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Abstract
This paper aims to extend the Caputo–Atangana–Baleanu (ABC) and
Riemann–Atangana–Baleanu (ABR) fractional derivatives with respect to another
function, from fractional order μ ∈ (0, 1] to an arbitrary order μ ∈ (n,n + 1],
n = 0, 1, 2, . . . . Also, their corresponding Atangana–Baleanu (AB) fractional integral is
extended. Additionally, several properties of such definitions are proved. Moreover,
the generalization of Gronwall’s inequality in the framework of the AB fractional
integral with respect to another function is introduced. Furthermore, Picard’s iterative
method is employed to discuss the existence and uniqueness of the solution for a
higher-order initial fractional differential equation involving an ABC operator with
respect to another function. Finally, examples are given to illustrate the effectiveness
of the main findings. The idea of this work may attract many researchers in the future
to study some inequalities and fractional differential equations that are related to AB
fractional calculus with respect to another function.

Keywords: Fractional differential equations; Fractional calculus; Nonsingular
fractional operators; Picard’s iterative method

1 Introduction
In the last three decades, fractional calculus has been attracting the interest of many au-
thors in several fields for the sake of a better description of chaotic complex systems, for
example, dynamic systems, rheology, electrical networks, blood-flow phenomena, bio-
physics, and qualitative theories; see for more details [1, 14, 19, 22, 26–29]. In order to
realize and describe the real phenomena in the fields of science and engineering, some
researchers have developed fractional calculus to singular and nonsingular kernels. Ca-
puto and Fabrizio [13], investigated a new definition of a fractional operator with an ex-
ponential kernel. Atangana and Baleanu [11], introduced a new interesting definition of
a fractional operator with a Mittag–Leffler kernel that is called the Atangana–Baleanu
(AB) fractional operator. Abdeljawad [2], generalized the AB fractional operator to higher
arbitrary order. Then, many researchers studied the qualitative properties and approxi-
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mate solutions of fractional differential equations involving ABC fractional operators and
Caputo–Fabrizio derivatives, we refer the readers to [4–9, 12, 15, 24, 25]. In particular,
the authors of [17] studied a two-step reversible enzymatic reaction Dynamics system via
ABC-fractional derivatives. Khan et al. [18] established open-channel flow of grease as a
Maxwell fluid with MoS2 by utilizing the Caputo–Fabrizio fractional model.

Very recently, Fernandez and Baleanu [13], presented a fractional derivative of a function
with respect to another function with a Mittag–Leffler kernel, which is in fact considered
as a generalized AB fractional operator. Mohammed and Abdeljawad [21], constructed
a connection between the AB fractional operator and the Riemann–Liouville fractional
integral with respect to another function by formulating the corresponding AB-fractional
integral of a function with respect to another function. Then, Kashuri [16], presented a
fractional integral operator called the Atangana–Baleanu–Kashuri (ABK) fractional in-
tegral.

Motivated by what has been mentioned above, the novelty and contributions of this pa-
per are to extend the ABC, ABR fractional derivatives with respect to another increasing
positive function φ (which are mostly called φ – ABC, φ – ABR, respectively), and their cor-
responding AB fractional integrals with respect to another function φ (φ – AB), from order
μ ∈ (0, 1] to an arbitrary order μ ∈ (n, n + 1]. In fact, these provide a more reasonable ex-
tension than those of Abdeljawad in [21]. Indeed, the extension we obtain still shows that
the ABR differential operator and AB integral operators are inverses of each other for orders
more than 1 (see parts (i) and (ii) of Proposition 3.6). Also, several properties and applica-
tions of these definitions are investigated. Moreover, a new generalized Gronwall inequality
in the framework of the φ – AB fractional integrals is introduced. The existence and unique-
ness results of a higher-order φ –ABC fractional problem under initial boundary conditions
are established by Picard’s iterative method.

Our paper is structured as follows: Some interesting preliminaries are provided in
Sect. 2. In Sect. 3, the φ – AB fractional operator is extended to a higher order and a new
generalized Gronwall inequality in the sense of the φ – AB fractional integral is investi-
gated, moreover the existence and uniqueness results of φ – ABC initial fractional dif-
ferential equation are established. Then, examples that represent the validity of the main
findings are provided in Sect. 4. Finally, we conclude our results in Sect. 5.

2 Preliminaries
In this section, we present some essential preliminaries related to fractional calculus. Let
us denote by Cn(J,R) the Banach space of all the nth continuously differentiable functions
ω equipped with usual norm ‖ω‖ = sup{|ω(u)| : u ∈ J = [ι, τ ]}.

Definition 2.1 ([10]) Let φ : [ι, τ ] → R be an increasing function ∀u ∈ [ι, τ ]. For μ > 0,
the μth left-sided φ-Riemann–Liouville fractional integral for an integrable function ω :
[ι, τ ] → R with respect to another function φ(u) is given by

RL
I

μ,φ
ι ω(u) =

1
�(μ)

∫ u

ι

(
φ(u) – φ(v)

)μ–1
φ′(v)ω(v) dv,

where �(μ) =
∫ +∞

0 e–uuμ–1 du, μ > 0.

Definition 2.2 ([3, 11]) Consider μ ∈ (0, 1] and ω ∈H1(ι, τ ). The μth left-sided Riemann–
Liouville fractional derivative in the sense of Atangana–Baleanu for a function ω is given
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by

(ABR
D

μ
ι ω

)
(u) =

�(μ)
1 – μ

d
du

∫ u

ι

Eμ

(
–μ

1 – μ
(u – v)μ

)
ω(v) dv, u ∈ [ι, τ ],

where �(μ) is the normalization function with �(0) = �(1) = 1, and Eμ is called the
Mittag–Leffler function defined by

Eμ(r) =
∞∑
i=0

ri

�(μi + 1)
,

where Re(μ) > 0, r ∈C.

Definition 2.3 ([3, 11]) Consider μ ∈ (0, 1] and ω ∈ H1(ι, τ ). The μth left-sided Caputo
fractional derivative in the sense of Atangana–Baleanu for a function ω is given by

(ABC
D

μ
ι ω

)
(u) =

�(μ)
1 – μ

∫ u

ι

Eμ

(
–μ

1 – μ
(u – v)μ

)
ω′(v) dv, u ∈ [ι, τ ].

Definition 2.4 ([3, 11]) Consider μ ∈ (0, 1] and ω ∈H1(ι, τ ). The μth left-sided Riemann–
Liouville fractional integral in the sense of Atangana–Baleanu for a function ω is given by

(AB
I

μ
ι ω

)
(u) =

1 – μ

�(μ)
ω(u) +

μ

�(μ)
RL
I

μ
ι ω(u), u ∈ [ι, τ ].

Definition 2.5 ([16]) Consider μ ∈ (0, 1], ρ > 0 and ω ∈ Hp
c (ι, τ ). The μth left-sided

Kashuri fractional integral in the sense of Atangana–Baleanu for a function ω is given
by

(ABK
I

μ,ρ
ι ω

)
(u) =

1 – μ

�(μ)
ω(u) +

μ

�(μ)
1

�(μ)

∫ u

ι

vρ–1
(

uρ – vρ

ρ

)μ–1

ω(v) dv, u ∈ [ι, τ ].

Definition 2.6 ([13, 21]) Let φ : [ι, τ ] → R be an increasing function with φ′(u) �= 0,
∀u ∈ [ι, τ ]. Consider μ ∈ (0, 1] and ω ∈ H1(ι, τ ). The μth left-sided Riemann–Liouville
fractional derivative in the sense of Atangana–Baleanu of a function ω with respect to
another function φ(u) is given by

(ABR
D

μ,φ
ι ω

)
(u) =

�(μ)
(1 – μ)φ′(u)

d
du

∫ u

ι

φ′(v)Eμ

(
–μ

1 – μ

(
φ(u) – φ(v)

)μ

)
ω(v) dv,

u ∈ [ι, τ ].

Definition 2.7 ([13, 21]) Let φ : [ι, τ ] → R be an increasing function with φ′(u) �= 0, ∀u ∈
[ι, τ ]. Consider μ ∈ (0, 1] and ω ∈H1(ι, τ ). The μth left-sided Caputo fractional derivative
in the sense of Atangana–Baleanu of a function ω with respect to another function φ(u)
is given by

(ABC
D

μ,φ
ι ω

)
(u) =

�(μ)
1 – μ

∫ u

ι

φ′(v)Eμ

(
–μ

1 – μ

(
φ(u) – φ(v)

)μ

)
ω′

φ(v) dv, u ∈ [ι, τ ],

where ω′
φ(u) = ω′(u)

φ′(u) .
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Definition 2.8 ([21]) Let φ : [ι, τ ] → R be an increasing function ∀u ∈ [ι, τ ]. Consider
μ ∈ (0, 1] and ω ∈ H1(ι, τ ). The μth left-sided Riemann–Liouville fractional integral in
the sense of Atangana–Baleanu of a function ω with respect to another function φ(u) is
given by

(AB
I

μ,φ
ι ω

)
(u) =

1 – μ

�(μ)
ω(u) +

μ

�(μ)
RL
I

μ,φ
ι ω(u), u ∈ [ι, τ ].

Remark 2.9 We note that,
• By putting φ(u) = u in Definitions 2.6, 2.7, and 2.8, then we have Definitions 2.2, 2.3,

and 2.4, respectively.
• By putting φ(u) = uρ

ρ
in Definition 2.8, then we have Definition 2.5.

Lemma 2.10 ([10]) Let μ,	 > 0 and ω : [ι, τ ] →R. Then,
(i) RLIμ,φ

ι [φ(u) – φ(ι)]	–1 = �(	)
�(μ+	) [φ(u) – φ(ι)]μ+	–1;

(ii) RLIμ,φ
ι

RLI
	,φ
ι ω(u) = RLI

μ+	,φ
ι ω(u);

(iii) (( 1
φ(u)

d
du )n RLIn,φ

ι ω)(u) = ω(u), n ∈N.

Lemma 2.11 ([21]) For μ ∈ (0, 1], the following relations hold:
(i) (ABIμ,φ

ι
ABRDμ,φ

ι ω)(u) = ω(u);
(ii) (ABRDμ,φ

ι
ABIμ,φ

ι ω)(u) = ω(u).

3 Main results
3.1 Higher order of fractional derivatives and integrals
In this subsection, we will introduce the definitions of higher order of fractional derivatives
and integrals in the framework of Atangana–Baleanu with respect to another function φ.

Definition 3.1 Consider φ : [ι, τ ] → R
+ to be an increasing function with φ′(u) �= 0, ∀u ∈

[ι, τ ], g ∈ H1(ι, τ ) and μ ∈ (n, n + 1], ϑ = μ – n, n = 0, 1, 2, . . . . Then, the μth left-sided
φ – ABR fractional derivative is given by

(ABR
D

μ,φ
ι g

)
(u)

=
(

1
φ′(u)

d
du

)n(ABR
D

ϑ ,φ
ι g(u)

)

=
(

1
φ′(u)

d
du

)n
�(ϑ)

(1 – ϑ)φ′(u)
d

du

∫ u

ι

φ′(v)Eϑ

(
–ϑ

1 – ϑ

(
φ(u) – φ(v)

)ϑ

)
g(v) dv

=
�(μ – n)

(n + 1 – μ)

(
1

φ′(u)
d

du

)n+1 ∫ u

ι

φ′(v)Eμ–n

(
–(μ – n)
n + 1 – μ

(
φ(u) – φ(v)

)μ–n
)
g(v) dv.

Definition 3.2 Consider φ : [ι, τ ] → R
+ to be an increasing function with φ′(u) �= 0, ∀u ∈

[ι, τ ], g(n) ∈ H1(ι, τ ) and μ ∈ (n, n + 1], ϑ = μ – n, n = 0, 1, 2, . . . . Then, the μth left-sided
φ – ABC fractional derivative is given by

(ABC
D

μ,φ
ι g

)
(u) =

(ABC
D

ϑ ,φ
ι g

(n)
φ

)
(u)

=
�(ϑ)
1 – ϑ

∫ u

ι

φ′(v)Eϑ

(
–ϑ

1 – ϑ

(
φ(u) – φ(v)

)ϑ

)
g

(n+1)
φ (v) dv
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=
�(μ – n)
n + 1 – μ

∫ u

ι

φ′(v)Eμ–n

(
–(μ – n)
n + 1 – μ

(
φ(u) – φ(v)

)μ–n
)
g

(n+1)
φ (v) dv,

where g(n)
φ (u) = ( 1

φ′(u)
d

du )ng(u) and g
(0)
φ (u) = g(u). If μ = m ∈N then (ABCDμ,φ

ι g)(u) = g
(m)
φ (u).

Definition 3.3 Consider g ∈H1(ι, τ ) and μ ∈ (n, n + 1], ϑ = μ– n, n = 0, 1, 2, . . . . Then, the
μth left-sided φ-AB fractional integral is given by

(AB
I

μ,φ
ι g

)
(u) =

(RL
I

n,φ
ι

AB
I

ϑ ,φ
ι g

)
(u) =

(AB
I

ϑ ,φ
ι

RL
I

n,φ
ι g

)
(u)

=
n + 1 – μ

�(μ – n)
RL
I

n,φ
ι g(u) +

(μ – n)
�(μ – n)

RL
I

μ,φ
ι g(u),

where RLIn,φ
ι is defined as:

(RL
I

n,φ
ι g

)
(u) =

1
�(n)

∫ u

ι

φ′(v)
(
φ(u) – φ(v)

)n–1
g(v) dv, u > ι.

Remark 3.4 We remark that,
• In the Definitions 3.1, 3.2, and 3.3, if μ ∈ (0, 1] we return to Definitions 2.6, 2.7, and

2.8, respectively.
• If μ = n + 1, then ϑ = 1 and thus our generalization to the higher-order cases hold as

follows:

(ABR
D

μ,φ
ι g

)
(u) =

(
1

φ′(u)
d

du

)n(ABR
D

1,φ
ι g(u)

)
= g

(n+1)
φ (u);

(ABC
D

μ,φ
ι g

)
(u) =

(ABC
D

1,φ
ι g

(n)
φ

)
(u) = g

(n+1)
φ (u); and

(AB
I

μ,φ
ι g

)
(u) =

(RL
I

n,φ
ι

AB
I

1,φ
ι g

)
(u) =

(RL
I

n+1,φ
ι g

)
(u).

Proposition 3.5 For μ ∈ (0, 1], the following relations hold:
(i) (ABIμ,φ

ι
ABCDμ,φ

ι ω)(u) = ω(u) – ω(ι);
(ii) (ABCDμ,φ

ι
ABIμ,φ

ι ω)(u) = ω(u) – ω(ι)Eμ( –μ

1–μ
(φ(u) – φ(ι))μ).

Proof
(i) By using Definitions 2.7 and 2.8, we have

(AB
I

μ,φ
ι

ABC
D

μ,φ
ι ω

)
(u)

=
1 – μ

�(μ)
(ABC

D
μ,φ
ι ω

)
(u) +

μ

�(μ)
(RL

I
μ,φ
ι

ABC
D

μ,φ
ι ω

)
(u)

=
∞∑
i=0

(
–μ

1 – μ

)i ∫ u

ι

φ′(v)
(φ(u) – φ(v))iμ

�(iμ + 1)
ω′

φ(v) dv

+
μ

1 – μ

RL
I

μ,φ
ι

∞∑
i=0

(
–μ

1 – μ

)i ∫ u

ι

φ′(v)
(φ(u) – φ(v))iμ

�(iμ + 1)
ω′

φ(v) dv

=
∞∑
i=0

(
–μ

1 – μ

)i
RL
I

iμ+1,φ
ι

ω′(u)
φ′(u)

+
μ

1 – μ

RL
I

μ,φ
ι

∞∑
i=0

(
–μ

1 – μ

)i
RL
I

iμ+1,φ
ι

ω′(u)
φ′(u)

=
∞∑
i=0

(
–μ

1 – μ

)i
RL
I

iμ+1,φ
ι

ω′(u)
φ′(u)

–
∞∑
i=0

(
–μ

1 – μ

)i+1
RL
I

iμ+μ+1,φ
ι

ω′(u)
φ′(u)



Abdeljawad et al. Boundary Value Problems         (2023) 2023:49 Page 6 of 16

= RL
I

1,φ
ι

ω′(u)
φ′(u)

=
∫ u

ι

ω′(v) dv = ω(u) – ω(ι).

(ii) By using Definitions 2.7 and 2.8, and the identity

RL
I

α+1,φ
ι

(
1

φ′(u)
d

du

)
ω(u) = RL

I
α,φ
ι ω(u) – ω(ι)

(φ(u) – φ(ι))α

�(α + 1)
, Re(α) > 0,

we have

(ABC
D

μ,φ
ι

AB
I

μ,φ
ι ω

)
(u)

= ABC
D

μ,φ
ι

(
1 – μ

�(μ)
ω(u) +

μ

�(μ)
(RL

I
μ,φ
ι ω

)
(u)

)

=
1 – μ

�(μ)
(ABC

D
μ,φ
ι ω

)
(u) +

μ

�(μ)
ABC

D
μ,φ
ι

(RL
I

μ,φ
ι ω(u)

)

=
∞∑
i=0

(
–μ

1 – μ

)i
RL
I

iμ+1,φ
ι

(
1

φ′(u)
d

du

)
ω(u)

+
μ

1 – μ

∞∑
i=0

(
–μ

1 – μ

)i
RL
I

iμ+1,φ
ι

(
1

φ′(u)
d

du

)(RL
I

μ,φ
ι ω(u)

)

=
∞∑
i=0

(
–μ

1 – μ

)i[
RL
I

iμ,φ
ι ω(u) –

ω(ι)(φ(u) – φ(ι))iμ

�(iμ + 1)

]

–
∞∑
i=0

(
–μ

1 – μ

)i+1
RL
I

iμ+μ,φ
ι ω(u)

= ω(u) –
∞∑
i=0

(
–μ

1 – μ

)i
ω(ι)(φ(u) – φ(ι))iμ

�(iμ + 1)

= ω(u) – ω(ι)Eμ

(
–μ

1 – μ

(
φ(u) – φ(ι)

)μ

)
. �

Proposition 3.6 Let ω ∈ Cn(J,R), and φ ∈ Cn(J,R+). For μ ∈ (n, n + 1], ϑ = μ – n, n =
0, 1, 2, . . . , the following relations hold:

(i) (ABRDμ,φ
ι

ABIμ,φ
ι ω)(u) = ω(u);

(ii) (ABIμ,φ
ι

ABRDμ,φ
ι ω)(u) = ω(u);

(iii) (ABCDμ,φ
ι

ABIμ,φ
ι ω)(u) = ω(u) – ω(ι)Eμ–n( –(μ–n)

1–(μ–n) (φ(u) – φ(ι))μ–n);

(iv) (ABIμ,φ
ι

ABCDμ,φ
ι ω)(u) = ω(u) –

∑n
k=0

ω
(k)
φ (ι)
k! (φ(u) – φ(ι))k .

Proof
(i) In view of Definitions 3.1 and 3.3 and Lemmas 2.10 and 2.11, we have

(ABR
D

μ,φ
ι

AB
I

μ,φ
ι ω

)
(u) =

((
1

φ(u)
d

du

)n
ABR

D
ϑ ,φ
ι

AB
I

ϑ ,φ
ι

RL
I

n,φ
ι ω

)
(u)

=
((

1
φ(u)

d
du

)n
RL
I

n,φ
ι ω

)
(u) = ω(u).
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(ii) In view of Definitions 3.1 and 3.3, we obtain that

(AB
I

μ,φ
ι

ABR
D

μ,φ
ι ω

)
(u)

=
(n + 1 – μ)
�(μ – n)

RL
I

n,φ
ι

(ABR
D

μ,φ
ι ω(u)

)
+

(μ – n)
�(μ – n)

RL
I

μ,φ
ι

(ABR
D

μ,φ
ι ω(u)

)

= RL
I

n,φ
ι

(
1

φ′(u)
d

du

)n+1 ∞∑
i=0

(
–(μ – n)
n + 1 – μ

)i ∫ u

ι

φ′(v)
(φ(u) – φ(v))i(μ–n)

�(i(μ – n) + 1)
ω(v) dv

+
(μ – n)

(n + 1 – μ)
RL
I

μ,φ
ι

(
1

φ′(u)
d

du

)n+1 ∞∑
i=0

(
–(μ – n)
n + 1 – μ

)i

×
∫ u

ι

φ′(v)(φ(u) – φ(v))i(μ–n)

�(i(μ – n) + 1)
ω(v) dv

=
∞∑
i=0

(
–(μ – n)
n + 1 – μ

)i
RL
I

n,φ
ι

(
1

φ′(u)
d

du

)n+1
RL
I

i(μ–n)+1,φ
ι ω(u)

–
∞∑
i=0

(
–(μ – n)
n + 1 – μ

)i+1
RL
I

μ,φ
ι

(
1

φ′(u)
d

du

)n+1
RL
I

i(μ–n)+1,φ
ι ω(u)

=
∞∑
i=0

(
–(μ – n)
n + 1 – μ

)i
RL
I

i(μ–n),φ
ι ω(u) –

∞∑
i=0

(
–(μ – n)
n + 1 – μ

)i+1
RL
I

i(μ–n)+(μ–n),φ
ι ω(u)

= ω(u).

(iii) Due to Definitions 3.2 and 3.3, Lemma 2.10, and Proposition 3.5, we obtain

(ABC
D

μ,φ
ι

AB
I

μ,φ
ι ω

)
(u)

=
(

ABC
D

ϑ ,φ
ι

(
1

φ(u)
d

du

)n
RL
I

n,φ
ι

AB
I

ϑ ,φ
ι ω

)
(u)

=
(ABC

D
ϑ ,φ
ι

AB
I

ϑ ,φ
ι ω

)
(u) = ω(u) – ω(ι)Eϑ

(
–ϑ

1 – ϑ

(
φ(u) – φ(ι)

)ϑ

)

= ω(u) – ω(ι)Eμ–n

(
–(μ – n)

1 – (μ – n)
(
φ(u) – φ(ι)

)μ–n
)

.

(iv) Due to Definitions 3.2 and 3.3 and Proposition 3.5, we obtain that

(AB
I

μ,φ
ι

ABC
D

μ,φ
ι ω

)
(u)

=
(RL

I
n,φ
ι

AB
I

ϑ ,φ
ι

ABC
D

ϑ ,φ
ι ω

(n)
φ

)
(u) = RL

I
n,φ
ι

(
ω

(n)
φ (u) – ω

(n)
φ (ι)

)

= ω(u) –
n–1∑
k=0

ω
(k)
φ (ι)
k!

(
φ(u) – φ(ι)

)k –
ω

(n)
φ (ι)
n!

(
φ(u) – φ(ι)

)n

= ω(u) –
n∑

k=0

ω
(k)
φ (ι)
k!

(
φ(u) – φ(ι)

)k . �

Proposition 3.7 Let ω ∈ Cn(J,R), φ ∈ Cn(J,R+), φ′(u) �= 0. For μ ∈ (n, n + 1], ϑ = μ – n,
n = 0, 1, 2, . . . , β ≥ n + 1 and 	 > 0. Then, the following relations hold:

(i) ABIμ,φ
ι [φ(u) – φ(ι)]	 = (n+1–μ)�(	+1)[φ(u)–φ(ι)]	+n

�(μ–n)�(n+	+1) + (μ–n)�(	+1)[φ(u)–φ(ι)]	+μ

�(μ–n)�(μ+	+1) .
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(ii) ABCDμ,φ
ι [φ(u) – φ(ι)]β = �(μ–n)

(n+1–μ)
∑∞

i=0( –(μ–n)
n+1–μ

)i �(β+1)[φ(u)–φ(ι)]i(μ–n)+β–n

�(i(μ–n)+β–n+1) .
(iii) ABCDμ,φ

ι [φ(u) – φ(ι)]ζ = 0, ζ = 0, 1, . . . , n.
(iv) (ABIμ,φ

ι 1)(u) = (n+1–μ)[φ(u)–φ(ι)]n

�(μ–n)�(n+1) + (μ–n)[φ(u)–φ(ι)]μ
�(μ–n)�(μ+1) .

(v) (ABCDμ,φ
ι 1)(u) = 0.

Proof
(i) For this, we apply Definition 3.3 and Lemma 2.10, and we obtain

AB
I

μ,φ
ι

[
φ(u) – φ(ι)

]	

=
(n + 1 – μ)
�(μ – n)

RL
I

n,φ
ι

[
φ(u) – φ(ι)

]	 +
(μ – n)

�(μ – n)
RL
I

μ,φ
ι

[
φ(u) – φ(ι)

]	

=
(n + 1 – μ)
�(μ – n)

�(	 + 1)
�(n + 	 + 1)

[
φ(u) – φ(ι)

]	+n

+
(μ – n)

�(μ – n)
�(	 + 1)[φ(u) – φ(ι)]	+μ

�(μ + 	 + 1)
.

(ii) By applying Definitions 2.3 and 3.2 and Lemma 2.10, we have

ABC
D

μ,φ
ι

[
φ(u) – φ(ι)

]β

= ABC
D

ϑ ,φ
ι

(
1

φ′(u)
d

du

)n[
φ(u) – φ(ι)

]β

= ABC
D

ϑ ,φ
ι

�(β + 1)
�(β – n + 1)

[
φ(u) – φ(ι)

]β–n

=
�(ϑ)
1 – ϑ

∫ u

ι

∞∑
i=0

(
–ϑ

1 – ϑ

)i
�(β + 1)[φ(v) – φ(ι)]β–(n+1)

�(β – n)�(iϑ + 1)
φ′(v)

(
φ(u) – φ(v)

)iϑ dv

=
�(β + 1)�(ϑ)

�(β – n)(1 – ϑ)

∞∑
i=0

(
–ϑ

1 – ϑ

)i
RL
I

iϑ+1,φ
ι

[
φ(u) – φ(ι)

]β–(n+1)

=
�(ϑ)
1 – ϑ

∞∑
i=0

(
–ϑ

1 – ϑ

)i
�(β + 1)

�(iϑ + β – n + 1)
[
φ(u) – φ(ι)

]iϑ+β–n

=
�(μ – n)
n + 1 – μ

∞∑
i=0

(
–(μ – n)
n + 1 – μ

)i
�(β + 1)

�(i(μ – n) + β – n + 1)
[
φ(u) – φ(ι)

]i(μ–n)+β–n.

(iii) By applying Definitions 2.7 and 3.2, we obtain

ABC
D

μ,φ
ι

[
φ(u) – φ(ι)

]ζ

= ABC
D

ϑ ,φ
ι

(
1

φ′(u)
d

du

)n[
φ(u) – φ(ι)

]ζ

= ABC
D

ϑ ,φ
ι

�(ζ + 1)
�(ζ – n + 1)

[
φ(u) – φ(ι)

]ζ–n

=
�(ϑ)
1 – ϑ

∫ u

ι

Eϑ

(
–ϑ

1 – ϑ

(
φ(u) – φ(v)

)ϑ

)
�(ζ + 1)

�(ζ – n + 1)
d

dv
[
φ(v) – φ(ι)

]ζ–n dv

= 0.
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(iv) and (v) can be concluding by putting 	 = ζ = 0 in parts (i) and (iii), respectively. �

3.2 Gronwall’s inequality
At the beginning of this subsection, we will state the following generalization of Gronwall’s
inequality.

Lemma 3.8 ([23]) Consider μ > 0 and φ ∈ C1(J,R+) to be an increasing function such that
φ′(u) �= 0, ∀u ∈ J. Suppose that V(u) is a nonnegative function locally integrable on J and
U (u) is nonnegative and nondecreasing, and also assume that ω is nonnegative and locally
integrable on J, such that

ω(u) ≤ V(u) + U (u)
∫ u

ι

φ′(v)
(
φ(u) – φ(v)

)μ–1
ω(v) dv, u ∈ J, (3.1)

then, for every u ∈ J, we obtain

ω(u) ≤ V(u) +
∫ u

ι

∞∑
i=1

[U (u)�(μ)]i

�(iμ)
φ′(v)

(
φ(u) – φ(v)

)iμ–1V(v) dv. (3.2)

Lemma 3.9 ([23]) Under the conditions of Lemma 3.8, if V(u) is a nondecreasing function
on J . Then, we have

ω(u) ≤ V(u)Eμ

[
U (u)�(μ)

(
φ(u) – φ(ι)

)μ]
, u ∈ J. (3.3)

In this position, we will introduce a new Gronwall inequality in the framework of the
φ – AB fractional operator.

Lemma 3.10 Let μ ∈ (0, 1] and φ ∈ C1(J,R+) be an increasing function such that φ′(u) �=
0, ∀u ∈ J. Suppose that X (u) = G(u)�(μ)

�(μ)–(1–μ)H(u) is a nonnegative function locally integrable
on J, Y(u) = μH(u)

�(μ)–(1–μ)H(u) is nonnegative and nondecreasing, and assume also that ω is
nonnegative and locally integrable on J, such that

ω(u) ≤ G(u) + H(u) AB
I

μ,φ
ι ω(u), u ∈ J, (3.4)

then, for every u ∈ J, we obtain

ω(u) ≤X (u) +
∫ u

ι

∞∑
i=1

[Y(u)]i

�(iμ)
φ′(v)

(
φ(u) – φ(v)

)iμ–1X (v) dv. (3.5)

Proof From Inequality (3.4) and Definition 2.8, we have

ω(u) ≤ G(u) + H(u)
(AB

I
μ,φ
ι ω

)
(u)

≤ G(u) + H(u)
(

1 – μ

�(μ)
ω(u) +

μ

�(μ)
1

�(μ)

∫ u

ι

φ′(v)
(
φ(u) – φ(v)

)μ–1
ω(v) dv

)
.

Hence,

ω(u) ≤ G(u)�(μ)
�(μ) – (1 – μ)H(u)
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+
μH(u)

�(μ) – (1 – μ)H(u)
1

�(μ)

∫ u

ι

φ′(v)
(
φ(u) – φ(v)

)μ–1
ω(v) dv.

Due to Lemma 3.8, we obtain

ω(u) ≤ G(u)�(μ)
�(μ) – (1 – μ)H(u)

+
∫ u

ι

∞∑
i=1

1
�(iμ)

(
μH(u)

�(μ) – (1 – μ)H(u)

)i G(v)�(μ)φ′(v)(φ(u) – φ(v))iμ–1

�(μ) – (1 – μ)H(v)
dv.

Therefore, Inequality (3.5) holds. �

Corollary 3.11 Under the conditions of Lemma 3.10, if X (u) is a nondecreasing function
on J , then we have

ω(u) ≤X (u)Eμ

[
Y(u)

(
φ(u) – φ(ι)

)μ]
, u ∈ J. (3.6)

Proof In view of Lemma 3.9, we have

ω(u) ≤ G(u)�(μ)
�(μ) – (1 – μ)H(u)

Eμ

(
μH(u)(φ(u) – φ(ι))μ

�(μ) – (1 – μ)H(u)

)i

,

which satisfies Inequality (3.6). �

Herein, we will conclude a new Gronwall inequality in the sense of the φ –ABK fractional
operator.

Corollary 3.12 For μ > 0, suppose that X (u) = G(u)�(μ)
�(μ)–(1–μ)H(u) is a nonnegative function

locally integrable on J, Y(u) = μH(u)
�(μ)–(1–μ)H(u) is nonnegative and nondecreasing, and assume

also that ω is nonnegative and locally integrable on J, such that

ω(u) ≤ G(u) + H(u) ABK
I

μ,ρ
ι ω(u), u ∈ J, (3.7)

then, for every u ∈ J, we obtain

ω(u) ≤X (u) +
∫ u

ι

∞∑
i=1

ρ1–iμvρ–1[Y(u)]i

�(iμ)
(
uρ – vρ

)iμ–1X (v) dv. (3.8)

Proof By putting φ(u) = uρ

ρ
in Lemma 3.10, the proof is finished. �

Corollary 3.13 Under conditions of Corollary 3.12, if X (u) is a nondecreasing function on
J , then we have

ω(u) ≤X (u)Eμ

[
Y(u)

(
uρ – vρ

ρ

)μ]
, u ∈ J. (3.9)

Proof By putting φ(u) = uρ

ρ
in Corollary 3.11, the proof is finished. �
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3.3 Existence and uniqueness results
In this subsection, we will study the existence and uniqueness of solution of the following
initial fractional differential equation:

ABC
D

μ,φ
ι ω(u) = h

(
u,ω(u)

)
, u ∈ J = [ι, τ ], (3.10)

ω
(k)
φ (ι) = λk , k = 0, 1, . . . , n, (3.11)

where ABCDμ,φ
ι denotes the μth φ – ABC fractional derivative such that μ ∈ (n, n + 1].

The constants λk ∈ R (k = 0, 1, . . . , n), h : J × R → R is a continuous function, and ω(u) ∈
Cn(J,R) is a known function such that ω

(k)
φ (u) = ( 1

φ′(u)
d

du )kω(u) and ω
(0)
φ (u) = ω(u). Further-

more, φ : [ι, τ ] → R
+ is an increasing function with φ′(u) ∈ Cn(J,R+) and φ′(u) �= 0, ∀u ∈ J.

Indeed, by applying the μth left-sided φ – AB fractional integral operator on both sides
of (3.10) and by using Proposition 3.6 along with the initial boundary condition (3.11), we
have

ω(u) =
n∑

k=0

λk

k!
(
φ(u) – φ(ι)

)k + AB
I

μ,φ
ι h

(
u,ω(u)

)
. (3.12)

Now, we will prove the existence and uniqueness of the solution for the system (3.10)
and (3.11) by using Picard’s iterative method [20].

Theorem 3.14 Assume that there is a constant M > 0 such that supu∈J |h(u,ω0(u))| ≤M,
and there is a constant � > 0 such that |h(u,ω1)–h(u,ω2)| ≤ �|ω1 –ω2|, for all u ∈ J, ω1,ω2 ∈
Cn(J,R). Then, there is one and only one solution ω(u) of the system (3.10) and (3.11) on J,
provided that

�

(
(n + 1 – μ)[φ(τ ) – φ(ι)]n

�(μ – n)�(n + 1)
+

(μ – n)[φ(τ ) – φ(ι)]μ

�(μ – n)�(μ + 1)

)
< 1. (3.13)

Proof Clearly, the system (3.10) and (3.11) has a solution equivalent to the solution of the
fractional integral equation (3.12). Set

ω0(u) =
n∑

k=0

λk

k!
(
φ(u) – φ(ι)

)k , (3.14)

and

ωi(u) =
n∑

k=0

λk

k!
(
φ(u) – φ(ι)

)k + AB
I

μ,φ
ι h

(
u,ωi–1(u)

)
, i ∈N. (3.15)

Obviously, the series ω0(u) +
∑∞

j=1(ωj(u) – ωj–1(u)) has the partial sum ωi(u) = ω0(u) +∑i
j=1(ωj(u) – ωj–1(u)). Our aim is to show that the sequence {ωi(u)} converges to ω(u).
Due to mathematical induction, for all u ∈ [ι, τ ], we investigate that

‖ωi – ωi–1‖

≤M�i–1
(

(n + 1 – μ)[φ(τ ) – φ(ι)]n

�(μ – n)�(n + 1)
+

(μ – n)[φ(τ ) – φ(ι)]μ

�(μ – n)�(μ + 1)

)i

, i ∈N. (3.16)
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According to the equations (3.14) and (3.15) and Proposition 3.7 part (iv), we have

‖ω1 – ω0‖ = sup
u∈J

∣∣AB
I

μ,φ
ι h

(
u,ω0(u)

)∣∣

≤M
(

(n + 1 – μ)[φ(τ ) – φ(ι)]n

�(μ – n)�(n + 1)
+

(μ – n)[φ(τ ) – φ(ι)]μ

�(μ – n)�(μ + 1)

)
.

Therefore, for i = 1 the inequality (3.16) holds. Next, we assume that the inequality (3.16)
is fulfilled for i = r. Then,

‖ωr+1 – ωr‖ = sup
u∈J

∣∣AB
I

μ,φ
ι h

(
u,ωr(u)

)
–AB

I
μ,φ
ι h

(
u,ωr–1(u)

)∣∣

= sup
u∈J

∣∣AB
I

μ,φ
ι

[
h
(
u,ωr(u)

)
– h

(
u,ωr–1(u)

)]∣∣

≤ AB
I

μ,φ
ι

[
�‖ωr – ωr–1‖

]

≤ AB
I

μ,φ
ι

[
M�r

(
(n + 1 – μ)[φ(τ ) – φ(ι)]n

�(μ – n)�(n + 1)
+

(μ – n)[φ(τ ) – φ(ι)]μ

�(μ – n)�(μ + 1)

)r]

≤M�(r+1)–1
(

(n + 1 – μ)[φ(τ ) – φ(ι)]n

�(μ – n)�(n + 1)
+

(μ – n)[φ(τ ) – φ(ι)]μ

�(μ – n)�(μ + 1)

)r+1

.

Thus, the identity (3.16) holds for i = r + 1. Then, in view of mathematical induction the
relation (3.16) holds for every i ∈N and all u ∈ [ι, τ ]. Hence, we obtain

∞∑
i=1

‖ωi – ωi–1‖

≤
∞∑
i=1

M�i–1
(

(n + 1 – μ)[φ(τ ) – φ(ι)]n

�(μ – n)�(n + 1)
+

(μ – n)[φ(τ ) – φ(ι)]μ

�(μ – n)�(μ + 1)

)i

. (3.17)

Due to the condition (3.13), the series on the right-hand side of the above inequality is
convergent, and so

∑∞
i=1 ‖ωi – ωi–1‖ is also convergent, which proves that ω0 +

∑∞
i=1 ‖ωi –

ωi–1‖ converges.
Let us set ω = ω0 +

∑∞
i=1 ‖ωi – ωi–1‖, it follows that

‖ωi – ω‖ −→ 0 as i −→ ∞, (3.18)

which shows that the solution of the system (3.10) and (3.11) exists. In fact, by (3.18), we
have

∥∥h(·,ωi–1(·)) – h
(·,ω(·))∥∥ ≤ �‖ωi–1 – ω‖ −→ 0 as i −→ ∞.

Thus,

lim
i→∞h

(
u,ωi–1(u)

)
= h

(
u,ω(u)

)
. (3.19)
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Therefore, by taking the limits on both sides of (3.15) as i → ∞ and applying (3.19), we
deduce that

ω(u) =
n∑

k=0

λk

k!
(
φ(u) – φ(ι)

)k + AB
I

μ,φ
ι h

(
u,ω(u)

)
, (3.20)

which represent the solution of the system (3.10) and (3.11).
Lastly, in order to show the solution ω is unique, we suppose that ω̃ is another solution

of the system (3.10) and (3.11). Thus, we have

‖ω – ω̃‖ = sup
u∈J

∣∣AB
I

μ,φ
ι h

(
u,ω(u)

)
– AB

I
μ,φ
ι h

(
u, ω̃(u)

)∣∣

= sup
u∈J

∣∣AB
I

μ,φ
ι

[
h
(
u,ω(u)

)
– h

(
u, ω̃(u)

)]∣∣

≤ AB
I

μ,φ
ι

[
�‖ω – ω̃‖]

≤ �

(
(n + 1 – μ)[φ(τ ) – φ(ι)]n

�(μ – n)�(n + 1)
+

(μ – n)[φ(τ ) – φ(ι)]μ

�(μ – n)�(μ + 1)

)
‖ω – ω̃‖.

In view of the condition (3.13), we conclude that should be ‖ω – ω̃‖ = 0, it follows that,
ω(u) = ω̃(u). Thus, the proof is completed. �

4 Examples
Here, we examine validating the main results by the following illustrative examples:

Example 4.1 Consider the following initial fractional differential equation:

ABC
D

1.7,φ
1 ω(u) = sin

(
u2) –

ω(u)
1
2 + ω(u)

, u ∈ J = [1, e], (4.1)

ω(1) = 1, ω′
φ(1) = 1, (4.2)

where μ = 1.7 ∈ (1, 2], φ(u) = ln(u).
Now, we will check the conditions of Theorem 3.14 as follows:

∣∣h(u,ω1) – h(u,ω2)
∣∣ =

∣∣∣∣sin
(
u2) –

ω1(u)
1
2 + ω1(u)

– sin
(
u2) +

ω2(u)
1
2 + ω2(u)

∣∣∣∣

≤ 1
2
∣∣ω1(u) – ω2(u)

∣∣,

then � = 1
2 > 0, and by taking �(μ – n) = 1, we have

�

(
(n + 1 – μ)[φ(τ ) – φ(ι)]n

�(μ – n)�(n + 1)
+

(μ – n)[φ(τ ) – φ(ι)]μ

�(μ – n)�(μ + 1)

)
= 0.376583 < 1. (4.3)

Hence, all the conditions of Theorem 3.14 hold. Therefore, the solution of the system (4.1)
and (4.2) exists and is unique.

Example 4.2 Consider the following initial fractional differential equation:

ABC
D

2.5,φ
0 ω(u) = u2 – ω(u), u ∈ J = [0, 1], (4.4)
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ω(0) = 0, ω′
φ(0) = 0, ω′′

φ(0) = 2, (4.5)

where μ = 2.5 ∈ (2, 3], φ(u) = u, and has an exact solution ω(u) = u2.
Now, we will check the conditions of Theorem 3.14 as follows:

∣∣h(u,ω1) – h(u,ω2)
∣∣ =

∣∣u2 – ω1(u) – u2 + ω2(u)
∣∣ ≤ |ω1 – ω2|,

then � = 1 > 0, and by taking �(μ – n) = 1, we have

�

(
(n + 1 – μ)[φ(τ ) – φ(ι)]n

�(μ – n)�(n + 1)
+

(μ – n)[φ(τ ) – φ(ι)]μ

�(μ – n)�(μ + 1)

)
= 0.350676 < 1. (4.6)

Hence, all the conditions of Theorem 3.14 hold. Therefore, the solution of the system (4.4)
and (4.5) exists and is unique.

Next, we will compute the solution of the system (4.4) and (4.5) by Picard’s iterative
method as follows:

ωi(u) = ω0(u) + AB
I

2.5,φ
0

(
u2 – ωi–1(u)

)
, ω0(u) = u2, i ∈ N. (4.7)

Then,

ω1(u) = u2 + AB
I

2.5,φ
0

(
u2 – ω0(u)

)
= u2,

ω2(u) = u2 + AB
I

2.5,φ
0

(
u2 – ω1(u)

)
= u2,

ω3(u) = u2,

...,

which matches the exact solution.

5 Conclusion
We conclude the following:

• We have extended φ – ABC and φ – ABR fractional derivatives to higher arbitrary
orders. The corresponding φ – AB fractional integrals are presented as well.

• The introduced generalization in the Caputo sense agrees with and generalizes those
presented by Abdeljawad in [2]. However, our approach in this work is different in the
Reimann–Liouville case (ABR) for either the derivative or the corresponding integral.
Applying the nth-order derivative with respect to another function outside in the ABR
higher-order case and the Riemann–Liouville integral of order n with respect to
another function outside in the AB-integral higher case shows that the integral and
differential ABR operators are inverses of each other for all orders and not only for the
order between 0 and 1, as was the case for the higher-order extension obtained in [2].

• Some properties and actions of the extended higher-order integrals and derivatives on
each other have been given.

• Gronwall’s inequality has been established in the framework of a φ – AB fractional
integral operator.
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• The existence and uniqueness theory for initial value problems in the sense of
higher-order ABC of a function with respect to another function has been studied
briefly.

• Some examples to illustrate the new extensions have been given.
• This work is a key attraction to researchers to study this type of extended calculus.

Thus, in the future we will focus our attention to apply these extension operators on
real-life dynamics systems along with investigating new properties and inequities
related to such operators.
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