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1 Introduction

In this paper, we study the existence of positive continuous solutions in the upper half
space R‘f = {x = (x1,%2,...,%4) € R? : %7 > 0}, d > 2, for the following semilinear elliptic
system:

Au=Af(-,u,v) inR? (in the sense of distributions),
Av=pg(,u,v) in R‘f (in the sense of distributions),

limy, (¢,0) u(x) = @11 (§) lim,—, 6 ) V(%) = a2¢p2(§), V& e RY7L,

; u() _ ; vix) _
hmxd—>oo E = bl hmxd—>oo xg b2:

(1.1)

where ¢; and ¢, are nontrivial nonnegative continuous functions on 8Rﬁf =R x {0},
ay,as, by, by are nonnegative constants such that (a; + b1)(cy + bp) >0, L >0, u > 0, and
f,g are two nontrivial nonnegative functions on R? x [0,00) x [0, 00).
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This problem has been investigated recently, in particular the cases of nonlinearities f,
g, by many authors (see for example [17, 19, 20] and the references therein). In [20], the
author considered the particular case where f(x, u,v) = p(x)g1(v) and g(x, u, v) = q(x)ga (1),
where g1, g» are nonnegative continuous functions that are both nondecreasing or both
nonincreasing and p, g are nonnegative measurable functions belonging to the Kato class
K> (Rf ) introduced and studied in [5] for d = 2 and in [4] for d > 3. Under some conditions
on ¢; and ¢,, the existence of positive continuous solutions having the global behavior of
the associated homogeneous system is established. This also was done by investigating
the properties of the Kato class I(“(R‘f). System (1.1) has been also studied in [17] for
the particular cases A = u = 1, f(x, u,v) = p(x)u®V", and g(x, u,v) = g(x)u*v?, where a > 1,
B>1,r>0,s>0and p,q are two nonnegative measurable functions that belong to the
class K> (R‘f), and some results of existence similar to those in [20] have been obtained.

Our aim in this paper is twofold. The first goal is to give a new characterization of the
Kato class K*®(RY), as it will be stated in Theorem 2.2 in the sequel. This explains in a
certain manner the optimality of the 3G-inequality (2.5), satisfied by the Green function
and established in [4] and [5]. The second goal is to extend the results of [17, 20] to a class of
nonlinearities f and g, including in particular those where f is nondecreasing with respect
to u but not necessarily monotone with respect to v and g is nondecreasing with respect
to v but not necessarily monotone with respect to . This will be done after establishing
and exploiting an existence result of a positive continuous solution for the problem

Au=Af(x,u) inR? (in the sense of distributions),

1imx~>(é‘,0) u(x) = d‘b(&)r VE € Rd_l; (12)
4 _ p

limxd—>oo x4 -

where A > 0,a > 0, b > 0 with a + b > 0, ¢ is a nontrivial nonnegative continuous function
on 3R? and the function f belongs to a class of functions containing in particular those of
the form p(x)u® with o > 1, and this will be an extension of the results of [17] established
in the case where f(x, u) = p(x)u®. We note that elliptic equations have been extensively
studied, we refer the readers to [1, 13, 15] and other papers in the literature.

Our paper is organized as follows. Section 2 is devoted to giving a new characterization
of the Kato class K*®(R%) and to recalling some properties of this class that will be used
in the study of (1.2) and (1.1). In Sect. 3, we prove the existence of a positive continu-
ous solution for (1.2). The last section is devoted to the study of the existence of positive
continuous solutions for system (1.1).

Next, we give some notations that will be used in the sequel. We denote by B(R?) the set
of all Borel measurable functions in Rﬁf , by B*(Rf ) the set of nonnegative ones, by Bb(Rﬁf)
the set of bounded ones, and by C (Rf) the set of continuous functions # in ]Rf. We denote
also by Cy (Rf ) the set of functions u € C (Rﬁf ) satisfying lim__ £caRrd u(x) = limpy— 00 u(x) =0
and by CO(JR?f) the set of all functions u € B(R’f) that are continuous in IRT{ and satisfy
limyy o0 () = 0.

Let G be the Green function of the Laplace operator in R? with Dirichlet boundary
conditions. For any p € B*(R?), we denote by Vp the Green potential of p defined on R?
by

Vo) = [ Gl o)y
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and we recall that if p € LllOC (R‘f) and Vp € Llloc(Rf ), then we have in the sense of distribu-
tions (see [10] p. 52)

A(Wp)=-p in R‘f. (1.3)

For any nonnegative bounded continuous function ¢ on R*!, we denote by H¢ the unique

bounded continuous solution of the Dirichlet problem

Au=0 inR?,
lim,, g0 u(x) = ¢(€), V& eRT

It follows by the Herglotz representation theorem (see [2, 3, 12]) that

Ho(x) =cy4 /Rd-1 |xfﬁ(l)(é)d& for every x € Rf.

Using the inequality |x — &| < |x| + |§] < (1 + |x[)(1 + |&]), the fact that ¢ is nonnegative,

bounded, and that ;41 ujﬁ < 00, we obtain
Xd (&) Xd
H > dé = . 1.4
PO = /RH W 1607 % =W e (14)

Let (X;)s>0 be the canonical Brownian motion defined on C([0, 00); R%), P* be the proba-
bility measure on the Brownian continuous paths starting at x, and 7 = inf{t > 0: X; ¢ R%}
be the first exist time of (X;);>o from Rﬁf. For any g € B*(Rﬁf), we define (see [9] or [10]
p. 84) the subordinate g-Green potential kernel V;, by

V(o) (%) = %E" (/ e fotq(XS)dsp(Xt) dt) forpe B(R‘f), (1.5)
0

where E* is the expectation on P*. Moreover, for g € B*(R?) such that Vg < 0o, we have,

see [8, 10, 14], the resolvent equation
V=V,+V,(qV). (1.6)
So, for each u € B(]Rff) such that V(q|u|) < oo, we have

[+ V(g)][I - Valg)]u=[I1-Vyq)]|[1+ V(g)]u=u, (1.7)

and for every u € B* (Rf) we have 0 <V, (u) < V(u). (1.8)

We close this section by adopting the following notation. If S is a nonempty set and
f, g are two nonnegative functions defined on S, we write f ~ g if there exists a positive
constant C such that % f(x) < g(x) < Cf(x) for every x € S. We note also that throughout

this paper the positive constant C may vary from line to line.
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2 The Kato class of functions
Let G be the Green function of the Dirichlet Laplacian in R%, (d > 2). Then it was proved
in [6] that G has the following integral representation:

}le dv
— %=y
G(x,9) = Cylx —J/|2 d/1 AT (2.1)

d
where y = (y1,%2, .- -»Y4-1,—Ya) for y = (31,92, ..., ¥a-1,y4) and C; = de). Moreover, the au-
3

T

2
thors in [5] and [4] proved that G has the following global estimates:

Log(1 + 222;) ifd=2,
G(x,y) ~ W=l (2.2)
|x—yl|d‘2 min(1, ‘z‘g“”z) ifd > 3.

Moreover, there exists C > 0 such that for every x,y € R? we have

Xd)d
(R + DAl + )7 = CG,y)- (2.3)

Using the fact that :—& < min(a, b) < % for a >0 and b > 0, it follows from (2.2) that

Log(1l + 2424 ifd=2,
Gy ~ 1 i (2.4)
dYd ifd > 3.

o=y 92 (=2 +2474)
These estimates have been used to prove the following important 3G-inequality. Namely,
there exists a positive constant Cy such that for each x, y,z € R? we have

G(x,2)G(z)

Zd Zd
Gny) < C0|:x—d G(x,z) + y—dG(y, z):|. (2.5)

This 3G-inequality was exploited by the authors in [5] for d = 2 and in [4] for d > 3 to
define a new Kato class on the half space R?, which has been adapted to study some semi-
linear elliptic boundary value problems using some potential theory tools. More precisely,
this class was defined as follows.

Definition 2.1 ([5] and [4]) A measurable function g belongs to the Kato class K> (Rﬁf) if
q satisfies the following conditions:

lim ( sup / ﬁG(x, 2) |q(z)| dz) =0 (2.6)
=0 xeR? RZNB(x,e) Xd
and
. Zd
lim (sup / ZG(x,2)|q(2)] dz) =0. (2.7)
=0 \serd JRINN21=M] Kd

Our main goal in this section is to give a new characterization of this class of functions
by means of the left-hand side term of inequality (2.5). This gives an affirmative answer to
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the question on the possibility of considering the left-hand term of inequality (2.5) in the
definition of the Kato class. More precisely, we prove the following.

Theorem 2.2 Let q be a Borel measurable function in R?. Then q € K*®(R?) if and only if

G(x,2)G(z,
lim( sup f Mw(z)‘dz)zo (2.8)
02O\ erd xrd JRINBEaUBGa)  G(Y)
and
G(x,2)G(z,
1im( sup / m|q(z)|azz>:o. (2.9)
M—oo\( ) pd rd JRIN(=M))  G(%,Y)

The following lemma will be also used in the proof.

Lemma 2.3 Let x,y € R?. Then we have the following properties:
(1) Ifxqya < |x - y|*, then max(xg,yq) < 1+2_¢§ lx =l
(2) If lx = yI* < x4ya, then B_Tﬁyd <x4 =< 3+£/§yd~
3) 3(x—y>+x2+92) <l -y + xaya < lo =y + 2% + 2

Proof (1) and (2) were proved in [4].
(3) Squaring the inequality |x; — y4| < |x — y|, we obtain x5 + y5 < |x — y|* + 2x,y,. This
together with the fact that ab < a® + b? gives

e =y + a5+ y5 < 2[lx = g1 + xaya] < 2[lx = y1> + x5 + 53]
This achieves the proof. O

The following result is the key to the proof of Theorem 2.2.

Proposition 2.4 There exists a constant C > 0 such that for all « > 0 and all x,y € R? we
have

G(x,2)G(z,y)

Z4
d C —Gl(x, d
/R - e I / (%,2)|q(2)| dz

RZNB(x,30) Xd

+ Cf Z—dG(y,z)|q(z)| dz.
RZNB(y,30) Vd

Proof Leta >0 and x,y € R?. Then we have

/‘ G(x,2)G(z,y) ‘q(z)} - / G(x,2)G(z,)
RINBra)UBYa) — G*Y) RINBra)NBla)  GXY)
. / G(x,2)G(z,y)
RINBra)NB () G(%Y)
G(x,2)G(z,y)
* /M NB(y,0)NBE (x,0) TJ’)

=6L(xy) + L(x,y) + I3(x, ).

|4(2)| dz
|9(2)| dz

|9(2)| dz
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Using inequality (2.5), we obtain

G(x,2)G(z,y)
e [ gt
RANBa)Ba) G5 Y)

< Co/ [ G(x,z) + —G(y z)] |q(2)| dz
]Rdﬂonz )NB(y,a)

<G [ / “ Gx,2)|q(2)] de + / “ G,2)|q(2)] dz}
REMB(x,cr) Xd R4NB(y,a) Vd

Next, we estimate I5(x, ) and I3(x, y). To this aim, we will discuss two cases as follows.

Case 1: B(x,o) N B(y, ) #
Choose zy € B(x,a) N B(y,«). Then, for every z € B(x, ) N B¢(y,«), we have

lq(2)| dz

lz—y| <l|z—x|+ |x— 20| + |20 — y| < 3cx.
Similarly, for every z € B(y, ) N B°(x, «), we have
|z—x| <lz-y|+1y—zol| + |20 — x| < 3.

Hence B(x,a) N B°(y,a) C B(x, ) N B(y,3) and B(y, o) N B(x, @) C B(y, ) N B(x,3ex). So

we obtain
G(x,2)G(z,y
I (x, )::/ —————2"q(z)| dz
2 RilﬁB(x,a)ﬂBc(y,a) G(x, J’) | |
G(x,Z)G(z,y){q(Z” iz

<
- ./R'i NBra)NBy3e)  G(%Y)

< Co/ [z—dG(x,Z) + Z—dG(y,Z)] |q(2)| dz
R4NB(x,2)NB(y,30) L Xd Ya

Zd
<G [/R%B(x’a) 1 Gx,2)|q(z)| dz + /mB(y . —G(y, 2)|q()| dz]

Xd
and
G(x,2)G(z,y)
I3(x,y) = / —————"q(z)| dz
3 RANBGa)NB(ra) G Y) l962)
G(x,2)G( Z,J’)| % )| dz

< - 77
o \/l;f NB(y,)NB(x,3cx) G(x’ J’)

z
SCO/ |: d@(x, +—G(yz}}qz)]dz
R%NB(y,a)NB(x,30) L Xd J

< Co[/ —G(x,z)]q |dz+/ G(y 2)|q(2) |dz]
RYNB(x,30) Xd RZNB(y,e) Vd

Case 2: B(x,a) N B(y,a) =
In this case B(x, ) C B°(y, ) and B(y, ) C B°(x, ). For every z € B(x,«), we have

y—zl<ly—-xl+|x—z| < |y-x|+a <2|x -y
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and
=yl <lx—zl+|y-zl<a+|y-z| <2y -z
So, in this case
1
ily—zl Sle—-yl <2ly-z|. (2.10)
Similarly, for every z € B(y, ), we have
-zl <|lx-yl+|y—z| < |x -yl +a <2[x -y
and
x—y|<|lx—z|+|y—z|<|x—z| +a <2|x—Zz|.
Also, in this case
1
glx—ZI <lx -yl <2x-z|. (2.11)

Now, using (2.4) we obtain

Lo, g(1+ydd)

Z- 2 .
G(x2)G(zy) Log(lilxdﬁi) G(x,2) ifd=2,
G(x,y) o

w2 (g 4xgyg) 24 ‘G i
AR X J)Vd) x,z) ifd>3
lz—y19-2 (1z=y2+z4yq) *. (x.2) -7

and
Log(1+ Log(l+;0%) x‘z .
W ~ Log(1+ "dyd G(y ) ifd=2,
G(x,y) e—yl4- ’ (|x—y|2+xdyd ;
T (eerzgng 30 O0) 142 3.

So we will discuss two subcases.

Subcase 1: If xzy4 < |x — y|2.

In this case we have |x — y|2 + x4y < 2|x — y|2. So, for d > 3, we use this fact and (2.10)
to obtain

o= y1472 (= 12 +xaya) _ Jo =911 = 31> + 2aya) _ N y1? SRy
|z = 91972 (12 = y1? + zaya) ~ |z —y|4 T olz-yd T

On the other hand, for d = 2 we use (2.10), the inequalities %t < Log(1 +¢t) for ¢ € [0,1]
and Log(1 + £) <t for £ > 0 to obtain

Log(1 + 244

lz—y|2

2
x— z z
52| II* yaza g

Log(1 + lz‘jﬁz) Xaya lz=y* ~ x4

Page 7 of 35
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Consequently, for every z € B(x, «), we have

Gx,2)G(z,y)

Zq
<C—G(x,2)
G(x,y) Xd

and

B G(x,2)G(z,y) Zd
Lyx,y) = /H‘{ﬁfﬂB(x,a) 4G(x,y) ‘q(z)} dz < C/ G(x, z)‘q(z)‘ dz.

RYNB(x,e) Xd
Similarly, for every z € B(y, o), we obtain by using (2.11) that

G, 2)G(z9) _ C*G,2)
—_ yd ’

G(x,7)
and
G(x,2)G(z,y) Z4
L(x,y) =f TE2TE | 4(2) | de < Cf —G(y,2)|q(2)| dz.
rRenBpa) G ) RNB(ya) Vd
Subcase 2: 1f |x — y|* < x4y4.
In this case we obtain from Lemma 2.3 that
3-5 3+4/5
Yd =%Xa = 5 Yd- (2.12)

Next we will treat the cases d > 3 and d = 2 separately. If 4 > 3, then we deduce from
(2.12), (2.10) and property 3 of Lemma 2.3 that for every z € B(x,«) we have

lx — 9192 (Jx = y1? + x4ya) < pd-2 lx — 9|2 + xav4
lz=y192 (lz=y1> +zaya) —  |z=y1>+zaya

ey

E=yP+ 245
1+ CE5Y)(lx -y + %)
2 -y +23 + 92

- 2d<9+3~/§> =y + 9

2 Jiz-y2+93

<2¢

<24t1(9 4 34/5).

Consequently, for every z € B(x, ), we have

G(x,2)G(z,)

Z4
<C—G(x,2)
G(x,y) Xd

and

G(x,2)G(z,) / Z4
Lx,y) = —————g(2)|dz < C —G(x,2)|q(z)| dz.
253) ./R‘ims(x,a) G(x,) |q( )i RENB(x,a) Xd ( )|q( )|
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Similarly, for z € B(y, @), we use (2.11) and similar arguments as above to obtain
Gx,2)G(z,y) < %G,z
G(x,y) Yd
and
G(x,2)G(z,y) z
ney- [ FEEEENgizc [ Hep,a)q)]dz
RAnBGa) G ) RNB(ya) Vd

Finally, for d = 2 we will discuss two subcases:
(i) If |x — 2| < %424 or |y —z|* < yaz4. Then, taking into account (2.12) and using Lemma

2.3, we obtain in this case that

3-4/5 3++/5
5 xg and

Xd =z =
3-45)\? 3++/5)\°
Ya <2z4 = D) Yd»

2

or
3-45 3++/5
Yd =24 = 2 ys and

2
(3- ﬁ)zxd < <3+2\/§)2xd'

2
Using the above facts, (2.10), and the fact that for A > 0 and ¢ > 0 we have

min(1, 1) Log(1 + ¢) < Log(1 + At) < max(1,A)Log(1 + £),

we obtain for z € B(x, ) that

3+f5) X2 )

Jdzd
Log(1 + 4 B Log(1+(%57) ;50
XdVd \ — —
Log(1+ 226) = Log(1 + (3502 1,
XdZd
Log(1 + \z—yIZ)
X424 )

<

(3+J§) 16

2 (3-+/5)2 Log(1 + Py

<(@B+v5)?
3+J§)2z_d

<3+ «/5)3(— :
2 X4

Hence, for every z € B(x, o), we obtain

Gx,2)G(zy) _ za
BT i

and
G ) G ’
TN o az<c [, Zewmalga)dz
RENB(xa) Xd

Lxy) = /
2y R‘ilﬂB(x,a) G(x’ )’)
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Similarly, for z € B(y, @), we use (2.11) to obtain

Gx,2)G(z,y)

Zq
f; (:__'(; ;Z)
G(x,y) Yd o

and
G(x,2)G(z,y)

I X, = _— V4 dZ
32 /Mmgw Gy 1)

<C / 4 G(y,2)|q(2)| dz.
RZNB(y,o) Vd

(ii) If |x — 2|2 > %424 and |y — 2|2 > y4z,4, then in this case we have max (x4, z;) < |x — z| and
max(y4,z4) < |y — z|. Hence it follows from the inequalities l%t <Log(l+¢)<tfort>0
that

—x;lyd =< Log(l + dyd 2).
e — y1* + x4y o = 1

Hence
YdZd
Log(1 + 2£4) _ ey’ xayaza
Log(1+74%) = |y-zI> 4

_ -yl (3552 24

ly —z|? X4
- 3445\ x—y12+y% 2z,
- 2 ly—-z2 x4
(3B -yl +ly -2z
- 2 ly —z|? x4

and similarly

Log(1 + 744) _(3* VE\ [k =y + x -2 z4
Log(1+ 224) =\ 2 x-z2  ya

lx—yI?
So, using (2.10), for z € B(x, «), we get

G(x,2)G(z,) -

zq
<C—G(x,2)
G(x,y) Xd

and

B G(x,2)G(z,y) Zd
Lyx,y) = /H‘RﬁfﬂB(x,a) 4G(x,y) ‘q(z)} dz < C/ G(x, z)‘q(z)‘ dz.

]R‘zﬁB(x,a) Xd
Now, for z € B(y, ), we use (2.11) and similar arguments as above to obtain

G(x,2)G(z,y)

Z4
SC_G ;Z)
Gy = 3,50

Page 10 of 35
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and
G(x,2)G(z,y) Z4
I(x, ):/ —————q(2) dziC/ —G(y,2)|q(2)|dz.
B RrBya) G ) la62) RNB(ya) Vd 0:2)|a(c)]
This achieves the proof of the proposition. g

Proof of Theorem 2.2 Assume that g € K®(R?). Clearly, we deduce from (2.5) and (2.7)
that (2.9) is satisfied. Moreover, using Proposition 2.4 and equation (2.6), we deduce that
(2.8) is also satisfied. To prove the converse, we remark that by considering in (2.1) the

substitution
4 _ w2
21 xdydz(l—t): |x yl2 B xdyd2 ’
[ =yl [ =yl lx =yl
we obtain
! dt
Glx,y) = 2Cy xdydd/ _ _
lx—y14 Jo (B _ 42004 )5

Iy |2 -y

Hence, for each £ € IR? and x,z € R?, we have

Gzy) _zalx—£I°
=& G(x,y)  xalz-§14

Now, if we choose o > 0 and x € R?, then we deduce from the Fatou lemma that

e
/R Za lx— & G(x,2)|q(z)| dz

fﬂB(x,oz) Xd |Z - Sld

G(x,2)G(z,
fliminf/ 662G 1
=& JRINBxa) Glx, _)/)

Sliminff G 2)Glz,y)

=& Jrdn@rausee) G Y)
f G(x,2)G(z,¢)

= sup G(x,2)G(2,¢)

(6.0 )eR? x R4 Y RENB(x,0)UB(E @) G(x,¢)

|9(2)| dz
|q(z) ‘ dz.

Using this fact and the Fatou lemma again, we obtain

d

z X — zZ,
/ L G(x,2)|q(z)| dz = / lim | E|d—dG(x,z)|q(z)|dz
RINBxa) Xd RﬁfﬂB(x,a)fl:Ro; |z—&[% x4
oy

_sid
< liminf/ “ Ix g|d G(x,2)|q(2)| dz

E1>00 JRrdnBa) ¥d |2 —&]

gcor?

G(x,2)G(z,

< sup / (x,2)G(z,¢) |q(z)|dz.
(n)erd xrd JRINB B ) GXE)
This shows that if (2.8) is satisfied then (2.6) is also satisfied. In the same manner, we prove
that if (2.9) is satisfied then (2.7) is also satisfied. This achieves the proof. O
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Next, we recall some important properties that will be used in the study of the boundary
value problems (1.2) and (1.1). The proofs of these properties can be found in references
[4, 5], and [7].

Proposition 2.5 Let g € K*®(R?). Then the following statements hold:
(1)

G(x,2)G(z,
ag:=  sup / M|q(z)|dz<oo. (2.13)
(xy)eR? xRE JRE G(x,)

(2) For any nonnegative superharmonic function » and every x € R?, we have
/d G(x,2)w(z) |q(z)| dz < azo(x). (2.14)
RY

(3) The function y — (my%)dq(y) € LY(R?). In particular, q € L}, (RY).

(4) The Green potential Vq belongs to Co(R?).

The following results are also stated in [4, 5, 7], and [17], and they will also play an

important role in the sequel.

Proposition 2.6 Let w be a nonnegative superharmonic function in R‘f and q be a non-
negative function in K™ (R‘f). Then, for each x € R‘f such that 0 < w(x) < 00, we have

exp(-ag)o(x) < wx) - V(qo)(x) < o(x). (2.15)

Proposition 2.7 Let g be a nonnegative function in K OO(Rf) and let Z(x) = bxy + a for
a>0,b>0witha+b>0. Then:
(1) The family of functions

E={Vpip GB(Rf) with |p| < q}

is equicontinuous in ]RT‘f U {oo} and consequently it is relatively compact in Co(R?).
(2) The family of functions

Fq= {x - /d i—dG(x,y)p(y) dy;p € B(RY) with |p| < q}
R d

T

is relatively compact in CO(IRT‘f).
(3) The family of functions

Gy = {x o [ 2D G ) dyip B(RY) with |p| < q}
rY h(x)

is relatively compact in CO(RTff).
(4) lim,_¢ V(hq)(x) = 0,V& € OR?.

Next, we recall a fundamental example of functions in K (R‘j) studied in [4] and [5].
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Example 2.1 Let 8,8 € R and define g(x) = W for x € R?. Then
*d

g€ K*(R?) ifandonlyif B<2<s.

3 Existence of positive solutions for some semilinear elliptic equations
The aim of this section is to study the existence of positive continuous weak solutions for
problem (1.2). First, we define the notion of continuous weak solutions for this problem.

Definition 3.1 A function u is called a continuous weak solution of (1.2) if
(i) ue C(RYR).
(ii) fR‘i’ u(x) Ap(x) — Af (x, u(x))p dx = 0 for every ¢ € C>°(R?): the set of all infinitely
differentiable functions in R? with compact support in R%.
(iff) Tim, ¢ cppa #(0) = ag(§) and limy, oo 42 = b.
xeRf

To state an existence result for (1.2) for A sufficiently small, we define k(x) = bx,; +aHp(x)
and J1(x) = bxg + a for x € R9, and we assume that f satisfies the following hypotheses:
(1) £(.,0) € K(RY).
(H2) f: ]Rd [0,00) —> [0, o0) is a Borel measurable function such that for each x € ]Rff
the map ¢t — f(x,¢) is continuous and satisfies the following condition: For each
M > 0, there exists a nonnegative function g, € K oo(Rﬁf) such that for each x € R‘f
the map t — t%( Vg (x) — f (x, tZ(x)) is continuous and nondecreasing on [0, M].

(H3) og:=inf e]Rd[Vf(O ]1>0.

Remarks 3.2 (1) Conditions (H;) and (H,) are satisfied in the particular case f(x,t) =

p(x)g(t), where p € I(“(Rf) and g(t) = t*, @ > 1 or more generally g : [0,00) — [0, 00)

is continuous and satisfying for each M > 0, there exists a constant b = b(M) > 0 such that

g(t)—g(s) < b(t—s) for 0 <s <t < M.Indeed in this case (H;) is satisfied with ga = b(M)p.
(2) Hypothesis (H3) is satisfied in the particular case where f(-,0) = 0 with o = co.

Under conditions (H;)—(H>), we will prove in the next that continuous weak solutions
u of (1.2) in R satisfying 0 < u < h are those satisfying the integral equation (3.1).

Lemma 3.3 (see [17]) Let py and p, be two nonnegative measurable functions in Rﬁf such
that p) < py and Vp, is continuous in R%. Then Vp, is also continuous in R%

Lemma 3.4 Assume that hypotheses (H,)—(H,) are satisfied, let u € B*(R‘f) satisfying 0 <
u(x) < h(x) for x € R%, and assume that A > 0. Then u is a continuous weak solution of (1.2)

if and only if
u(x) = hx) = AV (f(-,u))(x) forxeR% (3.1)

Proof Assume that u isa continuous weak solution of (1.2). We define |¢| = SUP; ¢ ypd o(&)
and M = max(l,|@|). ThenO0 <u<h < M. From hypothesis (H3), there exists g = gu €
K (R‘f ) such that for each x € R‘f the map ¢ — th(x)q(x) —f(x, th (x)) is nondecreasing on
[0, M]. Hence

~f(-,0) < qu —f (-, u) < Mhq —f (-, Mh). (3.2)
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In particular, we obtain
0 <f(,u) < Mhq +(,0). (33)

Since the functions ¢,f(-,0) € K™ (R‘f ), then it follows from Proposition 2.5 that V(f(-,0)) €
Co(R?) and 1V (hig) € Co(RY). This implies that V(ig) € C(R?) and V(Mhq +f(,0)) €
C(]R‘f). This together with Lemma 3.3 implies that V(f(-,u)) € C(]Rff). Put v(x) = u +
AV (f(,u)) — aHe. Then v € C(R?) and is harmonic in the sense of distributions in R%.
It follows from Weyl’s theorem (see [11] p.250) that v is a harmonic function in Rf. More-
over, V > —a|p|x in Ri’ and limxHSEB]Rﬁl v(x) = 0. Using Theorem 1.1 in [18], we deduce
that there exists C, > 0 such that v(x) = Cyx, in ]Rff . Since lim,,, » vx(—:) =limy, Vx(—? =b,
then C, = b, and consequently u satisfies (3.1).

Conversely, since g,f(-,0) € K* (Rf), then MZq +f(-,0) € LIIOC(Rf). So from (3.3) we ob-
tain f(-,u) € Llloc(]Rff). Again from (3.3) and the fact that V(MZq +£(-0)) € C(R?) we deduce
from Lemma 3.3 that V(f(-, )) € C(R?) and from (3.1) that u € C(R?). Using (1.3) we ob-
tain Au = Ah — AAV(f(-,u)) = Af(-,u) in the sense of distributions. On the other hand,

using (3.3) we obtain
0< V(f(-,w) < MV(hq) + V(f(-,0)). (3.4)

Hence it follows from property 4 of Propositions 2.5 and 2.7 that
lim . jpd V(f(-,u))(x) = 0, and Ensequently lim_, jpd u(x) = a¢(&). Finally, using
(3.4), the fact that %V(hq) € Co(R?), and that lim— oo Zéc—)V(f(.,O))(x) = 0, we obtain

limy - 00 Zéc—)V(f(-,u))(x) = 0. In particular, limy, Zéc—)V(f(-,u))(x) = 0. Consequently,

: &) _ 15 h(x) ; VIFCu)) _ ; VIFCa)) ) hx) _ ;
limy, o0 % =limy, oo % — Alim,, o = = b — Alimy, —Wﬁ = b. This
achieves the proof. O

Next we establish a uniqueness result for an eventual continuous weak solution 4, sat-
isfying 0 < u < h for (1.2) in the case where A > 0 and the nonlinearity f is nonnegative,

nondecreasing, and continuous with respect to the second variable.

Proposition 3.5 Let f : R? x [0,00) —> [0, 00) be a Borel measurable function satisfying
(H1)—(H>) and assume further that for each x € R’f the function t — f(x,t) is nondecreas-
ing on [0, 00). Then, for any nontrivial nonnegative continuous bounded function ¢ on the
boundary dR%, any nonnegative real numbers a,b with a + b >0 and A > 0, problem (1.2)

has at most one nonnegative continuous weak solution satisfying 0 <u < h.

Proof Assume that there exist two nonnegative continuous weak solutions 1, u; of (1.2)
with 0 <u; <hand 0 < u; < h. Let M = max(1,|@|x). Then 0 < u; <h < M and 0 <
uy <h < Mh.

Since f satisfies (H;)—(H>), it follows from Lemma 3.4 that

(u2 - l/ll) + )\.V(f(, uz) —f(', ul)) =0. (35)
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Letg=qy e K Oo(IR‘f) be the function given in hypothesis (H) and define

fup())~fu (x)) &
k(x) _ 1o (X)—141 (%) if U (x) 7{ Ui (x)r

0 if 19 (%) = uy(x).

Then we have 0 < k(x) < g(x) for every x € ]Rff. Hence k € KOO(R‘f) and using (H1), (3.3),
and properties 2 and 4 of Proposition 2.5, we obtain

V (rkluy =) < AV (F(u2)) + AV (F(u1)) < 2AMV (hg) + 2.V (£ (-, 0))

< 2AMagh + 21V (f(-,0)) < 0.
Applying (I — Vi, (1k-)) on both sides of equality (3.5), we obtain from (1.7) that uy = u;. O
The second main result of this paper is the following.

Theorem 3.6 Let ¢ be a nontrivial nonnegative bounded continuous function on dR% and
assume that hypotheses (H,), (H,), and (Hs) are satisfied. Then there exists Lo > 0 such
that for ) € [0, o) problem (1.2) has a positive continuous weak solution u satisfying the
following global behavior:

e h(x) < u(x) <h(x) foreachx € R4, (3.6)
where ¢, € (0,1].

Proof We will adapt the proof in [7]. Put M = max(1, |H¢|). Since H¢ is harmonic and
bounded in R with boundary value ¢, it follows from the maximum principle that M =
max(1, |$|s). From hypothesis (Hs), there exists g = gu € K*°(R?) such that for each x €
R? we have

S th(x)i :f(x, sh®)) < Z(x)q(x) forevery0 <s<t <M. (3.7)

Consider the function 6 : A — Aexp(Aoy). Then 6 is a bijection from [0, 00) to [0, 00). Put
Ao = 071(0p) > 0, with the convention that A = 0o if oy = 00. For A € [0, A¢), we define the

nonempty closed convex set

A= {u eB*(RY): ( - @) exp(—hag)h(x) < u(x) < h(x)}.

0o

We mention that foru € A wehaveu <h < M. So it follows from (3.7) that
0 <f(u) < qu +£(-,0). (3.8)
Let T be the operator defined on A by

Tu =h— Vg (rqh) + )LV,\q(qu -fG u)).
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We will prove that A is invariant under 7 and 7T has a fixed point in A, which is a solution
of the integral equation (3.1).

For each u € A, we have

Tu = h—AVig(qh) + AVig(qu —f(-,u))
<h-AVig(qh) + AVi4(qu)
<h.

Using Proposition 2.6, hypothesis (H;), and (1.8) we get

Tu =h— Vyy(Agh) - )\V)\q(f(',())) + AV)\q(qu +f(,0)—f(, u))
> el — AV, (f(-0))
> e h-AV(f(,,0))

> e—Aaqh —A V(f(’ 0)) h
- h
Z e_Aaqh — )\‘ sup [w}h
xeﬂ h(x)
A
> e_)\aqh - —h(x)h
inf,_zalvcom)
A
> exp(—)\aq)[l - &]h
0]

Consequently, TA C A.
Next, we prove that T is a nondecreasing operator on A. For this aim, we consider u,v €

A such that # < v. Then, using hypothesis (H,), we get

Tu—Tv=2Vyg(qu—f(,u) —qv+f(-v))

= AVAq(f(-,v) —f(Cu)—qlv- u)) <0.
Next, we consider the sequence (u,),>0 defined by
ug=h—rVyulqh) - )»qu(f(yO)) and .1 = Tu, forn > 0.
Using the monotonicity of T, we obtain
uo<uy <-- <ty <ty < h.

It follows from (3.7) and the dominated convergence theorem that the sequence (u,),>0

converges to a function u € A satisfying Tu = u, or equivalently

u=h-"V,(Agh) + )LV,\q(qu —f( u)).



Alsaedi et al. Boundary Value Problems (2023) 2023:45

This implies that

(1_ qu()‘q))u = (I - VAq()"q))h - V)»q()‘f('r M))

Applying the operator (I + V(Ag-)) on the last equation, we deduce by (1.6) and (1.7) that
u is a solution of the integral equation (3.1). Hence it follows from Lemma 3.4 that u is a

continuous weak solution of (1.2). a

Example 3.1 Leta >1and 8,y,5 € R such that

B - (1 - sgn(a))(a +y-1)— (1 - sgn(b)) min(0,y)

—sgn(a)sgn(p) min(0, + y — 1) <2< 8 —y —sgn(b)(« — 1),

where
1 ifr>0,
sgn(r) =
0 ifr=0.
Define f(x,t) = W(xd + )Y t* for (x,¢) € Rﬁf x [0,00). Then f satisfies hypotheses
xd X[+ N

(H1)—(Hs3). Indeed, since f(x,0) = 0, then (H) and (H3) are satisfied with o = 0o. To prove
(H-), we consider for every M > 0 and 0 < s < ¢ < M. It follows by the mean value theorem
that there exists 1 € [s, t] such that

£, th(x)) - f (x, sh(x))

(t - s)h(x)
) 1 <(xd + th(x))” (th(x)* - (x4 + sﬁ(x»V(s’ﬁ(x))“)
- x§(|x| +1)5-F (t - s)h(x)
e (et ) T )"+ (ra + @) (). (3.9)

x5 (1 + |x])o-#

We will discuss two cases as follows.

Case 1. a = 0. Since a + b > 0, we obtain b > 0, and so Z(x) =bO(x) = bxy. Sincex —1 > 0,
y (xa + nbO®))" " (16O(x))" + a(a + nbO®))” (nbO(x))* " < clag)* .
So, we deduce by (3.9) that

S thx) ~f @ sh) _ 1
(¢ - s)h(x) Tl )i

We conclude by Example 2.1 that f satisfies (Hy) if 8 — (¢ +y - 1) <2<8 - (e +y - 1).
Case 2. a > 0. Since b > 0, we discuss the following subcases.
Subcase 1. h=0.So0 1 = a. Hence, if y > 0, then we have

y (% +na)’ " (na)® + a(xy + na)’ (na)* " < c(xq + na)’ (na)*!

Page 17 of 35
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<clxqg+1)

<c(1+]x])"
and if y <0, then we have

y (a +na)’ " (na)* + alxg + na)’ (na)* " < (na)*~ (xq + na)’ " ((« + y)na + ax,)

< cma)*(xg + na)’

<cx).
Then by (3.9) we obtain
Fx, th(x)) — f (x, sh(x)) B 1
(=) 7 L0V |x)p-pomax0n)]

We conclude by Example 2.1 that f satisfies (H;) if 8 — min(0,y) <2< 8§ —y.
Subcase 2. b > 0. So Z(x) =a + bx,. Hence if y < 1 — «, then we have

y (xa + 1h@) ™ (0h()” + & (xg + nh(@))” (nh(x)"™"
< (sa + ()" (xa + k()" (e + y)1h(x) + axg)
< a(xg +na +nbxg)* "

-1
<axy?,

and if 1 — o < y, then we have

y (% + )" (1) + o (xa + () (nh(x)
< (wa + nh@)" ™ (nh@))" " (@ + y)nh(x) + axg)
< max(@, a + ) (xq + nh(x)

<c(1+xg)7!

<c(l+ |x|)y+a_1.

Then by (3.9) we obtain

S th@) ~f (5, 5h(x)) _ 1

(t —S)Z(x) - ngmin(o’y“”l)(l + |x|)8—ﬂ—max(0,y+a—1)

We conclude by Example 2.1 that f satisfies (Hy) if 8 —min(0,y +a—-1) <2< 8- (e +y —1).
Example 3.2 Leta>0,b>0witha+b>0and 34, B,y € R satisfying

B<1l+y-sgn(@max(y -1,0) and &>y +1+(1-sgn(b))d.
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Let f be the positive function defined on R? x [0, 00) by

fx,t) (xg +12).

B xh(1+ [x))-p
Then f satisfies hypotheses (H;)—(Hs3). Indeed,

f(x,0) 1 1
h(x) ) xs_y(l + |x])8-8 a + bxy
<c 1
BEAS I

Since B —y +sgn(b) < B—y +1 +sgn(a) max(y —1,0) < 2and § — y +sgn(b) > 1 +sgn(b) +
(1 —sgn(b))d = 2, we conclude by Example 2.1 that f satisfies (H;). Now we verify (Hs).
Using (1.4) and the fact that a + b > 0, we obtain

Xd

hx) 2 ¢S -

elfb=0.Since -y <B—y +sgn(a)max(0,y —1)<1land § —y > 1 +d, then

1

10 =T
f(x ) xg_y(l + |x|)5_ﬂ

belongs to K> (R?),

and it was proved in [4, 5] that

Xd

So

e 1, e

C
VEGom — oW Z e

e Ifb >0.Usingthefactthat f—y +1 < B—y +1+sgn(a) max(0,y —1) <2and -y +1>2,
we conclude by Example 2.1 that the function p(x) = f(;c—f) belongs to K*(R%), and using
assertion (2) of Proposition 2.13, we obtain

V(£ (-0))(*) < apxa.

Hence

W L b

V(f(-,0))(x) = Ay g oy >0

This proves that oy > 0 and (H3) is satisfied.
Finally, we will verify (H,). Let M > 0 and 0 <s < ¢ < M. By the mean value theorem, we
deduce that there exists 1 € [s, t] such that

flo, () — f(x,5h(x)) 1 <(xd + th(x)) = (xq + sh(x))” )
E-9hx) 1+ )t (t - )h(x)
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_ Y+ nh)y (3.10)

xg(l + |x])5-#

So we will distinguish the following cases.
Case LIf y <0, then

S th(@) ~f (s, shx) _
(¢ = 5)h(x) ’
and we can take g = 0. So (Hy) is satisfied.
Case 2. 1f 0 <y <1, then

F(x, th(x)) — f(x, sh(x)) - « c

=¢ T Byl :
(t—s)h(x) a1+ |x1)5F &7+ |x])

Since B—y <land 8-y +1>2+(1-sgn(b))d > 2, we conclude by Example 2.1 that (Hj)
is satisfied.

Case 3. If y > 1, we consider the following subcases.

eIfa=0.Then b >0, Z(x) = bx,, and

S th(x) ~f @ sh(x) _ y@a+ nbxg) ™
(t — s)h(x) T XD+ |x))-p

y-1
Xd

= Cﬂi
xy (1 + |x])°=F

C

S oA o
xg (14 |x])0P

Since B—y <land 8-y +1>2+(1-sgn(b))d > 2, we conclude by Example 2.1 that (Hy)
is satisfied.
e If a>0. Then Z(x) =a+ bxyz and

S th@) ~feosh() _  A+a) ™ @+l ¢
(t - s)h(x) T aD)F T A ) F KDL+ ]t

Since B<1+y —-max(y —1,0)=2and 8§ —y +1> 2+ (1 — sgn(b))d > 2, we conclude by
Example 2.1 that (H,) is satisfied.

4 Existence of positive solutions for some semilinear elliptic systems

In this section we deal with the existence of positive weak solutions that are continuous
in ]RTj for the semilinear elliptic system (1.1). We adopt the following notations: /;(x) :=
arHo1(x) + brxg, Zl(x) = ay + bixg, hy(x) := arHpo(x) + byxy, and zg(x) = ay + byxy for
x € R?. We assume that the functions f, g satisfy the following hypotheses:

(H4) The map (u,v) — (f(x, u,v),g(x, u,v)) is continuous on [0,00) x [0, 00) for every
fixed x € R‘f, the map u — f(x, u,v) is nondecreasing for every fixed (x,v) € Rf x [0, 00),
and the map v — g(x, 4, v) is nondecreasing for every fixed (x, u) € Rf x [0, 00).

(Hs) The functions ﬁ—ﬁl—o) and g—(iﬂ are in K* (Rf).
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(Hs) For every M > 0, there exist a nonnegative function p = p; € K°°(D) and two Borel
measurable functions g, fu Rf x [0,00) —> [0, o0) continuous with respect to the sec-
ond variable such that for every 0 <t; <t <M,0<s; <sp <m,andx € ]Rf, we have

If (x, £21 (%), s2h15(%)) = f (%, t1 T2 (), 1782 ()) |
< p@ @)t - t1) + |gu(x,52) — g, 1))

and

|g(x, tah1 (%), 521 ®)) —g(# tih (%), 51h ) |

< p@a(x)(s2 = 51) + |far(x, £2) — far(, 11))-

Moreover, the functions supc(o g"il(l"s) and sup,o fi’%(z—t) belong to K*®(R%).
(H7) We have

h h
o1 = inf 1®) >0 and oy = inf 2(%) >
xerd V01(x) xekd V02(x)

0,

where
01(x) =f(x,0,0)+01;1525\4 gm(x,s) and Qz(x)=g(x,0,0)+01;1é§wa(x,t),

with gar, fur given in hypothesis (Hg) for M = max(1, [|H1 | oo, [HP2l00)-
Our third main result in this paper is the following.

Theorem 4.1 Assume that f,g satisfy (Hy)—(H7). Then there exist Ao > 0 and 119 > 0 such
that for each A € [0, o) and p € [0, o) system (1.1) has a positive continuous solution

satisfying
C)\hl <u=< hl and C'uhz <v< hz,
where ¢, ¢, € [0,1).

Proof Proof of Theorem 4.1 Let M = max(1, ||[Ho1 ||oo, [[Hd2 |l 0o), then we have h; < MZI
and /1, < Mzg. From (Hg), there exist a nonnegative function p € K °°(Rf) and two Borel
measurable functions g, fu Rf X [0,00) —> [0, 00) continuous with respect to the sec-
ond variable such that forany 0 <# <, <M,0<s; <s; <M, andx € ]R‘j we have

If (%, tzzl(x)»szzz(x)) -f(x tihy (x), SIZZ(x)) | (4.1)

< PO @)t - 1) + g, 52) — gu(x,51)|

and

!g(x, tahy (%), 52012 ®)) - g(x, tih (%), 51712 ) ’

< p@ha () (s2 = 51) + |fur(x, 12) — fur (e, 11))-
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Define 6(1) = L exp(Ae,). Then 6 is an increasing bijection from [0, 00) to itself. Let Ao =
0~(o1) > 0 and o = 07 (02) > 0, with convention that 8~ (o0) = 0o

For A € [0,1) and p € [0, o), we consider the nonempty closed bounded convex set
given by

- {(45:1//) € CO(RTf) X CO(RTf)rO =¢= (1 - <1 - @> exp(—)»%))% and

01 1
0<y =< ( (1— M) exp(—uap)>f£},
hy

For (¢, ¥) € T', we consider the following problems:

=My hy - Zzw) in Rff (in the distributional sense),
y=aip; in 8Rd (4.2)

hm\x\eoo %g = by,
and

Az =pg(,h - zl¢,z) in R? (in the distributional sense),

z=ayp, indRY, (4.3)
limyy o0 22 = by,

Next, we claim that the previous problem (4.2) has a unique positive continuous weak
solution. To do this, we start by proving that the function (o, y) — f x,, hy — 30 Veriﬁes
(H;)~(Hs). Indeed, using the fact thatO <-4 < P < 22

M, we obtain by taking t; = £, =0, 55 = ~* — ¥, and s1 = 0inine uaht (4.1) that
Y g hz Cl Y

S0, )W) _ f(6,0,0) et P — (%)) - gu(,0)|
hi(x) T o) T (x)
f(x,O 0) max gﬁ[(x’ S).
Tn(x) 0% ()

00 00) and maxo<s<yr g"’;l( 9 are in K*®(R%), then f(—()hf;hﬂ € K (RY).

By taking s; = s5 = Z; — ¢ in hypothesis (Hg), it is easy to see that (x,y) —> f(x,y, hy —

Since the functions

Zzlp‘) verifies (Hy). Using the previous inequality, we deduce that

P hy (%) . hy(x)
o, = inf ~ > inf
xeRi V(f('; 0, h2 - th))(x) xe]Rf VQl(x)

=01>0

Then, by Proposition 3.5 and Theorem 3.6, we deduce that (4.2) has a unique positive
continuous weak solution y satisfying

(%) = I (%) = AV (F (3, ha = o)) (), (4.4)

(1 - @> exp(-iap)hy < <1 - @) exp(=rap) <y < < Mh,

o1 1
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and

Sy (), (hy - hay)) _ f e Mhi (), (s = o) ()
hl(x) - 1(96)

E00) L ma 859,
i) 0==M i)

Similarly, we prove that (4.3) has a unique positive continuous solution z satisfying

2(%) = ha(x) = 1V (g( 1y — 11 ,2)) (%), (4.5)

2

0 ~
<1 - (M)> eXP(—MOlp)hz <z<hy <Mh,,
o

and

806 (= I @)(x), 2(x)) _ glx, Ut =) (), My ()

o) - T ()
g(ic,O 0) + Mp(x) + max G t).
hy(x) 0t=M J1y(x)
Let T be the operator defined on I" by
hy—z
T(@, w>—< T )
Using the fact that f_('_ﬁﬁ), 0 ,p, maxg<s<ur & h( ,and maxo<¢<m fm h( D are in K® (R?), we

deduce by assertion (3) of Proposmon 2.7 that
1= { (£ V(b -Tow) £ Vigtin-Tao.2) )i v et |

is relatively compact in Cy (RT{) X Co(@). Next, we will prove the continuity of T with re-
spect to the norm ||.|| defined on I" by ||(¢, ¥) || = |¢llec + || ¥ ||l 0o Let (¢n, V) be a sequence
in T that converges to (¢, ) € I' with respect to ||.||, and let y,,z,,y,z € " such that

h =y, hy—2z, y hy—z
T(¢n,wn)=( 1Zy, 2;) and  T(¢, )= (h ,Zh )
1 2 1 2

Then we have

yyn
1

ha

z—2zy,
+

|T(Ps V) = T ¥)| = ‘

o0 oo

Using equation (4.4), we obtain
y —}’n = )"(V(f(»ym h2 _ZZV/H) - V(f(,)’, h2 _z2¢))'
So

Y=Vnt )»V(f(',y, hy —Zzllf) _f("ynrh2 _zﬂb))

Page 23 of 35
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= AV oy bz = BaWr) —f (o Y iz = o).

Thus the last equation can be written

Y=Ynt V()\kn(y —yn)) = )\V(f('rym hy _Zﬂ”n) _f("yn: hy — zﬂ/’)), (4.6)
where

Sy @), (=T ) (9)f (9 @), =B ) (%)
k(%) = ¥(*)=yn(x) if y(x) # yn(x),

if y(x) = y,(x).
From hypotheses (Hs) and (Hg), we deduce that 0 < k,(x) < ﬁl (x)p(x) for every n € N and

X e R‘j. Using (Hs), assertion (2) of Proposition 2.5, and the fact that y < le, Y < le,
we obtain

V(Mialy = yul) < AV (£ oy bz = o) = £,y b2 = o))
<AV (ply - yul)
< 2MAV (ph;)
< 2Mha,h

< 00.

Applying (I — Vi, (1k,-)) on both sides of equation (4.6), we deduce by (1.6) and (1.7) that
Y=Y = 2Vasey (f 3 Vs 12 ~ ) —f oy —ZZW)). (4.7)

On the other hand, we have by hypothesis (Hg)

Voo = Tiarn) = f G = Fp)| () < max gai(,5)

M\X, S M, S
=a1maxg,(v’)+b1 maxgi’)
0<s<M  Jp; 0<s<M  J1;

So, again from hypotheses (Hg), (Hs) and the assertions of Propositions 2.5 and 2.7, we
deduce by the dominated convergence theorem that for each x € R,

Jim AV (32 = o) =f G5 12 = o) () = 0,

which implies by (1.8) and (4.7) that for x € R‘f, (yn(x)), converges to y(x) as n tends to
oo. Similarly, we prove that for x € Rf, (zu(x)), converges to z(x) as n tends to co. So
(T(¢pu> ¥n))n converges to T'(¢, ¥r) as n tends to oo. Now, using the fact that 7T is relatively
compact in Cy (]RTff) x Cp (]RTf), the pointwise convergence implies the uniform convergence.
That is,

Y—=Jn

| TG ) - T(9, )| = ‘ =
1

z—2zy,

— 0

[e¢]

+

oo h2
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as 7 tends to co. Applying the Schauder fixed point theorem (see [16]), we deduce that
there exists (¢, V) € I' such that T(¢, V) = (¢, ), which gives

_ h1 y h2— )
(w)-( T
_ (W(f(-,hl I o) 1V~ g, ho —%zw»)
I ’ Iy '

Put u = h; - Zlq') and v =hy — }721//, then u, v are solutions in ]Rf of the integral equations
u=h - AV(f(-, u, v)) and v="hy - ,uV(g(-, u, v)).
Since ¢, ¥ € CO(]RTj), then u,v e C(Ei). From (Hg), we have

fGu,v) <f(-,0,0) + pu + oma%gM(x,s)

<f(-,0,0) +Mpzl + max gu(x,s).
0<s<M

Lwd) ¢ goo(R4). Moreover, we have by

Since 1620 ,p, maxg<s<py 422 h ) ¢ K‘”(]Rd) then L2V 5

hy
Proposition 2.5 that

0< V(fwv)) <aV (f('h” ))u bV (f‘h”'V)Ls)(x)

1 1

< al\/(f(.’zu' V))(x) + o f(un) B (),

1 n

where ¥ (x) = x4. Using this inequality, the fact that ﬁ;‘:—") € K*® (Rf ), we deduce from as-
sertion (1) of Proposition 2.7 that

lim V(f uv)) x)=0 ford>2.

ac—>§ed]R<Jr

On the other hand, we have

) V(f('vM,V)) V(f(',M,V) 9)
V(f(,u,v)) -y n b n '

y ATy Ty
Since f—(z— K (R?), we obtain by using assertion (2) of Proposition 2.7 that
V(2 9) ()
lim —— =
Xg—>00 P (x)

Using this fact, the fact V(ﬂ'ﬁ:’—v)) is bounded in @, we obtain from the last inequality that

V() )
lim —2— =

Xg—>00 X4
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Similarly, we prove that

lim  V(g(,u)@=0 and lim Vilbw@ _,

x—EciRE Xd —> 0 X4

So (u,v) is a positive continuous solution of system (1.1) in the sense of distributions sat-

istying

(A
(1 - Q) exp(—Aiay)h <u <h; and
01

0
(1 - M) exp(—pap)hy < v < hy. N
0

Example 4.1 Let B1,681,01,y1,m1 € Rsuch that y; > 0 and y; + 07 > 0. Define the nonneg-
ative function f on R‘f x [0,00) x [0, 00) by

1

— (g + L+ ) (g + ) (g + )T
X+ fx)oh

flxt,s)=

Consider the function H(£) = (x4 + £ +5)° (x4 + £)" for (x,s) € R? x [0,00). We note H'(t) =
(g + £ +5)° g + ) (y1 +01)(E +x4) + y15] > O for all (x,£,5) € RY x [0,00) x [0, 00) if
and only if 4 + o7 > 0 and y; > 0. Hence (Hy) is satisfied.

Assume that the following conditions are satisfied:

Br—m — (1-sgn(a))y1 — (1 -sgn(ay + az))o1 + sgn(ay)

+ max[O, —sgn(a; + az)or, sgn(az)(ny — 1),sgn(az)(n; — 01)] <1 and (4.8)

81— —y1 — o1 >sgn(ar) +sgn(by) + (1 - sgn(by))d. (4.9)

Then f satisfies hypotheses (Hs), (Hs), and (H;). Indeed, using the fact that Zﬁ < % if
a; >0and le(—x) = @ if a; = 0, we obtain

1 c

) = A0 10
Hence
f(x,0,0) - c
Zl(x) - xfll—m—h—ﬂl+(1—Sgn(ﬂ1))(1 + |x])0-A '

Since y1 > 0 and (1 — sgn(a;)) < 1, we obtain by conditions (4.8) and (4.9) that

Br—o1—y1—m + (1-sgn(a))
<Bi-v—m— (1-sgn(a; + a))o1 —sgn(a; +az)oy + (1 - sgn(ay))
<Br— (1 —sgn(@)yr - — (1 -sgn(a; + as))o1
+ max|[0, —sgn(ay + a2)o1, sgn(az) (1 — 1), sgn(az)(m —o01)] +1

<2
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and
S1—o1—y1—-m+ (1 - sgn(al)) > 1+sgn(by) + (1 - sgn(bl))d > 2.

From Example 2.1, we deduce that ﬁ'ﬁi’—o) e K*® (]Rff ) and (Hj5) is satisfied.
To verify (Hg) and (H7), we consider M > 0,0 <t; <t, <M, and 0 <s; <sy <M. Then

there exist 71, 73 € (£, %) and 15, T4 € (81, 2) such that

£ (0 tahy (%), 5272(0)) = f (3, 61T (), 517 ()
1

= W[(tz - tl)zl(x)A + (s — Sl)ZZ(x)B],

where

~ = ot (g + bl ()

A= A A -1 2 TR
01 (%g + 1171 (x) + sp/12(x)) (g 2 55T )

o1 (g + t17 (%) + $1712(x))7!

(24 + $2h19 (%))

tn (xd + Tszl(x))

and

or-1 (g + tal (X))

(26q + $2h13(x))~™

+ 11 (%q + T4Z2(x))ﬂl_l(xd + tlzl(x))yl (xa + th (%) + Slzz(x))ul~

B:=0; (xd + t1z1 () + T2z2(x))

Next, we will dominate |A| and |B|. For this aim, we distinguish the following cases.

Case 1. by = 0. In this case, we have a; >0, h; = aiH¢q, Zl =a, le(—x) < ¢, and condition

(4.9) writes as
51—]/1—7]1—01>d+1. (411)

This case will be divided into two subcases.
Subcase 1. a; = 0. In this case, we have by > 0, /iy = Zz = byx,, and condition (4.8) becomes

B1—mn +max(0,—o01) < 1. (4.12)

By discussing six sub-subcases (0 <y; <1l or y; >1)and(o; <0or0<o;<loro; >1)
and the fact that 2 (1 + [x[)"* + 27 (1 + |%])7t < Zx;m(”m)(l + |x|)mx(191) we obtain

If (x, tah11 (x), 52T12(x)) = £ (3, t1 ]2 (), 517 ()|

< pu®) (s — 1)1 (x) + |gar(x, 52) — gar(x, 51)

’

where

c

X) =
pulx) xgl—m+max(1—y1,1—01,0)(1 + |x|)B1-Fr-Lemin(l-y1,1-01,2-y1~01)
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and

cszg (x)

xgl—n1+l+max(—al,0)(1 + |x|)51_/31—)/1+min(—¢71,0) .

gu(x,s) =

Since y; > 0, we deduce by (4.12) that

B1—n +max(l - y;,1-01,0) < Bi —n1 + max(l —o7,1)

= f1—n1 + 1+ max(-o1,0) < 2.

On the other hand, using the fact that max(a, b,0) + min(a, b,a + b) = a + b, we obtain by
using (4.11) that

81 -nm —1+max(1-y1,1-01,0) + min(l —y1,1 - 01,2 -y —01)

=8—-m—-y1—o1+1>2+d>2.
Hence the function py; € K °°(]Rf). Now, since Zg(x) = byxy and le(—x) < ¢, we obtain

gu(x,s) cM
e VR = B1-n1+max(-o1,0) i :
Oss<M i (x)  x (1 + |x|)81-B1-r1+min(-01,0)

Using condition (4.12), we obtain
B1 —n1 + max(—o1,0) < B1 — 71 + 1 + max(-o1,0) < 2.
This together with the fact that
81 —n1 — y1 + min(—o01,0) + max(-01,0) =8 -y —y1 —01 >d > 2

implies that the function maxg<s<um 5%4% € K*(R%). Hence f satisfies (Hg). Now, we have

01(x) =f(x,0,0) + Jmax am(x,s)

1 c
= Fimor * Cor0) : ‘
xdl MO1V(] 4 |x|)Pr-F1 xgrrlﬁmax ~19(1 4 |x|)S1-Fr-yr+min(-01,0)

Since o7 + y1 > 0, we deduce by conditions (4.11) and (4.12) that

Br—m—o1—yi<Pi—n <pPr—m+max(-03,0) <1 and

51—7}1—0’1—)/1>d+1.

Hence from [4, 5] we obtain

Xd

V(o) (x) < Cm-

This together with (1.4) implies that f satisfies (H7).
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Subcase 2. ay > 0. In this case, we have /1, (x) = ayH¢p,(x) + byx, and Z2 =ay + byxy, and

condition (4.8) becomes
B1 —m +max[0,—o1,m1 - 1,m —01] <0. (4.13)

By discussing the eighteen sub-subcases(0 < 33 <1 or 3 > 1),(n1 <0or 0 <n; <1 or
n > 1) and(o; <0 or 0 < o7 <1 or o7 > 1), we obtain
If (o, tah11 (x), 52T12(x)) — £ (3, t1 ]2 (), 5172 ()|

< pu®) (s — 011 () + |gar(x, 52) — gar(x, 51)

)

where
() ‘
x) =
pm xgl+max(0’_”1)+max(0'1_yl’l_“1)(1 + |a¢])S1-Br+minO—n1)+min(l-y1-01,-y1,-01)
and
cszz(x)
gm(x,s) =

xZ”max(l’”l'l’”l’l’m"71’0)(1 + |x|)d1-Ar-yi+min(l-n-o1,-11,-01.,0) ’
Since y; > 0, we deduce by conditions (4.11) and (4.13) that

B1 + max(0,-n;) + max(0,1 - y;,1 - 07)
< B + max(0,-n1) + max(1,1 - o7)
< p1 + max(0,-n1,-01,-01 —m) + 1
< Bi—m +max(n,0,-01 +n1,—01) +1
<p1-m+max(n,l,1-oy+n,1-07) +1

<B1—-n +max(n —1,0,—01,n1 —07) +2<2
and

81 —n1 + min(l — y; — 01, —y1,—01) + max(0,1 — y;,1 —o07)
=8 -nm+1-y; -0y +min(0,y; — 1,01 — 1) + max(0,1 — 1,1 - o1)

=8-m+1l-y;—01>2+d>2.

Hence ps belongs to K“(Rﬁf). Now, since zz(x) <c(1 + |x])*#"?2), we get

o us) 4
Ozs=M Jpy(x)  pfrrmax(onloondon=end) () ey smin(iom—o1,-n-01,0)-sen(b)

Using (4.11) and (4.13), we obtain

B1 +max(1-ny,1-01,1-n;—01,0) =By —n1 + max(0,n; —o1,—01,n1 —1)+1<2
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and

81 - + mln(l -m —01,—771,—01,0) — Sgl’l(bz) + max(l — 7]1,1 —01,1 -m —01,0)
= 61 —-Y1—N—01+ 1 —sgn(bz) +min(0,01 — 1,7]1 - 1,7]1 + 01 — 1)
+max(l-n1,1-01,1 -1, —01,0)

=81 —y1—nm —o1+1-sgn(by) >2—sgn(by) +d > 2.

This proves that maxo<s<m ‘%”% e K*® (Rﬁf ) and f satisfies (Hg). Next, we verify (Hy). Let

01(%) =f(x,0,0) + maxo<s<p gu (%, ). Then

1
x) <
01(x) < xgl—al—n—m(l + |x|)d1-A1

4

+ (I—n,l-o1,1 0) - :
xg”max TIETOLETMTOLE) (] 4 |x|)S1-Bi-yi+min(l-n1-01,-11,-01,0)-sgn(b2)
Since o1 + y; > 0, then

Pr—o1—yi—n<p1—m < Br—m +max(0,—o1,m — 1,m —01) <0,
pr+max(l-ny,1-01,1-n1—01,0) =1 —n + max(1,1+n; —o1,1 —o01,11)

=B —nm +max(0,n; —op,—o,m —1)+1<1
and

81— y1 +min(1 - - 01, -11,-01,0) = sgn(b) + max(1 - n1,1 - 01,1 -1 - 01,0)
=8 —y1—n —o1+1-sgn(by) + min(0,01 —1,m; - 1,n1 + o7 — 1)
+max(l-n,1-01,1-1n; —01,0)
=81 —y1—nm —o1+1-sgn(by) >2-sgn(by) +d

>1+d.

As in subcase 1, we obtain from [4, 5] that

Xd

V(Ql(x)) = Cm-

This together with (1.4) implies that f satisfies (H7).
Case 2. by > 0. In this case, we have a; > 0 and condition (4.9) will write as

81—m —y1—o1>1+sgn(ay). (4.14)

We will also discuss two subcases.
Subcase 1. a, = 0. In this case, we have /5 (x) = Zz (x) = byxy, and condition (4.8) becomes

B1—m —o1— (1 -sgn(a))y + 1 +sgn(a;) max[0,01] < 2. (4.15)

Page 30 of 35
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By discussing the six sub-subcases(0 < y; <1ory; >1)and(o; <0or0<o;<loro; >1)
and using the fact that x5 (1 + |x)"* + x4 (1 + |x])7 < M?‘n(yl’al)(l + |x)m2x(1o1) e obtain
V(x, tZZI(x):52Z2(x)) —f(x, tih (x), 51z2(x)) |

< @)t — 1) (%) + |gar(x, 52) — gur(x, 51)

’

where
(x) ‘
pm\x) = : ; .
xgl—rll—yl—tfﬁlﬂgﬂ(al)de(V1+01—1701,1/1)(1 + |x])P1-P1+sen(ar) min(1-y1-01,-y1,-01)
and
chy(x)s
gum(x,s) =

xgrm—V1—<71+1+Sgn(u1)(ma><(a1,0)+y1)(1 + |[)81-P1+sen(ar)min(0,-01)-y1) '
Since y; > 0, using (4.14) and (4.15), we obtain

Bi—n1—y1—o1+1+sgn(a;) max(y, + o1 —1,1,01)
<p1—nm—y1—o01+1+sgn(a;) max(y; + o1, 1)
=B-m-o1+1- (1 - sgn(al))yl + sgn(a;) max(oy,0) < 2

and

81 —m —y1 — o1+ L+sgn(a)[max(y1 + 01— 1,y1,01) + min(1 - y1 — 01, -1, -071) |

:61—771—)/1—01+1>2+sgn(a1)22.
Hence ps belongs to K W(R‘f). Now, using (4.10) we get

gM(x)S)

max =
0ss=M J11(x)

- cMZz(x)
- xgl—m—yl—01+1+(1—5gn(a1))+Sgﬂ(a1)(max(01,0)+1/1)(1 + |x])P1-P1+sen(ar)(min(0-o1)-y1)

cM
< .
- xgl—f11—V1—¢71+(1—Sgn(a1))+Sgn(ﬂ1)(maX(¢T1,0)+V1)(1 + |ac|)1-Br+sen(ar)(min(0,-01)-y1)

Using the fact that 0 < 1 —sgn(a;) < 1, we obtain

Br—m —y1— o1+ (1 - sgn(ar)) + sgn(a;)(max(0,01) + 1)

<Bi-m—-o1+1-(1-sgn(a))y +sgn(a;) max(0,01) <2
and

Si—-m—-y1—o1+ (1 - sgn(al)) + sgn(al)(maX(O, o1) + yl)

+sgn(a;) (min(0,-01) - 1)
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=81 —m —y1—o1+(1-sgn(ar)) >1+sgn(ar) + (1 —sgn(a)) = 2.

Hence f satisfies (Hg). Now we prove that f satisfies (H7). Put 6(x) = x; and W (x) = 991(5;) =

Q}lc_;x)' Since J15(x) = byxy, then we have

U, (%) :f(x, 0.0 + max )
X4

0<s<m Xd
1
= B1-o1-y1-n1+1
Xy (1 + |x])0r=P1

Cb2M
+ .
xgl—m—n—al+1+Sgn(u1)(ma><(a1,0)+y1)(1 + |x])d1-Auesen(an)(min(0-01)-y1)

Since y; > 0, we deduce by (4.14) and (4.15) that
Br-o1—y1—m+1<Bi—n—y—o1+1+sgn(ar)(max(o1,0) +y1) <2
and

81— m1 - y1 — o1 + 1 +sgn(a;)(min(0, —o1) + max(0, 01))

=81 —-m—y1—o01+1>2+sgn(ay) > 2.

Hence ¥; € K*(R%), and consequently from Proposition 2.5 we deduce that

o
Vipn)(x) = V(¥10)(x) < w0 < I ().
1
This implies that (H7) is satisfied.
Subcase 2. ay > 0. In this case, we have h;(x) = ayHpo(x) + baxy, Zz(x) = as + byxy and

condition (4.8) becomes
B1—m —o1 — (1 -sgn(a1))y + max[0,01,m1,m + 01 — 1] <O0. (4.16)

By discussing the nine subcases(o; <0 or 0 <oj; <loro; >1)and(n; <O0or0<n <1
or n; > 1) if a; = 0 and the eighteen sub-subcases(0 < y; <1 or ;3 > 1), (63 <0o0r 0 <
o1<loro;>1)and (n <0or 0 <mn <1ormn >1)if a; >0 and using the fact that

x9(1+ )" + a1+ [x])< < Zx;in(”()(l + |x)™ax(%) for i, r € R, we obtain

lf(x; tZZI(x):SZZZ(x)) —f(x, tlzl (), SlzZ(x)) |

< pu@)(ts = ) () + | g (%, 52) — gar(, 51)

’

where
—[B1-m-o1-(1-sgn(a1))y1+1+max(0,n1)+max(0,01-sgn(a1)y1,5gn(a1)(o1-1))]
pu() = (dl + |x|)1-Pr-sgn(@r)yr +min(0,—n1)+min(sgn(a1)(1-01)sgn(a1)y1-01,0)
and
C’E2(x)sx;[ﬂl—771—01+1—(1—Sgn(ﬂl))1/1+max(0,ﬂ1,01,?71+01—1)]
gu(x,s) =

(1 + |x])d1-P1=sgn(a1)y1+min(0,-n1,~01,1-11-01)
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Since y; > 0, by using (4.14) and (4.16), we obtain

Br—m —o1— (1-sgn(a))y; + 1+ max(0, 1)
+ max[0, 01 — sgn(a1)y1, sgn(ar)(o1 — 1)]
<Bi—m—-o1—(1-sgn(a))y +1+max(0,n;) + max[0,01]
<Bi—-m—o1-(1-sgn(a))ys +1+max[0,71,01,m +01]

<B1-m—o1—(1-sgn(a1))y: + max[0,n1,01,m +01 - 1] +2<2
and

81 — 1 —sgn(a1)y1 + min(0,—n;) + min[sgn(a1)(1 - 01), sgn(a1)y1 — 01,0] + B —m
—01 - (1 - sgn(al))yl + 1 +max(0,n;) + maX[O, o1 —sgn(ay)y1,sgn(a;)(o1 — 1)]
=8 -m—-y1—o1+1>2+sgn(a;) > 2,
which proves that py; € K*°(R?). Now, since Ty (%) < (ag + by)(1 + |x])*€"?2) using (4.10) we
obtain

au(x,s) Cx—[ﬂl—m —o01+1+(1-sgn(a1))—(1-sgn(ay))y1 +max(0,n1,01,11 +01-1)]
’ d
max <

0<s<M zl(x) - (1 + |x])%1-Pr-sen(@)y1-sgn(b2)+min(0,-11,-01,1-111-01)

Using (4.14) and (4.16), we obtain

Br—m—o1+1+(1-sgn(@)) - (1-sgn(@))y1 + max(0, 1,01, m + 01— 1)

<2+B1-m-—-o1— (1 - sgn(al))yl +max(0,ny,01,n1 +o1 —1) <2
and

81 — B1 —sgn(a1)yr —sgn(by) + min(0, —ny, —o1, 1 —ny —o1) + f1 —m
—o1+1+(1-sgn(ar)) - (1-sgn(@))yr +max(0,ny,01,11 + 07— 1)

=8, —m —y1 — o1 + 2 —sgn(a;) —sgn(by) > 3 —sgn(by) > 2.

Hence maxg<s<pr 4 s) ¢ groo (Rf), and so f satisfies (Hg). Finally, we verify (H7). Put 6(x) =

hy(x)
x4 and Wy (x) = %1(—53) = Q;—S‘). Since /5 (x) < (ay + by)(1 + |x])°€"?2), then we have

x,0,0 x5S
@00 guns)
X4 0<s<M x4

1
= Bi1-o1-y1-m+1
Xy 1+ |x|)61_l31

v (x)

clay + b2)Mx;[ﬂ1—771—01+2—(1—Sgn(u1))1’1+maX(0ﬂ71,01ﬂ71+01—1)]

(1 + |x|)d1-Pr-sen(@)yi—sgn(ba)+min(0,=11,-01,1-n1-01)

Since y; > 0, we deduce by (4.14) and (4.16) that

Bi—or—-yi—-nm+1
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<Br—m—o1+2—(1-sgn(ar))yr + max(0,n1,01,1 + 01— 1) <2

and

81— 1 —sgn(a1)y1 — sgn(by) + min(0, =1, —01,1 —n1 — 071)
+B1—m — o1 +2— (1-sgn(a1))y: + max(0,n1,01,m + 01— 1)

=081 —n1 —y1— o1 +2—sgn(by) >3 +sgn(a;) —sgn(by) > 2.

Hence 2 € K> (R?), and consequently from Proposition 2.5 we deduce that

V(o)) = V(W10)() < o, 2 < “b—‘jlhl(x»

This implies that (H7) is satisfied.
As a consequence of Theorem 4.1 and the above example, we obtain the following.

Corollary 4.2 Let ay,as, b1, by be nonnegative constants with (a; + b1)(az + by) > 0, A >
0, 4 > 0, and ¢y, ¢y are nonnegative nontrivial continuous functions on IR?, d > 2. Let
Y1, ¥2, B> B2, 01, 02, N1, N2, 81, 82 be real constants such that y, >0, v, >0, y1 + 01 > 0 and
Vo + 0y > 0 and satisfying

Bi—ni— (1 —sgn(a;))yi — (1 - sgn(ay + az))o; + sgn(ai,)
+ max[0, - sgn(ay + a2)0y, sgn(ai1)(m; — 1), sgn(@;1) (i — 07)| <1 and
8 — i — vi — 0 > sgn(ay) + sgn(b;) + (1 - sgn(by))d.

fori € {1,2}, where as = ay. Then there exist Lo > 0 and 1o > 0 such that for each X € [0, 1q)
and 1 € [0, o) the system

e S +u+v)°! 71 no ju R4
u X, u X u X 1% m
/31(1 | |)51 ﬁl ( d ) ( d ) ( d ) +?

Av=——E  (xy+u+v)2xg + )2 (g +v)2  inR?
xﬁz(mx\)ﬁz*ﬂz( d )72 (%4 + )" (X4 + v) i

u :d1¢1, V:az¢2, in B]Rf,

lim,, o0 %C) =by and lim,, . Lz) = b,,

has a positive continuous solution (in the sense of distributions) satisfying

o latHey + bixgl <u <[aH¢ + bixy] and

culasHepy + boxg) <v < [asHy + baxgl,

where c,, ¢, € [0,1).
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