)(x)

h(x)

]

h

≥ e–λαq h –
λ

inf
x∈Rd

+
[ h(x)

Vf (·,0)(x) ]
h

≥ exp(–λαq)
[

1 –
θ (λ)
σ0

]

h.

Consequently, T� ⊂ �.
Next, we prove that T is a nondecreasing operator on �. For this aim, we consider u, v ∈

� such that u ≤ v. Then, using hypothesis (H2), we get

Tu – Tv = λVλq
(
qu – f (·, u) – qv + f (·, v)

)

= λVλq
(
f (·, v) – f (·, u) – q(v – u)

) ≤ 0.

Next, we consider the sequence (un)n≥0 defined by

u0 = h – λVλq(qh) – λVλq
(
f (·, 0)

)
and un+1 = Tun for n ≥ 0.

Using the monotonicity of T , we obtain

u0 ≤ u1 ≤ · · · ≤ un ≤ un+1 ≤ h.

It follows from (3.7) and the dominated convergence theorem that the sequence (un)n≥0

converges to a function u ∈ � satisfying Tu = u, or equivalently

u = h – Vλq(λqh) + λVλq
(
qu – f (·, u)

)
.
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This implies that

(
I – Vλq(λq·))u =

(
I – Vλq(λq·))h – Vλq

(
λf (·, u)

)
.

Applying the operator (I + V (λq·)) on the last equation, we deduce by (1.6) and (1.7) that
u is a solution of the integral equation (3.1). Hence it follows from Lemma 3.4 that u is a
continuous weak solution of (1.2). �

Example 3.1 Let α ≥ 1 and β ,γ , δ ∈R such that

β –
(
1 – sgn(a)

)
(α + γ – 1) –

(
1 – sgn(b)

)
min(0,γ )

– sgn(a) sgn(b) min(0,α + γ – 1) < 2 < δ – γ – sgn(b)(α – 1),

where

sgn(r) =

⎧
⎨

⎩

1 if r > 0,

0 if r = 0.

Define f (x, t) = 1
xβ

d (|x|+1)δ–β
(xd + t)γ tα for (x, t) ∈ R

d
+ × [0,∞). Then f satisfies hypotheses

(H1)–(H3). Indeed, since f (x, 0) = 0, then (H1) and (H3) are satisfied with σ0 = ∞. To prove
(H2), we consider for every M > 0 and 0 ≤ s ≤ t ≤ M. It follows by the mean value theorem
that there exists η ∈ [s, t] such that

f (x, t̃h(x)) – f (x, s̃h(x))
(t – s)̃h(x)

=
1

xβ

d (|x| + 1)δ–β

(
(xd + t̃h(x))γ (t̃h(x))α – (xd + s̃h(x))γ (s̃h(x))α

(t – s)̃h(x)

)

=
1

xβ

d (1 + |x|)δ–β

(
γ
(
xd + η̃h(x)

)γ –1(
η̃h(x)

)α + α
(
xd + η̃h(x)

)γ (
η̃h(x)

)α–1). (3.9)

We will discuss two cases as follows.
Case 1. a = 0. Since a + b > 0, we obtain b > 0, and so h̃(x) = bθ (x) = bxd . Since α – 1 ≥ 0,

γ
(
xd + ηbθ (x)

)γ –1(
ηbθ (x)

)α + α
(
xd + ηbθ (x)

)γ (
ηbθ (x)

)α–1 ≤ c(xd)α+γ –1.

So, we deduce by (3.9) that

f (x, t̃h(x)) – f (x, s̃h(x))
(t – s)̃h(x)

≤ 1
xβ–(α+γ –1)

d (1 + |x|)δ–β
.

We conclude by Example 2.1 that f satisfies (H2) if β – (α + γ – 1) < 2 < δ – (α + γ – 1).
Case 2. a > 0. Since b ≥ 0, we discuss the following subcases.
Subcase 1. b = 0. So h̃ = a. Hence, if γ ≥ 0, then we have

γ (xd + ηa)γ –1(ηa)α + α(xd + ηa)γ (ηa)α–1 ≤ c(xd + ηa)γ (ηa)α–1
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≤ c(xd + 1)γ

≤ c
(
1 + |x|)γ

and if γ < 0, then we have

γ (xd + ηa)γ –1(ηa)α + α(xd + ηa)γ (ηa)α–1 ≤ (ηa)α–1(xd + ηa)γ –1((α + γ )ηa + αxd
)

≤ c(ηa)α–1(xd + ηa)γ

≤ cxγ

d .

Then by (3.9) we obtain

f (x, t̃h(x)) – f (x, s̃h(x))
(t – s)̃h(x)

≤ 1
xβ–min(0,γ )

d (1 + |x|)δ–β–max(0,γ )
.

We conclude by Example 2.1 that f satisfies (H2) if β – min(0,γ ) < 2 < δ – γ .
Subcase 2. b > 0. So h̃(x) = a + bxd . Hence if γ < 1 – α, then we have

γ
(
xd + η̃h(x)

)γ –1(
η̃h(x)

)α + α
(
xd + η̃h(x)

)γ (
η̃h(x)

)α–1

≤ (
xd + η̃h(x)

)α–1(xd + η̃h(x)
)γ –1((α + γ )η̃h(x) + αxd

)

≤ α(xd + ηa + ηbxd)α+γ –1

≤ αxα+β–1
d ,

and if 1 – α ≤ γ , then we have

γ
(
xd + η̃h(x)

)γ –1(
η̃h(x)

)α + α
(
xd + η̃h(x)

)γ (
η̃h(x)

)α–1

≤ (
xd + η̃h(x)

)γ –1(
η̃h(x)

)α–1((α + γ )η̃h(x) + αxd
)

≤ max(α,α + γ )
(
xd + η̃h(x)

)γ +α–1

≤ c(1 + xd)γ +α–1

≤ c
(
1 + |x|)γ +α–1.

Then by (3.9) we obtain

f (x, t̃h(x)) – f (x, s̃h(x))
(t – s)̃h(x)

≤ 1
xβ–min(0,γ +α–1)

d (1 + |x|)δ–β–max(0,γ +α–1)
.

We conclude by Example 2.1 that f satisfies (H2) if β – min(0,γ +α – 1) < 2 < δ – (α +γ – 1).

Example 3.2 Let a ≥ 0, b ≥ 0 with a + b > 0 and δ,β ,γ ∈R satisfying

β < 1 + γ – sgn(a) max(γ – 1, 0) and δ > γ + 1 +
(
1 – sgn(b)

)
d.
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Let f be the positive function defined on R
d
+ × [0,∞) by

f (x, t) =
1

xβ

d (1 + |x|)δ–β
(xd + t)γ .

Then f satisfies hypotheses (H1)–(H3). Indeed,

f (x, 0)
h̃(x)

=
1

xβ–γ

d (1 + |x|)δ–β

1
a + bxd

≤ c
1

xβ–γ +sgn(b)
d (1 + |x|)δ–β

.

Since β – γ + sgn(b) ≤ β – γ + 1 + sgn(a) max(γ – 1, 0) < 2 and δ – γ + sgn(b) > 1 + sgn(b) +
(1 – sgn(b))d ≥ 2, we conclude by Example 2.1 that f satisfies (H1). Now we verify (H3).
Using (1.4) and the fact that a + b > 0, we obtain

h(x) ≥ c
xd

(1 + |x|)(1–sgn(b))d .

• If b = 0. Since β – γ ≤ β – γ + sgn(a) max(0,γ – 1) < 1 and δ – γ > 1 + d, then

f (x, 0) =
1

xβ–γ

d (1 + |x|)δ–β
belongs to K∞(

R
d
+
)
,

and it was proved in [4, 5] that

V
(
f (·, 0)

)
(x) ≤ C

xd

(1 + |x|)d .

So

h(x)
V (f (·, 0))(x)

≥ 1
C

h(x)
(1 + |x|)d

xd
≥ c

C
> 0.

• If b > 0. Using the fact that β –γ +1 ≤ β –γ +1+sgn(a) max(0,γ –1) < 2 and δ –γ +1 > 2,
we conclude by Example 2.1 that the function p(x) = f (x,0)

xd
belongs to K∞(Rd

+), and using
assertion (2) of Proposition 2.13, we obtain

V
(
f (·, 0)

)
(x) ≤ αpxd.

Hence

h(x)
V (f (·, 0))(x)

≥ 1
αp

h(x)
xd

≥ b
αp

> 0.

This proves that σ0 > 0 and (H3) is satisfied.
Finally, we will verify (H2). Let M > 0 and 0 ≤ s ≤ t ≤ M. By the mean value theorem, we

deduce that there exists η ∈ [s, t] such that

f (x, t̃h(x)) – f (x, s̃h(x))
(t – s)̃h(x)

=
1

xβ

d (1 + |x|)δ–β

(
(xd + t̃h(x))γ – (xd + s̃h(x))γ

(t – s)̃h(x)

)
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=
γ (xd + η̃h(x))γ –1

xβ

d (1 + |x|)δ–β
. (3.10)

So we will distinguish the following cases.
Case 1.If γ ≤ 0, then

f (x, t̃h(x)) – f (x, s̃h(x))
(t – s)̃h(x)

≤ 0,

and we can take qM = 0. So (H2) is satisfied.
Case 2. If 0 < γ ≤ 1, then

f (x, t̃h(x)) – f (x, s̃h(x))
(t – s)̃h(x)

≤ c
xγ –1

d

xβ

d (1 + |x|)δ–β
=

c
xβ–γ +1

d (1 + |x|)δ–β
.

Since β – γ < 1 and δ – γ + 1 > 2 + (1 – sgn(b))d ≥ 2, we conclude by Example 2.1 that (H2)
is satisfied.

Case 3. If γ > 1, we consider the following subcases.
• If a = 0. Then b > 0, h̃(x) = bxd , and

f (x, t̃h(x)) – f (x, s̃h(x))
(t – s)̃h(x)

≤ γ (xd + ηbxd)γ –1

xβ

d (1 + |x|)δ–β

≤ c
xγ –1

d

xβ

d (1 + |x|)δ–β

≤ c
xβ–γ +1

d (1 + |x|)δ–β
.

Since β – γ < 1 and δ – γ + 1 > 2 + (1 – sgn(b))d ≥ 2, we conclude by Example 2.1 that (H2)
is satisfied.

• If a > 0. Then h̃(x) = a + bxd and

f (x, t̃h(x)) – f (x, s̃h(x))
(t – s)̃h(x)

≤ c
(1 + xd)γ –1

xβ

d (1 + |x|)δ–β
≤ c(1 + |x|)γ –1

xβ

d (1 + |x|)δ–β
=

c
xβ

d (1 + |x|)δ–β–γ +1
.

Since β < 1 + γ – max(γ – 1, 0) = 2 and δ – γ + 1 > 2 + (1 – sgn(b))d ≥ 2, we conclude by
Example 2.1 that (H2) is satisfied.

4 Existence of positive solutions for some semilinear elliptic systems
In this section we deal with the existence of positive weak solutions that are continuous
in Rd

+ for the semilinear elliptic system (1.1). We adopt the following notations: h1(x) :=
a1Hφ1(x) + b1xd , h̃1(x) := a1 + b1xd , h2(x) := a2Hφ2(x) + b2xd , and h̃2(x) := a2 + b2xd for
x ∈R

d
+. We assume that the functions f , g satisfy the following hypotheses:

(H4) The map (u, v) −→ (f (x, u, v), g(x, u, v)) is continuous on [0,∞) × [0,∞) for every
fixed x ∈ R

d
+, the map u −→ f (x, u, v) is nondecreasing for every fixed (x, v) ∈R

d
+ × [0,∞),

and the map v −→ g(x, u, v) is nondecreasing for every fixed (x, u) ∈R
d
+ × [0,∞).

(H5) The functions f (·,0,0)
h̃1

and g(·,0,0)
h̃2

are in K∞(Rd
+).
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(H6) For every M > 0, there exist a nonnegative function p = pM ∈ K∞(D) and two Borel
measurable functions gM, fM : Rd

+ × [0,∞) −→ [0,∞) continuous with respect to the sec-
ond variable such that for every 0 ≤ t1 ≤ t2 ≤ M, 0 ≤ s1 ≤ s2 ≤ m, and x ∈R

d
+, we have

∣
∣f

(
x, t2̃h1(x), s2̃h2(x)

)
– f

(
x, t1̃h1(x), s1̃h2(x)

)∣
∣

≤ p(x)̃h1(x)(t2 – t1) +
∣
∣gM(x, s2) – gM(x, s1)

∣
∣

and

∣
∣g

(
x, t2̃h1(x), s2̃h2(x)

)
– g

(
x, t1̃h1(x), s1̃h2(x)

)∣
∣

≤ p(x)̃h2(x)(s2 – s1) +
∣
∣fM(x, t2) – fM(x, t1)

∣
∣.

Moreover, the functions sups∈[0,M]
gM(·,s)

h̃1
and supt∈[0,M]

fM(·,t)
h̃2

belong to K∞(Rd
+).

(H7) We have

σ1 = inf
x∈Rd

+

h1(x)
V�1(x)

> 0 and σ2 = inf
x∈Rd

+

h2(x)
V�2(x)

> 0,

where

�1(x) = f (x, 0, 0) + max
0≤s≤M

gM(x, s) and �2(x) = g(x, 0, 0) + max
0≤t≤M

fM(x, t),

with gM , fM given in hypothesis (H6) for M = max(1,‖Hφ1‖∞,‖Hφ2‖∞).
Our third main result in this paper is the following.

Theorem 4.1 Assume that f , g satisfy (H4)–(H7). Then there exist λ0 > 0 and μ0 > 0 such
that for each λ ∈ [0,λ0) and μ ∈ [0,μ0) system (1.1) has a positive continuous solution
satisfying

cλh1 ≤ u ≤ h1 and cμh2 ≤ v ≤ h2,

where cλ, cμ ∈ [0, 1).

Proof Proof of Theorem 4.1 Let M = max(1,‖Hφ1‖∞,‖Hφ2‖∞), then we have h1 ≤ Mh̃1

and h2 ≤ Mh̃2. From (H6), there exist a nonnegative function p ∈ K∞(Rd
+) and two Borel

measurable functions gM, fM : Rd
+ × [0,∞) −→ [0,∞) continuous with respect to the sec-

ond variable such that for any 0 ≤ t1 ≤ t2 ≤ M, 0 ≤ s1 ≤ s2 ≤ M, and x ∈R
d
+ we have

∣
∣f

(
x, t2̃h1(x), s2̃h2(x)

)
– f

(
x, t1̃h1(x), s1̃h2(x)

)∣
∣ (4.1)

≤ p(x)̃h1(x)(t2 – t1) +
∣
∣gM(x, s2) – gM(x, s1)

∣
∣

and

∣
∣g

(
x, t2̃h1(x), s2̃h2(x)

)
– g

(
x, t1̃h1(x), s1̃h2(x)

)∣
∣

≤ p(x)̃h2(x)(s2 – s1) +
∣
∣fM(x, t2) – fM(x, t1)

∣
∣.
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Define θ (λ) = λ exp(λαp). Then θ is an increasing bijection from [0,∞) to itself. Let λ0 =
θ–1(σ1) > 0 and μ0 = θ–1(σ2) > 0, with convention that θ–1(∞) = ∞.

For λ ∈ [0,λ0) and μ ∈ [0,μ0), we consider the nonempty closed bounded convex set
given by


 =
{

(φ,ψ) ∈ C0
(
Rd

+
) × C0

(
Rd

+
)
, 0 ≤ φ ≤

(

1 –
(

1 –
θ (λ)
σ1

)

exp(–λαp)
)

h1

h̃1
and

0 ≤ ψ ≤
(

1 –
(

1 –
θ (μ)
σ2

)

exp(–μαp)
)

h2

h̃2

}

.

For (φ,ψ) ∈ 
, we consider the following problems:

⎧
⎪⎪⎨

⎪⎪⎩

�y = λf (·, y, h2 – h̃2ψ) in R
d
+ (in the distributional sense),

y = a1φ1 in ∂Rd
+,

lim|x|→∞ y(x)
xd

= b1,

(4.2)

and

⎧
⎪⎪⎨

⎪⎪⎩

�z = μg(·, h1 – h̃1φ, z) in R
d
+ (in the distributional sense),

z = a2φ2 in ∂Rd
+,

limxd→∞ z(x)
xd

= b2.

(4.3)

Next, we claim that the previous problem (4.2) has a unique positive continuous weak
solution. To do this, we start by proving that the function (x, y) �−→ f (x, y, h2 – h̃2ψ) verifies
(H1)–(H3). Indeed, using the fact that 0 ≤ (1 – θ (μ)

σ2
) exp(–μαp) h2(x)

h̃2(x) ≤ h2(x)
h̃2(x) –ψ(x) ≤ h2(x)

h̃2(x) ≤
M, we obtain by taking t1 = t2 = 0, s2 = h2

h̃2
– ψ , and s1 = 0 in inequality (4.1) that

f (x, 0, (h2 – h̃2ψ)(x))
h̃1(x)

≤ f (x, 0, 0)
h̃1(x)

+
|gM(x, h2(x)

h̃2(x) – ψ(x)) – gM(x, 0)|
h̃1(x)

≤ f (x, 0, 0)
h̃1(x)

+ max
0≤s≤M

gM(x, s)
h̃1(x)

.

Since the functions f (·,0,0)
h̃1

and max0≤s≤M
gM(·,s)

h̃1
are in K∞(Rd

+), then f (·,0,h2–̃h2ψ)
h̃1

∈ K∞(Rd
+).

By taking s1 = s2 = h2
h̃2

– ψ in hypothesis (H6), it is easy to see that (x, y) �−→ f (x, y, h2 –
h̃2ψ) verifies (H2). Using the previous inequality, we deduce that

σ ′
1 = inf

x∈Rd
+

h1(x)
V (f (·, 0, h2 – h̃2ψ))(x)

≥ inf
x∈Rd

+

h1(x)
V�1(x)

= σ1 > 0.

Then, by Proposition 3.5 and Theorem 3.6, we deduce that (4.2) has a unique positive
continuous weak solution y satisfying

y(x) = h1(x) – λV
(
f (·, y, h2 – h̃2ψ)

)
(x), (4.4)

(

1 –
θ (λ)
σ1

)

exp(–λαp)h1 ≤
(

1 –
θ (λ)
σ ′

1

)

exp(–λαp)h1 ≤ y ≤ h1 ≤ Mh̃1,
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and

f (x, y(x), (h2 – h̃2ψ)(x))
h̃1(x)

≤ f (x, Mh̃1(x), (h2 – h̃2ψ)(x))
h̃1(x)

≤ f (x, 0, 0)
h̃1(x)

+ Mp(x) + max
0≤s≤M

gM(x, s)
h̃1(x)

.

Similarly, we prove that (4.3) has a unique positive continuous solution z satisfying

z(x) = h2(x) – μV
(
g(·, h1 – h̃1φ, z)

)
(x), (4.5)

(

1 –
θ (μ)
σ2

)

exp(–μαp)h2 ≤ z ≤ h2 ≤ Mh̃2,

and

g(x, (h1 – h̃1φ)(x), z(x))
h̃2(x)

≤ g(x, (h1 – h̃1φ)(x), Mh̃2(x))
h̃2(x)

≤ g(x, 0, 0)
h̃2(x)

+ Mp(x) + max
0≤t≤M

fM(x, t)
h̃2(x)

.

Let T be the operator defined on 
 by

T(φ,ψ) =
(

h1 – y
h̃1

,
h2 – z

h̃2

)

.

Using the fact that f (·,0,0)
h̃1

, g(·,0,0)
h̃2

, p, max0≤s≤M
gM(·,s)

h̃1
, and max0≤t≤M

fM(·,t)
h̃2

are in K∞(Rd
+), we

deduce by assertion (3) of Proposition 2.7 that

T
 =
{(

λ

h̃1
V

(
f (·, y, h2 – h̃2ψ)

)
,
μ

h̃2
V

(
g(·, h1 – h̃1φ, z)

)
)

; (φ,ψ) ∈ 


}

is relatively compact in C0(Rd
+) × C0(Rd

+). Next, we will prove the continuity of T with re-
spect to the norm ‖.‖ defined on 
 by ‖(φ,ψ)‖ = ‖φ‖∞ +‖ψ‖∞. Let (φn,ψn) be a sequence
in 
 that converges to (φ,ψ) ∈ 
 with respect to ‖.‖, and let yn, zn, y, z ∈ 
 such that

T(φn,ψn) =
(

h1 – yn

h̃1
,

h2 – zn

h̃2

)

and T(φ,ψ) =
(

h1 – y
h̃1

,
h2 – z

h̃2

)

.

Then we have

∣
∣T(φn,ψn) – T(φ,ψ)

∣
∣ =

∣
∣
∣
∣
y – yn

h̃1

∣
∣
∣
∣∞

+
∣
∣
∣
∣
z – zn

h̃2

∣
∣
∣
∣∞

.

Using equation (4.4), we obtain

y – yn = λ(V (f (·, yn, h2 – h̃2ψn) – V
(
f (·, y, h2 – h̃2ψ)

)
.

So

y – yn + λV
(
f (·, y, h2 – h̃2ψ) – f (·, yn, h2 – h̃2ψ)

)
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= λV
(
f (·, yn, h2 – h̃2ψn) – f (·, yn, h2 – h̃2ψ)

)
.

Thus the last equation can be written

y – yn + V
(
λkn(y – yn)

)
= λV

(
f (·, yn, h2 – h̃2ψn) – f (·, yn, h2 – h̃2ψ)

)
, (4.6)

where

kn(x) =

⎧
⎨

⎩

f (x,y(x),(h2–̃h2ψ)(x))–f (x,yn(x),(h2–̃h2ψ)(x))
y(x)–yn(x) if y(x) �= yn(x),

0 if y(x) = yn(x).

From hypotheses (H4) and (H6), we deduce that 0 ≤ kn(x) ≤ h̃1(x)p(x) for every n ∈N and
x ∈ R

d
+. Using (H6), assertion (2) of Proposition 2.5, and the fact that y ≤ Mh̃1, yn ≤ Mh̃1,

we obtain

V
(
λkn|y – yn|

) ≤ λV
(∣
∣f (·, y, h2 – h̃2ψ) – f (x, yn, h2 – h̃2ψ)

∣
∣
)

≤ λV
(
p|y – yn|

)

≤ 2MλV (p̃h1)

≤ 2Mλαph̃1

< ∞.

Applying (I – Vλkn (λkn·)) on both sides of equation (4.6), we deduce by (1.6) and (1.7) that

y – yn = λVλkn

(
f (·, yn, h2 – h̃2ψn) – f (·, yn, h2 – h̃2ψ)

)
. (4.7)

On the other hand, we have by hypothesis (H6)

∣
∣f (·, yn, h2 – h̃2ψn) – f (·, yn, h2 – h̃2ψ)

∣
∣(x) ≤ max

0≤s≤M
gM(x, s)

= a1 max
0≤s≤M

gM(x, s)
h̃1

+ b1xd max
0≤s≤M

gM(x, s)
h̃1

.

So, again from hypotheses (H6), (H4) and the assertions of Propositions 2.5 and 2.7, we
deduce by the dominated convergence theorem that for each x ∈R

d
+,

lim
n−→∞λV

(
f (·, yn, h2 – h̃2ψn) – f (·, yn, h2 – h̃2ψ)

)
(x) = 0,

which implies by (1.8) and (4.7) that for x ∈ R
d
+, (yn(x))n converges to y(x) as n tends to

∞. Similarly, we prove that for x ∈ R
d
+, (zn(x))n converges to z(x) as n tends to ∞. So

(T(φn,ψn))n converges to T(φ,ψ) as n tends to ∞. Now, using the fact that T
 is relatively
compact in C0(Rd

+)×C0(Rd
+), the pointwise convergence implies the uniform convergence.

That is,

∥
∥T(φn,ψn) – T(φ,ψ)

∥
∥ =

∣
∣
∣
∣
y – yn

h̃1

∣
∣
∣
∣∞

+
∣
∣
∣
∣
z – zn

h̃2

∣
∣
∣
∣∞

−→ 0
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as n tends to ∞. Applying the Schauder fixed point theorem (see [16]), we deduce that
there exists (φ,ψ) ∈ 
 such that T(φ,ψ) = (φ,ψ), which gives

(φ,ψ) =
(

h1 – y
h̃1

,
h2 – z

h̃2

)

=
(

λV (f (·, h1 – h̃1φ, h2 – h̃2ψ))
h̃1

,
μV (g(·, h1 – h̃1φ, h2 – h̃2ψ))

h̃2

)

.

Put u = h1 – h̃1φ and v = h2 – h̃2ψ , then u, v are solutions in R
d
+ of the integral equations

u = h1 – λV
(
f (·, u, v)

)
and v = h2 – μV

(
g(·, u, v)

)
.

Since φ,ψ ∈ C0(Rd
+), then u, v ∈ C(Rd

+). From (H6), we have

f (·, u, v) ≤ f (·, 0, 0) + pu + max
0≤s≤M

gM(x, s)

≤ f (·, 0, 0) + Mp̃h1 + max
0≤s≤M

gM(x, s).

Since f (·,0,0)
h̃1

, p, max0≤s≤M
gM(·,s)

h̃1
∈ K∞(Rd

+), then f (·,u,v)
h̃1

∈ K∞(Rd
+). Moreover, we have by

Proposition 2.5 that

0 ≤ V
(
f (·, u, v)

)
(x) ≤ a1V

(
f (·, u, v)

h̃1

)

(x) + b1V
(

f (·, u, v)
h̃1

ϑ

)

(x)

≤ a1V
(

f (·, u, v)
h̃1

)

(x) + cα f (·,u,v)
h̃1

ϑ(x),

where ϑ(x) = xd . Using this inequality, the fact that f (·,u,v)
h̃1

∈ K∞(Rd
+), we deduce from as-

sertion (1) of Proposition 2.7 that

lim
x−→ξ∈∂Rd

+

V
(
f (·, u, v)

)
(x) = 0 for d ≥ 2.

On the other hand, we have

V (f (·, u, v))
ϑ

≤ a1
V ( f (·,u,v)

h̃1
)

ϑ
+ b1

V ( f (·,u,v)
h̃1

ϑ)

ϑ
.

Since f (·,u,v)
h̃1

∈ K∞(Rd
+), we obtain by using assertion (2) of Proposition 2.7 that

lim
xd−→∞

V ( f (·,u,v)
h̃1

ϑ)(x)

ϑ(x)
= 0.

Using this fact, the fact V ( f (·,u,v)
h̃1

) is bounded in Rd
+, we obtain from the last inequality that

lim
xd−→∞

V ( f (·,u,v)
h̃1

)(x)

xd
= 0.
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Similarly, we prove that

lim
x−→ξ∈∂Rd

+

V
(
g(·, u, v)

)
(x) = 0 and lim

xd−→∞
V (g(·, u, v))(x)

xd
= 0.

So (u, v) is a positive continuous solution of system (1.1) in the sense of distributions sat-
isfying

(

1 –
θ (λ)
σ1

)

exp(–λαp)h1 ≤ u ≤ h1 and

(

1 –
θ (μ)
σ2

)

exp(–μαp)h2 ≤ v ≤ h2. �

Example 4.1 Let β1, δ1,σ1,γ1,η1 ∈R such that γ1 ≥ 0 and γ1 + σ1 ≥ 0. Define the nonneg-
ative function f on R

d
+ × [0,∞) × [0,∞) by

f (x, t, s) =
1

xβ1
d (1 + |x|)δ1–β1

(xd + t + s)σ1 (xd + t)γ1 (xd + s)η1 .

Consider the function H(t) = (xd + t + s)σ1 (xd + t)γ1 for (x, s) ∈R
d
+ × [0,∞). We note H ′(t) =

(xd + t + s)σ1–1(xd + t)γ1–1[(γ1 + σ1)(t + xd) + γ1s] ≥ 0 for all (x, t, s) ∈R
d
+ × [0,∞) × [0,∞) if

and only if γ1 + σ1 ≥ 0 and γ1 ≥ 0. Hence (H4) is satisfied.
Assume that the following conditions are satisfied:

β1 – η1 –
(
1 – sgn(a1)

)
γ1 –

(
1 – sgn(a1 + a2)

)
σ1 + sgn(a2)

+ max
[
0, – sgn(a1 + a2)σ1, sgn(a2)(η1 – 1), sgn(a2)(η1 – σ1)

]
< 1 and (4.8)

δ1 – η1 – γ1 – σ1 > sgn(a1) + sgn(b1) +
(
1 – sgn(b1)

)
d. (4.9)

Then f satisfies hypotheses (H5), (H6), and (H7). Indeed, using the fact that 1
h̃1(x) ≤ 1

a1
if

a1 > 0 and 1
h̃1(x) = 1

b1xd
if a1 = 0, we obtain

1
h̃1(x)

≤ c
x(1–sgn(a1))

d

. (4.10)

Hence

f (x, 0, 0)
h̃1(x)

≤ c
xβ1–σ1–γ1–η1+(1–sgn(a1))

d (1 + |x|)δ1–β1
.

Since γ1 ≥ 0 and (1 – sgn(a1)) ≤ 1, we obtain by conditions (4.8) and (4.9) that

β1 – σ1 – γ1 – η1 +
(
1 – sgn(a1)

)

≤ β1 – γ1 – η1 –
(
1 – sgn(a1 + a2)

)
σ1 – sgn(a1 + a2)σ1 +

(
1 – sgn(a1)

)

< β1 – (1 – sgn(a1)γ1 – η1 –
(
1 – sgn(a1 + a2)

)
σ1

+ max
[
0, – sgn(a1 + a2)σ1, sgn(a2)(η1 – 1), sgn(a2)(η1 – σ1)

]
+ 1

< 2
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and

δ1 – σ1 – γ1 – η1 +
(
1 – sgn(a1)

)
> 1 + sgn(b1) +

(
1 – sgn(b1)

)
d ≥ 2.

From Example 2.1, we deduce that f (·,0,0)
h̃1

∈ K∞(Rd
+) and (H5) is satisfied.

To verify (H6) and (H7), we consider M > 0, 0 ≤ t1 ≤ t2 ≤ M, and 0 ≤ s1 ≤ s2 ≤ M. Then
there exist τ1, τ3 ∈ (t1, t2) and τ2, τ4 ∈ (s1, s2) such that

f
(
x, t2̃h1(x), s2̃h2(x)

)
– f

(
x, t1̃h1(x), s1̃h2(x)

)

=
1

xβ1
d (1 + |x|)δ1–β1

[
(t2 – t1)̃h1(x)A + (s2 – s1)̃h2(x)B

]
,

where

A := σ1
(
xd + τ1̃h1(x) + s2̃h2(x)

)σ1–1 (xd + t2̃h1(x))γ1

(xd + s2̃h2(x))–η1

+ γ1
(
xd + τ3̃h1(x)

)γ1–1 (xd + t1̃h1(x) + s1̃h2(x))σ1

(xd + s2̃h2(x))–η1

and

B := σ1
(
xd + t1̃h1(x) + τ2̃h2(x)

)σ1–1 (xd + t2̃h1(x))γ1

(xd + s2̃h2(x))–η1

+ η1
(
xd + τ4̃h2(x)

)η1–1(xd + t1̃h1(x)
)γ1(xd + t1̃h1(x) + s1̃h2(x)

)σ1 .

Next, we will dominate |A| and |B|. For this aim, we distinguish the following cases.
Case 1. b1 = 0. In this case, we have a1 > 0, h1 = a1Hφ1, h̃1 = a1, 1

h̃1(x) ≤ c, and condition
(4.9) writes as

δ1 – γ1 – η1 – σ1 > d + 1. (4.11)

This case will be divided into two subcases.
Subcase 1. a2 = 0. In this case, we have b2 > 0, h2 = h̃2 = b2xd , and condition (4.8) becomes

β1 – η1 + max(0, –σ1) < 1. (4.12)

By discussing six sub-subcases (0 ≤ γ1 < 1 or γ1 ≥ 1) and(σ1 < 0 or 0 ≤ σ1 < 1 or σ1 ≥ 1)
and the fact that xσ1

d (1 + |x|)γ1 + xγ1
d (1 + |x|)σ1 ≤ 2xmin(γ1,σ1)

d (1 + |x|)max(γ1,σ1), we obtain

∣
∣f

(
x, t2̃h1(x), s2̃h2(x)

)
– f

(
x, t1̃h1(x), s1̃h2(x)

)∣
∣

≤ pM(x)(t2 – t1)̃h1(x) +
∣
∣gM(x, s2) – gM(x, s1)

∣
∣,

where

pM(x) :=
c

xβ1–η1+max(1–γ1,1–σ1,0)
d (1 + |x|)δ1–β1–1+min(1–γ1,1–σ1,2–γ1–σ1)
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and

gM(x, s) :=
cs̃h2(x)

xβ1–η1+1+max(–σ1,0)
d (1 + |x|)δ1–β1–γ1+min(–σ1,0)

.

Since γ1 ≥ 0, we deduce by (4.12) that

β1 – η1 + max(1 – γ1, 1 – σ1, 0) ≤ β1 – η1 + max(1 – σ1, 1)

= β1 – η1 + 1 + max(–σ1, 0) < 2.

On the other hand, using the fact that max(a, b, 0) + min(a, b, a + b) = a + b, we obtain by
using (4.11) that

δ1 – η1 – 1 + max(1 – γ1, 1 – σ1, 0) + min(1 – γ1, 1 – σ1, 2 – γ1 – σ1)

= δ1 – η1 – γ1 – σ1 + 1 > 2 + d > 2.

Hence the function pM ∈ K∞(Rd
+). Now, since h̃2(x) = b2xd and 1

h̃1(x) ≤ c, we obtain

max
0≤s≤M

gM(x, s)
h̃1(x)

≤ cM
xβ1–η1+max(–σ1,0)

d (1 + |x|)δ1–β1–γ1+min(–σ1,0)
.

Using condition (4.12), we obtain

β1 – η1 + max(–σ1, 0) < β1 – η1 + 1 + max(–σ1, 0) < 2.

This together with the fact that

δ1 – η1 – γ1 + min(–σ1, 0) + max(–σ1, 0) = δ1 – η1 – γ1 – σ1 > d ≥ 2

implies that the function max0≤s≤M
gM(x,s)
h̃1(x) ∈ K∞(Rd

+). Hence f satisfies (H6). Now, we have

�1(x) = f (x, 0, 0) + max
0≤s≤M

gM(x, s)

≤ 1
xβ1–η1–σ1–γ1

d (1 + |x|)δ1–β1
+

c
xβ1–η1+max(–σ1,0)

d (1 + |x|)δ1–β1–γ1+min(–σ1,0)
.

Since σ1 + γ1 ≥ 0, we deduce by conditions (4.11) and (4.12) that

β1 – η1 – σ1 – γ1 < β1 – η1 < β1 – η1 + max(–σ1, 0) < 1 and

δ1 – η1 – σ1 – γ1 > d + 1.

Hence from [4, 5] we obtain

V (�1)(x) ≤ c
xd

(1 + |x|)d .

This together with (1.4) implies that f satisfies (H7).
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Subcase 2. a2 > 0. In this case, we have h2(x) = a2Hφ2(x) + b2xd and h̃2 = a2 + b2xd , and
condition (4.8) becomes

β1 – η1 + max[0, –σ1,η1 – 1,η1 – σ1] < 0. (4.13)

By discussing the eighteen sub-subcases(0 ≤ γ1 < 1 or γ1 ≥ 1),(η1 < 0 or 0 ≤ η1 < 1 or
η1 ≥ 1) and(σ1 < 0 or 0 ≤ σ1 < 1 or σ1 ≥ 1), we obtain

∣
∣f

(
x, t2̃h1(x), s2̃h2(x)

)
– f

(
x, t1̃h1(x), s1̃h2(x)

)∣
∣

≤ pM(x)(t2 – t1)̃h1(x) +
∣
∣gM(x, s2) – gM(x, s1)

∣
∣,

where

pM(x) :=
c

xβ1+max(0,–η1)+max(0,1–γ1,1–σ1)
d (1 + |x|)δ1–β1+min(0,–η1)+min(1–γ1–σ1,–γ1,–σ1)

and

gM(x, s) :=
cs̃h2(x)

xβ1+max(1–η1,1–σ1,1–η1–σ1,0)
d (1 + |x|)δ1–β1–γ1+min(1–η1–σ1,–η1,–σ1,0)

.

Since γ1 ≥ 0, we deduce by conditions (4.11) and (4.13) that

β1 + max(0, –η1) + max(0, 1 – γ1, 1 – σ1)

≤ β1 + max(0, –η1) + max(1, 1 – σ1)

≤ β1 + max(0, –η1, –σ1, –σ1 – η1) + 1

≤ β1 – η1 + max(η1, 0, –σ1 + η1, –σ1) + 1

≤ β1 – η1 + max(η1, 1, 1 – σ1 + η1, 1 – σ1) + 1

≤ β1 – η1 + max(η1 – 1, 0, –σ1,η1 – σ1) + 2 < 2

and

δ1 – η1 + min(1 – γ1 – σ1, –γ1, –σ1) + max(0, 1 – γ1, 1 – σ1)

= δ1 – η1 + 1 – γ1 – σ1 + min(0,γ1 – 1,σ1 – 1) + max(0, 1 – γ1, 1 – σ1)

= δ1 – η1 + 1 – γ1 – σ1 > 2 + d > 2.

Hence pM belongs to K∞(Rd
+). Now, since h̃2(x) ≤ c(1 + |x|)sgn(b2), we get

max
0≤s≤M

gM(x, s)
h̃1(x)

≤ c
xβ1+max(1–η1,1–σ1,1–η1–σ1,0)

d (1 + |x|)δ1–β1–γ1+min(1–η1–σ1,–η1,–σ1,0)–sgn(b2)
.

Using (4.11) and (4.13), we obtain

β1 + max(1 – η1, 1 – σ1, 1 – η1 – σ1, 0) = β1 – η1 + max(0,η1 – σ1, –σ1,η1 – 1) + 1 < 2
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and

δ1 – γ1 + min(1 – η1 – σ1, –η1, –σ1, 0) – sgn(b2) + max(1 – η1, 1 – σ1, 1 – η1 – σ1, 0)

= δ1 – γ1 – η1 – σ1 + 1 – sgn(b2) + min(0,σ1 – 1,η1 – 1,η1 + σ1 – 1)

+ max(1 – η1, 1 – σ1, 1 – η1 – σ1, 0)

= δ1 – γ1 – η1 – σ1 + 1 – sgn(b2) > 2 – sgn(b2) + d > 2.

This proves that max0≤s≤M
gM(x,s)
h̃1(x) ∈ K∞(Rd

+) and f satisfies (H6). Next, we verify (H7). Let
�1(x) = f (x, 0, 0) + max0≤s≤M gM(x, s). Then

�1(x) ≤ 1
xβ1–σ1–γ1–η1

d (1 + |x|)δ1–β1

+
c

xβ1+max(1–η1,1–σ1,1–η1–σ1,0)
d (1 + |x|)δ1–β1–γ1+min(1–η1–σ1,–η1,–σ1,0)–sgn(b2)

.

Since σ1 + γ1 ≥ 0, then

β1 – σ1 – γ1 – η1 < β1 – η1 ≤ β1 – η1 + max(0, –σ1,η1 – 1,η1 – σ1) < 0,

β1 + max(1 – η1, 1 – σ1, 1 – η1 – σ1, 0) = β1 – η1 + max(1, 1 + η1 – σ1, 1 – σ1,η1)

= β1 – η1 + max(0,η1 – σ1, –σ1,η1 – 1) + 1 < 1

and

δ1 – γ1 + min(1 – η1 – σ1, –η1, –σ1, 0) – sgn(b2) + max(1 – η1, 1 – σ1, 1 – η1 – σ1, 0)

= δ1 – γ1 – η1 – σ1 + 1 – sgn(b2) + min(0,σ1 – 1,η1 – 1,η1 + σ1 – 1)

+ max(1 – η1, 1 – σ1, 1 – η1 – σ1, 0)

= δ1 – γ1 – η1 – σ1 + 1 – sgn(b2) > 2 – sgn(b2) + d

> 1 + d.

As in subcase 1, we obtain from [4, 5] that

V
(
�1(x)

) ≤ c
xd

(1 + |x|)d .

This together with (1.4) implies that f satisfies (H7).
Case 2. b1 > 0. In this case, we have a1 ≥ 0 and condition (4.9) will write as

δ1 – η1 – γ1 – σ1 > 1 + sgn(a1). (4.14)

We will also discuss two subcases.
Subcase 1. a2 = 0. In this case, we have h2(x) = h̃2(x) = b2xd , and condition (4.8) becomes

β1 – η1 – σ1 –
(
1 – sgn(a1)

)
γ1 + 1 + sgn(a1) max[0,σ1] < 2. (4.15)
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By discussing the six sub-subcases(0 ≤ γ1 < 1 or γ1 ≥ 1) and(σ1 < 0 or 0 ≤ σ1 < 1 or σ1 ≥ 1)
and using the fact that xσ1

d (1 + |x|)γ1 + xγ1
d (1 + |x|)σ1 ≤ 2xmin(γ1,σ1)

d (1 + |x|)max(γ1,σ1), we obtain

∣
∣f

(
x, t2̃h1(x), s2̃h2(x)

)
– f

(
x, t1̃h1(x), s1̃h2(x)

)∣
∣

≤ pM(x)(t2 – t1)̃h1(x) +
∣
∣gM(x, s2) – gM(x, s1)

∣
∣,

where

pM(x) =
c

xβ1–η1–γ1–σ1+1+sgn(a1) max(γ1+σ1–1,σ1,γ1)
d (1 + |x|)δ1–β1+sgn(a1) min(1–γ1–σ1,–γ1,–σ1)

and

gM(x, s) =
c̃h2(x)s

xβ1–η1–γ1–σ1+1+sgn(a1)(max(σ1,0)+γ1)
d (1 + |x|)δ1–β1+sgn(a1)(min(0,–σ1)–γ1)

.

Since γ1 ≥ 0, using (4.14) and (4.15), we obtain

β1 – η1 – γ1 – σ1 + 1 + sgn(a1) max(γ1 + σ1 – 1,γ1,σ1)

≤ β1 – η1 – γ1 – σ1 + 1 + sgn(a1) max(γ1 + σ1,γ1)

= β1 – η1 – σ1 + 1 –
(
1 – sgn(a1)

)
γ1 + sgn(a1) max(σ1, 0) < 2

and

δ1 – η1 – γ1 – σ1 + 1 + sgn(a1)
[
max(γ1 + σ1 – 1,γ1,σ1) + min(1 – γ1 – σ1, –γ1, –σ1)

]

= δ1 – η1 – γ1 – σ1 + 1 > 2 + sgn(a1) ≥ 2.

Hence pM belongs to K∞(Rd
+). Now, using (4.10) we get

max
0≤s≤M

gM(x, s)
h̃1(x)

≤ cMh̃2(x)
xβ1–η1–γ1–σ1+1+(1–sgn(a1))+sgn(a1)(max(σ1,0)+γ1)

d (1 + |x|)δ1–β1+sgn(a1)(min(0,–σ1)–γ1)

≤ cM
xβ1–η1–γ1–σ1+(1–sgn(a1))+sgn(a1)(max(σ1,0)+γ1)

d (1 + |x|)δ1–β1+sgn(a1)(min(0,–σ1)–γ1)
.

Using the fact that 0 ≤ 1 – sgn(a1) ≤ 1, we obtain

β1 – η1 – γ1 – σ1 +
(
1 – sgn(a1)

)
+ sgn(a1)

(
max(0,σ1) + γ1

)

≤ β1 – η1 – σ1 + 1 –
(
1 – sgn(a1)

)
γ1 + sgn(a1) max(0,σ1) < 2

and

δ1 – η1 – γ1 – σ1 +
(
1 – sgn(a1)

)
+ sgn(a1)

(
max(0,σ1) + γ1

)

+ sgn(a1)
(
min(0, –σ1) – γ1

)
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= δ1 – η1 – γ1 – σ1 +
(
1 – sgn(a1)

)
> 1 + sgn(a1) +

(
1 – sgn(a1)

)
= 2.

Hence f satisfies (H6). Now we prove that f satisfies (H7). Put θ (x) = xd and �1(x) = �1(x)
θ (x) =

�1(x)
xd

. Since h̃2(x) = b2xd , then we have

�1(x) =
f (x, 0, 0)

xd
+ max

0≤s≤m

gm(x, s)
xd

≤ 1
xβ1–σ1–γ1–η1+1

d (1 + |x|)δ1–β1

+
cb2M

xβ1–η1–γ1–σ1+1+sgn(a1)(max(σ1,0)+γ1)
d (1 + |x|)δ1–β1+sgn(a1)(min(0,–σ1)–γ1)

.

Since γ1 ≥ 0, we deduce by (4.14) and (4.15) that

β1 – σ1 – γ1 – η1 + 1 < β1 – η1 – γ1 – σ1 + 1 + sgn(a1)
(
max(σ1, 0) + γ1

)
< 2

and

δ1 – η1 – γ1 – σ1 + 1 + sgn(a1)
(
min(0, –σ1) + max(0,σ1)

)

= δ1 – η1 – γ1 – σ1 + 1 > 2 + sgn(a1) ≥ 2.

Hence �1 ∈ K∞(Rd
+), and consequently from Proposition 2.5 we deduce that

V (ρ1)(x) = V (�1θ )(x) ≤ α�1 xd ≤ α�1

b1
h1(x).

This implies that (H7) is satisfied.
Subcase 2. a2 > 0. In this case, we have h2(x) = a2Hφ2(x) + b2xd , h̃2(x) = a2 + b2xd and

condition (4.8) becomes

β1 – η1 – σ1 –
(
1 – sgn(a1)

)
γ1 + max[0,σ1,η1,η1 + σ1 – 1] < 0. (4.16)

By discussing the nine subcases(σ1 < 0 or 0 ≤ σ1 < 1 or σ1 ≥ 1) and(η1 < 0 or 0 ≤ η1 < 1
or η1 ≥ 1) if a1 = 0 and the eighteen sub-subcases(0 ≤ γ1 < 1 or γ1 ≥ 1), (σ1 < 0 or 0 ≤
σ1 < 1 or σ1 ≥ 1) and (η1 < 0 or 0 ≤ η1 < 1 or η1 ≥ 1) if a1 > 0 and using the fact that
xκ

d(1 + |x|)r + xr
d(1 + |x|)κ ≤ 2xmin(r,κ)

d (1 + |x|)max(r,κ) for κ , r ∈R, we obtain

∣
∣f

(
x, t2̃h1(x), s2̃h2(x)

)
– f

(
x, t1̃h1(x), s1̃h2(x)

)∣
∣

≤ pM(x)(t2 – t1)̃h1(x) +
∣
∣gM(x, s2) – gM(x, s1)

∣
∣,

where

pM(x) :=
cx–[β1–η1–σ1–(1–sgn(a1))γ1+1+max(0,η1)+max(0,σ1–sgn(a1)γ1,sgn(a1)(σ1–1))]

d
(1 + |x|)δ1–β1–sgn(a1)γ1+min(0,–η1)+min(sgn(a1)(1–σ1),sgn(a1)γ1–σ1,0)

and

gM(x, s) :=
c̃h2(x)sx–[β1–η1–σ1+1–(1–sgn(a1))γ1+max(0,η1,σ1,η1+σ1–1)]

d
(1 + |x|)δ1–β1–sgn(a1)γ1+min(0,–η1,–σ1,1–η1–σ1) .
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Since γ1 ≥ 0, by using (4.14) and (4.16), we obtain

β1 – η1 – σ1 –
(
1 – sgn(a1)

)
γ1 + 1 + max(0,η1)

+ max
[
0,σ1 – sgn(a1)γ1, sgn(a1)(σ1 – 1)

]

≤ β1 – η1 – σ1 –
(
1 – sgn(a1)

)
γ1 + 1 + max(0,η1) + max[0,σ1]

≤ β1 – η1 – σ1 –
(
1 – sgn(a1)

)
γ1 + 1 + max[0,η1,σ1,η1 + σ1]

≤ β1 – η1 – σ1 –
(
1 – sgn(a1)

)
γ1 + max[0,η1,σ1,η1 + σ1 – 1] + 2 < 2

and

δ1 – β1 – sgn(a1)γ1 + min(0, –η1) + min
[
sgn(a1)(1 – σ1), sgn(a1)γ1 – σ1, 0

]
+ β1 – η1

– σ1 –
(
1 – sgn(a1)

)
γ1 + 1 + max(0,η1) + max

[
0,σ1 – sgn(a1)γ1, sgn(a1)(σ1 – 1)

]

= δ1 – η1 – γ1 – σ1 + 1 > 2 + sgn(a1) ≥ 2,

which proves that pM ∈ K∞(Rd
+). Now, since h̃2(x) ≤ (a2 + b2)(1 + |x|)sgn(b2), using (4.10) we

obtain

max
0≤s≤M

gM(x, s)
h̃1(x)

≤ cx–[β1–η1–σ1+1+(1–sgn(a1))–(1–sgn(a1))γ1+max(0,η1,σ1,η1+σ1–1)]
d
(1 + |x|)δ1–β1–sgn(a1)γ1–sgn(b2)+min(0,–η1,–σ1,1–η1–σ1) .

Using (4.14) and (4.16), we obtain

β1 – η1 – σ1 + 1 +
(
1 – sgn(a1)

)
–

(
1 – sgn(a1)

)
γ1 + max(0,η1,σ1,η1 + σ1 – 1)

≤ 2 + β1 – η1 – σ1 –
(
1 – sgn(a1)

)
γ1 + max(0,η1,σ1,η1 + σ1 – 1) < 2

and

δ1 – β1 – sgn(a1)γ1 – sgn(b2) + min(0, –η1, –σ1, 1 – η1 – σ1) + β1 – η1

– σ1 + 1 +
(
1 – sgn(a1)

)
–

(
1 – sgn(a1)

)
γ1 + max(0,η1,σ1,η1 + σ1 – 1)

= δ1 – η1 – γ1 – σ1 + 2 – sgn(a1) – sgn(b2) > 3 – sgn(b2) ≥ 2.

Hence max0≤s≤M
gM(x,s)
h̃1(x) ∈ K∞(Rd

+), and so f satisfies (H6). Finally, we verify (H7). Put θ (x) =
xd and �1(x) = �1(x)

θ (x) = �1(x)
xd

. Since h̃2(x) ≤ (a2 + b2)(1 + |x|)sgn(b2), then we have

�1(x) =
f (x, 0, 0)

xd
+ max

0≤s≤M

gM(x, s)
xd

≤ 1
xβ1–σ1–γ1–η1+1

d (1 + |x|)δ1–β1

+
c(a2 + b2)Mx–[β1–η1–σ1+2–(1–sgn(a1))γ1+max(0,η1,σ1,η1+σ1–1)]

d
(1 + |x|)δ1–β1–sgn(a1)γ1–sgn(b2)+min(0,–η1,–σ1,1–η1–σ1) .

Since γ1 ≥ 0, we deduce by (4.14) and (4.16) that

β1 – σ1 – γ1 – η1 + 1
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< β1 – η1 – σ1 + 2 –
(
1 – sgn(a1)

)
γ1 + max(0,η1,σ1,η1 + σ1 – 1) < 2

and

δ1 – β1 – sgn(a1)γ1 – sgn(b2) + min(0, –η1, –σ1, 1 – η1 – σ1)

+ β1 – η1 – σ1 + 2 –
(
1 – sgn(a1)

)
γ1 + max(0,η1,σ1,η1 + σ1 – 1)

= δ1 – η1 – γ1 – σ1 + 2 – sgn(b2) > 3 + sgn(a1) – sgn(b2) ≥ 2.

Hence �1
θ

∈ K∞(Rd
+), and consequently from Proposition 2.5 we deduce that

V (ρ1)(x) = V (�1θ )(x) ≤ α�1 xd ≤ α�1

b1
h1(x).

This implies that (H7) is satisfied.

As a consequence of Theorem 4.1 and the above example, we obtain the following.

Corollary 4.2 Let a1, a2, b1, b2 be nonnegative constants with (a1 + b1)(a2 + b2) > 0, λ ≥
0, μ ≥ 0, and φ1, φ2 are nonnegative nontrivial continuous functions on ∂Rd

+, d ≥ 2. Let
γ1,γ2,β1,β2,σ1,σ2,η1,η2, δ1, δ2 be real constants such that γ1 ≥ 0, γ2 ≥ 0, γ1 + σ1 ≥ 0 and
γ2 + σ2 ≥ 0 and satisfying

βi – ηi –
(
1 – sgn(ai)

)
γi –

(
1 – sgn(a1 + a2)

)
σi + sgn(ai+1)

+ max
[
0, – sgn(a1 + a2)σi, sgn(ai+1)(ηi – 1), sgn(ai+1)(ηi – σi)

]
< 1 and

δi – ηi – γi – σi > sgn(ai) + sgn(bi) +
(
1 – sgn(bi)

)
d.

for i ∈ {1, 2}, where a3 = a1. Then there exist λ0 > 0 and μ0 > 0 such that for each λ ∈ [0,λ0)
and μ ∈ [0,μ0) the system

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

�u = λ

xβ1
d (1+|x|)δ1–β1

(xd + u + v)σ1 (xd + u)γ1 (xd + v)η1 in R
d
+,

�v = μ

xβ2
d (1+|x|)δ2–β2

(xd + u + v)σ2 (xd + u)γ2 (xd + v)η2 in R
d
+,

u = a1φ1, v = a2φ2, in ∂Rd
+,

limxd→∞ u(x)
xd

= b1 and limxd→∞ v(x)
xd

= b2,

has a positive continuous solution (in the sense of distributions) satisfying

cλ[a1Hφ1 + b1xd] ≤ u ≤ [a1Hφ1 + b1xd] and

cμ[a2Hφ2 + b2xd] ≤ v ≤ [a2Hφ2 + b2xd],

where cλ, cμ ∈ [0, 1).
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