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Abstract
We investigate the existence of solutions of weakly nonlinear periodic boundary
value problems for systems of ordinary differential equations with switchings and the
construction of these solutions. We consider the critical case where the equation for
the generating constants of a weakly nonlinear periodic boundary-value problem
with switchings does not turn into an identity. We improve the classification of critical
and noncritical cases and construct an iterative algorithm for finding solutions of
weakly nonlinear periodic boundary value problems with switchings in the critical
case. As examples of application of the constructed iterative scheme, we obtain
approximations to the solutions of a periodic boundary value problem for the
mathematical model of nonisothermal chemical reactions. To check the accuracy of
the proposed approximations, we evaluate discrepancies in the original equation.

Keywords: Periodic boundary value problem; Equation for the generating
constants; Critical case; Nonlinear chemical reaction model

1 Introduction
A classical framework for studying periodic solutions of nonlinear ordinary differential
equations, originating from the works by H. Poincaré and A.M. Lyapunov, is based on
the perturbation analysis in a neighborhood of a periodic solution of the generating lin-
ear problem. The essence of this approach was summarized in [1] for nonlinear systems
containing a small parameter. In particular, under certain nonsingularity assumptions for
systems with analytic right-hand sides, it was shown that there exists a unique periodic
solution of the perturbed nonlinear system, which depends analytically on the small pa-
rameter. The method of small parameter has been developed in [2] for an n-dimensional
nonautonomous system of ordinary differential equations on t ∈ [a, b] with n-dimensional
boundary form depending on values of the state vector at t = a and t = b. The crucial as-
sumption of this work concerns the solvability of the shortened boundary value problem
obtained by putting the small parameter ε to be zero. Then the existence of solutions of the
original boundary value problem is proved for sufficiently small ε > 0, and the convergence
of this solution to the shortened one is established as ε → 0. The above result is obtained
for systems whose vector fields are continuous in time t and continuously differentiable
with respect to the state vector and small parameter ε.
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Perturbation theory is proved to be a powerful tool in the qualitative and quantitative
study of periodic solutions to the Hill, Mathieu, van der Pol equations, and many other
important mathematical models in nonlinear mechanics and physics (see, e.g., [3]). With-
out pretending to be complete, we also mention the existence results concerning peri-
odic boundary value problems for nonlinear differential equations with singularities [4, 5],
second-order nonautonomous nonlinear equations on the positive cone [6], superlinear
second-order equations with positive solutions [7], first-order problem with resonance
and nonlinear impulses [8], Hamiltonian systems with nonsmooth potentials [9], and
second-order equations with a convection term [10].

The present work addresses the issue of solution existence for nonlinear periodic bound-
ary value problems on t ∈ [a, b] with switchings at given time instants a = τ0 < τ1 < · · · <
τp < τp+1 = b. Such problems naturally arise in the dynamic optimization of a variety of
mathematical models in natural science and engineering. Indeed, a typical framework in
optimal control problems with nonconvex costs and input constraints results in bang-
bang extremal controls because of Pontryagin’s maximum principle. Then the character-
ization of optimal trajectories satisfying prescribed boundary conditions becomes a non-
trivial issue due to the coupled nonlinear structure of the corresponding Hamiltonian sys-
tem. As an example, we refer to [11], where an isoperimetric optimal control problem has
been studied for nonlinear chemical reaction models under periodic boundary conditions.
A class of switching controls satisfying necessary optimality conditions has been obtained
in that paper, and it is shown that the proposed control strategy improves the performance
of nonlinear chemical reactions in comparison to the steady-state operation. It has been
noted by several authors (see, e.g., [12] and references therein) that the periodic operation
of chemical reactions has a rich potential for applications in chemical engineering, and
the performance of periodic controllers has been validated experimentally [13].

In [14] a procedure for evaluating periodic trajectories with switchings has been pro-
posed based on the Chen–Fliess expansion of periodic solutions corresponding to bang-
bang control inputs. This procedure gives attractive algebraic relations of the initial data
and the switching times in case of small periods; however, to the best of our knowledge,
the construction of periodic trajectories of arbitrary periods remains open for nonlinear
systems with switching controls. The present work aims to fill this gap by proposing a gen-
eral approach for characterizing the existence of solutions and an iterative computation
scheme for periodic boundary value problems with switchings under nonlinear perturba-
tions. Our study extends the methodology developed in [15] for boundary value problems
with impulses at given time instants τj. In contrast to previous publications on periodic
boundary value problems for nonlinear autonomous systems, dealing with parameter-
dependent periods (and thus parameter-dependent intervals [a, b(ε)], see [16] and ref-
erences therein), we assume the endpoint b to be fixed.

The rest of this paper is organized as follows. The periodic boundary value problem is
formulated in Sect. 2 for a class of systems of ordinary differential equations in R

n with
nonlinear and discontinuous perturbations of the right-hand side depending on a small
parameter. The main theoretical contribution is summarized in Sect. 3 in the form of nec-
essary solvability conditions (Lemma 1) and an iterative scheme for the approximation of
solutions (Theorem 1). These results are applied to a nonlinear chemical reaction model
in Sect. 4 to justify possible computational benefits of the developed iterative scheme.
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2 Problem statement
Consider the nonlinear system of ordinary differential equations

dz
dt

= Az + εh(ε) + εZ(z, ε), t ∈ [a, b], (1)

under the periodic boundary condition

�0z(·, ε) := z(a, ε) – z(b, ε) = 0, (2)

where z = z(t, ε) ∈R
n depends on time t and the small parameter ε ∈ [0, ε0], A is a constant

n × n matrix, h : [0, ε0] → R
n and Z : Rn × [0, ε0] → R

n are continuous functions, and,
moreover, Z(z, ε) is continuously differentiable with respect to z for each fixed ε ∈ [0, ε0].
Throughout the text, we treat the norm of a vector z = (z1, . . . , zn)T ∈R

n in the sense of the
maximum norm, ‖z‖∞ := max1≤i≤n |zi|. The latter induces the norm of an m × n matrix
Q = (qij) as ‖Q‖∞ := max1≤i≤m

∑n
j=1 |qij|. For a continuous vector function ζ : [a, b] → R

n,
the norm is defined as ‖ζ‖C([a,b];Rn) := maxt∈[a,b] ‖ζ (t)‖∞, and the norm of a continuous
matrix-valued function M : [a, b] →R

m×n is ‖M‖C([a,b];Rm×n) := maxt∈[a,b] ‖M(t)‖∞.
Let us first analyze the solvability of the boundary value problem (1)–(2) in a small neigh-

borhood of a solution z0(t) of the generating linear problem

dz0

dt
= Az0, �0z0(·) := z0(a) – z0(b) = 0. (3)

Let us denote by X(t) = e(t–a)A the fundamental matrix of (3) and consider the noncritical
case, i.e.,

det Q0 �= 0, Q0 := �0X(·) = X(a) – X(b).

In this case, problem (3) admits only the trivial solution, so that all solutions of the inho-
mogeneous periodic boundary value problem (1)–(2) are equilibrium points:

z(t, ε) := z̃(ε), Az̃(ε) + εh(ε) + εZ
(
z̃(ε), ε

)
= 0.

The existence of such equilibria z̃(ε) for 0 ≤ ε ≤ ε∗ with some small enough ε∗ ∈ (0, ε0]
follows from the implicit function theorem for

�(z̃, ε) := Az̃ + εh(ε) + εZ(z̃, ε) = 0

and the conditions �(0, 0) = 0 and det�′
z̃(0, 0) �= 0.

Starting from this observation, we pose the question about the existence of nonequilib-
rium solution of the periodic boundary value problem under a time-varying discontinuous
perturbation of the right-hand side of (1). To be more precise, we introduce a partition of
[a, b]

a = τ0 < τ1 < τ2 < · · · < τp < τp+1 = b
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and consider a switching scenario

f (t, ε) :=

⎧
⎪⎪⎨

⎪⎪⎩

μ0(ε), t ∈ [a, τ1[,

. . . . . . . . . . . . . . . ,

μp(ε), t ∈ [τp, b],

(4)

where the functions μk : [0, ε0] →R
n, k = 0, 1, . . . , p, are continuous.

We treat f (t, ε) as the disturbance in the boundary value problem and rewrite the result-
ing differential equation in the following way:

dz
dt

= Az + εf (t, ε) + εZ(z, ε), t ∈ [a, b]. (5)

As it follows from the literature review, the above-introduced class of switching functions
f (t, ε) has a straightforward relation to bang-bang controls in optimal control problems.
In this paper, we aim to develop efficient tools for the analysis of such type problems.
Note that the solutions of differential equation (5) with discontinuous right-hand side
can be treated in the sense of Carathéodory (see [17, Chap. 1]); however, due to well-
developed techniques in the theory of boundary value problems with continuous right-
hand sides [18], we will “glue” piecewise-differentiable periodic solutions z(t, ε) by impos-
ing the following set of boundary and interface conditions:

�z(·, ε) :=

⎛

⎜
⎜
⎜
⎝

z(a, ε) – z(b, ε)
z(τ1 + 0, ε) – z(τ1 – 0, ε)
· · · · · · · · · · · · · · · · · · · · ·

z(τp + 0, ε) – z(τp – 0, ε)

⎞

⎟
⎟
⎟
⎠

= 0. (6)

Thus by a solution of the periodic boundary value problem (5)–(6) we mean a function
z : [a, b] × [0, ε0] → R

n such that, for each fixed ε ∈ [0, ε0], z(t, ε) satisfies (5) on each in-
terval (τj, τj+1), j = 0, 1, . . . , p, and �z(·, ε) = 0. In the subsequent study, we will focus on the
solutions z(t, ε) that are continuous in ε ∈ [0, ε0] at each fixed t ∈ [a, b].

The main problem under consideration in this paper is formulated as follows: describe
solvability conditions of the nonlinear periodic boundary value problem (5)–(6) and de-
velop an iterative scheme for computing its solutions.

3 Solutions existence
Let us introduce the matrix

Q :=

⎛

⎜
⎜
⎜
⎝

Q0

On

· · ·
On

⎞

⎟
⎟
⎟
⎠

∈R
n(p+1)×n

and orthogonal projection matrices [18]

PQ : Rn → Ker Q and PQ∗ : Rn(p+1) → Ker Q∗,



Benner et al. Boundary Value Problems         (2023) 2023:50 Page 5 of 12

where

PQ∗ =

(
On On×d

Od×n Id

)

, PQ∗
d

=
(

Od×n Id

)
, PQ = On, d := np,

Id is the identity matrix of size d × d, On and On×d are zero matrices of sizes n × n and
n × d, respectively. As PQ∗ �= 0, the perturbed nonlinear boundary value problem (5)–(6)
exhibits a critical case. We introduce the Cauchy-type operator

K
[
g(·)](t) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

X(t)
∫ t

a X–1(s)g(s) ds, t ∈ [a, τ1[,

X(t)
∫ t
τ1

X–1(s)g(s) ds, t ∈ [τ1, τ2[,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

X(t)
∫ t
τp

X–1(s)g(s) ds, t ∈ [τp, b],

(7)

for the initial value problems

dz/dt = Az + g(t), t ∈ [τi, τi+1[, z(τi) = 0, i = 0, 1, 2, . . . , p,

and define the generalized Green’s operator [18, 19]

G
[
g(·)](t) = K

[
g(·)](t) – X(t)Q+�K

[
g(·)]

for the linear periodic problem

dz/dt = Az + g(t), z(a) – z(b) = 0.

Here Q+ is the Moore–Penrose pseudoinverse matrix [18, 20].
Let z(t, ε) satisfy the differential equation (5) on each interval (τj, τj+1), j = 0, . . . , p, for

ε ∈ [0, ε0]. Then by applying the functional (6) to z we obtain the following necessary and
sufficient condition for z to be a solution of the boundary value problem (5)–(6):

PQ∗
d
�K

[
f (·, ε) + Z

(
z(·, ε), ε

)]
= 0. (8)

Recall that the values of f (t, ε) in (4) are defined in terms of the vector function

λ(ε) :=

⎛

⎜
⎝

μ0(ε)
· · ·

μp(ε)

⎞

⎟
⎠ ∈R

n(p+1)

and define λ0 := λ(0), f0(t) := f (t, 0), and

F(λ0) := PQ∗
d
�K

[
f0(·) + Z(0, 0)

]
. (9)

As we look for the solutions z(t, ε) of (5)–(6) continuous with respect to ε, by passing to the
limit as ε → 0 in (8), we obtain F(λ0) = 0. Thus we have proved the following statement.
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Lemma 1 Let det Q0 �= 0, and let the perturbed nonlinear boundary value problem (5)–(6)
with f given by (4) admit a solution z ∈ C([a, b] × [0, ε0]) such that z(·, ε) ∈ C1([a, b] \
{τ1, τ2, . . . , τp}) for each ε ∈ [0, ε0]. Then

F(λ0) = 0, (10)

where F(λ0) is given by (9), and

λ0 =

⎛

⎜
⎜
⎝

μ0(0)
...

μp(0)

⎞

⎟
⎟
⎠ .

Similarly to the weakly nonlinear periodic problems in critical cases [18], we call (10)
the equation for the generating constants for problem (5)–(6). We further assume that (10)
does not turn into an identity and has real roots. By fixing a solution λ0 ∈ R

n(p+1) of (10)
we can define the first approximation of a solution of (5)–(6):

z1(t, ε) = εG
[
f0(·) + Z(0, 0)

]
(t).

The obtained solution λ0 ∈ R
n(p+1) of equation (10) as well as the first approximation

z1(t, ε) of a solution of the original boundary value problem (5)–(6) are analogous to the
generating solution of a regular periodic boundary value problem in the critical case [18],
in a small neighborhood of which the solutions of the original boundary value problem
may exist.

By formal substitution of the identity matrix In in place of g(s) in (7) we adopt the no-
tation K[In](t), t ∈ [a, b], for the n × n matrix obtained from (7). Then we introduce the
constant matrix

C0 := PQ∗
d
�K[In] ∈R

d×n(p+1)

and orthogonal projection matrices [18, 19]

PC0 : Rn(p+1) → Ker C0, and PC∗
0

: Rd → Ker C∗
0 .

In the considered case, the solvability condition (8) leads to the equation

C0λ(ε) = –PQ∗
d
�K

[
Z
(
z(·, ε), ε

)]
,

which is solvable iff

PC∗
0
PQ∗

d
= 0. (11)

Thus, under condition (11), the perturbed boundary value problem (5)–(6) has at least
one solution represented by the operator system

z(t, ε) = εG
[
f (·, ε) + Z

(
z(·, ε), ε

)]
(t), λ(ε) = –C+

0 PQ∗
d
�K

[
Z
(
z(·, ε), ε

)]
. (12)
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We denote the vectors

λk(ε) :=

⎛

⎜
⎝

μ
(k)
0 (ε)

· · · · · ·
μ

(k)
p (ε)

⎞

⎟
⎠ ∈R

n(p+1), fk(t, ε) :=

⎧
⎪⎪⎨

⎪⎪⎩

μ
(k)
0 (ε), t ∈ [a, τ1[,

. . . . . . . . . . . . . . . ,

μ
(k)
p (ε), t ∈ [τp, b],

k = 0, 1, . . . ,

and apply the simple-iteration method [18] for constructing an approximate solution
of (12) under condition (11). We summarize the result as follows.

Theorem 1 Let det Q0 �= 0, let λ0 ∈ R
n(p+1) be a solution of (10) under condition (11),

and let the Jacobian matrix ∂Z(z,ε)
∂z be bounded for all z and small enough ε > 0. Then, for

some small enough ε∗ > 0, there exist a function λ ∈ C([0, ε∗]), λ(0) = λ0, and a solution
z ∈ C([a, b] × [0, ε∗]), z(·, ε) ∈ C1([a, b] \ {τ1, . . . , τp}) of the boundary value problem (5)–(6)
with f given by (4) in which μ0,. . . , μp are the corresponding components of λ. The solution
z(t, ε) is defined by the operator system (12) and can be obtained as the limit of the following
iterative scheme with ε ∈ [0, ε∗]:

zk+1(t, ε) = εG
[
fk(·, ε) + Z

(
zk(·, ε), ε

)]
(t), (13)

λk+1(ε) = –C+
0 PQ∗

d
�K

[
Z
(
zk(·, ε), ε

)]
, k = 0, 1, 2, . . . .

Proof The idea of the proof is analogous to that in [18, 19, 21]. Let us define the operator
�ε : C([a, b];Rn) → C([a, b];Rn) acting on a vector function ζ (t) by the following rule:

�ε[ζ ] := εG
[
fλ(·, ε) + Z

(
ζ (·), ε)], (14)

where fλ(t, ε) is defined by (4) with (μ0, . . . ,μp)T = λ = –C+
0 PQ∗

d
�K[Z(ζ (·), ε)]. The above

�ε is well-defined. Indeed, as we can see, the function �ε[ζ (·)](t), t ∈ [a, b] is continuous
if ζ (t) is continuous, provided that (11) holds. Because of the linearity of G, the differential
of �ε[ζ ] in the direction δζ can be written as

δ�ε[ζ ](δζ ) = εG
[
δfλ(·, ε)

]
+ εG

[
g(·)], (15)

where

δfλ(·, ε) =

⎧
⎪⎪⎨

⎪⎪⎩

δμ0, t ∈ [a, τ1),

. . . . . . . . . . . . . . . ,

δμp, t ∈ [τp, b],

(δμ0, . . . , δμp)T = δλ, δλ = –C+
0 PQ∗

d
�K[g(·)], g(t) = ∂Z(z,ε)

∂z |z=ζ (t)δζ (t), and ∂Z(z,ε)
∂z is the Jaco-

bian matrix of Z(z, ε) with respect to z. As this Jacobian matrix is bounded, the Fréchet
derivative D�ε[ζ ] at ζ exists, and its operator norm is defined by

∥
∥D�ε[ζ ]

∥
∥ = sup

δζ �=0

‖δ�ε[ζ ](δζ )‖C([a,b];Rn)

‖δζ‖C([a,b];Rn)
.
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Moreover, as the right-hand side of (15) contains the factor ε, there exist λ∗ ∈ (0, 1) and
ε∗ ∈ (0, ε∗] such that representation (15) guarantees the contraction property

∥
∥D�ε[ζ ]

∥
∥ ≤ λ∗ < 1 for all ε ∈ [0, ε∗]. (16)

The Banach fixed-point theorem implies the existence of a unique fixed point z(·, ε) of
�ε , i.e., �ε[z(·, ε)] = z(·, ε) for each ε ∈ [0, ε∗]. Because of the definition of �ε in (14), the
above function z(t, ε) can be obtained as the limit of the iterative process (13) in the case
det Q0 �= 0. �

4 Application to a nonlinear chemical reaction
As an application of the proposed theoretical framework, we consider an example of non-
isothermal chemical reaction with τ -periodic controls presented in [11, 14]. The model is
described by a boundary value problem for nonlinear differential equations with respect
to the reactant concentration and the temperature, which, after a suitable rescaling in the
case τ = 2, can be represented as follows:

dz
dt

= Az + εf (t, ε) + εZ(z, ε), �z(·, ε) := z(0, ε) – z(2, ε) = 0, (17)

where

z =

(
x
y

)

, Z(z, ε) = (1 + x)e– ε
1+y

(
1
1

)

.

Here A is a constant 2 × 2 matrix whose eigenvalues λa and λb are distinct negative real
numbers, and the vector function f (t, ε) corresponds to switching controls. We assume
that all variables in (17) are dimensionless, and for simplicity, the kinetic parameters in
Z(z, ε) are taken to be 1. For simplicity, we also assume that the matrix A is diagonal, and
for further computations we take λa = –1 and λb = –2.

In the considered case the linear homogeneous problem (generating problem (3)) admits
only the trivial solution z0(t) ≡ 0 because the matrix

Q0 =

(
1 – 1

e2 0
0 1 – 1

e4

)

is nonsingular. Moreover, as it follows from the consideration in Sect. 2 for a time-invariant
term f (t, ε) ≡ h(ε), problem (17) has only equilibrium solutions. In particular, if

h(ε) =

(
1 + ε

1 – ε

)

,

then the solutions of (17) can be represented as follows:

x(t, ε) = 2ε + 2ε2 +
3ε3

2
+

ε4

3
+

31ε5

24
+

ε6

5
+

337ε7

180
–

2801ε8

5040
+ · · · ,

y(t, ε) = ε +
3ε3

4
+

ε4

6
+

31ε5

48
+

ε6

10
+

337ε7

360
–

2801ε8

10,080
+ · · · .
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The asymptotic expansions and numerical simulations in this paper have been carried out
using Wolfram Mathematica 8.

It is natural to address the question of existence of nonequilibrium solutions under
switching perturbations f (t, ε). For this purpose, we take

f (t, ε) =

⎧
⎨

⎩

μ0(ε), t ∈ [0, τ1),

μ1(ε), t ∈ [τ1, 2], τ1 = 1,
(18)

and investigate the solvability of the boundary value problem (17) in the class of functions
z(t, ε) such that z ∈ C([0, 2]× [0, ε]), z(·, ε) ∈ C1([0, 2]\{1}). According to the methodology
of Sect. 3, we compute the following matrices:

Q :=

(
Q0

O2

)

, PQ∗ =

(
O O
O I2

)

�= 0, PQ∗
d

=
(

O I2

)
, PQ = O.

Equation (10) is not a trivial identity and has a real solution

λ0 =
1

10

⎛

⎜
⎜
⎜
⎝

–10
–10

1
0

⎞

⎟
⎟
⎟
⎠

,

which defines the matrix

C0 =
1
e

(
e – 1 0 0 0

0 sinh 1 0 0

)

.

Since condition (11) is satisfied, the perturbed boundary value problem (17) has at least
one solution for each ε > 0 small enough and some switching signal f (·, ε). Let us denote
the vectors

μ
(1)
0 (ε) :=

(
μ

(1a)
0 (ε)

μ
(1b)
0 (ε)

)

, μ
(1)
1 (ε) :=

(
μ

(1a)
1 (ε)

μ
(1b)
1 (ε)

)

.

The iterative scheme (13) determines the first approximation of a solution of (17) in a
neighborhood of z0 = 0:

x1(t, ε) =
11εe1–t

10(1 + e)
, y1(t, ε) =

εe2(1–t)

2(1 + e2)
, t ∈ [0, 1],

x1(t, ε) =
11ε(1 + e – e2–t)

10(1 + e)
, y1(t, ε) =

(1 + e2 – e4–2t)ε
2(1 + e2)

, t ∈ [1, 2].

In addition, the iterative scheme (13) defines a first approximation to the components
of (18):

μ
(1a)
0 (ε) ≈ –1 +

(–10 – 11e + 10e2)ε
10(–1 + e)(1 + e)

+
(5 + 16e + 6e3 – 5e4)ε2

10(–1 + e)(1 + e)(1 + e2)

+
(–20 – 103e – 30e2 – 132e3 + 30e4 – 29e5 + 20e6)ε3

120(–1 + e)(1 + e)(1 + e2)2 ,
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Figure 1 Phase portrait of an approximate solution of (17) in the xy-plane

μ
(1b)
0 (ε) ≈ –

(–1 + e)(1 + e) cosh 1
2e

+
ε(–1 + e)(5 – e + 5e2) cosh 1

10e(1 + e)

+
ε2(5 – 17e + 12e2 – 32e3 + 17e4 – 5e5) cosh 1

20e(1 + e)(1 + e2)

+
ε3(–10 + 56e + 35e2 + 101e3 + 19e4 + 85e5 – 56e6 + 10e7) cosh 1

(120e(1 + e)(1 + e2))2 + · · · ,

μ
(1a)
1 (ε) = μ

(0a)
1 (ε), μ

(1b)
1 (ε) = μ

(0b)
1 (ε).

The corresponding first approximation of the trajectory of the boundary value prob-
lem (17) is illustrated by Fig. 1.

Since Z(z, ε) is continuously differentiable with respect to z in a neighborhood of z0 = 0,
we are able to check the contraction condition (16). In this case,

∂Z(z, ε)
∂z

∣
∣
∣
∣
z=z0(t,ε)

≈
(

e–1–t–ε(–1 + e1+t) e–1–t–ε(–1 + e1+t)ε
e–2–2t–ε

4 (–1 – e2 + 2e2+2t) e–2–2t–ε

4 (–1 – e2 + 2e2+2t)ε

)

, t < 1,

∂Z(z, ε)
∂z

∣
∣
∣
∣
z=z0(t,ε)

≈
(

e–1–2t–ε(e2 – et – e2+t + e1+2t) e–1–2t–ε(e2 – et – e2+t + e1+2t)ε
e–2–4t–ε

4 (e4 – e2t – e4+2t + e2+4t) e–2–4t–ε

4 (e4 – e2t – e4+2t + e2+4t)ε

)

,

t ∈ [1, 2],

∂Z(z, ε)
∂z

∣
∣
∣
∣
z=z1(t,ε)

≈
⎛

⎝
– e–t (–1+et+e1+t )(–1+ε)

1+e
e–t (–1+et+e1+t )ε

1+e

– e–2t (–1+e2t+e2+2t )(–1+ε)
2(1+e2)

(1+e2–e–2t )ε
2(1+e2)

⎞

⎠ , t < 1,

∂Z(z, ε)
∂z

∣
∣
∣
∣
z=z1(t,ε)

≈
⎛

⎝
– e–t (–e2+et+e1+t )(–1+ε)

1+e
(1+e–e2–t )ε

1+e

– e–2t (–e4+e2t+e2+2t )(–1+ε)
2(1+e2)

(1+e2–e4–2t )ε
2(1+e2)

⎞

⎠ , t ∈ [1, 2].

The contraction condition (16) holds for ε ∈ [0, ε∗]; the value of ε∗ > 0 for which the
iterative scheme (13) is applicable can be found numerically. For the considered problem,
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practical convergence is preserved up to ε∗ ≈ 1.09:

∥
∥D�ε

[
z0(·, ε)

]∥
∥ ≤ 0.00864622 < 1, ε ∈ [0, 0.01],

∥
∥D�ε

[
z1(·, ε)

]∥
∥ ≤ 0.00901042 < 1, ε ∈ [0, 0.01],

∥
∥D�ε

[
z0(·, ε)

]∥
∥ ≤ 0.0629163 < 1, ε ∈ [0, 0.1],

∥
∥D�ε

[
z1(·, ε)

]∥
∥ ≤ 0.0730063 < 1, ε ∈ [0, 0.1],

∥
∥D�ε

[
z0(·, ε)

]∥
∥ ≤ 0.662227 < 1, ε ∈ [0, 1.09],

∥
∥D�ε

[
z1(·, ε)

]∥
∥ ≤ 0.983498 < 1, ε ∈ [0, 1.09].

The computed approximations of the solution to the periodic boundary value problem
(17) are characterized by the discrepancies


k(ε) = max
t∈[0,2]

∥
∥żk(t, ε) – Azk(t, ε) – εfk(t, ε) – εZ

(
zk(t, ε), ε

)∥
∥∞, k = 0, 1.

In particular, we have


0(0.1) ≈ 0.148661, 
1(0.1) ≈ 0.0478 012,


0(0.01) ≈ 0.0148661, 
1(0.01) ≈ 0.0044412.

5 Conclusion and future work
The above simulation results confirm that the proposed iterative scheme can be used for
approximating periodic solutions of the perturbed boundary value problem (17) with ac-
ceptable accuracy. Note that the main contribution of this paper (Theorem 1) allows con-
structing approximate solutions of the nonlinear problem (5)–(6) in case of discontinuous
perturbations f (t, ε) with an arbitrary number of switchings. Although the applicability
of our theoretical framework has been illustrated with a two-dimensional model of con-
trolled chemical reaction, the efficiency of this approach for higher-dimensional systems
with complicated switching scenario is considered as a topic for further numerical analy-
sis.
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