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Abstract
The paper is devoted to the study of one class of problems with nonlocal conditions
for a mixed diffusion-wave equation with two independent variables. The main
results of the work are the proof of regular and strong solvability, as well as the
Volterra property of three problems with conditions pointwise connecting the values
of the tangent derivative of the desired solution on one of the characteristics with
derivatives in various directions of the solution on an arbitrary curve lying inside the
characteristic triangle for a fractional-order diffusion-hyperbolic equation.
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1 Introduction
In recent years, there has been an increased interest in the study of fractional differen-
tial equations, in which an unknown function is contained under the sign of a fractional
derivative. This is due to the development of fractional integration theory and differenti-
ation itself, as well as applications in various fields of science: physics, mechanics, chem-
istry, engineering, anomalous diffusion processes, and other areas of natural science.

Since the fractional-order equations generalize the integer-order equations, and there
are a relatively small number of systematized analytical and numerical methods for such
equations, this direction is the priority of the general theory of differential equations.

The first fundamental studies in the theory of fractional calculus are works of B. Rie-
mann, J. Liouville, Hj. Holmgren, A.V. Letnikov, A. Grünwald, H. Weyl, M.M. Djrbashian,
A.B. Nersesyan, etc. After solving a number of local problems for fractional-order equa-
tions with various integro-differentiation operators of one argument, interest in the study
of partial differential equations of fractional order has increased. In this direction, we refer
to [2, 3, 9, 10, 14, 15, 17, 18, 21–23, 25].

The solvability issues of local and nonlocal problems for various fractional-order mixed-
type equations are considered in [1, 4, 11, 16, 20].

As far as we know, the spectral properties, including the Volterra property of the mixed
fractional equations, are almost not studied.
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Note that the solvability issues and spectral properties of local and nonlocal problems
for a mixed parabolic–hyperbolic equation of the second and third orders are studied in
[5–8, 12, 13, 19].

This work is devoted to one of the most important problems, the study of the solvability
and spectral properties (Volterra property) of three nonlocal problems for the diffusion–
hyperbolic equation (of fractional order).

We consider the equation

Lz(x, y) = f (x, y), (1.1)

where

Lz(x, y) =

⎧
⎨

⎩

cDα
0xz(x, y) – zyy(x, y), (x, y) ∈ �0,

zxx(x, y) – zyy(x, y), (x, y) ∈ �1,
(1.2)

cDα
0xz(x, y) =

1
�(1 – α)

∫ x

0

zx(t, y)
(x – t)α

dt, 0 < α < 1,

where �(x) =
∫ ∞

0 ettx–1 dt, x > 0, is Euler’s gamma function, (1.2) is an integral-differential
operator of fractional order α in the sense of Caputo [22] in the domain � = �0 ∪�1 ∪AB.
Here �0 is the rectangle ABB0A0 with vertices A(0, 0), B(1, 0), B0(1, 1), and A0(0, 1), �1 is
the domain bounded with segment AB and characteristics AC : x + y = 0, BC : x – y = 1
equation (1.1), and f (x, y) is a given function.

Let AD : y = –γ (x), 0 < x < l, be a smooth curve, where 0, 5 < l ≤ 1, γ (0) = 0, l + γ (l) = 1
if l < 1 and γ (l) = 0 if l = 1, located inside the characteristic triangle 0 < x + y ≤ x – y < 1.

We suppose that γ (x) is twice continuously differentiable function, x ± γ (x) are mono-
tonically increasing functions, and 0 < γ ′(x) < 1 and γ (x) > 0 for x > 0.

2 A problem with nonlocal conditions with derivatives in the same
characteristic directions for a diffusion–hyperbolic equation

We consider a nonlocal problem for equation (1.1) in the domain �, where in the hyper-
bolic part of the mixed domain, the nonlocal condition pointwise connects the values of
the tangent derivative of the desired solution on the characteristic AC with the deriva-
tives in the direction of the characteristic AC of the desired function on an arbitrary curve
AD lying inside the characteristic triangle ABC, with the ends at the origin and on the
characteristic BC (at point B).

Problem M1B Find a solution of equation (1.1) satisfying the following conditions:

z(0, y) = 0, 0 ≤ y ≤ 1, (2.1)

z(x, 1) = 0, 0 ≤ x ≤ 1, (2.2)

[zx – zy]
[
θ0(t)

]
+ μ(t)[zx – zy]

[
θ∗(t)

]
= 0, 0 < t < 1, (2.3)

where θ0(t)(θ∗(t)) is an affix of the intersection point of the characteristic AC (curve AD)
with the characteristic coming out of the point (t, 0), 0 < t < 1, and μ(t) is a given function.
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In the case α = 1, problem M1B coincides with a nonlocal problem for a mixed
parabolic–hyperbolic equation with noncharacteristic line of changing type. In this case
the issues of regular and strong solvability, as well as the Volterra property of problem
M1B, are investigated in [7, 8].

In the domain �0 we consider the following auxiliary problem.

Problem C1 Find a solution of equation (1.1) for y > 0 satisfying conditions (2.1), (2.2),
and

zx(x, 0) – zy(x, 0) = δ(x), 0 < x < 1, (2.4)

where δ(x) is a given function from C1[0, 1].

Lemma 2.1 Let δ(x) ∈ C1[0, 1]. Then for any function f (x, y) ∈ C1(�̄0), the solution of prob-
lem C1 admits the a priori estimate

Dα–1
0x

∥
∥z(x, y)

∥
∥2

L2(0,1) + 2
∫ x

0

∥
∥zy(t, y)

∥
∥2

L2(0,1) dt

≤ C
[∫ x

0

∥
∥f (t, y)

∥
∥2

L2(0,1) dt +
∫ x

0
δ2(t) dt

]

,
(2.5)

where ‖f (x, y)‖2
L2(0,1) =

∫ 1
0 f 2(x, y) dy.

Hereafter symbol C will denote a positive constant that does not depend on z(x, y), not
necessarily the same.

Proof of Lemma 2.1 Multiplying equation (1.1) for y > 0 by z(x, y), integrating from 0 to 1
over y, and taking into account conditions (2.1) and (2.2), after some transformations, we
have

∫ 1

0
z(x, y)Dα

0xz(x, y) dy +
∫ 1

0
z2

y (x, y) dy + τ (x)ν(x) =
∫ 1

0
f (x, y)z(x, y) dy, (2.6)

where

τ (x) = z(x, 0), 0 ≤ x ≤ 1, (2.7)

ν(x) = zy(x, 0), 0 < x < 1. (2.8)

It is known [3] that
∫ 1

0 z(x, y) · Dα
0xz(x, y) dy ≥ 1

2
∫ 1

0 Dα
0xz2(x, y) dy. By this inequality, from

(2.6), taking into account (2.4) and notations (2.7) and (2.8), we obtain

∫ 1

0
Dα

0xz2(x, y) dy + 2
∫ 1

0
z2

y (x, y) dy + 2τ (x)τ ′(x)

≤ 2
∫ 1

0
z(x, y)f (x, y) dy + 2τ (x)δ(x).

(2.9)

Integrating (2.9) over t from 0 to x and taking into account

∫ x

0
Dα

ot
∥
∥z(t, y)

∥
∥2

L2(0,1) dt = Dα–1
ox

∥
∥z(x, y)

∥
∥2

L2(0,1)
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and τ (0) = 0, we have

∫ 1

0
Dα

0xz2(x, y) dy + 2
∫ 1

0
z2

y (x, y) dy + 2τ (x)τ ′(x)

≤ 2
∫ 1

0
z(x, y)f (x, y) dy + 2τ (x)δ(x).

In the latter, on the right side, applying the known inequalities, we obtain

Dα–1
0x

∥
∥z(x, y)

∥
∥2

L2(0,1) + 2
∫ x

0

∥
∥zy(t, y)

∥
∥2

L2
dt + τ 2(x)

≤
∫ x

0

[∥
∥z(t, y)

∥
∥2

L2(0,1) +
∥
∥f (t, y)

∥
∥2

L2(0,1) + τ 2(t) + δ2(t)
]

dt.
(2.10)

In the left part of (2.10), omitting the first two terms and applying the Gronwall–Bellman
inequality, we have

∫ x

0
τ 2(t) dt ≤ C

∫ x

0

[∥
∥z(t, y)

∥
∥2

L2(0,1) +
∥
∥f (t, y)

∥
∥2

L2(0,1) + δ2(t)
]

dt.

Taking into account the last term of (2.10), we get

Dα–1
0x

∥
∥z(x, y)

∥
∥2

L2(0,1) + 2
∫ x

0

∥
∥zy(t, y)

∥
∥2

L2(0,1)

≤ C
∫ x

0

[∥
∥z(t, y)

∥
∥2

L2(0,1) +
∥
∥f (t, y)

∥
∥2

L2(0,1) + δ2(t)
]

dt.
(2.11)

Similarly, omitting the second term of the left part in (2.11) and applying Lemma 2 in [3],
we have

∫ x

0

∥
∥z(t, y)

∥
∥2

L2(0,1) dt ≤ CD–α–1
0x

[∥
∥f (x, y)

∥
∥2

L2(0,1) + δ2(x)
]
,

from which, taking into account

D–α–1
0x

∥
∥f (x, y)

∥
∥2

L2(0,1) ≤ xα

�(1 + α)

∫ x

0

∥
∥f (t, y)

∥
∥2

L2(0,1) dt,

we obtain
∫ x

0

∥
∥z(t, y)

∥
∥2

L2(0,1) dt ≤ C
∫ x

0

[∥
∥f (t, y)

∥
∥2

L2(0,1) + δ2(t)
]

dt. (2.12)

From (2.10)–(2.12) the validity of the a priori estimate (2.5) follows. Lemma 2.1 is
proved. �

Now consider equation (1.1) in the domain �1. By virtue of the unambiguous solvability
of the Cauchy problem (1.1), (2.7), (2.8) for the wave equation, any regular solution of the
M1B problem in the domain �1 is represented as

z(x, y) =
1
2

[

τ (ξ ) + τ (η) –
∫ η

ξ

ν(t) dt
]

–
∫ η

ξ

dξ1

∫ η

ξ1

f1(ξ1,η1) dη1, (2.13)
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where

ξ = x + y, η = x – y, 4f1(ξ ,η) = f
(

ξ + η

2
,
ξ – η

2

)

.

Due to the conditions imposed on the function γ (x), equation of the curve AD in charac-
teristic variables ξ , η allows the representation

ξ = λ(η), 0 ≤ η ≤ 1, and 0 < λ′(0) < 1, λ(η) < η. (2.14)

In (2.13) satisfying condition (2.3), after some simple transformations, we have

ν(x) = τ ′(x) – (x), 0 < x < 1, (2.15)

where

(x) =
2

1 + μ(x)

∫ x

0
f1(ξ1, x) dξ1 +

2μ(x)
1 + μ(x)

∫ x

λ(x)
f1(ξ1, x) dξ1. (2.16)

The ratio (2.15) is the main functional relationship between τ (x) and ν(x) brought to the
segment AB from the hyperbolic domain �1.

Substituting the obtained expression of ν(x) into (2.13) and taking into account (2.16),
after some transformations, we get the following presentation of the solution z(ξ ,η) in the
domain �1:

z(ξ ,η) = τ (ξ ) +
∫ η

ξ

dη1

1 + μ(η1)

∫ ξ

0
f1(ξ1,η1) dξ1

+
∫ η

ξ

μ(η1) dη1

1 + μ(η1)

∫ ξ

λ(η)
f1(ξ1,η1) dξ1.

(2.17)

Taking into account (2.14) and (2.16), after some calculations, it is not difficult to establish
the following estimate:

∫ x

0
2(t) dt ≤ C

∫ x

0
dξ

∫ x

ξ

∣
∣f1(ξ , t)

∣
∣2 dt. (2.18)

Now in (2.5), assuming that δ(x) = (x) and taking into account (2.18), it is not difficult to
verify the validity of the following lemma.

Lemma 2.2 Let μ(x) ∈ C1[0, 1] and μ(x) 
= –1. Then for any function f (x, y) ∈ C1(�̄),
f (0, 0) = 0, the solution to problem M1B admits the a priori estimate

Dα–1
0x

∥
∥z(x, y)

∥
∥2

L2(0,1) +
∫ x

0

∥
∥zy(t, y)

∥
∥2

L2(0,1) dt

≤ C
[∫ x

0

∥
∥f (t, y)

∥
∥2

L2(0,1) dt +
∫ x

0
dξ

∫ x

ξ

∣
∣f (ξ , t)

∣
∣2 dt

]

.
(2.19)

Lemma 2.2 implies the following estimate:

∥
∥z(x, y)

∥
∥

L2(�0) +
∥
∥zy(x, y)

∥
∥

L2(�0) ≤ C
∥
∥f (x, y)

∥
∥

L2(�), (2.20)
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where L2(�) is the space of square-summable functions in �. Consider the following aux-
iliary problem C2: In the domain �0, find a solution of equation (1.1) satisfying conditions
(2.1), (2.2), and (2.7).

The solution of equation (1.1) satisfying conditions (2.1), (2.2), and (2.7) in the domain
�0 can be represented in the form [25]

z(x, y) =
∫ x

0
Ey1 (x – x1, y, 0)τ (x1) dx1

+
∫ x

0
dx1

∫ 1

0
E(x – x1, y, y1)f (x1, y1) dy1,

(2.21)

where

E(x, y, y1) =
xβ–1

2

+∞∑

n=–∞

[

e1,β
1,β

(

–
|y – y1 + 2n|

xβ

)

– e1,β
1,β

(

–
|y + y1 + 2n|

xβ

)]

,

β =
α

2
,

(2.22)

with the Wright-type function e1,β
1,β (t) =

∑∞
n=0

tn

n!�(β–βn) [25]. Differentiating (2.21) over y,
we have

zy(x, y) =
∫ x

0
Ey1y(x – x1, y, 0)τ (x1) dx1 +

∫ x

0
dx1

∫ 1

0
Ey(x – x1, y, y1)f (x1, y1) dy1. (2.23)

Using the known formulas [19, 25]

dn

dt
tμ–1eμ,δ

α,β
(
ctα

)
= tμ–n–1eμ–n,δ

α,β

(
ctα

)
,

dn

dtn tδ–1eμ,δ
α,β

(
ct–β

)
= tδ–n–1eμ,δ–n

α,β

(
ct–β

)
,

1
t

e–k,δ
α,β (t) = eα–k,δ–β

α,β (t),

after some calculations, from (2.22) it is not difficult to establish that

Ey1y(x – x1, y, 0) =
∂

∂x1

( +∞∑

n=–∞
(x – x1)–βe1,1–β

1,β

(

–
(y + 2n)
(x – x1)β

))

. (2.24)

Further, from (2.24), taking into account τ (0) = 0 and applying formulas [25]

–βte1,δ–β

1,β (t) = e1,δ–1
1,β (t) + (1 – δ)e1,β

1,β (t), lim|t|→∞ eμ,δ
α,β (t) = 0,

we have
∫ x

0
Ey1y(x – x1, y, 0)τ (x1) dx1

= –
∫ x

0

[ ∞∑

n=–∞

1
(x – x1)β

e1,1–β

1,β

(

–
|y + 2n|
(x – x1)β

)]

τ ′(t) dt.
(2.25)

Now taking into account (2.25), from (2.23), as y → 0, we have

ν(x) = –
∫

m(x – x1)τ ′(x1) dx1 +
∫ x

0
dx1

∫ 1

0
Ey(x – x1, 0, y1)f (x1, y1) dy1, (2.26)
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m(x) =
+∞∑

n=–∞
x–βe1,1–β

1,β

(

–
|2n|
xβ

)

=
1

�(1 – β)
x–β + 2x–β

+∞∑

n=1

e1,1–β

1,β

(

–
2n
xβ

)

. (2.27)

Note that (2.26) is the main functional relation between τ ′(x) and ν(x) brought to the
segment AB from the domain �0.

Excluding from the functional relations (2.15) and (2.26) the function ν(x), we obtain
the equation with respect to τ ′(x):

τ ′(x) +
∫ x

0
m(x – t)τ ′(t) dt = Q(x), (2.28)

where

Q(x) = (x) +
∫ x

0
dx1

∫ 1

0
Ey(x – x1, 0, y1)f (x1, y1) dy1. (2.29)

Lemma 2.3 ([19]) Let 0 < θ ≤ 1. Then for functions E(x, y, y1) and Ey(x, y, y1), we have the
following estimates:

∣
∣E(x, y, y1)

∣
∣ ≤ Cx(2+θ )β–1, 0 < x ≤ 1, 0 ≤ y1 < y ≤ 1, 0 < θ ≤ 1, (2.30)

∣
∣Ey(x, y, y1)

∣
∣ ≤ Cxβ(1+θ )–1, 0 < x ≤ 1, 0 ≤ y1 < y ≤ 1, 0 < θ ≤ 1. (2.31)

Proof of Lemma 2.3 The proof is carried out using the inequality

∣
∣yp–1tδ–1ep,δ

ω,τ
(
–yωt–τ

)∣
∣ < Cyp–ωθ–1 · tδ+θτ–1, 0 < θ ≤ 1.

By Lemma 2.3 and γ (x) ∈ C2[0, l], μ(x) ∈ C1[0, 1],μ(x) 
= –1, f (x, y) ∈ C1(�̄), f (0, 0) = 0,
from (2.29) we easily establish that

Q(x) ∈ C1[0, 1], Q(0) = 0. (2.32)

Thus by (2.27) problem M1B is equivalently (in the sense of unambiguous solvability) re-
duced to a Volterra-type integral equation of the second kind with weak singularity (2.28).
Therefore by (2.32) there is a unique solution of equation (2.28) from the class C1[0, 1],
representable as

τ ′(x) = Q(x) +
∫ x

0
R(x – t)Q(t) dt, (2.33)

where R(x) is the resolvent of the integral equation (2.28),

R(x) =
∞∑

n=1

(–1)nmn(x), m1(x) = m(x), mn+1(x) =
∫ x

0
m1(x – t)mn(t) dt.

From (2.33), taking into account τ (0) = 0, we have

τ (x) =
∫ x

0
R1(x – t)Q(t) dt, where R1(x) = 1 +

∫ x

0
R(t) dt. (2.34)
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Substituting (2.34) into (2.21) and taking into account (2.16) and (2.29), after some trans-
formations, we get

z(x, y) =
∫∫

�

θ (x – x1)M01(x, y, x1, y1)f (x1, y1) dx1 dy1, y > 0, (2.35)

where

M01(x, y, x1, y1) = θ (y1)
[

E(x – x1, y, y1)

+
∫ x

x1

dz
∫ z

x1

Ey1 (x – z, y, 0)R1(z – t)Ey(t – x1, 0, y1) dt
]

+
θ (–y1)

1 + μ(η1)

[∫ x

η1

Ey1 (x – t, y, 0)R1(t – η1) dt

+ θ
(
ξ1 – λ(η1)

)
μ(η1)

∫ x

η1

Ey1 (x – t, y, 0)R1(t – η1) dt
]

,

where ξ1 = x1 + y1, η1 = x1 – y1, θ (y) = 1, y > 0, and θ (y) = 0, y < 0.
Similarly, substituting (2.34) into (2.17) and taking into account (2.16) and (2.29), after

some calculations, we get

z(x, y) =
∫∫

�

θ (x – x1)M11(x, y, x1, y1)f (x1, y1) dx1 dy1, y < 0, (2.36)

where

M11(x, y, x1, y1) = θ (y1)
∫ ξ

0
R1(ξ – t)Ey(t – x1, 0, y1) dt

+ θ (–y1)θ (ξ – η1)
R1(ξ – η1)

2(1 + μ(η1))
[
1 + μ(η1)θ

(
ξ1 – λ(η1)

)]

+ θ (–y1)θ (η – η1)θ (η1 – ξ )θ (ξ – ξ1)
[1 + μ(η1)θ (ξ1 – λ(η1))]

2[1 + μ(η1)]
,

ξ = x + y, η = x – y.

From (2.35) and (2.36) we have

z(x, y) =
∫∫

�

M1(x, y, x1, y1)f (x1, y1) dx dy, (2.37)

M1(x, y, x1, y1) = θ (x – x1)
[
θ (y)M01(x, y, x1, y1) + θ (–y)M11(x, y, x1, y1)

]
. (2.38)

Taking into account explicit types of functions

M01(x, y, x1, y1), M11(x, y, x1, y1), and μ(x) ∈ C2[0, 1], μ(x) 
= –1,

it is not difficult to establish that in (2.38) all terms are bounded, with the exception of
the first, M01(x, y, x1, y1), in which by Lemma 2.3 the summand E(x – x1, y, y1) may be not
limited. Therefore it is sufficient to show that

θ (x – x1)θ (y1)θ (y)E(x – x1, y, y1) ∈ L2(� × �).
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By Lemma 2.3 from estimate (2.30) by direct calculation we have

∥
∥θ (x – x1)E(x – x1, y, y1)

∥
∥2

L2(�×�) ≤ C
{

(2 + θ )β
[
1 + (2 + θ )β

]}–1.

Therefore M1(x, y, x1, y1) ∈ L2(� × �). �

Lemma 2.4 If μ(x) ∈ C1[0, 1],μ(x) 
= –1, and f (x, y) ∈ L2(�), then Q(x) ∈ L2[0, 1], and

∥
∥Q(x)

∥
∥2

L2(0,1) ≤ C
∥
∥f (x, y)

∥
∥2

L2(�). (2.39)

Proof of Lemma 2.4 Taking into account (2.16), (2.18), (2.29), and (2.31), is carried out by
direct calculation using the well-known Cauchy–Bunyakovsky inequalities.

Therefore from (2.33) we have

∥
∥τ ′(x)

∥
∥

L2(0,1) ≤ C
∥
∥Q(x)

∥
∥

L2(0,1) ≤ C
∥
∥f (x, y)

∥
∥

L2(�). (2.40)

From (2.17) by (2.40) and direct calculation it is not difficult to establish that

∥
∥z(x, y)

∥
∥

W 1
2 (�1) ≤ C

∥
∥f (x, y)

∥
∥

L2(�), (2.41)

where W 1
2 (�) is the Sobolev space. From (2.19) and (2.41) we have

Dα–1
0x

∥
∥z(x, y)

∥
∥2

L2(0,1) +
∫ x

0

∥
∥zy(t, y)

∥
∥2

L2(0,1) dt +
∥
∥z(x, y

∥
∥2

W 1
2 (�2)

≤ C
[∫ x

0

∥
∥f (t, y)

∥
∥2

L2(0,1) +
∫ x

0
dξ

∫ 1

ξ

∣
∣f (ξ , x)

∣
∣2 dt +

∥
∥f (x, y)

∥
∥2

L2(�)

]

.
(2.42)

We call a function z(x, y) ∈ V a regular solution of problem M1B in the domain �, where

V =
{

z(x, y) : z(x, y) ∈ C(�̄) ∩ C1.1(� ∪ AC),

Dα
0xz(x, y), zyy(x, y) ∈ C(�0), z(x, y) ∈ C2.2(�1)

}
,

if it satisfies equation (1.1) in �0 ∪ �1 and conditions (2.1)–(2.3). �

Thus, summarizing the above statements, we have proved the following theorem.

Theorem 2.1 Let μ(t) ∈ C1[0, 1] and μ(x) = –1, 0 ≤ x ≤ 1. Then for any function f (x, y) ∈
C1(�̄), f (A) = 0, there exists a unique regular solution to problem M1B (1.1), (2.1)–(2.3),
and it is presented in the form (2.37) and satisfies inequality (2.42).

From (2.42) or (2.20) and (2.41) the following estimate follows:

∥
∥z(x, y)

∥
∥

L2(�0) +
∥
∥zy(x, y)

∥
∥

L2(�0) +
∥
∥z(x, y)

∥
∥

W 1
2 (�1) ≤ C

∥
∥f (x, y)

∥
∥

L2(�). (2.43)

The function z(x, y) ∈ L2(�) is called a strong solution to problem M1B if there exists
the sequence of functions {zn(x, y)}, zn(x, y) ∈ V , satisfying conditions (2.1)–(2.3) such that

∥
∥zn(x, y) – z(x, y)

∥
∥

L2(�) → 0,
∥
∥Lzn(x, y) – f (x, y)

∥
∥

L2(�) → 0 as n → ∞.
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Theorem 2.2 Let the conditions of Theorem 2.1 be satisfied. Then for any function f (x, y) ∈
L2(�), there exists a unique strong solution z(x, y) to problem M1B. This solution can be
presented in the form (2.37) and satisfies estimate (2.43).

Proof of Theorem 2.2 Now let us show that for f (x, y) ∈ L2(�), the solution to problem
M1B is strong. Due to the density in L2(�),

G =
{

f (x, y) : f (x, y) ∈ C1(�̄), f (A) = 0
}

.

For any function f (x, y) ∈ L2(�), there exists a sequence {fn(x, y)}, fn(x, y) ∈ G, such that
‖fn(x, y) – f (x, y)‖L2(�) → 0 as n → ∞.

By zn(x, y) we denote a solution to problem M1B (1.1), (2.1)–(2.3) with right-hand part
fn(x, y) in equation (1.1).

From (2.32) it follows that if fn(x, y) ∈ G, then Qn(x) ∈ C1[0, 1] and Qn(0) = 0, where

Qn(x) = n(x) +
∫ x

0
dx1

∫ 1

0
Ey(x – x1, 0, y1)fn(x1, y1) dy1,

n(x) =
2

1 + μ(x)

∫ x

0
f1n(ξ1, x) dξ1 +

2μ(x)
1 + μ(x)

∫ x

λ(x)
f1n(ξ1, x) dξ1,

4f1n(ξ , n) = fn

(
ξ + η

2
,
ξ – η

2

)

, ξ = x + y,η = x – y.

Then equation (2.28) can be considered as an integral equation of the second kind in the
space C1[0, 1]. It has a unique solution τ ′

n(x) ∈ C1[0, 1]. Since νn(x) = τ ′
n(x) –n(x), we have

νn(x) ∈ C1[0, 1]. Therefore the function zn(x, y) defined by formulas (2.13) and (2.21) (here
it is necessary to replace the functions τ (x), ν(x), f (x, y) by τn(x), νn(x), fn(x, y), respectively)
belongs to class V .

However, on the other hand, by Lemma 2.4, Q(x) ∈ L2(0, 1) when f (x, y) ∈ L2(�). There-
fore equation (2.28) can be considered as a Volterra integral equation of the second kind in
the space L2(0, 1). Equation (2.28) in the space L2(0, 1) is unambiguously solvable, τ ′(x) ∈
L2(0, 1), and ‖τ ′(x)‖L2(0,1) ≤ C‖Q(x)‖L2(0,1). As before, by (2.15) we have ν(x) ∈ L2(0, 1).

In this case the function z(x, y) defined by formulas (2.13) and (2.21) at least belongs to
class C(�̄) ∩ W 0,1

2 (�0) ∩ W 1,1
2 (�1).

By (2.39) it is also not difficult to verify estimate (2.43).
Now, due to the completeness of the space L2(�), the sequence {fn(x, y)} we constructed

above is fundamental. From the linearity of equation (1.1) and estimate (2.43) we obtain
that ‖zn(x, y) – zm(x, y)‖L2(�) ≤ C‖fn(x, y) – fm(x, y)‖L2(�), i.e., the sequence {zn(x, y)} is fun-
damental in L2(�). Taking into account the completeness of the space L2(�), we get that
there exists a limit z(x, y) ∈ L2(�) of the sequence zn(x, y), which will be the desired strong
solution to problem M1B with the right-hand part f (x, y) ∈ L2(�).

Analyzing the above facts, it is also not difficult to establish that a strong solution z(x, y)
to problem M1B is representable as (2.37). Theorem 2.2 is proved.

Now let us establish the Volterra property of problem M1B. By B1 we denote the closure
in space L2(�) of the fractional differential operator satisfying conditions (2.1)–(2.3) and
given on V by expression (1.2).
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According to the definition of a strong solution to problem M1B, z(x, y) is a strong so-
lution to problem M1B if and only if z(x, y) ∈ D(B1), where D(B1) is the domain of the
operator B1.

From Theorem 2.2 it follows that the operator B1 is closed and its domain is dense in
L2(�); the inverse operator B–1

1 exists, is defined on the whole L2(�), and is completely
continuous. In this regard, a natural question arises: is there an eigenvalue of the oper-
ator B–1

1 and hence of problem M1B? The main result is the theorem on the absence of
eigenvalues of the operator B–1

1 . �

Theorem 2.3 Let μ(x) 
= –1. Then the integral operator

B–1
1 f (x, y) =

∫∫

�

M1(x, y, x1, y1)f (x1, y1) dx1 dy1, (2.44)

where M1(x, y, x1, y1) ∈ L2(� × �), is Volterra in L2(�).

Proof To prove Theorem 2.3, we need to show that the operator B–1
1 defined by formula

(2.44) is completely continuous and quasinilpotent. Since the complete continuity of this
operator follows from the fact that M(x, y, x1, y1) ∈ L2(�×�), we show that B–1

1 quasinilpo-
tent, i.e.,

lim
n→∞

∥
∥B–1

1
∥
∥

1
n
L2(�)→L2(�) = 0, (2.45)

where B–n
1 = B–1

1 [B–(n–1)
1 ], n = 1, 2, . . . .

From (2.44) by direct calculation, taking into account (2.35)–(2.38), it is not difficult to
obtain that

B–n
1 f (x, y) =

∫∫

�

Mn(x, y, x1, y1)f (x1, y1) dx1 dy1, (2.46)

where

Mn(x, y, x1, y1) =
∫∫

�

M1(x, y, x2, y2)M(n–1)(x2, y2, x1, y1) dx2 dx1, n = 2, 3, . . . ,

M1(x, y, x1, y1) = M1(x, y, x1, y1).

Lemma 2.5 For the iterated kernels Mn(x, y, x1, y1), we have the following estimate:

∣
∣Mn(x, y, x1, y1)

∣
∣ ≤

(
3
2

)n–1

Nn �n(γ )
�(nγ )

(x – x1)nγ –1, (2.47)

where γ = (2 + θ )β , N = Cd, C is the coefficient from estimate (2.30),

d = max
(x,y)∈�

(x1,y1)∈�

∣
∣(x – x1)γ –1M1(x, y, x1, y1)

∣
∣ if γ < 1,

and

d = max
(x,y)∈�

(x1,y1)∈�

∣
∣M1(x, y, x1, y1)

∣
∣ if γ ≥ 1.
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Proof of Lemma 2.5 We use mathematical induction over n. For n = 1, the inequality

∣
∣M1(x, y, x1, y1)

∣
∣ ≤ N(x – x1)γ –1

follows from representation (2.38) taking into account (2.30).
Let (2.47) be valid for n = k – 1. Let us prove the validity of this formula for n = k. Using

inequality (2.47) for n = 1 and n = k – 1, we have

∣
∣Mk(x, y, x1, y1)

∣
∣

=
∣
∣
∣
∣

∫∫

�

M1(x, y, x2, y2) · M(k–1)(x2, y2, x1, y1) dx2 dy2

∣
∣
∣
∣

≤
∫∫

�

∣
∣M1(x, y, x2, y2)

∣
∣ · ∣∣M(k–1)(x2, y2, x1, y1)

∣
∣dx2 dy2

≤
∫∫

�

θ (x – x2)N(x – x2)γ –1θ (x2 – x1)
(

3
2

)k–2

× Nk–1 �k–1(γ )
�[(k – 1)γ ]

(x2 – x1)(k–1)γ –1 dx2 dy2

≤
(

3
2

)k–1

Nk �k–1(γ )
�[(k – 1)γ ]

∫ x

x1

(x – x2)γ –1(x2 – x1)(k–1)γ –1 dx2

=
(

3
2

)k–1

Nk �k–1(γ )
�[(k – 1)γ ]

(x – x1)kγ –1
∫ 1

0
σγ –1(1 – σ )(k–1)γ –1 dσ

=
(

3
2

)k–1

Nk �k(γ )
�(kγ )

(x – x1)kγ –1,

which proves the lemma. �

Using the well-known Schwarz inequality and Lemma 2.5, from representation (2.46)
we have

∥
∥B–n

1 f (x, y)
∥
∥2

L2(�)

=
∫∫

�

∣
∣B–n

1 f (x, y)
∣
∣2 dx dy

=
∫∫

�

[∫∫

�

Mn(x, y, x1, y1)f (x1, y1) dx1 dy1

]2

dx dy

≤
∫∫

�

[(∫∫

�

∣
∣Mn(x, y, x1, y1)

∣
∣2 dx1 dy1

)(∫∫

�

∣
∣f (x1, y1)

∣
∣2 dx1 dy1

)]

dx dy

≤
(

3
2

N
)2n

�2n(γ )
[(2nγ – 1)](2nγ )�2(nγ )

∥
∥f (x, y)

∥
∥2

L2(�),

from which we obtain

∥
∥B–n

1
∥
∥

L2(�)→L2(�) ≤
(

3N
2

)n(

4 –
2

nγ

)– 1
2 �n(γ )
�(1 + nγ )

.

From the latter it is not difficult to establish equality (2.45). Theorem 2.3 is proved. �
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Consequence 1 Problem M1B is a Volterra problem.

Consequence 2 For any complex number λ, the equation B1z(x, y) – λz(x, y) = f (x, y) un-
ambiguously solvable for all f (x, y) ∈ L2(�).

3 A problem for a diffusion–hyperbolic equation with a nonlocal condition
with derivatives in different characteristic directions

This section is devoted to the study of a nonlocal problem with derivatives in different
characteristic directions for equation (1.1).

The main goal is to show that for the correctness and Volterra property of problem M2B
considered in this section, in contrast to problem M1B, it is essential to consider the ratio
between the coefficient of “compression” μ(0) at the origin of the derivative in the direction
of the characteristic BC and the polar angle ω formed by the curve AD and the abscissa
axis.

Problem M2B Find a solution to equation (1.1) satisfying the conditions (2.1), (2.2), and

[zx – zy]
[
θ0(t)

]
+ μ(t)[zx + zy]

[
θ∗(t)

]
= 0, (3.1)

where θ0(t) = ( t
2 , – t

2 ), θ∗(t) = ( λ(t)+t
2 , λ(t)–t

2 ), ξ = λ(η) is the equation of the curve AD in
characteristic coordinates ξ = x + y, η = x – y, and μ(t) is a given function.

As in Sect. 2, by a regular solution to problem M2B we mean a function z(x, y) ∈ V
satisfying equation (1.1) in �0 ∪ �1 and conditions (2.1), (2.2), and (3.1).

Theorem 3.1 Let μ(t) ∈ C2[0, 1], and suppose the following condition is satisfied:

∣
∣μ(0)

∣
∣2 < tg

(

ω +
π

4

)

, –
π

4
< ω < 0. (3.2)

Then for any function f (x, y) ∈ C1(�̄), f (A) = 0, there is a unique regular solution to problem
M2B, which satisfies inequality (2.43) and can be represented in the form

z(x, y) =
∫∫

�

M2(x, y, x1, y1)f (x1, y1) dx1 dy1, (3.3)

where M2(x, y, x1, y1) ∈ L2(� × �).

Proof As before, denoting z(x, 0) = τ (x), 0 ≤ x ≤ 1, zy(x, 0) = v(x), 0 ≤ x ≤ 1, the solution
to problem M2B in the domain �1 can be represented by d’Alembert’s formula (2.13).

Using condition (3.1) in formula (2.13), we obtain

τ ′(t) + μ(t)τ ′(λ(t)
)

– ν(t) + μ(t)ν
(
λ(t)

)
= F1(t), (3.4)

where

F1(t) = 2
∫ t

0
f1(ξ1, t) dξ1 – 2μ(t)

∫ t

λ(t)
f1

(
λ(t),η1

)
dη1. (3.5)
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Relation (3.4) is the main relation between τ ′(x) and ν(x), brought to the segment AB
from the hyperbolic part �1.

The main functional relation between τ ′(x) and ν(x), brought to the segment AB from
the parabolic part of the domain, has the form (2.26).

Now, excluding the function ν(x) from relations (2.26) and (3.4), for τ ′(x), we obtain the
integro-differential equation

τ ′(t) + μ(t)τ ′(λ(t)
)

+
∫ t

0
m(t – σ )τ ′(σ ) dσ

– μ(t)
∫ λ(t)

0
m

(
λ(t) – σ

)
τ ′(σ ) dσ = F(t), 0 ≤ t ≤ 1,

(3.6)

where

F(t) = F1(t) + Q0(t) – μ(t)Q0
(
λ(t)

)
, (3.7)

Q0(t) =
∫ t

0
dx1

∫ 1

0
Ey(t – x1, 0, y1)f (x1, y1) dy1. (3.8)

Thus, problem M2B in the sense of unique solvability is equivalently reduced to integro-
functional equation (3.6). Note that similar integro-functional equations have been stud-
ied in [7, 8].

Consider the equation

ϕ(x) + μ(x)ϕ
(
λ(x)

)
= F2(x). (3.9)

First, we present the following lemma, which will be needed later.

Lemma 3.1 ([7]) Let

∣
∣μ(0)

∣
∣2 < λ′(0). (3.10)

Then for any function F2(x) ∈ L2(0, 1), there is a unique solution ϕ(x) ∈ L2(0, 1) to equation
(3.9), and it satisfies inequality

∥
∥ϕ(x)

∥
∥

L2(0,1) ≤ C
∥
∥F2(x)

∥
∥

L2(0,1). (3.11)

Proof The proof of the lemma is given in [7]. For ease of reading, we briefly outline it here.
Let us consider the operator acting by the formula

Aϕ(x) = μ(x)ϕ
(
λ(x)

)
. (3.12)

It is obvious that Anϕ(x) =
∏n–1

k=0 μ(λk(x)) · ϕ(λn(x)),n ≥ 2, where λn(x) = λ[λn–1(x)],
λ0(x) = x.

Taking in to account (3.12), equation (3.9) can be presented in the form

(E + A)ϕ(x) = F2(x),

where E is the identity operator.
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It is easy to establish that the operator

B–1 =
∞∑

k=0

(–1)nAn

is formally inverse to the operator B = E + A. Therefore let us show that the operator B–1 =
(E + A)–1 is bounded in the space L2(0, 1).

We have

∥
∥Anϕ(x)

∥
∥2

L2(0,1) =
∫ 1

0

[n–1∏

k=0

μ
(
λk(x)

)
]2

∣
∣ϕ

(
λn(x)

)∣
∣2 dx

=
∫ 1

0

[
∏n–1

k=0 μ(λk(x))]2

∏n–1
k=0 λ′(λk(x))

· ∣∣ϕ(
λn(x)

)∣
∣2 ·

n–1∏

k=0

λ′(λk(x)
)

dx.

Further, substituting λn(x) = t, we obtain

∥
∥Anϕ(x)

∥
∥2

L2(0,1) ≤ max
0≤x≤1

n–1∏

k=0

[μ(λk(x))]2

|λ′(λk(x))|
∫ λn(1)

0

∣
∣ϕ(t)

∣
∣2 dt

≤
n–1∏

k=0

max
0≤t≤λk (1)

μ2(t)
|λ′(t)| · ∥∥ϕ(t)

∥
∥2

L2(0,1).

Therefore ‖An‖L2(0,1)→L2(0,1) ≤ an, where an =
∏n–1

k=0 max0≤t≤λk (1)
|μ(t)|

√|λ′(t)| . Since λ(x) < x for
x 
= 0 and λ(0) = 0, the sequence λn(1) steadily converges to zero as n → ∞. Hence

�im
n→∞

an+1

an
= �im

n→∞ max
0≤t≤λn(1)

|μ(t)|
√|λ′(t)| = �im

α→0
max

0≤t≤α

|μ(t)|
√|λ′(t)| =

|μ(0)|√
λ′(0)

.

Therefore by (3.10) the number series
∑∞

n=1 an converges, and

∥
∥B–1∥∥

L2(0,1)→L2(0,1) ≤
∞∑

n=1

an < ∞,

which shows the boundedness of operator B–1 in L2(0, 1) and the correctness of estimate
(3.11). This proves Lemma 3.1. �

Lemma 3.2 Let

∣
∣μ(0)

∣
∣ · λ′(0) < 1. (3.13)

If F2(x) ∈ C1[0, 1] and F2(0) = 0, then there is a unique solution to equation (3.9) from the
class C1[0, 1], and ϕ(0) = 0.

Proof Consider equation (3.9) in the class C1[0, 1]. It is obvious that if F2(x) ∈ C1[0, 1] and
F2(0) = 0, then ϕ(0) = 0. Therefore differentiating (3.9), for ϕ′(x), we obtain the equation

[E + A1]ϕ′(x) + T1ϕ
′(x) = F ′

2(x), (3.14)
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where

A1ϕ
′(x) = λ′(x)μ(x)ϕ′(λ(x)

)
, T1ϕ

′(x) = μ′(x)
∫ λ(x)

0
ϕ′(t) dt.

Since we consider equation (3.9) in a narrower class than L2(0, 1), the solution of equation
(3.9) and therefore the solution of (3.14) is unique. Also, it is obvious that T1 is completely
continuous in C[0, 1]. Therefore solvability of equation (3.14) in C[0, 1] is equivalent to
the existence of the operator

A–1
2 = (E + A1)–1 =

∞∑

n=0

(–1)nAn
1

continuous in C[0, 1].
It is easy to see that the operator A–1

2 exists, is bounded in C[0, 1], and A–1
2 ·A2 = A2 ·A–1

2 =
E, where A2 = E + A1.

Indeed, similarly to Lemma 3.1, we have

∥
∥An

1ϕ
′(x)

∥
∥

C[0,1] ≤ ∥
∥ϕ′(x)

∥
∥

C[0,1] ·
n–1∏

k=0

max
0≤t≤λk (1)

∣
∣μ(t)λ′(t)

∣
∣.

Hence ‖An
1‖C[0.1]→C[0.1] ≤ ∏n–1

k=0 max0≤t≤λk (1) |μ(t)| · |λ′(t)| ≡ bn. Taking into account that
λn(1) → 0 as n → ∞, we get

�im
n→∞

bn+1

bn
= �im

n→∞ max
0≤t≤λn(1)

∣
∣μ(t) · λ′(t)

∣
∣ =

∣
∣μ(0)

∣
∣ · λ′(0).

Therefore by (3.13) the number series
∑∞

n=1 bn converges, and

∥
∥(E + A1)–1∥∥

C[0,1]→C[0,1] ≤
∞∑

n=1

bn < ∞,

which shows the continuity of operator A–1
2 in C[0, 1]. Lemma 3.2 is proved. �

Lemma 3.3 If μ(t) ∈ C2[0, 1] and f (x, y) ∈ C1(�̄), f (A) = 0, then F(t) ∈ C1[0, 1] and
F(0) = 0.

Proof of Lemma 3.3 Using the explicit form of the function E(x, y, y1), by Lemma 2.3 it
is not difficult to establish that the function Q0(x) defined by formula (3.8) belongs to
class C1[0, 1] and Q0(0) = 0. From (3.5), taking into account the conditions imposed on
the function μ(t), it is easy to establish that F1(x) ∈ C1[0, 1] and F1(0) = 0. Hence the proof
of Lemma 3.3 follows by (3.7). �

Lemma 3.4 If μ(t) ∈ C2[0, 1] and f (x, y) ∈ L2(�), then F(t) ∈ L2(0, 1), and

∥
∥F(t)

∥
∥

L2(0,1) ≤ C
∥
∥f (x, y)

∥
∥

L2(�).
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Proof of Lemma 2.4 To prove Lemma 3.4, taking into account (3.8) and applying the
Cauchy–Bunyakovsky inequality, we establish the following chain of inequalities:

∣
∣Q0(t)

∣
∣2 =

∣
∣
∣
∣

∫ t

0
dx1

∫ 1

0
Ey(t – x1, 0, y1)f (x1, y1) dy1

∣
∣
∣
∣

2

≤
∫ 1

0

[∫ t

0
Ey(t – x1, 0, y1)f (x1, y1) dx1

]2

dy1

∫ 1

0
dy1

≤
∫ 1

0
dy1

∫ t

0

∣
∣(t – x1)

1–β(1+θ )
2 Ey(t – x1, 0, y1)(t – x1)

β(1+θ)–1
2 f (x1, y1)

∣
∣
2

dx1

≤
∫ 1

0
dy1

[∫ t

0
C2(t – x1)β(1+θ)–1 dx1

∫ t

0

∣
∣(t – x1)

β(1+θ )–1
2 f (x1, y1)

∣
∣
2

dx1

]

≤ C2tβ(1+θ)

β2(1 + θ )2

∫ 1

0
dy1

[∫ t

0
(t – x1)β(1+θ)–1 dx1

∫ t

0

∣
∣f (x1, y1)

∣
∣2 dx1

]

≤ C2t2β(1+θ)

β2(1 + θ )2

∫ 1

0
dy1

∫ t

0

∣
∣f (x1, y1)

∣
∣2 dx1.

From this estimate, (3.5), and (3.7) by direct calculation we obtain the proof of Lem-
ma 3.4. �

Lemma 3.5 Let condition (3.10) be fulfilled. Then for any function F(x) ∈ L2(�), there is
a unique solution to equation (3.6). This solution belongs to the class L2(0, 1) and satisfies
the inequality

∥
∥τ ′(x)

∥
∥

L2(0,1) ≤ C
∥
∥F(x)

∥
∥

L2(0,1). (3.15)

Proof We introduce the integral operator T acting in L2(0, 1) according to the formula

Tϕ(x) =
∫ x

0
m(x – t)ϕ(t) dt. (3.16)

Since xβm(x) is a continuous function, it is obvious that T is a completely continuous
operator in L2(0, 1).

Taking into account (3.12) and (3.16), from (3.6), passing to the operator record, we
obtain

[E + A]τ ′(x) + [E – A]Tτ ′(x) = F(x). (3.17)

By Lemma 3.1 the operator (E + A)–1 is bounded. Applying the operator (E + A)–1 to (3.17),
we have

τ ′(x) = (E + A)–1F(x) – (E + A)–1(E – A)Tτ ′(x). (3.18)

Equation (3.18) will be solved by the method of successive approximations. Suppose that
τ ′

0(x) ≡ 0,

τ ′
n(x) = (E + A)–1F(x) – (E + A)–1(E – A)Tτ ′

n–1(x), n = 1, 2, . . . . (3.19)
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For n = 1, it follows from Lemma 3.1 that

∥
∥τ ′

1(x)
∥
∥

L2(0,1) ≤ ∥
∥(E + A)–1∥∥

L2(0,1)→L2(0,1) · ∥∥F(x)
∥
∥

L2(0,1) ≤ k
∥
∥F(x)

∥
∥

L2(0,1), (3.20)

where k =
∑∞

n–1 an < ∞.
By direct calculation we can prove the following estimates:

‖T‖L2(0,1)→L2(0,1) ≤ p
√

2(1 – 2β)(1 – β)
= P, (3.21)

‖E – A‖L2(0,1)→L2(0,1) ≤ L, (3.22)

where p = max0≤t≤x≤1{|(x – t)βm(x – t)|} and L = 1 + max0≤x≤1
|μ(x)|

√|λ′(x)| .
Denote ψn(x) = τ ′

n(x) – τ ′
n–1(x), n = 1, 2, . . . . Then from (3.19) we have

ψn(x) = –(E + A)–1(E – A)Tψn–1(x), n = 2, 3, . . . , (3.23)

ψ1(x) = (E + A)–1F(x). (3.24)

We claim that

∥
∥ψn(x)

∥
∥

L2(0,1) ≤ kn(LP)n–1

n!
∥
∥F(x)

∥
∥

L2(0,1).

The proof follows from estimates (3.20)–(3.22) and from equations (3.23) and (3.24).
The latter implies the convergence in L2(0, 1) of the series

τ ′(x) = �im
n→∞ τ ′

n(x) =
∞∑

n=1

ψn(x), (3.25)

which is majorized in L2(0, 1) by the convergent numerical series

∥
∥F(x)

∥
∥

L2(0,1) ·
∞∑

n=1

kn(LP)n–1

n!
.

It is not difficult to make sure that the constructed function τ ′(x) satisfies equation (3.18).
In fact, summing up the recurrent relations (3.23) and (3.24) over n from 1 to k, we obtain

k∑

n=1

ψn(x) = –(E + A)–1(E – A)T
k∑

n=1

ψn(x) + (E + A)–1F(x).

Passing to the limit as k → ∞ in this equality, taking advantage of the limitations of oper-
ators A and T , due to the convergence of the series (3.25), we obtain equation (3.18).

Now let us show the uniqueness of the solution to equation (3.18). For this, as is known,
it is sufficient to show that the corresponding homogeneous equation (3.18) has only a
zero solution. Let τ̄ ′(x) ∈ L2(0.1) be a solution to homogeneous equation (3.18):

τ̄ ′(x) = –(E + A)–1(E – A)T τ̄ ′(x). (3.26)
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We apply to (3.26) the method of successive approximations, taking τ̄ ′
0(x) = τ̄ ′(x) and

τ̄ ′
n(x) = –(E + A)–1(E – A)T τ̄ ′

n–1(x).

Since the function τ̄ ′(x) is a solution of equation (3.26), then by the unambiguous solv-
ability of equation (3.9) in L2(0, 1) every next approximation will coincide with it τ̄ ′

n(x) =
τ̄ ′(x) . . . .

Reasoning similarly, i.e., as in the derivation of the inequality for ψn(x), we get

∥
∥τ̄ ′

n(x)
∥
∥

L2(0,1) ≤ kn–1(LP)n–1

n!
∥
∥τ̄ ′

1(x)
∥
∥

L2(0,1).

Taking into account that τ̄ ′
n(x) ≡ τ̄ ′(x) and passing here to the limit as n → ∞, we obtain

that τ̄ ′(x) ≡ 0, as required.
Note that from the convergence of the series (3.25) in L2(0, 1) we get inequality (3.15)

or, more precisely,

∥
∥τ ′(x)

∥
∥

L2(0,1) ≤
( ∞∑

n=1

kn(LP)n–1

n!

)
∥
∥F(x)

∥
∥

L2(0,1).

Lemma 3.5 is proved. �

Lemma 3.6 Let F(x) ∈ C1[0, 1] and F(0) = 0. Then if τ ′(x) ∈ L2(0, 1) is the solution to equa-
tion (3.6), then τ ′(x) ∈ C1[0, 1] and τ ′(0) = 0.

Proof It is clear that if τ ′(x) is a solution to equation (3.6), then τ ′(x) is a solution to equa-
tion (3.9), where

F2(x) = F(x) – Tτ ′(x) + ATτ ′(x).

Since T is an operator with weak singularity (see (3.16) and (2.27)) and is completely
continuous as an operator from L2(0, 1) to C[0, 1], and the operator A is bounded operator
in C[0, 1], by direct calculation we obtain F2(x) ∈ C1[0, 1] and F2(0) = 0. Next, applying
Lemma 3.2, we get the statement of Lemma 3.6. �

Lemma 3.7 Let the conditions of Lemma 3.2 be fulfilled. Then for any function F(t) ∈
C1[0, 1], F(0) = 0, equation (3.6) has is a unique solution τ ′(x) ∈ C1[0, 1], τ ′(0) = 0.

Proof of Lemma 3.7 Proof follows from Lemmas 3.5 and 3.6. �

By Lemma 3.7 equation (3.6) has a unique solution τ ′(x) ∈ C1[0, 1]. From (2.26) by (3.8)
of Lemma 3.3 we have ν(x) ∈ C1[0, 1].

Thus if f (x, y) ∈ C1(�̄) and f (0, 0) = 0, then τ (x) ∈ C2[0, 1] and ν(x) ∈ C1[0, 1]. Then by
formulas (2.13) and (2.21) the solution to problem M2B belongs to V .

Now, acting as in Theorem 2.1, we obtain all the statements of Theorem 3.1 (estimate
(2.43) and representations (3.3); see below).

To complete the proof of Theorem 3.1, we note that if conditions (3.10) (of Lemma 3.1)
are met. Then conditions (3.13) (of Lemma 3.2) are also met, since 0 < λ′(0) < 1.
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Conditions (3.10) are equivalent to condition (3.2).
Indeed, it easily follows from the equation of the curve AD: ξ = λ(η) in characteristic

coordinates that

λ′(0) =
1 – γ ′(0)
1 + γ ′(0)

= tg

(
π

4
+ ω

)

.

Theorem 3.1 is proved. �

Denote by B2 the closure in L2(�) of the operator given on the set of functions from V
satisfying the conditions (2.1), (2.2), and (3.1) with expression (1.2).

The function z(x, y) ∈ L2(�) is called a strong solution of problem M2B if z(x, y) ∈ D(B2)
and B2z(x, y) = f (x, y).

Theorem 3.2 Let condition (3.2) be fulfilled. Then there is a unique strong solution to prob-
lem M2B for any function f (x, y) ∈ L2(�). This solution satisfies inequality (2.43) and can
be represented by (3.3).

Proof Note at once that by Lemmas 3.3–3.6 and representations (2.13) and (2.21) we get
inequality (2.43) for all f (x, y) ∈ L2(�).

Evaluation (2.43) also implies the uniqueness of a strong solution to problem M2B.
Due to the density in L2(�) of the set

C1
0(�̄) =

{

f (x, y) : f (x, y) ∈ C1(�), f (x, y)
∣
∣
∂�

=
∂f (x, y)

∂x

∣
∣
∣
∣
∂�

=
∂f (x, y)

∂y

∣
∣
∣
∣
∂�

= 0
}

,

for any function f (x, y) ∈ L2(�), there is a sequence fn(x, y) ∈ C1
0(�̄) such that ‖fn(x, y) –

f (x, y)‖0 → 0 as n → ∞.
By zn(x, y) we denote a regular solution to problem M2B for equation (1.1) with right-

hand part fn(x, y) and initial conditions τn(x) = zn(x, 0), νn(x) = zny(x, 0). By Lemma 3.7 we
have τn(x) ∈ C2[0, 1], τn(0) = τn

′(0) = 0, νn(x) ∈ C1[0, 1], and therefore by formulas (2.13)
and (2.21) we get zn(x, y) ∈ V for all fn(x, y) ∈ C1

0(�̄).
By the completeness of the space L2(�) the sequence fn(x, y) is fundamental. From the

linearity of equation (1.1) and estimate (2.43) we obtain that

∥
∥zn(x, y) – zm(x, y)

∥
∥

L2(�) ≤ C
∥
∥fn(x, y) – fm(x, y)

∥
∥

L2(�),

i.e., the sequence {zn(x, y)} is fundamental in L2(�). Taking into account the completeness
of the space L2(�), we obtain that there is a unique limit z(x, y) ∈ L2(�) of the sequence
{zn(x, y)}, which will be the desired strong solution of problem M2B for equation (1.1) with
the right part f (x, y) ∈ L2(�).

To complete the proof of Theorem 3.2, we show that for any f (x, y) ∈ L2(�), a strong
solution to problem M2B is represented by (3.3).

Since

(E + A)–1(E – A) = –E + 2(E + A)–1,
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taking into account (3.16), equation (3.18) can be represented as

τ ′(x) –
∫ x

0
M(x – t)τ ′(t) dt = (x), (3.27)

where

(x) = (E + A)–1F(x) = (E + A)–1F1(x) – Q0(x) + 2(E + A)–1Q0(x), (3.28)

M(x – t) = m(x – t) – 2
∞∑

n=1

(–1)nθ
(
λn(x) – t

)

×
n–1∏

k=0

μ
(
λk(x) – t

)
m

(
λn(x) – t

)
,

(3.29)

where θ (x) = 1, x > 0, θ (x) = 0, x < 0.
It is obvious that θ (x – t)M(x – t) ∈ L2(� × �). The solution of equation (3.27) is repre-

sented as

τ ′(x) = (x) +
∫ x

0
�0(x, t)(t) dt,

where �(x, t) is the resolvent of the kernel (3.29) of the integral equation (3.27). Taking
into account that τ (0) = 0, we have

τ (x) =
∫ x

0
�1(x, t)(t) dt, (3.30)

where �1(x, t) =
∫ x

t �(z, t) dz + 1.
Now in (2.13) or (2.17), taking into account (2.15)–(2.16), (2.21), (3.5), (3.28), and (3.30),

after making the necessary calculations, we get (3.3). In formula (3.3),

M2(x, y, x1, y1) = θ (y)θ (y1)M00(x, y, x1, y1) + θ (y)θ (–y1)M01(x, y, x1, y1)

+ θ (–y)θ (y1)M10(x, y, x1, y1) + θ (–y)θ (–y1)M11(x, y, x1, y1),
(3.31)

where

M00(x, y, x1, y1) = θ (x – x1)E(x – x1, y, y1)

+
∫ 1

0
θ (x – t)Eη(x – t, y,η)

∣
∣
η=0P1(t, x1, y1) dt,

M01(x, y, x1, y1) =
1
2

∫ 1

0
θ (x – t)Eη(x – t, y,η)

∣
∣
η=0N1(t, ξ1,η1) dt,

ξ1 = x1 + y1, η1 = x1 – η1.

Pi(x, x1, y1)

= –θ (x – x1)
∫ x

x1

�i(x, t)Ey(t – x1, 0, y1) dt

+ 2
∞∑

n=1

(–1)nθ
(
λn(x) – t

)
∫ λ(x)

x1

�i
(
x, δn(t)

)
n–1∏

k=0

μ(δn–k(t))
λ′(δn–k(t))

Ey(t – x, 0, y1) dt,
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Ni(x, ξ1,η1)

= 2
∞∑

n=0

(–1)n

[

θ
(
λn(x) – ξ1

)
θ
(
λn(x) – η1

)
�i

(
x, δn(η1)

)
n–1∏

k=0

μ(δn–k(η1))
λ′(δn–k(η1))

– θ
(
λn+1(x) – ξ1

)
θ
(
δ(ξ1) – η1

)
�i

(
x, δn+1(ξ 1)

)
n∏

k=0

μ(δn+1–k(ξ1))
λ′(δn+1–k(ξ1))

]

,

i = 0, 1.

where ξ = λ(η), 0 < η < 1, or η = δ(ξ ), 0 < ξ < ξ0 = λ(1) of the equation of the curve AD in
characteristic coordinates ξ = x + y, η = x – y, δn(t) = δ(δn–1(t)), δ0(t) = t,

M10(x, y, x1, y1)

= P1(ξ , x1, y1) +
1
2

∫ λ(ξ )

0
m1(t, ξ ,η)P0(t, x1, y1) dt

+
1
2

∫ λ(η)

λ(ξ )

[

m1
(
t, δ(t),η

)
–

μ(δ(t))
λ′(δ(t))

]

P0(t, x1, y1) dt

–
1
2

∫ λ(ξ )

0
θ (t – x1)m1(t, ξ ,η)Ey(t – x1, 0, y1) dt

–
1
2

∫ λ(η)

λ(ξ )
θ (t – x1)m1

(
t, δ(t),η

)
Ey(t – x1, 0, y1) dt

+
∞∑

n=0

(–1)n

{∫ λn+1(ξ )

0
θ (t – x1)m1

(
δn(t), ξ ,η

)
n–1∏

k=0

μ(δn–k(t))
λ′(δn–k(t))

Ey(t – x1, 0, y1) dt

+
∫ λn+1(η)

λn+1(ξ )
θ (t – x1)

[

m1
(
δn(t), δn+1(t),η

)
–

μ(δn+1(t))
λ′(δn+1(t))

]

×
n∏

k=0

μ(δn–k(t))
λ′(δn–k(t))

Ey(t – x1, 0, y1) dt

}

,

m1(t, ξ ,η) =
∫ η

ξ

μ(z)m
(
λ(z) – t

)
dt,

M11(x, y, x1, y1)

= θ (η – η1)(η1 – ξ ) – θ
(
λ(η) – ξ1

)
θ
(
ξ1 – λ(ξ )

)
θ
(
δ(ξ1) – η1

)

× μ(δ(ξ1))
λ′(δ(ξ1))

+ N1(x, ξ1,η1) +
1
2

∫ λ(ξ )

0
m1(t, ξ ,η)N0(t, ξ1,η) dt

+
1
2

∫ λ(η)

λ(ξ )

[

m1
(
t, δ(t),η

)
–

μ(δ(t))
λ′(δ(t))

]

N0(t, ξ1,η1) dt +
∞∑

n=0

(–1)n

×
{

θ
(
λn+1(ξ ) – η1

)
m1

(
δn(η1), ξ ,η

)
n–1∏

k=0

μ(δn–k(η1))
λ′(δn–k(η1))

– θ
(
δ(ξ1) – η1

)
θ
(
λn+2(ξ ) – ξ1

)
m1

(
δn+1(ξ1), ξ ,η

)
n∏

k=0

μ(δn+1–k(ξ1))
λ′(δn+1–k(ξ1))

+ θ
(
λn+1(η) – η1

)
θ
(
η1 – λn+1(ξ )

)
[

m1
(
δn(η1), δn+1(η1),η

)
–

μ(δn+1(η1))
λ′(δn+1(η1))

]
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×
n∏

k=0

μ(δn–k(η1))
λ′(δn–k(η1))

– θ
(
λn+2(η) – ξ1

)
θ
(
ξ1 – λn+2(ξ )

)
θ
(
δ(ξ1) – η1

)

×
[

m1
(
δn+1(ξ1), δn+2(ξ1),η

)
–

μ(δn+2(ξ1))
λ′(δn+2(ξ1))

] n∏

k=0

μ(δn+1–k(ξ1))
λ′(δn+1–k(ξ1))

}

.

Similarly, acting as in Sect. 2, it is not difficult to establish that

M2(x, y, x1, y1) ∈ L2(� × �).

Theorem 3.2 is proved. �

As noted above, the operator corresponding to problem M2B is denoted by B2. The main
result of this section is the following:

Theorem 3.3 Let condition (3.2) be fulfilled. Then problem M2B is Volterra, that is, for
any complex number λ, the solution to the equation

B2z(x, y) – λz(x, y) = f (x, y) (3.32)

exists and is unique for all f (x, y) ∈ L2(�).

Proof By Theorem 3.2 the inverse operator B–1
2 of problem M2B (of operator B2) exists, is

defined everywhere on L2(�), is presented in the form

B–1
2 f (x, y) =

∫∫

�

M2(x, y, x1, y1)f (x1, y1) dx1 dy1

and thus is completely continuous. Therefore, to prove Theorem 3.3, it remains to show
that B–1

2 is quasinilpotent in L2(�). To do this, we will use the Volterra criterion of integral
operators by Nersesyan [24]. We need the following concepts.

Definition 1 Let S ⊂ � × �. M(U , U1) is called an S-kernel if M(U , U1) ∈ L2(� × �) and
M(U , U1) = 0 for (U , U1) ∈ S.

Definition 2 An open set S ⊂ �×� is called a set of V type if any S-kernel does not have
eigenvalues.

Let us introduce the notation:

U S→ U2 if (U , U1) ∈ S, U S← U2 if (U , U1) /∈ S.

Theorem ([24]) In order for S to be a set of V type, it is necessary and sufficient that for
any k ≥ 1, from the condition

U1(x1, y1) S→ U2(x2, y2) S→ U3(x3, y3) S→ ·· · S→ Uk(xk , yk)

it follows that Uk(xk , yk) S← U1(x1, y1).
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From (3.31) it is not difficult to see that M2(x, y, x1, y1) ≡ 0 if x < x1.
In our case the kernel M2(x, y, x1, y1) is an S-kernel for the set S ⊂ � × � defined by the

relation (U1(x1, y1), U2(x2, y2)) ∈ S if x1 < x2.
Let us consider the sequence of points Ui(xi, yi) ∈ �, i = 1, 2, . . . , k.
Let the conditions U1(x1, y1) S→ U2(x2, y2) S→ ·· · S→ Uk(xk , yk) be satisfied for any k ≥

1. Then we have a chain of inequalities x1 < x2 < · · · < xk . Since x1 < xk , (Uk(xk , yk),
U1(x1, y1)) /∈ S. Therefore our set S is a set of type V . Thus the operator B–1

2 has no eigen-
values and by complete continuity is a Volterra operator. From this Theorem 3.3 easily
follows.

Indeed, due to the reversibility of the operator B2, the unambiguous solvability of equa-
tion (3.32) is equivalent to the unambiguous solvability of equation z(x, y) – λB–1

2 z(x, y) =
B–1

2 f , which is a Volterra-type equation of the second kind. Theorem 3.3 is proved. �

4 A problem with nonlocal conditions for a diffusion–hyperbolic equation
In the last section, we formulate a nonlocal problem for equation (1.1), the distinguishing
feature of which (from the previously considered problems) is that in the hyperbolic part
of the mixed domain, the nonlocal condition pointwise connects the tangent derivatives
of the desired solution on the characteristic AC and on an arbitrary curve AD lying inside
the characteristic triangle ABC.

Problem M3B Find a solution of equation (1.1) satisfying conditions (2.1), (2.2), and

d
dt

z
[
θ0(t)

]
+ μ(t)

d
dt

z
[
θ∗(t)

]
= 0. (4.1)

Note that if μ(t) = μ = const, then condition (4.1) is equivalent to

z
[
θ0(t)

]
+ μz

[
θ∗(t)

]
= 0,

which pointwise connects the values of the desired solution on the characteristic with the
value of the solution on some curve lying strictly inside the domain.

In case where α = 1 and μ(t) = ∞ (μ–1(t) = 0), from problem M3B: (1.1), (2.1), (2.2), and
(4.1) we obtain an analogue of the generalized Tricomi problem (problem M in the termi-
nology of A.V. Bitsadze) for a parabolic–hyperbolic equation with an uncharacteristic line
of type change. The strong solvability and Volterra of problem M for equation (1.1) were
first proved by Salakhitdinov and Berdyshev [8] (see Sect. 2).

The function z(x, y) ∈ V is called a regular solution to problem M3B if z(x, y) satisfies
conditions (2.1), (2.2), (4.1), and equation (1.1) in �0 ∪ �1.

The function z(x, y) ∈ L2(�) is called a strong solution to problem M3B if there exists a
sequence {zn(x, y)} satisfying conditions (2.1), (2.2), (4.1), and zn(x, y) ∈ V such that zn(x, y)
and Lzn(x, y) converge in L2(�), respectively, to z(x, y) and f (x, y). The following theorems
on the regular and strong solvability of problem M3B are valid.

Theorem 4.1 Let μ(t) ∈ C2[0, 1], μ(t) 
= –1, 0 ≤ t ≤ 1, and

∣
∣
∣
∣

μ(0)
1 + μ(0)

∣
∣
∣
∣

2

< ctg

(

ω +
π

4

)

, –
π

4
< ω < 0. (4.2)
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Then for any function f (x, y) ∈ C1(�̄), f (0, 0) = 0, there is a unique regular solution to prob-
lem M3B. This solution satisfies inequality (2.43) and can be represented as

z(x, y) =
∫∫

�

M3(x, y, x1, y1)f (x1, y1) dx1 dy1, (4.3)

where M3(x, y, x1, y1) ∈ L2(� × �).

Theorem 4.2 Let the conditions of Theorem 4.1 be fulfilled. Then for any function f (x, y) ∈
L2(�), there is a unique strong solution to problem M3B. This solution satisfies inequality
(2.43) and can be represented as (4.3).

As before, by B3 we denote the closure in L2(�) of the operator given by expression
(1.2) on the set of functions V satisfying conditions (2.1), (2.2), and (4.1). The domain
D(B3) of the operator B3 obviously consists of strong solutions to problem M3B. It follows
from Theorem 4.2 that under condition (4.2), the operator B3 is invertible, and the inverse
operator B–1

3 is defined everywhere on L2(�) and by evaluation (2.43) and representation
(4.3) is completely continuous. Therefore, if there is a spectrum of operator B3 (problem
M3B), then it can consist only of eigenvalues of finite multiplicity.

The purpose of the last section is to prove the following theorem, which states that when
condition (4.2) is fulfilled, there are no eigenvalues of problem M3B (of the operator B3).

Theorem 4.3 Let the conditions of Theorem 4.1 be fulfilled. Then the inverse operator

B–1
3 f (x, y) =

∫∫

�

M3(x, y, x1, y1)f (x1, y1) dx1 dy1

to the operator of problem M3B is Volterra. This theorem easily implies the absence of eigen-
values of problem M3B.

Applying the same notations as in the previous section, satisfying condition (4.1) in the
D’alembert formula (2.13), we obtain

(
1 + μ(t)

)
τ ′(t) + μ(t)λ′(t)τ ′(λ(t)

)
–

(
1 + μ(t)

)
ν(t) + μ(t)λ′(t)ν

(
λ(t)

)
= F3(t), (4.4)

where

F3(t) = 2
∫ t

0
f1(ξ1, t) dξ1 – 2μ(t)

∫ t

λ(t)
f1

(
λ(t),η1

)
dη1 + 2μ(t)

∫ t

λ(t)
f1(ξ1, t) dξ1.

Relation (4.4) is the basic relation between τ ′(x) and v(x), brought to the segment AB from
the hyperbolic part of the mixed domain �.

By the unambiguous solvability of the boundary value problem C2 for equation (1.1)
(with conditions (2.1)–(2.2) and z|AB = τ (x)), acting similarly as in the previous section,
we obtain the basic functional relation between τ ′(x) and v(x), brought to the segment
from the parabolic part of the mixed domain in the form (2.26).
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Now excluding from (2.26) and (4.4) the function v(x), for τ ′(x), we obtain the integro-
functional equation

τ ′(t) +
μ(t)λ′(t)
1 + μ(t)

τ ′(λ(t)
)

+
∫ t

0
m(t – z)τ ′(z) dz

–
μ(t)λ′(t)
1 + μ(t)

∫ λ(t)

0
m

(
λ(t) – z

)
τ ′(z) dz = F4(t),

(4.5)

where

F4(t) =
F3(t)

1 + μ(t)
–

μ(t)λ′(t)
1 + μ(t)

Q0
(
λ(t)

)
– Q0(t).

Now, in the presence of (4.5), the proofs of Theorems 4.1–4.3 are carried out in the same
way as in Sect. 3, so we do not give them here, but only note that in this case the kernel
M3(x, y, x1, y1) in (4.3) has the form

M3(x, y, x1, y1) = θ (y)θ (y1)M00(x, y, x1, y1) + θ (y)θ (–y1)M01(x, y, x1, y1)

+ θ (–y)θ (y1)M10(x, y, x1, y1) + θ (–y)θ (–y1)M11(x, y, x1, y1),

where

M00(x, y, x1, y1) = θ (x – x1)E(x – x1, y, y1)

+
∫ 1

0
θ (x – t)Eη(x – t, y,η)

∣
∣
η=0P2(t, x1, y1) dt,

M01(x, y; x1, y1) =
1
2

∫ 1

0
θ (x – t)Eη(x – t, y,η)

∣
∣
η=0N2(t, ξ1,η1) dt,

ξ1 = x1 + y1, η1 = x1 – y1, θ (x) = 1, x > 0, θ (x) = 0, x < 0,

P2(x, x1, y1)

= –θ (x – x1)
∫ x

x1

�3(x, t)Ey(t – x1, 0, y1) dt

+ 2
∞∑

n=0

(–1)nθ
(
λn(x) – x1

)
∫ λn(x)

x1

�3(x, δn(t))
1 + μ(t)

Ey(t – x, 0, y1)
n–1∏

k=0

μ(δn–k(t))
1 + μ(δn–k(t))

,

N2(x, ξ1,η1)

= 2
∞∑

n=0

(–1)n

{

θ
(
λn(x) – η1

)�3(x1, δn(η1))
1 + μ(η1)

× [
θ
(
λn(x) – ξ1

)
+ μ(η1)θ

(
ξ1 – δ(η1)

)]
n–1∏

k=0

μ(δn–k(η1))
1 + μ(δn–k(η1))

– θ
(
λn+1(x) – ξ1

)
θ
(
δ(ξ1) – η1

)μ(δ(ξ1))�3(x, δn+1(ξ1))
1 + μ(δ(ξ1))

n∏

k=0

μ(δn+1–k(ξ1))
1 + μ(δn+1–k(ξ1))

}

.

Here, as before, ξ = λ(η), 0 ≤ η ≤ 1, or η = δ(ξ ), 0 ≤ ξ ≤ ξ0 = λ(1), the equation of the
curve AD in characteristic coordinates ξ = x + y, η = x – y, δn(t) = δ(δn–1(t)), δ0(t) = t,
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λn(x) = λ(λn–1(x)), and E(x, y, y1) is an analogue of the Green function of the first initial
boundary value problem (problem C2) for the diffusion equation in the square AA0B0B
defined by formula (2.22), �4(x, t) is the resolvent of the integral equation kernel

τ ′(x) –
∫ x

0
M(x – t)τ ′(t) dt = (x),

M(x – t) = m(x – t) – 2
∞∑

n=0

(–1)n
n–1∏

k=0

μ(λk(x))λ′(λk(x))
1 + μ(λk(x))

θ
(
λn(x) – t

)
m

(
λn(x) – t

)
,

the function m(x – t) is defined by (2.27),

�3(x, t) = 1 +
∫ x

t
�4(z, t) dz,

M10(x, y; x1, y1)

= P2(ξ , x1, y1) +
1
2

∫ λ(ξ )

0
m2(t, ξ ,η)P3(t, x1, y1) dt

+
1
2

∫ λ(η)

λ(ξ )

[

m2
(
t, δ(t),η

)
–

μ(δ(t))
1 + μ(δ(t))

]

P3(t, x1, y1) dt

–
1
2

∫ λ(ξ )

0
θ (t – x1)m2(t, ξ ,η)Ey(t – x1, 0, y1) dt

–
1
2

∫ λ(η)

λ(ξ )
θ (t – x1)m2

(
t, δ(t),η

)
Ey(t – x1, 0, y1) dt

+
∞∑

n=0

(–1)n

{∫ λn+1(ξ )

0
θ (t – x1)

m2(δn(t), ξ ,η)
1 + μ(t)

Ey(t – x1, 0, y1)
n–1∏

k=0

μ(δn–k(t))
1 + μ(δn–k(t))

dt

+
∫ λn+1(η)

λn+1(ξ )
θ (t – x1)

Ey(t – x, 0, y1)
1 + μ(δ(t))

[

m2
(
δn(t), δn+1(t),η

)
–

μ(δn+1(t))
1 + μ(δn+1(t))

]}

×
n–1∏

k=0

μ(δn–k(t))
1 + μ(δn–k(t))

dt,

where m2(t, ξ ,η) =
∫ η

ξ

μ(z)λ′(z)
1+μ(z) m(λ(z) – t) dz, P3(t, x, y) and N3(t, ξ ,η) from P2(t, x, y) and

N2(t, ξ ,η) differ by that in expressions P2(t, ξ ,η) and N2(t, ξ ,η), instead �3(t, x), it is nec-
essary to write �4(x, t);

M11(x, y, x1, y1)

=
θ (η – η1)θ (η1 – ξ )θ (ξ1 – ξ )

1 + μ(η1)
[
1 + θ

(
ξ1 – λ(η1)

)
μ(η1)

]

– θ
(
λ(η) – ξ1

)
θ
(
ξ1 – λ(ξ1)

)θ (δ(ξ1) – η1)θ (η1 – ξ1)μ(δ(ξ1))δ′(ξ1)
1 + μ(δ(ξ1))

+ N2(ξ , ξ1,η1) +
1
2

∫ λ(ξ )

0
m2(t, ξ ,η)N3(t, ξ1,η1) dt

+
1
2

∫ λ(η)

λ(ξ )

[

m2
(
t, δ(t),η

)
–

μ(δ(t))
1 + μ(δ(t))

]

N3(t, ξ1,η1) dt
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+
∞∑

n=0

(–1)n

{

θ
(
λn+1(ξ ) – η1

)m2(δn(η1), ξ ,η)
1 + μ(η1)

[
1 + μ(η1)θ

(
ξ1 – λ(η1)

)]

×
n–1∏

k=0

μ(δn–k(η1))
1 + μ(δn–k(η1))

– θ
(
λn+2(ξ ) – ξ1

)
θ
(
δ(ξ1) – η1

)μ(δ(ξ1))m2(δn+1(ξ1), ξ ,η)
λ′(δ(ξ1))[1 + μ(δ(ξ1))]

×
n–1∏

k=0

μ(δn+1–k(ξ1))
1 + μ(δn+1–k(ξ1))

+ θ
(
λn+1(η) – η1

)
θ
(
η1 – λn+1(ξ )

) 1
1 + μ(η1)

×
[

m2
(
δn(η1), δn+1(η1),η

)
–

μ(δn+1(η1))
1 + μ(δn+1(η1))

]
[
1 + μ(η1)θ

(
ξ1 – δ(η1)

)]

×
n–1∏

k=0

μ(δn–k(η1))
1 + μ(δn–k(η1))

–
θ (λn+2(η) – ξ1)θ (ξ1 – λn+2(ξ ))θ (δ(ξ1) – η1)μ(δ(ξ1))

λ′(δ(ξ1))[1 + μ(δ(ξ1))]

×
[

m2
(
δn+1(ξ1), δn+2(ξ1),η

)
–

μ(δn+2(ξ1))
1 + μ(δn+2(ξ1))

]n–1∏

k=0

μ(δn+1–k(ξ1))
1 + μ(δn+1–k(ξ1))

}

.

In conclusion, we note that conditions (3.2) and (4.2) are essential for the correctness
(Volterra property) of problems M2B and M3B discussed in Sects. 3 and 4. In [8], there
is an example when, in violation of condition (3.2), the solution of problem M2B is not
unique, that is, zero is an eigenvalue of problem M2B.
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