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1 Introduction

In this paper, we study the existence of positive continuous solutions in the upper half
spaceRY = {x = (X1,X2,... Xq) RYI:xq4>0},d 2, for the following semilinear elliptic
system:

u= f(-,u,v) inRY (inthe sense of distributions),

v=ug(-,u,v) inRY (in the sense of distributions), L.1)

limy ( gu)=a; 1( )limy ( gv(¥)=az 2( ), Rd--1

limy, S =bilimy, =y,

where ; and ; are nontrivial nonnegative continuous functions on R¢ = R%1x { 0},
ai,ap, by, by are nonnegative constants such thaa{ + b;)(c; + by) >0, O,p 0,and
f,g are two nontrivial nonnegative functions orRY x [0, )x [0, ).
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This problem has been investigated recently, in particular the cases of nonlinearifies
g, by many authors (see for exampld 7, 19, 20] and the references therein). In30], the
author considered the particular case whefféx, u,v) = p(x)a(v) and g(x, u, V) = q(x)g(u),
where g1, @ are nonnegative continuous functions that are both nondecreasing or both
nonincreasing and, g are nonnegative measurable functions belonging to the Kato class
K (RY)introduced and studiedin p] for d =2 andin[4]ford 3. Under some conditions
on jand j,the existence of positive continuous solutions having the global behavior of
the associated homogeneous system is established. This also was done by investigating
the properties of the Kato clas (RY). System {.1) has been also studied in[7] for
the particular cases =p =1, f(x,u,v) = p(x)u V', andg(x,u,v) = q(x)usv , where 1,

1,r 0,s 0andp,qare two nonnegative measurable functions that belong to the
classKk (RY), and some results of existence similar to those i2(] have been obtained.

Our aim in this paper is twofold. The “rst goal is to give a new characterization of the
Kato classkK (RY), as it will be stated in Theoren?.2in the sequel. This explains in a
certain manner the optimality of the 3G-inequality 2.5), satis“ed by the Green function
and established in4] and [5]. The second goal is to extend the results df7, 20] to a class of
nonlinearitiesf andg, including in particular those wherd is nondecreasing with respect
to u but not necessarily monotone with respect te and g is nondecreasing with respect
to v but not necessarily monotone with respect ta. This will be done after establishing
and exploiting an existence result of a positive continuous solution for the problem

u= f(x,u) inRY (inthe sense of distributions),

limy (gux)=a (), R (1.2)

limy,  $&=b,
where 0,a 0,b Owitha+b>0, isanontrivial nonnegative continuous function
on RY and the functionf belongs to a class of functions containing in particular those of
the form p(x)u with 1, and this will be an extension of the results ol /] established
in the case wherd (x,u) = p(x)u . We note that elliptic equations have been extensively
studied, we refer the readers tdl] 13, 15] and other papers in the literature.

Our paper is organized as follows. Sectidhis devoted to giving a new characterization
of the Kato clasK (RY) and to recalling some properties of this class that will be used
in the study of (1.2 and (L.1). In Sect.3, we prove the existence of a positive continu-
ous solution for (1.2). The last section is devoted to the study of the existence of positive
continuous solutions for systemX.1).

Next, we give some notations that will be used in the sequel. We denoteB{iR?) the set
of all Borel measurable functions ifRY, by B*(RY) the set of nonnegative ones, b, (RY)
the set of bounded ones, and b@(RY) the set of continuous functionss in RY. We denote
also byCo(RY) the setof functionsu  C(RY) satisfyinglim,~ pgu(x)=limy;  u()=0
and by Co(RY) the set of all functionsu  B(RY) that are continuous inR¢ and satisfy
Iim|x| U(X):O.

Let G be the Green function of the Laplace operator iR with Dirichlet boundary
conditions. For anyp  B*(RY), we denote byWp the Green potential ofp de“ned on R¢
by

VP = GeypB)dy,
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and we recall thatifp LL (RY)andVp LL (RY), then we have in the sense of distribu-
tions (see LQ] p. 52)

(Vp)=.p inRY. (1.3)

For any nonnegative bounded continuous functionon R we denote byH the unique
bounded continuous solution of the Dirichlet problem

u=0 inRY,

Iimx (Yo)LI(X): ( ), Rd"'l.
It follows by the Herglotz representation theorem (se]3, 12]) that

Xd

AT ()d foreveryx RY.

H X =c

Using the inequality|x ... | | x|+] | (@ +|x])(d+]| |), the fact that is nonnegative,
bounded, and that Rd'"l(lfIW < ,we obtain

Xd () Xd

H0 ST wn@r 70 =@

(1.4)

Let (X;); o be the canonical Brownian motion de“ned orC([0, );RY), P* be the proba-
bility measure on the Brownian continuous paths starting at and = inf{t >0:X; / RY}
be the “rst exist time of (X;); o from RY. For anyq B*(RY), we de“ne (see 9] or [10]
p. 84) the subordinateg-Green potential kernelVq by

1
VeI = 5B e® 0%%p0)dt forp BRY, (1.5)

where EX is the expectation onP*. Moreover, forq B*(RY) such thatVg< , we have,
see B, 10, 14], the resolvent equation

V =Vqy+Vq(qV). (1.6)
So, foreactu B(RY) such thatV(gju])< , we have

[+V(@) ..Vg(@) u= 1..Vg(@) 1+V(g-) u=u, .7

and foreveryu B* RY wehave 0 Vg(u)  V(u). (1.8)

We close this section by adopting the following notation. I is a nonempty set and
f, g are two nonnegative functions de“ned or§, we writef g if there exists a positive
constantC such that%f(x) g(x) Cf(x) for everyx S. We note also that throughout
this paper the positive constan€ may vary from line to line.
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2 The Kato class of functions
Let G be the Green function of the Dirichlet LaplacianirRY,(d  2). Then it was proved
in [6] that G has the following integral representation:

|X..

=i

dv
- 2.d
G(x,y) =Calx ..yl . W (2.1)

i]

d
wherey = (y1,Y2, - - ¥d..1-¥d) for y=(y1,Y2, ... ya..1Ya) and Cq = % Moreover, the au-

thors in [5] and [4] proved that G has the following global estimates:

Log(1 + 222, ifd=2,
G(x,y) ?( b ™t . 2.2)
|X”y|d...2mm(1' |x(.j.§(|12) ifd 3.
Moreover, there existsC > 0 such that for everyx,y RY we have
X
d¥d CG(x,Y). 2.3)

(X1 +1)°(yl + 1)

Using the factthat2  min(a,b) 22 for a> 0 andb >0, it follows from (2.2) that

Log(l+%2 ifd=2,

XdYd H
——d¥d_____ jfd 3,
[x..y19- 3. yZ+xqyq)

G(x,Y) (2.4)

These estimates have been used to prove the following important 3G-inequality. Namely,
there exists a positive constart, such that for eachx,y,z RY we have

G(x,2)G(z,y)

Zy Zy
Gy Co %G(x,z)+y—dG(y,z) . (2.5)

This 3G-inequality was exploited by the authors in5] for d=2 and in [4] ford 3to
de“ne a new Kato class on the half spa, which has been adapted to study some semi-
linear elliptic boundary value problems using some potential theory tools. More precisely,
this class was de“ned as follows.

Definition 2.1 ([5] and [4]) A measurable functionq belongs to the Kato clask (RY) if
g satis“es the following conditions:

lim sup ﬁG(x,z) q(z) dz =0 (2.6)
0 « rd RY Bx ) Xd
and
. Z4 _
lim sup —G(x,2) q(z) dz =0. 2.7)
Mo g RY 12 M) Xd

Our main goal in this section is to give a new characterization of this class of functions
by means of the left-hand side term of inequality2(5). This gives an a rmative answer to
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the question on the possibility of considering the left-hand term of inequalit@(5) in the
de“nition of the Kato class. More precisely, we prove the following.

Theorem 2.2 Let g be a Borel measurable function R¢. Thengq K (RY) if and only if

G(x,2)G(z,y)

lim sup q(z) dz =0 (2.8)
xy) Rixp¢ RS B ) By, )  GXY)
and
m  sup CxAG2Y) () 47 =o. 2.9)

oy Bdxpd RS @2 My  GXY)
The following lemma will be also used in the proof.

Lemma 2.3 Letxy RY.Then we have the following properties
(1) Ifxaya | x..y[% then max(xa,ya) £52[x..yl.
) IfIX..YI?  XaYa, then 352yq  xg  E2yy.
(3) (X YP+xG+Y3) | X yP+xaya | X.. ¥+ X5 +Y3.

Proof (1) and (2) were proved in4].
(3) Squaring the inequalityXq .. ya| | X..y|, we obtainx3 +y3 | X..y|? + 2Xqyq. This
together with the fact thatab  a? + b? gives

X YP+XC+Y2 2 XY+ XaYd 2 XL yPP X +yR
This achieves the proof. O
The following result is the key to the proof of Theoren?.2

Proposition 2.4 There exists a constant € O such that forall >0and all x,y RY we
have

G(x,2)G(z,
CxaC@Y) (o 47 A G6(x,2) o(2) dz
RS B ) By, ) GXY) RY B(x3 ) Xd

+C A 6,2 q@2) dz.
RY B(y,3 ) Yd

Proof Let >0andx,y RY.Thenwe have

e GX,26(2Y)
G(x.2G@Y) o 4re e, |
B B ) By, ) G(Y) q(@) dz R o
G(x.2)G(z.y)
+ RY B ) By, ) O(X.Y) q(2) dz
' By q(z) dz

RS By, ) B )  O(X,Y)

= 11(x,Y) + 12(x,y) + 13(X, Y).
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Using inequality @.5), we obtain

G(x,2)G(z.)

q(2) dz
rd B, ) By, ) G(XY)

l1(x,y) =

Co Ao+ 26,2 q@ dz
RY B(x, ) By, ) Xd Yd

Co A Gx,2) q2) dz+ A Gy,2) q@) dz .
RY Bx, ) Xd Rr¢ By, ) Yd

Next, we estimatd,(x,y) andlz(x,y). To this aim, we will discuss two cases as follows.
Case 1B(x, ) B(y, )= .
Choosezg B(x, ) B(y, ). Then,foreveryz B(x, ) By, ), we have
lz.yl | z.X|+|X..20| +|20..y] 3 .
Similarly, foreveryz B(y, ) B%X, ), we have

lz.X | z.yY|*+|Y--2o| +|20..X] 3.

HenceB(x, ) B%y, ) B(x, ) B(y,3 )andB(y, ) B°x, ) B(y, ) B(x,3).So

we obtain
G(x,2)G(z,y)
Io(X,y) ;= ———————=>q(2) dz
2y) rY B, ) By, )  G(XY) 9
Gx26@Y) (. g,
rd B, ) By3) G(XY)
Co EG(X,Z)+ ﬁG(y,z) q(z) dz
RY Bxx, ) By3) Xd Yd
Co A Gx,2) q2) dz+ X Gy,2) q(2) dz
RY B(x, ) Xd rY¢ B(y,3 ) Yd
and
G(X,2)G(z,
l3(x,y) = G, 2G(zy) q(2) dz

RS By, ) B, )  G(XY)
G(x,2)G(z,y)

Z) dz
rd By ) Bx3) O(XY) @

Co “6x2)+ 26,2 q@ dz
RY By, ) Bx,3) Xd Yd

Co A G(x,2) q2) dz+ “

G(y,2) q(2) dz .
RY B3 ) Xd R¢ By, ) Yd .2 4@

Case 2B(x, ) B(y, )= .
InthiscaseB(x, ) B%y, )andB(y, ) B°%X, ).Foreveryz B(x, ), we have

ly..zl |y.x|[+|x..z] | y..xX+ 2|x..y|
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and
[X..y | x..z2|+]y..Z| +ly..Z2l 2y..z.
So, in this case
1
§|y..z| | x..y 2ly..z]. (2.10)
Similarly, for everyz B(y, ), we have
..z | x.yl+|y..Z] | x..y|+ 2|x ..y
and
..y | Xx..zl+|y..Zz] | x..Z|+ 2|x..2.
Also, in this case
1
E|x..z| | x..y] 2Ix..Z. (2.11)

Now, using @.4) we obtain

Log(1+|§%f2) L
G(x,2)G(z,y) W‘;%—)G(X, 2) ifd=2,

G(x.y) Dyl 2(0x. v xqva) 24 :
Iz Y52 (7 Py xa O002) 1Td 3,

and

Log(1+‘2|§‘.1§? )

G(x,2)G(z.y) W_Zzir)e(y! 2) ifd=2,
Gx.y) 2y Gy 7)) ifd 3.

|z.x|9-2(|z. X?+24%q) Ya

So we will discuss two subcases.

Subcase Uf Xgyq | X..y|%.

In this case we havéx ..y|? + Xqyg  2|x..y|?. So, ford 3, we use this fact and2.10)
to obtain

1% Y1%2(1x . Y12 + Xaya) X y]9RIX Y12 + Xaya) 2I><---y|d S
|z..y192(|z..y|? + Zaya) z..y| |z..yl9

On the other hand, ford = 2 we use 2.10, the inequalities%t Log(l+t)fort [O,1]
andLog(1+t) tfort O toobtain

VdZd
Log(1+55%)  _Ix..y1? yaza g%

Log(1 + ;&% Xayd |Z..y>  xd
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Consequently, for everg B(Xx, ), we have

G(x,2G(zy) .z
Gy C%G(x,z)
and
_ G(x2)G(z) )
l2(x,y) = W o) GOGY) q(z) dz C o o ) Xe G(x,2) q(z) dz.

Similarly, for everyz B(y, ), we obtain by using2.1]) that

G(x,2)G(z,y) Z4
Gy CyeoW?
and
_ G(x,2G(zY) 2
I3(x,y) = W ay ) GOGY) q2 dz C o 8y, Yo G(y,2) q(2) dz.

Subcase 2f [X..y|°>  XdYq.
In this case we obtain from Lemma&.3that

3..5 y 3+ 5
5 Yd d 5

Ya. (2.12)

Next we will treat the casesl 3 andd =2 separately. Ifd 3, then we deduce from
(2.12, (2.10 and property 3 of Lemma2.3that for everyz B(x, ) we have

X Y1920 Y12+ XaYa) g AX - YIP + XaYa
|z..y1%2(|z..yI? + Zgyq) |Z.. y12 + Zgyq

aIX Y2 G+
|z..y[2+Z3+Y3
a1+ CF2(X A +5)
|z..y|2+ 2% +v3
o 9+3 5 [X..y>+Vj
2 1z..y|2+y3
219 +3 B).

Consequently, foreverg B(X, ), we have

G(x,2)G(z,Y) A
7G(x,y) C%G(X,Z)
and
_ G(x.2G(zY) ]
o) = R¢ Bx, ) G(XY) a2) dz C RY Bx, ) Xd Gk 2) ) dz
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Similarly, forz B(y, ), we use 2.11) and similar arguments as above to obtain

G(x,2)G(z,y) A
Gy e
and
_ G(x.2G(z.Y) 2
I3(x,y) = W ay ) GOGY) q2 dz C o 8y, Y G(Y,2) q(2) dz.

Finally, ford = 2 we will discuss two subcases:
() If[X..Z> Xqzgorly..z|> Yyazq. Then, taking into account 2.12) and using Lemma
2.3 we obtain in this case that

> Xd Zd > Xg and
3..5°2 3+ 5 2
> Yo Zj > Yd.,
or
3..5 3+ 5
Yd y¢ and
2
3..5°7 3+ 5 2
T A 2 Xa-

Using the above facts 210, and the factthat for >0andt 0 we have
min(1, )Log(1+t) Log(l+ t) maxl, )Log(l+t),

we obtain forz B(x, ) that

VaZa 3+ 5y XdZd
Log(1 + lzd_ylf Log(1+ (>3 )|z(.j-y|’Z

XdYd 5
Log(l + |x..y|z I—Og(l + (L;’)Zﬁ

3+ 5 16 Log(l+ %%
2 (3. BRLlog(l+ 2%

3+ 5

—. 3+ 5 2z
3+ 5 ——= =,
( ) > X

Hence, for everyz  B(X, ), we obtain

G(x,2)G(zy) ~Z
oy x?
and
_ G(x.2)G(2) 2]
l2(x,y) = e GOGY) q(z) dz C o4 o ) X G(x,2) q(z) dz.
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Similarly, forz B(y, ), we use2.1]) to obtain

G(x,29G(zy) ~z

Gy v
and
G(x,2)G(z,y)
)= 22220 42) d
I3(X,y) i ay ) GO q(2) dz
C EG(y, 2) q(2) dz

RY B(y, ) Yd

(i) If |x..Z|> xqzgand|y..z|> Yyqzq, thenin this case we havenax(xq,zq) | x..z| and
maxyq,24) | Y..2z|. Hence it follows from the inequalitiesltTt Log(2+t) tfort O
that

XdYd
[X .. ¥]2 + XaYq

XdYd

Log 1+ ——
Ix..yl2

Hence

YaZd
Log(1 + |ZdT) [x ...y|2 + XdYd Zd

Log(1 + ;&%) ly..zI2 xq
9P+ W 2
ly..2zJ? Xd
3+ 5 |X.y?+VYizg
2 ly..z|2  Xqg
3+ 5 [x.yP+ly.Z°z
2 ly..z|? Xd'
and similarly
LOgﬂ‘*%ﬁ) 3+ 5 [x.yP+x.2Pz
Log(1 + 2d¥%d) 2 [x ..z Vd

1x..yl

So, using2.10,forz B(X, ), we get

G(x,29)G(z,y) .z
Teky o
and
_ G(x.26(2Y) 2
l2(X,y) = W ) GOLY) q(z dz C 2 8 ) Xa G(x,2) q(2) dz

Now, forz B(y, ), we use 2.11) and similar arguments as above to obtain

G(x,2)G(z.y)

Z4
Gy | Cyeoo?



Alsaedi et alBoundary Value Problems  (2023) 2023:45 Page 11 of 35

and
G(x,2)G(z,y) Z4
I3(X,y) = ————=-q(2dz C —G(y,2) q(2) dz
Iy RS By, ) G(XY) a RY By, ) Yd ¥z 4
This achieves the proof of the proposition. O

Proof of Theoren2.2 Assume thatg K (RY). Clearly, we deduce from2.5) and 2.7)
that (2.9 is satis“ed. Moreover, using Propositio.4and equation @.6), we deduce that
(2.8 is also satis“ed. To prove the converse, we remark that by considering 1 the
substitution

Ixays TP Xaya
V=1+—290 9 )= 4 t,
TORYCARR AR PORYERN OV

we obtain
XaYa ! d

t
X.y9 o (xH? a¥d 15
[x..y (5P )

Hence, foreach  RYandx,z RY, we have

G(x,y) =2Cq

d
im G(z,y) _ ﬁ|x... | .
y Gy Xq|z...|d

Now, if we choose >0andx RY,then we deduce from the Fatou lemma that

Zq |x... |
|d

— G(x,2) q(2) dz
W a ) Xa 12 x,2) a(2)

o G(x,2)G(z,y)
liminf —————=2q(2) dz
y rd B, ) G(XY) 9@
G(x,2)G(z,y) 4@ dz
RS B(.)B(,) GXY)
sup G( ,2)G(z, )
() mdxrd RS @) B,y G(.)

+Qo

liminf
y
q(2) dz.

Using this fact and the Fatou lemma again, we obtain

d
HGx,2) q2) dz= Ix... | ~ 26,2 ) dz
rY B(x, ) Xd R¢ B(x, ) | ad [z... ]9 xq
d
liminf 2a X 150 ) a@) dz

|1 ad RY B(x, ) Xd z... |d
d

sup G( ,9)G(z )

q(z) dz.
() mdxrd RS @) B,y G(.)

This shows that if .8) is satis“ed then @.6) is also satis“ed. In the same manner, we prove
that if (2.9) is satis“ed then @.7) is also satis“ed. This achieves the proof. d
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Next, we recall some important properties that will be used in the study of the boundary
value problems {.2) and (1.1). The proofs of these properties can be found in references
[4,5], and [7].

Proposition 2.5 Letq K (RY). Then the following statements hold
(1)

q:= sup wq(z) dz< . (2.13)

«xy) Rixpd RS GXY)

(2) For any nonnegative superharmonic function —and every X RY, we have
iy G(x,2) @ a2 dz 4 (X. (2.14)

(3) The functiony S (Inyle)dq(y) LY(RY). In particular, q Llloc(Rﬂ).
(4) The Green potential \V'q belongs to Co(RY).

The following results are also stated in4] 5, 7], and [17], and they will also play an
important role in the sequel.

Proposition 2.6 Let be a nonnegative superharmonic function R¢ and g be a non-
negative function in K (RY). Then, for each x RY suchthat0O< (x)< ,we have

expl(...q) (X) (x) .. Vq(a ) (x). (2.15)

Proposition 2.7 Let g be a nonnegative function in K(RY) and let h(x) = bxq + a for
a 0b Owitha+b>0.Then:
(1) The family of functions

&= Vp;p BRI with|pl q

is equicontinuous in R_E {}  and consequently it is relatively compact in Co(RY).
(2) The family of functions

JFq= X d32—:<3(x,y)|0(y)dy;rJ B R with|p|

R+

is relatively compact in CO(R_E).
(3) The family of functions

h
Ga= x  Dgpypp)dyp BRE withlpl g
w0

is relatively compact in Co(RY).
(4) lim, V(ha)(x)=0,  RY.

Next, we recall a fundamental example of functions i (RY) studied in [4] and [5].
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Example2.1 Let , Rand de“neq(x):mforx RY. Then
’

qg K RY ifandonlyif <2<.

3 Existence of positive solutions for some semilinear elliptic equations
The aim of this section is to study the existence of positive continuous weak solutions for
problem (1.2). First, we de“ne the notion of continuous weak solutions for this problem.

Definition 3.1 A function u is called a continuous weak solution ofi(2) if
) u C(RER).
(i) gau(x) (¥ ... f(x,u(x)) dx=0for every C. (RY): the set of all infinitely
differentiable functions in RY with compact support in RY.
(iii) lim,  ggu)=a ()andlimy ~4¥=b.
x RY

To state an existence resultforl(2) for su ciently small, we de“ne h(x) = bxg+aH (x)
andh(x) =bxq +afor x RY, and we assume thatt satis“es the following hypotheses:
(H1) f(,0) K (RY).
(Hp) f:RYx [0, )S [0, )isaBorel measurable function such that for each x RY
the map t  f(X,t) is continuous and satisfies the following condition: For each
M > 0, there exists a nonnegative function qy K (RY) such that for each x RY
themapt  th(X)gm(X) ..f(x,th(x)) is continuous and nondecreasing on [0,M].
(Ha) o:=inf calyrgm] > O
Remarks3.2 (1) Conditions Hi) and (H;) are satis“ed in the particular casd (x,t) =
p(x)g(t), wherep K (RY) andg(t) =t , 1 or more generallyg: [0, ) [0, )
is continuous and satisfying for eacM > 0, there exists a constarii= b(M) 0 such that
gt)..g(s b(t..9for0 s<t M.Indeedinthis caseHl,) is satis“ed withqgy =b(M)p.
(2) Hypothesis Hj) is satis“ed in the particular case wherg(-,0) = 0 with o=

Under conditions Hq)...H2), we will prove in the next that continuous weak solutions
uof (1.2 in RY satisfying 0 u h are those satisfying the integral equatior3(l).

Lemma 3.3 (see L7]) Let p, and p, be two nonnegative measurable functionsR{ such
thatp:s p, and Vpy is continuous inRY. Then Vp, is also continuous irR¢

Lemma 3.4 Assume that hypotheséBl1)..(H,) are satis“ed letu B*(RY) satisfying0
u(x) hx) forx RY andassumethat >0.Then uis a continuous weak solution ¢f.2)

if and only if
ux)=hX) ... V f(,u) (x) forx RY. (3.1)
Proof Assume thatu is a continuous weak solution of{.2. Wede*ne| | =sup pa ()

andM =max1,| | ).Then0 u h Mh. From hypothesisKy), there existsq= gy
K (RY) such that for eachx RY the mapt  th(x)q(x) ..f (x,th(x)) is nondecreasing on
[0,M]. Hence

£(,0) qu..f(,u) Mhq..f(-Mh). (3.2)



Alsaedi et alBoundary Value Problems  (2023) 2023:45 Page 14 of 35

In particular, we obtain
0 f(,u) Mhg+f(,0). (3.3)

Since the functionsy, f(-,0) K (RY), thenitfollows from Proposition2.5that V (f (-, 0))
Co(RY) and 2V (hq) Co(RY). This implies thatV(hg) C(RY) and V(Mhq + f (-, 0))
C(RY). This together with Lemma3.3 implies that V (f(-,u)) C(RY). Put v(x) = u +

V(f(-u)) ..aH . Thenv C(RY) and is harmonic in the sense of distributions ifRY.
It follows from Weylss theorem (seel[1] p.250) thatv is a harmonic function inRY. More-
over,v .al | inR¢Yand lim, grg V(X) = 0. Using Theorem 1.1 in 18], we deduce
that there existsC 0 such thatv(x) = C xq in RY. Sincelim,, ‘;(—? = limy, ‘;(—? =,
then C =b, and consequently satis“es @.1).

Conversely, since,f(-,0) K (RY),thenMhg+f(-,0) L (RY).So from @.3 we ob-

loc
tainf(,u) LE.(RY).Againfrom (3.3 andthe factthatv (Mhg+f(-0)) C(RY)we deduce
from Lemma3.3that V (f(-,u)) C(RY) and from (3.) thatu C(RY). Using (1.3 we ob-
tain u= h.. V(f(,u))= f(,u)in the sense of distributions. On the other hand,

using 3.3 we obtain
0 VIf(t,u MV(hg+V f(,0). 3.4

Hence it follows from property 4 of Propositions 2.5 and 2.7 that
lim,, rd V(F(,u))(x) = 0, and consequentiylim, rgU(X) =a (). Finally, using

(3.4, the fact that 1V (hq) Co(RY), and that limy %V(f(-,O))(x) =0, we obtain
1

limy %V(f(-,u))(x) = 0. In particular, limy, Wlx)V(f(-,u))(x) = 0. Consequently,
: uX) — i h(x) ; VECWI) — i V{ECUIX) h(x) — i
limy, S limy, g limy, - b... limy, e s b. This
achieves the proof. O

Next we establish a uniqueness result for an eventual continuous weak solutipisat-
isfying0 u hfor (1.2 inthe case where 0 and the nonlinearityf is nonnegative,
nondecreasing, and continuous with respect to the second variable.

Proposition 3.5 Letf:RYx [0, )S [0, ) be aBorel measurable function satisfying
(H1)..(H2) and assume further that for each x RY the functiont  f(x,t) is nondecreas-
ingon[0, ). Then, for any nontrivial nonnegative continuous bounded functionon the
boundary RY, any nonnegative real numbers, b with a+b>0and 0, problem(1.2
has at most one nonnegative continuous weak solution satisfgingu  h.

Proof Assume that there exist two nonnegative continuous weak solutionsg, u, of (1.2
withO u; handO u; h.LetM=max1, | ). ThenO0O u; h MhandO
u; h Mh.

Sincef satis“es {H1)...H>), it follows from Lemma3.4that

(U2 ...U]_) + V f(-,UZ) ...f(-,LIl) =0. (35)
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Letg=qgu K (RY) be the function given in hypothesisH,) and de“ne

f(x,u2(x))..f (x,u1(x))

K(x) = Up(9)-U1() if u(x) = ux(x),
0

if ux(X) = u1(x).

Thenwe have 0 k(x) q(x) for everyx RY.Hencek K (RY)and using 1), (3.3,
and properties 2 and 4 of Propositior2.5 we obtain

V  Klug..u| V f(hup) + V f(hbu) 2 MV(hg+2 V f(-,0)
2 M 4h+2 V(-0 <
Applying (I ..V «( k-)) on both sides of equality3.5), we obtain from (L.7) that u, = u;. 0
The second main result of this paper is the following.

Theorem 3.6 Let be anontrivial nonnegative bounded continuous function oR¢ and
assume that hypothesdsl;), (H2), and (H3) are satis“ed Then there exists o > 0 such
that for [0, o) problem(1.2) has a positive continuous weak solution u satisfying the
following global behaviar

ch(x) u(x) h(x) foreachx RY, (3.6)
wherec (0, 1].
Proof We will adapt the proofin [7]. PutM =max1,|H | ). SinceH is harmonic and
bounded inRY with boundary value , it follows from the maximum principle thatM =
max1,| | ). From hypothesis i), there existsg=qy K (RY) such that for eachx

RY we have

f(x,th(x)) .. f (x, sh(x))

_— h(x)q(x) forevery0 s<t M. 3.7)
Consider the function : exp( ). Then is abijectionfrom[0, )to[0, ).Put
o= Y o) >0, with the convention that o= if o= .For [0, o), we de“ne the

nonempty closed convex set

= u B"RY: 1...Q expl... gh(x) u(x) h(x) .
0

We mention that for u we haveu h Mh. So it follows from (3.7) that
0 f(u) qu+f(,0). (3.8)
Let T be the operator de“ned on by

Tu=h.V4( g+ V4qu..f(u).
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We will prove that isinvariantunderT and T has a “xed pointin , which is a solution
of the integral equation 8.1).
For eachu , we have

Tu=h...V4@gh)+ V4 qu..f(,u)
h...Vg4(@h)+ V 4(qu)
h.

Using Proposition2.6, hypothesis H;), and (1.8) we get

Tu=h.V4(gh)..Vqf(,0) + Vqqu+f(,0)..f(-u)
e dh...V4f(0)
e %h..V f(,0)

o o VECO)
h
VI (-

e dh... sup w

x BY )
e dh..————h

: h

inf, sl vt o)

exp(... ) 1Q h.
0

Consequently,T
Next, we prove thatT is a nondecreasing operator on . For this aim, we consideu, v
such thatu v. Then, using hypothesisH,), we get

Tu..Tv= V4 qu..f(,u)..qv+f(,v)
= Vqf(v).f(hu)..qv..u) 0.

Next, we consider the sequencelf), o de“ned by
Up=h...Vg@h)..V4f(0) and ups1=Tu,forn O.
Using the monotonicity of T, we obtain
Up Ug --- Uy Upsp he

It follows from (3.7) and the dominated convergence theorem that the sequencg), o
converges to a functioru satisfyingTu = u, or equivalently

u=h..Vg4(gh+ Vg4qu.f(,u).
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This implies that

I.Vqe(g)u=1..Vq(g)h.Vq f(,u).
Applying the operator ( + V( g-)) on the last equation, we deduce by (6) and (1.7) that
u is a solution of the integral equation3.1). Hence it follows from Lemma3.4that u is a

continuous weak solution of {.2). O

Example3.1 Let land , , Rsuchthat

..1l.sgn@ ( + ...1)..1..sgn(b) min(0, )
..sgn@)sgnb)ymin(0, + ...1)<2<... .. sgn(b)( ...1),

where
1 ifr>0,
sgr(r) = ,
0 ifr=0.
De“ne f(x,t) = W(xd +1) t for (x,t) RYx [0, ). Thenf satis‘es hypotheses
() -

(H1)...H3). Indeed, sincd (x,0) =0, then H,) and H3) are satis“ed with o= . To prove
(H2), we consider foreverf >0and0 s t M. Itfollows by the mean value theorem
that there exists  [s t] such that

f(x, th(x)) .. f (x, sh(x))

(t ..9h(x)

_ 1 (X +th(X)) (th(X)) ...%d +sh(x)) (sh(x))
Xg(IX] +1) - (t..9hx)

=1t h P hK) + xa+ hx) he) (3.9)
Xg(1+]x])

We will discuss two cases as follows.
Case 1. & 0. Sincea+ b >0, we obtainb > 0, and sch(x) =b (x) =bxg. Since ...1 O,

1 b (X) + x4+ b (X) b (X) w1 C(Xd) + .1

Xg+ b (X)
So, we deduce by3(9 that

f (X, th(x)) ..f (x,sh(x))
(t..9h(x) gL X))

We conclude by Exampl@.1that f satis‘es Hy) if ...(+ ..1)<2<..(+ ..1).
Case 2. & 0. Sinceb 0, we discuss the following subcases.
Subcase 1. B 0. Soh=a. Hence, if 0, then we have

(xa+ @) “ta) + (xq+ @) (a) ! oxa+ a) (a)
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c(Xq +1)

c1+]x
andif <0, thenwe have

ot @) L a) + at @) (@)1 (@) Pa+ @) I+ ) ar x

o @) “txa+ a)
CXy.
Then by 3.9 we obtain
f(x,th(x)) ..f(x,sh(x)) 1
(t ..9h(x) Xd..min(O, )(1 +]X]) - ~maxO. )

We conclude by Exampl@.1that f satis“es #Hy) if ..min(0, )<2< ... .
Subcase 2. b 0. Soh(x) =a+ bxy. Hence if <1...,thenwe have

xg+ h) "1 hx) + x¢+ hx)  h ~*

xa+ h() “xg+ he) T+ ) h)+ xg

(Xd+ a+ bXd) + .1

+ .1
Xq )

andifl... , then we have

xg+ h) "1 hx) + xg¢+ hx)  hx

. h(X) l( + )h(X)+ X4

+ .1

Xg + h(X)
max , + )Xg+ h(x)
dl"'xd) + ...1

c l+|X| + l

Then by 3.9 we obtain

£ (%, th(x)) .. (x,s(x)) 1
(t..9h(x) Xy O R g y)) o maxo, )

We conclude by Exampl@.1that f satis“es Hy)if ..min(0, + ...1)<2<..(+ ..1).

Example3.2 Leta 0,b Owitha+b>0and , , R satisfying

<1+ ..sgMaymax ...1,0) and > +1+ 1..sgnb) d.
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Letf be the positive function de“ned onRY x [0, ) by

f(x,t)= (Xg +1t) .

Xq(L+[x])
Then f satis“es hypothesesH;)...Hs). Indeed,

f(x,0) 1 1
hG) — xg™ (LX) -+ a+bx
. 1
Xg " IO

Since ... +sgnb) ... +1l+sgnaymax ...1,0)<2and... +sgnb)>1+sgnb)+
(1..sgnb))d 2, we conclude by Exampl&.1that f satis“es #H1). Now we verify Hs).
Using (1.4) and the fact thata + b > 0, we obtain

Xd
) s xasaon

€1f b=0. Since ... ... tsgn@max0, ...1)<land... >1+d,then

1
f(x,00=————— belongstoK RY,
Xq (@)

and it was proved in §, 5] that

Xd

Vv f(,0 C—.
(- 0) (%) TG
So
h(x) 1@+ ¢
———— —h —>0.
VECoR C x  C
€If b>0. Using the factthat ... +1 ... +1+sgna)max0, ...1)<2and... +1>2,

we conclude by Exampl@.1that the function p(x) = %0) belongs toK (RY), and using
assertion (2) of Propositior2.13 we obtain

V10 (X)  pXd.

Hence

h(x) 1hx b

— —>0.
VGO p X P

This proves that ¢ >0 and {Hsy) is satis“ed.
Finally, we will verify H,). LetM >0and0 s t M. Bythe mean value theorem, we
deduce that there exists  [st] such that

f(x,th(x)) ..f(x,sh(x)) _ 1 (Xg +th(X)) ...%q +sh(x))
(t..9h(x) Xg(L+]x]) (t..9hXx)
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— (Xd+ h(X)) - (3 10)
Xg(L+|x]) '

So we will distinguish the following cases.
Case 1f 0, then

f(x,th(x)) ..f (x,sh(x))
(t..9h(x)

and we can takayy =0. So H,) is satis“ed.
Case 2If0< 1, then

fothe) - f(x,sheg) X _ c
(t..9h(x) Xg(LHX) ~ xg A

Since ... <land ... +1>2+(1.sgnb))d 2, we conclude by Exampl2.1that (H>)
is satis“ed.

Case 3If >1, we consider the following subcases.

€If a=0. Thenb>0,h(x) = bxg, and

f(x,th(x) ..f(x,sh(x))  (Xa+ bxg)
(t..9h(x) Xg(L+]x])

1
Xd

Ci
Xg(L+Ix])
___c
Xd...+l(1+|xl) o

Since ... <land ... +1>2+(1.sgnb))d 2, we conclude by Exampl2.1that (H,)
is satis“ed.
€If a>0. Thenh(x) =a+ bxq and

fth(x) . f(x,sh(x) . (1+xq) S LX) c
(t..9h(x) Xg(L+[X]) = xg@H[x]) o xg(@H[X]) ot

Since <1+ ..max ..l1,00=2and.. +1>2+(1..sgnb))d 2, we conclude by
Example2.1that (H,) is satis“ed.

4 Existence of positive solutions for some semilinear elliptic systems

In this section we deal with the existence of positive weak solutions that are continuous
in RY for the semilinear elliptic system 1.1). We adopt the following notations:hy (x) :=
aiH 1(X) + bixg, h1(X) :=a; + byxg, ha(X) :=axH 2(X) + boxg, and hy(X) 1= ap + boxy for

x RY. We assume that the function$, g satisfy the following hypotheses:

(Hg) The map @,v) S (f(x,u,V),g(X,u,V)) is continuous on [0, )x [0, ) for every
“xed x RY,the mapuS f(x,u,V) is nondecreasing for every “xedq,v) RYx [0, ),
andthe mapvS g(x,u,V) is nondecreasing for every “xedqu) RYx [0, ).

(Hs) The functions %) and g(-';%) areinK (RY).
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(Hg) For everyM > 0, there exist a nonnegative functiop=py K (D) and two Borel
measurable functiongy,fy :R%x [0, )S [0, ) continuous with respect to the sec-
ond variable such that forevery0 t; t, M,0 s s m,andx RY, we have

f X, t2h1(X), 2h2(x) .. f X, t1h1(X), stha(x)

PO (X)(t2 .- £1) + G (X, %) .-G (X, S1)

and

g X, t2h1(X), 2h2(X) .. g X,t1h1(X),s1h2(X)
PN (X)(s2 .. 51) + fm(X,12) .. fm (X, t1) .

Moreover, the functionssup, o %1”3) andsup [owm; th(z"t) belong toK (RY).
(H7) We have

where
1) =f(x,0,0)+ max gu(x,9 and 2(X)=9(x,0,0)+ max fy(x,t),
0s M 0Ot M

with gv, fu givenin hypothesisHg) forM =max1, H 1 , H > ).
Our third main result in this paper is the following.

Theorem 4.1 Assume that fg satisfy(H)..(H7). Then there exist ¢ > 0and pg > 0such
that for each [0, o) and p  [0,up) system(1.1) has a positive continuous solution
satisfying

chy u hy and ghy v hy
where c,¢, [0, 1).

Proof Proof of Theorem4.1LetM =max1, H 1 , H , ), thenwe haveh; Mh;

andh, Mh,. From (Hg), there exist a nonnegative functiop K (RY) and two Borel
measurable functiongy,fy :RIx [0, )S [0, ) continuous with respect to the sec-
ond variable such thatforany0 t; t, M,0 s s M,andx RYwe have

f x,toh1(X),sh2(X) .. f X,t1h1(X), s1ha(X) (4.2)

PO (X)(t2 .- 11) + G (X, %) .. G (X,S1)

and

g X, t2h1(X), 2h2(x) .. g X, t1h1(X), stha(x)
POYN2(X)(s2 .. s1) + fu (X, t2) .. fm (X, t1) .
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De*ne ()= exp( p). Then isan increasing bijection from [0, ) toitself. Let o=
~¥ 1)>0andpug= 1 ,)>0,with convention that ~{ )=
For [0, o) andp [0O,p0), we consider the nonempty closed bounded convex set

given by
_ =% =d () hy
= (, ) CRY xCyRY,0 1..1.— expl... p) h—and
1 1
h
0 1.. 1£ exp(..1 p) 2
2 h2
For(, ) , we consider the following problems:

y= f(,y,h2..hy ) inRY (in the distributional sense),
y=a; 1 in RY, (4.2)

Iim|x| %;0 = b]_,

and

z=pg(-,h1..hs ,2) inRY (in the distributional sense),
Z=ap o Iin R?_, (43)
limy, 232 =b,.
Next, we claim that the previous problem4.2) has a unique positive continuous weak
solution. To do this, we start by proving that the functionX,y) S f(x,y,h,..h, )veri‘es
(Hy)...Hs). Indeed, using the fact that 0 (1..-E)exp(.p p)R2d 2 =) hal)

2 ha(x)  h2(x) ™ ha(x)
M, we obtain by takingt; =t, = 0,5 = :—2 ... ,ands, =0 in inequality 4.1) that

f(%,0,002..hy (X)) f(x,o,0)+lgw(x,ﬂg‘—§§§--- (X)) .-G (x, 0)]
h1(x) h1(x) h1(X)

f(x,O,O)+ max av (X,9
hi) 05 M hy(x)

Since the functionsf('h'—‘i'o) andmaxy s m %1"5‘) areinK (RY), then % K (RY).
By takings; = s, = E—g ... in hypothesis Hgs), it is easy to see that(y) S f(x,y,h; ...

h, ) veri“es (H;). Using the previous inequality, we deduce that

1= inf X inf M) _ 1
x RY V(f(',O,hz ..hy ))(X) x RY \ l(X)

Then, by Proposition3.5 and Theorem 3.6, we deduce that 4.2 has a unique positive
continuous weak solutiory satisfying

yx)=hi(x) ... V f(-,y,ha..hy ) (%), (4.4)

1Q exp(... phy 1Q expl... ph1 'y h: Mhy,
1

1
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and

fxy), (h2..ha )(x)  f(x,Mhy(x), (h2..h2 )(x))
hy (x) hy(x)
f(x,0,0) ov (X,9)

() +Mp(x)+0msa§ 0 .

Similarly, we prove that 4.3) has a unique positive continuous solutior satisfying

z(x) =hz(x) ..uV g(,hy .1 ,2) (), (4.5)
1£ exq..p p)h2 z hy Mhy,
2

and
g(x, (h1..h1 )(x),z(x)) 9, (hy..hy )(X),Mhz(x))
ha(x) ha(x)

g(x,0,0)+ Mp(X) + max I (X't).
ha(x) 0t M hyx)

Let T be the operator de“ned on by

T, )= hy..y hy..z
’ hl ’ h2 .

Using the factthat%),g('h‘—gm, p,Maxy s m %ﬁ,andmax) t M % areinK (RY), we

deduce by assertion (3) of Propositio?.7 that
T = —=Vityh.h ),EV g(~hi..hy ,2) ()
hy hz

is relatively compact inCo(R9) x Co(RY). Next, we will prove the continuity of T with re-
specttothe norm . de*nedon by (, ) = + .Let( », n)beasequence
in thatconvergesto(, ) with respectto . , and lety,,z,,Y,z such that

hj_...yn,hz..Zn and T(, )_ h]_...y,hz..Z .

T , = =
(nvon) hy hy hy hy

Then we have

N
I

Y-¥n
T( n, LT(, = +
(v n)TC ) hy hy

Using equation ¢.4), we obtain
Y.¥n= (VECG,Ynh2.oho ) ..V f(,y,ha..hy ).
So

y---yn+ \% f('lyth--hz )--f(‘,Yth--hZ )
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=V f(-,yn,hz..hz n)..f(-,yn,hg..hz )

Thus the last equation can be written

Y--yn+V kn(y---yn) =V f('-YnuhZ--hZ n) ---f('-YnuhZ--hZ ) ) (4-6)
where
f(xy(x),(h2..h L E(xyn(x),(h2..h: H _
(9.t JO-L000. 0z )0 i y(x) =y (x),
if y(X) = Yn(X).

kn(x) =

From hypothesesK,) and (Hg), we deduce that 0 kn(X) hi(X)p(x) for everyn N and
x RY.Using Hs), assertion (2) of Propositior2.5, and the factthaty Mhy,y, Mhy,
we obtain

\ knlyYnl \% f('!yahz"hz )"'f(xaynvhz-'hz )

V ply..ynl
2M V (phy)
2M  hy

Applying (I ..V «,( kn+)) on both sides of equation4.6), we deduce byX.6) and (1.7) that
Y. .¥n= Vi, TGy h2..he o) f(Cynh2chy ). 4.7)
On the other hand, we have by hypothesi$lg)

fC.¥n,h2. o n) o F(Ynh2 o he ) (X) Orrlaégw(X.S)

W09 Ly max M9
hy 0s M hy

=a; max
0sM

So, again from hypothesed), (H4) and the assertions of Proposition2.5and 2.7, we
deduce by the dominated convergence theorem that for eaxh RY,

dm Vof(yn bz he n) £y bz he ) () =0,

which implies by (1.8) and @.7) that for x RY, (yn(X))n converges toy(x) asn tends to

. Similarly, we prove that forx RY, (z,(X)), converges toz(x) asn tends to . So
(T( n, n)nconvergestolr( , )asntendsto .Now,usingthefactthafl isrelatively
compactinCo(RY) x Co(RY), the pointwise convergence implies the uniform convergence.
That is,

YooY 220 &

TCn ) TC, ) = e o
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asntendsto . Applying the Schauder “xed point theorem (seelf]), we deduce that
there exists (, ) suchthatT( , )=( , ), whichgives

_ hi.y h.z
G T
V(f(,hlhl 5h2--h2 )) ”V(g(lhlhl ,h2..h2 ))
hs ’ h, '

Putu=h;..h; andv=h,..h, ,thenu,vare solutions inRY of the integral equations
u=hy...V f(,u,v) and v=hy..puV g(,u,v) .
Since Co(RY), thenu,v C(ﬁf). From (Hg), we have

f(-,u,v) f(,0,0)+pu+ max gu(x,9
0sM

f(-,0,0) +Mphs + max gu(x,9).
0s M

Since%), P, MaX s m %l"s) K (RY), then % K (RY). Moreover, we have by

Proposition 2.5that
f(-,u,v) f(-,u,v)

X) + bV
he (x) + by o

f(,u,v) () +C reay (),
hy m

0 V f(huv) (x) aVv

)

a Vv

where (x) = Xq4. Using this inequality, the fact that% K (RY), we deduce from as-
sertion (1) of Proposition2.7that

im V f(,u,v) (X)=0 ford 2.
S

X

On the other hand, we have

f(,uv) f(,uv)
vacuy VG V)

Since% K (RY), we obtain by using assertion (2) of Propositich 7 that
VORI
m —— =0.
xgS )

Using this fact, the factv (%) is bounded inR_Si, we obtain from the last inequality that

V()
lim ——=0.
X4S Xd
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Similarly, we prove that

VELuW®) _

xS Xd

lim MV o(-,u,v) x)=0 and Xdlém

So (,v) is a positive continuous solution of systeni(l) in the sense of distributions sat-

isfying
()
1.— exp... p)hy u hy and
1
1% exp.i phy Vv hy. 0

Example4.1 Let 1, 1, 1, 1, 1 Rsuchthat ; Oand 1+ ; 0.De"nethe nonneg-
ative functionf onRY x [0, )x [0, )by

f(x,t,9 = ;(xd +t+9 I(Xg+1) 1(Xg +9) L.
Xg (L +]x]) 11

Consider the functionH (t) = (xg +t +9) 1(xg +t) 1 for (x,9 RYx [0, ).We noteH (t) =
(xa+tt+9) okxg+t) -1 1+ 2)(t+xa)+ 18 Oforall(x,t,9 REx [0, )x[0, )if
andonlyif ;+ ;3 Oand ; 0.Hence H,) is satis“ed.

Assume that the following conditions are satis“ed:

1...1...1..sgn@;) 1...1..sgna;+ay) 1+sgnay)

+maxO0, ..sgra; + az) 1,sgr@z)( 1...1)sgr@)( 1... 1) <1 and (4.8)
1. 1. 1. 1>8gr(@1) +sgr(by) + 1..sgr(b,) d. (4.9)
Then f satis“es hypothesesHs), (Hg), and (Hy). Indeed, using the fact tha% & if
a;>0 andﬁ(x) = ﬁ if a; =0, we obtain
1 c
hi(x)  x{-soren)” (4.10)
Hence
f(x,0,0) c

hl(X) Xdl...1...1...1+(1..sgr(a1))(1 + |X|) 1ol

Since 1 Oand(1.sgna;)) 1, we obtain by conditions4.8) and (4.9 that

1.+ 1---1---1% 1..50M@)

1.01...1...1..sgnag+ay) 1..sgra;+ay) 1+ 1..sgn@;)
< i..(1.sgn@) 1..-1..-1..sgna;+az) 1

+maxO0,..sgna; +ap) 1,sgn@x)( 1... sgn@z)( 1...1) +1
<2
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and

1.e+1...1...1+F 1l..sgn@;) >1+sgnb;)+ 1..sgnby) d 2.

From Example2.1, we deduce that%) K (RY) and (Hs) is satis“ed.
To verify (Hg) and (H7), we considetM >0,0 t; t;, M,and0 s s M.Then
there exist 1, 3 (ti,tp)and 2, 4 (S,S) such that

f X, t2h1(X), 2h2(X) ..f X, t1h1(X),s1ha(X)

1
= W (tz ..1)h1 (XA + (2 .. 51)h2(X)B

where
A= 1 xg+ 1hi(x)+shypg t-ateme)
(Xa + $h2(X))2
+ 1 Xgt+ 3h1(X) 1“'1(Xd + tlhl(x) + S]_hz(X)) 1
(Xa + 2h2(X))~1
and

1.1(Xg + t2hy (X)) 1
(Xa + 2h2(x))-1

+ 1 Xg+ 4ha() T xg+tihg(X) g+ tihg(X) + stha(x) 1.

B:= 1 Xg+tihi(X)+ 2ha(x)

Next, we will dominate|A| and |B|. For this aim, we distinguish the following cases.
Case 1. b=0. In this case, we hava; >0,h; =ayH 1, hy=ay, ﬁ ¢, and condition
(4.9 writes as

Lei 1o 1.0 1>d+ 1. (411)

This case will be divided into two subcases.
Subcase 1..8= 0. In this case, we havie, > 0,h; = h, = byxy, and condition 4.8 becomes

1...1+maxo,...;) <1 (4.12)

By discussing six sub-subcases (0 ;<l1or ; 1l)and(y<0or0 i<lor ; 1)
and the fact thatx, (1 +|x]) 1 +x (L +[x[) * ~ 2x7"C 1 D1 +|x]yma( 1. 1), we obtain
f X, t2h1(X), s2h2(x) .. f X, t1hy(X), stha(x)

pm(X)(t2 .. 1)1 (X) + gu(X, %) ..gu(X,S1) ,

where

Cc
dl---1+ma>(l---1’1---1x0)(1 +|xX[) 11 TAin(L 11,2000 000)

Pm (X) =
X
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and

chp(x)
1...1+1+ma>(---1,0)(1+|xl) 1o 1.1#Mmin(...1,0)

av(x,9 =
X4
Since 1 0, we deduce by4.12 that

1...1+ma)<1...1,1...1,0) 1...1+ma)<1...1,1)

= 1. 1+1+ma)(...1,0)<2.

On the other hand, using the fact thatnaxa, b, 0) +min(a,b,a + b) =a + b, we obtain by
using @.11) that

Loove 1 oes 1‘|ma)<1 ..,1.. 1,0)+m|n(1 el ,2001 . 1)

= 111 +H1>24d>2.
Hence the functionpy K (RY). Now, sinceh,(x) = byxg and ﬁ c, we obtain

ax M9 cM
0s M hy(x) Xdl---1+ma>(---1,0)(1+|X|) 1o 1o 1+Min(...1,0)"

Using condition (4.12), we obtain
1...1+¥max...1,0)< ;...1+1+max...1,0)<2.

This together with the fact that
1--+1-..2tmin(...1,0)+max...1,0)= 1...7...1...2>d 2

implies that the functionmaxy s m % K (RY). Hencef satis“es Hg). Now, we have

1(X) = f (X! 01 O) +0rnsai(/| g\/| (X,S)

1 c
+ .
Xgl L (L4 X)) 1 Xdl"'1+ma)(”'l'o)(1 +|x|) o1 1¥MIN(... 1,0)

Since 1+ ;1 0, we deduce by conditions4.11) and (4.12 that

Toe leen 10001 1...1< 1...1+ma)(...]_,0)<1 and

Levi1eee 1. 1>d+ 1.

Hence from [4, 5] we obtain

Xd

V( 1) Cm-

This together with (1.4) implies thatf satis“es Hy7).
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Subcase 2. 8> 0. In this case, we haviy(x) =aH 2(x) + boxg and hy = a, + boxg, and
condition (4.8 becomes

1. 1+max[0,...1, 1...1,1... ]_]<0. (413)

By discussing the eighteen sub-subcases(0; <1 or ; 1),(1<0or0 <1lor
1 l)and(1<00r0 i<lor ; 1),weobtain

f X,t2h1(X), 2h2(x) .. f X,t1h1(X), s1ha(X)

pm(X)(t2 .. 1) (X) + v (X, %) ..gu(X,s1) ,

where
c
X) 1=
Pu () Xd1+ma>(0,...1)+ma>(0,1...1,1...1)(1+|X|) 1. 14MINO, ... 1)+MIN(L... 1.0 1,0 10.e 1)
and
g\/l (X S) — Cd’12(x)
1) - Xd1+ma)(1...1,1...1,1...1...1y0)(1+|X|) 1___1___1+min(1___1___1,,,,1,___1,0)'

Since ; 0, we deduce by conditions4.11) and (4.13 that

1+max0,....)+max0,1...,,1... 1)
1+max0,...;)+maxl,1...1)
1+maxo0,...1,...1,...1... 1) +1
1...1+tmax 1,0,...0+ 1,...1)+1
1...1+tmax 1,1,1...0+ 1,1...1)+1

[ 1+ma)( 1...1,0,..1, 1ee 1)+2<2

and
[ 1+min(1 A T T ...1)+ma>(0,1 O R 1)

= q1...1%1..1.. 1+min(0, 1...1,1...1)‘"‘1'18.)(0,1...1,1... 1)

= 1.1+l ... 1>2+d>2.

Hencepy belongs tok (RY). Now, sincehy(x)  o(1 +|x|)%9°2), we get

o (X9 c
0s M h]_(X) Xd1+ma)(l...1,1.--1,1...1---1,0)(1+|X|) 1...1...1+min(1...1...1,...1,...1,0).sgr(b2)'

Using @.17) and @.13), we obtain

1+ma)<(1...1,1...1,l...1...1,0): 1...1+ma><(0, 1 eve 1yeeels 1...1)+1<2
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and

1-..2tmin(l...1...1,...1,...1,0) ..sgnby) +max(1 ... 1,1...1,1...1... 1,0)
= 7..1..1...2+t1..sgnby)+min0, ;...1,7...1,7+ 1...1)
+maxl..1,1...1,1...1... 1,0)
= 1..1...1... 1+1..5gnby)>2..sgn(by) +d>2.

This proves thatmaxy s v % K (RY) andf satis“es Hs). Next, we verify H7). Let

1(X) =f(x,0,0) +max s m gu(x,S). Then

1

1(¥)

Cc
Xd1+ma)(l...1,1...1,1...1--- 1,0)(1 + |X|) 1..1...1+min(1...1...1,...1,... 1,0). sgr(b2) '

Since 1+ 1 0, then

Teeeleen1.0o1< 1...1 1. 1+ma><(0,...1, 1...1,1... 1)<0,

1+ma)<1... nl...,1..01... 1,0): 1. 1+ma)<1,1+ 1...1,1...1, 1)

1 een 1+ma)(0, Loeve 1y eends 1...1)+1<1
and

1---2tmin(l...1...1,...1,...1,0) ..sgnby) +max(1 ... 1,1 ... 1,1 ...1... 1,0)
= 1..1..1...12+t1.sgrby)+min(0, 1...1,3...1,3+ ;...1)
+maxl..1,1...1,1...1... 1,0)
= 7..1...1...1+1..sgnby)>2..sgnby)+d
>1+d.

As in subcase 1, we obtain fromd] 5] that

Xd

Vo 1(X) C—(1+|x|)d'

This together with (1.4) implies thatf satis“es Hy).
Case 2. p>0. In this case, we hava; 0 and condition @.9) will write as

Loove Toaee 1 oes 1>1+sgr(a1). (414)

We will also discuss two subcases.
Subcase 1..a= 0. In this case, we havi,(x) = hy(x) = boxy4, and condition @.8) becomes

1o 1.0 1.-1sgn(@1) 1 +1+sgna)maxo, 1]<2. (4.15)
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By discussing the six sub-subcases(0;<lor ; 1l)and(i<0or0 i<lor ; 1)
and using the fact that *(1+|x]) 1 +x (1 +[x|) 237" 1 V(1 +|x|)m( 1. 1), we obtain

f X,t2h1(x), 2h2(x) .. f X,t1h1(X), s1ha(X)

pm()(t2 - 1)h1 () + G (X, %) .. Gu(X.51) ,

where
()= °
Pm %) = Xdl---l---l---1+l+Sgr(a1)ma>‘( 1t 111, 1)(l+|X|) 1...1+sgn@]) min(d...1... 1,...1,... 1)
and
(x9= cha(x)s
W%, 9 = Xdl---l---l---1+1+sgr(a1)(ma>( 1.0)+ 1)(1 +|x[) 1..- 1*+sgr(@)(min(0,...1)...1)

Since ;1 0, using @.14 and (4.15, we obtain

Loeee L eee 1 ons 1+1+sgr(a1)ma)( 1+ 1...1,4, 1)
T R 1+1+sgr(a1)ma><( 1+ 1, 1)

= 1...1...2+1...1..sgra;) i1+sgna;)max 1,0)<2

and

Loeen L ovee 1 ees 1+1+sgr(a1) ma>( 1+ 1...1,4, 1)+min(1... 1. 1,...1,...1)

= 1...1...1...1+1>2+sgr(a1) 2.
Hencepy belongs tok (RY). Now, using .10 we get

max v (x,9)
0sM hy(x)

cMhy(x)
Xdl---l---l---1+l+(l-ng(al))+39r(al)(ma>( 1,0+ 1)(1 +|x|) 1 1*59@)(Min(O,...1)...1)

cM
Xdl... 1...1... 1+(L..sgn(@z))+sgn@)(max 1,0)+ 1)(1 + |X|) 1... 1+sgn@1)(min(0,...1)...1) )

Using the factthat0 1..sgn@;) 1, we obtain

1.01...1... 1+ 1..sgn@;) +sgr@;) max0, 1)+ 1
1..-1...1+1...1..sgn@) 1+sgna;)maxo, 1)<2

and

1. 1.-1.. 1% 1..sgn@) +sgn@) maxo, 1)+ 1

+sgn@a;) min(0, ...1) ... 1
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= 1..1..1...1% losgri@a) >1+sgnay)+ 1..sgn(ay) =2.

Hencef satis“es Hs). Now we prove thatf satis‘es H7). Put (x)=xqand 1(x)= % =
8 sincehs(x) = boxy, then we have

_ f(x,O,O)+ max on(X,9
Xd 0sm Xd

1

Xgt T (L)

1)

N chhM

Since 1 0, we deduce by4.14 and @.15 that
Tev 111 +t1< 1000100010 1+1+sgr(a1) ma)( 1,0)+ 1 <2
and

1.e¢1..1... 1+1+sgr@;) min(0,...;) + maxo0, ;)

= 1...1...1...1+1>2+sgr(a1) 2.
Hence ; K (RY), and consequently from Propositio2.5we deduce that

V(1)) =V( 1)) 1Xd b_llhl(x)-

This implies that (H7) is satis“ed.
Subcase 2. 2> 0. In this case, we havh,y(x) = azH 2(X) + baXg, ha(X) = a, + byxg and
condition (4.8 becomes

Loeee ] een 1...1..sgr(a1) 1+ma><{0, 1, 1, 1+ 1...1]<0. (416)

By discussing the nine subcases(<0or0 31<lor ; 1)and(:<0or0 ;<1
or 1 1)ifa; =0 and the eighteen sub-subcases(0 ;<lor ; 1),(1<0o0r0

1<lor ; l)and(1<0o0r0 i<lor ; 1)ifa;>0 and using the fact that
Xg(L+ X +x4(L+]x) 2 (L +x))m@ ) for ,r R, we obtain

f X,t2h1(X), 2h2(x) .. f X,t1h1(X), s1h2(X)
pm()(t2 .- t)hi(X) + (X, ) --Gu (X, S1) ,

where

xa--[l---1---1---(1S§JIF(a1)) 1+1+max0, 1)+max0, 1..sgn@1) 1.s9r@1)( 1...1))I

C
Pm (X) T (1 + |X|) 1...1..sgr(@1) 1+min(0,...1)+min(sgn@i)(1...1),sgr@1) 1...1,0)

and

chz(x)s)g'[l"'l”-1+1---(159f(al)) 1#+maxo, 1, 1, 1+ 1...1)]

g\A(X,S) = (1+|X|) 1...1..sgr@z) 1+min(0,...1,...1,1...1...1)
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Since 1 0, by using 4.14 and (4.16), we obtain

1.e+1..-1---1..8gna@a;) 1+1+maxo, 1)
+max0, 1..sgna@;) 1,sgn@i)( 1...1)
1.e+1..-1-..1..8gn(@a;) 1+1+max0, 1)+ max0, 4]
1eo1.n1...1.8gn(@;) 1+1+max0, 1, 1, 1+ 1]

T 1...1..sgr(a1) 1+ma){0, 1, 1, 1+ 1...1]+2<2
and

1...1..50M@;) 1+min(0,...;) +min sgra;)(1 ... 1),sgn@) 1... 1,0 + 1...1
o 1...1..sgr@;) 1+1+max0, ;)+max0, 1..sgn@a;) 1,sgn@)( 1...1)
= 1..1..1...1F1>24+sgn(a;)) 2,
which provesthatpy K (RY). Now, sincehy(X)  (ap +by)(1+|x[)%9®2), using @.10 we
obtain
v 1o 1+1H+(L.sgM(@2)). . (1SgM(@1)) 1+#max0, 1, 1, 1+ 1...1)]

o Mk ogt
0s M h]_(X) (1+|X|) 1...1..80M@1) 1..sgrb2)+min(0,...1,...1,1...1... 1)

Using @.14 and 4.16), we obtain

1e.1...1F1+ 1..sgr(a1) ...1..sgr(a1) 1+ma><(0, 1, 1, 1+ 11)

2+ 1...1... 1...1..sgr(a1) 1+ma><(0, 1, 1, 1+t 11)<2
and

1 ee- 1..sgr(a1) 1..sgr(b2)+min(0,...1,...1,1...1... 1)+ 1.0 1
.1+1+ 1.sgna;) ...1..sgna;) i1+maxo, 1, 1, 1+ 1...1)
= 1...1...1... 1+t2..50N@;) ..sgnby) >3 ..sgr(by) 2.

Hencemax s m 2&9 K (RY), and sof satis“es Hs). Finally, we verify Hy). Put (x) =

h1(x)
Xgand 1(X)= % = % Sincehy(x)  (az + by)(1 +x])%9®2), then we have
f(x,0,0 X, )
)= ( ), mang( )
Xd 0sM Xg

1
Xdl---l---l---l+1(1 +]x]) 11

C(ag + by)Mx; 1 1172 ASOTan) 1mad0, 1, 1, 3+ 1)

(1 + |X|) 1...1..8gn(@1) 1..sgrb2)+min(0,...1,...1,1...1...1)

Since 1 0, we deduce by4.14 and 4.16) that

1ei1.v1..1+1
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< 1...1...1+2...1..sgr(a1) 1+ma)(0, 1, 1, 11 11)<2

and

1 .- 1..sgr(a1) 1..sgr(b2)+min(0,...1,...1,1...1... 1)

+ 1...1... 1+2...1..sgr(a1) 1+ma><(0, 1, 1, 1+ 11)

= 7...1...1...1+2..50by) >3 +sgn(a;) ..sgnby) 2.

HenceX K (RY), and consequently from Propositio2.5we deduce that

V())=V( 1)) 1Xd b—llhl(X)-

This implies that (H7) is satis“ed.
As a consequence of Theorer.1and the above example, we obtain the following.

Corollary 4.2 Let &,a,b;,b, be nonnegative constants witta; + b;)(a; + by) > 0,

O,u 0,and ;, , are nonnegative nontrivial continuous functions orR?¢,d 2. Let
1, 2, 1, 2» 1, 2, 1, 2, 1, 2 berealconstantssuchthat; 0, 0, 1+ ; Oand
2+ 2 0and satisfying

io.i...l.sgr@) ji..1.sgra;+ay) ;+sgnaj1)
+maxO0,..sgr@a; + az) i,sgM@i+1)( i .- 1)sgr@+1)( i ... i) <1 and
ieeeieenieeej>sgi@)+sgnb)+ 1..sgr(b;) d.

fori { 1,2}, where @ = a;. Then there exist o >0and o > 0such that foreach [0, o)
andpu [0,lo) the system

U= ——(Xg+U+V) I(xg+U) {(xg+Vv) t in RY,
xd1(1+|x|)l"-l(d ) 1(Xa +U) 1(Xq +V) ¢

=_ +u+v) 2 + 2 +v)2 inRd

v X u-+yv X u X V n y

xd2(1+|x|) 2.__2( d ) ( d ) ( d ) +
u=a 1, v=ay o, in Rg,

limy, S =b; and limy =y,

has a positive continuous solutiofin the sense of distributiornssatisfying

(o} [alH 1+ b]_Xd] u [a]_H 1+ b]_Xd] and

Cp[azH 2+ ngd] \Y [azH 2+ ngd],

where c,¢, [0, 1).
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