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Abstract
In this paper, we investigate a generalized Camassa–Holm equation. Firstly, we
establish the persistence properties of strong solutions for the equation in weighted
spaces Lpφ = Lp(R,φp dx). Then we present some sufficient conditions of blow-up
solutions assuming that the initial data satisfy certain conditions, which are more
precise than those in the previous work.
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1 Introduction
In 2009, Novikov [26] used the perturbative symmetry approach to deduce a series of
generalized Camassa–Holm equations, including both quadratic and cubic nonlinearities,
which are integrable and possess an infinite hierarchy of quasi-local higher symmetries.
They are of the following structure:

(
1 – ∂2

x
)
ut = F(u, ux, uxx, uxxx, . . .), u = u(t, x), (1)

where F is a function of u and its derivatives with respect to x, and the subscript denotes
partial derivative. Among them, the most celebrated example is the Camassa–Holm equa-
tion (also called the CH equation)

ut – utxx + 3uux – 2uxuxx – uuxxx = 0, (2)

derived by Camassa and Holm [2] and Fokas and Fuchssteiner [11]. It describes the motion
of shallow water waves and possesses a Lax pair, a bi-Hamiltonian structure, and infinitely
many conserved integrals [2]. It can be solved by the inverse scattering method. One of
the remarkable features of the CH equation is that it has the single-peakon solutions

u(t, x) = ce–|x–ct|, c ∈R,
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and the multipeakon solutions

u(t, x) =
N∑

i=1

pi(t)e–|x–qi(t)|,

where pi(t) and qi(t) satisfy the Hamilton system [2]

⎧
⎨

⎩

dpi
dt = – ∂H

∂qi
=

∑
i�=j pipj sign(qi – qj)e|qi–qj|,

dqi
dt = – ∂H

∂pi
=

∑
j pje|qi–qj|,

with Hamiltonian H = 1
2
∑N

i,j=1 pipje|qi|. It is shown that those peaked solitons are orbitally
stable in the energy space [9]. Another remarkable feature of the CH equation is the so-
called wave-breaking phenomenon, that is, the wave profile remains bounded while its
slope becomes unbounded in finite time [5–7]. Hence equation (2) has attracted lots of
attention since it was born. The dynamic properties related to the equation can be found
in [4, 8, 10, 12, 14–20, 23, 31, 33–38] and the references therein.

The other example is the Novikov equation

ut – utxx + 4u2ux – 3uuxuxx – u2uxxx = 0. (3)

It is shown in [26] that equation (3) possesses soliton solutions, infinitely many conserved
quantities, a Lax pair in matrix form, and a bi-Hamiltonian structure. The conserved quan-
tities

H1
[
u(t)

]
=

∫

R

(
u2 + u2

x
)

dx

and

H2(t) =
∫

R

(
u4 + 2u2u2

x –
1
3

u4
x

)
dx

play an important role in the study of the dynamic properties related to equation (3). More
information about the Novikov equation can be found in Tiglay [27], Ni and Zhou [25],
Wu and Yin [29, 30], Yan, Li, and Zhang [32], Mi and Mu [24] and the references therein.

In this paper, we are interested in the following equation:

⎧
⎨

⎩
ut – utxx = 1

2 (3u2
x – 2uxuxxx – u2

xx),

u(0, x) = u0(x),
(4)

for t > 0 and x ∈ R, and u stands for the unknown function on the line R. Problem (4)
admits traveling wave solutions and possesses conserved laws [21]

E
(
u(t)

)
=

∫

R

(
u2

x + u2
xx

)
dx =

∫

R

(
u2

0x + u2
0xx

)
dx. (5)

Tu and Yin [28] established the local well-posedness for the Cauchy problem in the critical
Besov spaces B

1
2
2,1 relying on the Littlewood–Paley decomposition, transport equations
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theory, logarithmic inequalities, and Osgood’s lemma. The global existence of a strong
solution and some blow-up results are also presented. It is shown in [21] that the solutions
of problem (4) are velocity potentials of the classical Camassa–Holm equation and also are
locally well posed in the other Besov spaces Bs

p,r , s > max{ 1
p , 1

2 }. To our best knowledge, the
asymptotic behaviors for the Cauchy problem (4) have not been studied yet. In this paper,
we first investigate the asymptotic behaviors of the strong solutions for problem (4) in
weighted spaces Lp

φ := LP(R,φp dx), extending the result in [22]. Then we present some
blow-up results, provided that the initial data satisfy certain conditions, which are more
precise than those in [28].

Notations The space of all infinitely differentiable functions φ(t, x) with compact support
in [0, +∞)×R is denoted by C∞

0 . Let Lp = Lp(R)(1 ≤ p < +∞) be the space of all measurable
functions h such that ‖h‖P

LP =
∫
R

|h(t, x)|p dx < ∞. We define L∞ = L∞(R) with the standard
norm ‖h‖L∞ = infm(e)=0supx∈R\e|h(t, x)|. For any real number s, Hs = Hs(R) denotes the
Sobolev space with the norm

‖h‖Hs =
(∫

R

(
1 + |ξ |2)s∣∣ĥ(t, ξ )

∣
∣2 dξ

) 1
2

< ∞,

where ĥ(t, ξ ) =
∫
R

e–ixξ h(t, x) dx.
We denote by ∗ the convolution. Note that if G(x) := 1

2 e–|x|, x ∈R, then (1 –∂2
x )–1f = G∗ f

for all f ∈ L2(R), and G∗ (u–uxx) = u. Using this identity, we rewrite problem (4) as follows:

⎧
⎨

⎩
ut – 1

2 u2
x = G ∗ [u2

x + 1
2 u2

xx],

u(0, x) = u0(x),
(6)

for t > 0 and x ∈R, which is equivalent to

⎧
⎪⎪⎨

⎪⎪⎩

yt – uxyx = – 1
2 y2 + uy + 1

2 u2
x – 1

2 u2,

y = u – uxx,

u(0, x) = u0(x), y0 = u0 – u0xx.

(7)

2 Persistence properties
Motivated by the recent work [22, 35, 36], the aim of this section is to establish the per-
sistence properties for a generalized Camassa–Holm equation in the weighted Lp spaces.
Let us first give some standard definitions.

Definition 2.1 An admissible weight function for problem (4) is a locally absolutely con-
tinuous function φ : R → R such that, for some A > 0 and almost all x ∈ R, |φ′(x)| ≤
A|φ(x)|, and that is v-moderate for some submultiplicative weight function v satisfying
infR v > 0 and

∫

R

ω(x)
e|x| dx < ∞. (8)
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Definition 2.2 In general, a weight function is simply a nonnegative function v : Rn →R,
which is called submultiplicative if

v(x, y) ≤ v(x)v(y) for all x, y ∈R
n.

Given a submultiplicative function v, a positive function φ is v-moderate if and only if

∃C0 > 0 : φ(x + y) ≤ C0v(x)φ(y) for all x, y ∈ R
n.

If φ is v-moderate for some submultiplicative function v, then we say that φ is moderate.
This is usually used in the theory of time-frequency analysis [1]. Let us recall the most
standard example with such weights. Let

φ(x) = φa,b,c,d(x) = ea|x|b(1 + |x|)c
log

(
e + |x|)d.

Then we have the following two properties [22].
(i) For a, c, d ≥ 0 and 0 ≤ b ≤ 1, such a weight is submultiplicative.
(ii) If a, c, d ∈ R and 0 ≤ b ≤ 1, then φ is moderate. More precisely, φa,b,c,d is φα,β ,γ ,δ-

moderate for |a| ≤ α, |b| ≤ β , |c| ≤ γ , and |d| ≤ δ.
The elementary properties of submultiplicative and moderate weights can be found in

[22]. Let us collect our results on admissible weights.

Lemma 2.1 ([22]) Let v : Rn → R
+ and C0 > 0. Then the following conditions are equiva-

lent:
(1) ∀x, y : v(x + y) ≤ C0v(x)v(y);
(2) for all 1 ≤ p, q, r ≤ ∞ and for any measurable functions f1, f2 : Rn → C, we have the

weighted Young inequality

∥
∥(f1 ∗ f2)v

∥
∥

r ≤ C0‖f1v‖p‖f2v‖q, 1 +
1
r

=
1
p

+
1
q

.

Lemma 2.2 ([22]) Let 1 ≤ p ≤ ∞, and let v be a submultiplicative weight on R
n. The fol-

lowing two conditions are equivalent:
(1) φ is a v-moderate weight function (with constant C0);
(2) for all measurable functions f1 and f2, we have the weighted Young estimate

∥
∥(f1 ∗ f2)φ

∥
∥

p ≤ C0‖f1v‖1‖f2φ‖p.

Theorem 2.1 Let T > 0, s > 5
2 , and 2 ≤ p ≤ ∞. Assume that u ∈ C([0, T], Hs(R)) is a strong

solution of problem (4) such that u(0, x) = u0 satisfies

u0φ, u0,xφ, u0,xxφ ∈ Lp(R),

where φ is an admissible weight function for problem (4). Then, for all t ∈ [0, T], we have
the estimate

‖uφ‖LP + ‖uxφ‖LP + ‖uxxφ‖LP

≤ (‖u0φ‖LP + ‖u0,xφ‖LP + ‖u0,xxφ‖LP
)
eCMt



Wang and Guo Boundary Value Problems         (2023) 2023:51 Page 5 of 17

for some constant C > 0 depending only on v, φ (through the constants A, C0, infx∈R v, and
∫
R

v(x)
e|x| dx < ∞), and

M = sup
t∈[0,T]

(∥∥u(t)
∥
∥

L∞ +
∥
∥∂xu(t)

∥
∥

L∞ +
∥
∥∂xxu(t)

∥
∥

L∞
)
.

Proof Assume that φ is v-moderate and satisfies the above conditions. From the assump-
tion u ∈ C([0, T], Hs), s > 5/2, we get

M = sup
t∈[0,T]

(∥∥u(t)
∥∥

L∞ +
∥∥∂xu(t)

∥∥
L∞ +

∥∥∂xxu(t)
∥∥

L∞
)

< ∞.

For any N ∈ Z+, let us consider the N-truncations of φ: f (x) = fN (x) = min{φ, N}. Then
f : R →R is a locally absolutely continuous function such that

‖f ‖L∞ ≤ N ,
∣
∣f ′(x)

∣
∣ ≤ A

∣
∣f (x)

∣
∣ a.e. on R.

On the other hand, if C1 = max{C0,α–1}, where α = infx∈R v(x) > 0, then

f (x + y) ≤ C1v(x)f (x) ∀x, y ∈R.

In addition, as shown in [22], the N-truncations f of a v-moderate weight φ are uniformly
v-moderate with respect to N . We begin to consider the case 2 ≤ p < ∞. Multiply the first
equation of problem (6) by f |uf |p–2(uf ) and integrate to obtain

∫

R

|uf |p–2(uf )∂t(uf ) dx –
∫

R

|uf |p–2(uf )fu2
x dx

–
∫

R

|uf |p–2(uf )fG ∗
[

u2
x +

1
2

u2
xx

]
dx = 0. (9)

For the first term on the left-hand side of (9), we have
∫

R

|uf |p–2(uf )∂t(uf ) dx =
1
p

d
dt

‖uf ‖p
Lp = ‖uf ‖p–1

Lp
d
dt

‖uf ‖Lp , (10)

and the third term on the left-hand side of (9) reads
∣∣
∣∣

∫

R

|uf |p–2(uf )fG ∗
[

u2
x +

1
2

u2
xx

]
dx

∣∣
∣∣ ≤ ‖uf ‖p–1

Lp

∥∥
∥∥fG ∗

[
u2

x +
1
2

u2
xx

]∥∥
∥∥

Lp

≤ ‖uf ‖p–1
Lp ‖Gv‖L1

(∥∥u2
xf

∥
∥

Lp +
∥
∥u2

xxf
∥
∥

Lp
)

≤ CM‖uf ‖p–1
Lp

(‖uxf ‖Lp + ‖uxxf ‖Lp
)
, (11)

where we used the Hölder inequality, Lemmas 3.1 and 3.2, and (8). For the second term,
we have

∣∣
∣∣

∫

R

|uf |p–2(uf )fu2
x dx

∣∣
∣∣ =

∣∣
∣∣

∫

R

ux|uf |p–2(uf )
[
∂x(fu) – ufx

]
dx

∣∣
∣∣

≤
∣∣
∣∣

∫

R

ux|uf |p–2(uf )∂x(fu) dx
∣∣
∣∣ +

∣∣
∣∣

∫

R

ux|uf |p–2(uf )ufx dx
∣∣
∣∣

≤ M
p

‖uf ‖p
Lp + AM‖uf ‖p

Lp . (12)
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From (9) we obtain

d
dt

‖uf ‖Lp ≤
(

M
p

+ AM
)

‖uf ‖Lp + CM
(‖uxf ‖Lp + ‖uxxf ‖Lp

)
. (13)

Now we will give estimates on uxf . Differentiating the first equation of problem (6) with
respect to x, we get

uxt – uxuxx – Gx ∗
[

u2
x +

1
2

u2
xx

]
= 0, (14)

which multiplied by f results in the equation

∂t(uxf ) – fuxuxx – fGx ∗
[

u2
x +

1
2

u2
xx

]
= 0. (15)

Multiplying (15) by |uxf |p–2(uxf ) with p ∈ Z+ and integrating give the equation

∫

R

|uxf |p–2(uxf )∂t(uxf ) dx –
∫

R

|uxf |p–2(uxf )fuxuxx dx

–
∫

R

|uxf |p–2(uxf )fGx ∗
[

u2
x +

1
2

u2
xx

]
dx = 0. (16)

Using as similar procedure, we obtain the estimates

∫

R

|uxf |p–2(uxf )∂t(uxf ) dx =
1
p

d
dt

‖uxf ‖p
Lp = ‖uxf ‖p–1

Lp
d
dt

‖uxf ‖Lp , (17)
∣∣
∣∣

∫

R

|uxf |p–2(uxf )fuxuxx dx
∣∣
∣∣ ≤ M‖uxf ‖p

Lp , (18)

and

∣
∣∣
∣

∫

R

|uxf |p–2(uxf )fGx ∗
[

u2
x +

1
2

u2
xx

]
dx

∣
∣∣
∣ ≤ ‖uxf ‖p–1

Lp

∥
∥∥
∥fGx ∗

[
u2

x +
1
2

u2
xx

]∥
∥∥
∥

Lp

≤ C‖uxf ‖p–1
Lp ‖Gxv‖L1

(∥∥u2
xf

∥
∥

Lp +
∥
∥u2

xxf
∥
∥

Lp
)

≤ CM‖uxf ‖p–1
Lp

(‖uxf ‖Lp + ‖uxxf ‖Lp
)
, (19)

where we used |∂xG(x)| < 1
2 e–|x|. Therefore from (16)–(19) it follows that

d
dt

‖uxf ‖Lp ≤ (C + 1)M‖uxf ‖Lp + CM‖uxxf ‖Lp ). (20)

Next, we focus on estimates of uxxf . Differentiating (14) with respect to x and multiplying
by f result in the equation

∂t(uxxf ) – fu2
xx – fuxuxxx – fGxx ∗

[
u2

x +
1
2

u2
xx

]
= 0. (21)
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Multiply by |uxxf |p–2(uxxf ) with p ∈ Z+ and integrate to obtain the equation
∫

R

|uxxf |p–2(uxxf )∂t(uxxf ) dx –
∫

R

|uxxf |p–2(uxxf )fu2
xx dx –

∫

R

|uxxf |p–2(uxxf )fuxuxxx dx

–
∫

R

|uxxf |p–2(uxxf )fGxx ∗
[

u2
x +

1
2

u2
xx

]
dx = 0. (22)

Notice that the estimates
∫

R

|uxxf |p–2(uxxf )∂t(uxxf ) dx =
1
p

d
dt

‖uxxf ‖p
Lp = ‖uxxf ‖p–1

Lp
d
dt

‖uxxf ‖Lp , (23)
∣∣
∣∣

∫

R

|uxxf |p–2(uxxf )fu2
xx dx

∣∣
∣∣ ≤ M‖uxxf ‖p

Lp , (24)

and
∣∣
∣∣

∫

R

|uxxf |p–2(uxxf )fGxx ∗
[

u2
x +

1
2

u2
xx

]
dx

∣∣
∣∣ ≤ ‖uxxf ‖p–1

Lp

∥∥
∥∥fGxx ∗

[
u2

x +
1
2

u2
xx

]∥∥
∥∥

Lp

≤ CM‖uxxf ‖p–1
Lp

(‖uxf ‖Lp + ‖uxxf ‖Lp
)

(25)

hold, where we used the equality ∂2
x G = G – 1.

For the third-order derivative term, we have
∣
∣∣
∣

∫

R

|uxxf |p–2(uxxf )fuxuxxx dx
∣
∣∣
∣ =

∣
∣∣
∣

∫

R

ux|uxxf |p–2(uxxf )
[
∂x(fuxx) – uxxfx

]
dx

∣
∣∣
∣

≤
∣
∣∣
∣

∫

R

ux|uxxf |p–2(uxxf )∂x(fuxx) dx
∣
∣∣
∣

+
∣∣
∣∣

∫

R

ux|uxxf |p–2(uxxf )uxxfx dx
∣∣
∣∣

≤ M
p

‖uxxf ‖p
Lp + AM‖uxxf ‖p

Lp . (26)

Therefore from (22)–(26) it follows that

d
dt

‖uxxf ‖Lp ≤ CM‖uxf ‖Lp + M
(

1 + C + A +
1
p

)
‖uxxf ‖Lp . (27)

Now, combining (13), (20), and (27), we deduce

d
dt

(‖uf ‖Lp + ‖uxf ‖Lp + ‖uxxf ‖Lp
)

≤
(

M
p

+ AM
)

‖uf ‖Lp + (3C + 1)M‖uxf ‖Lp + M
(

1 + 3C + A +
1
p

)
‖uxxf ‖Lp

≤ CM
(‖uf ‖Lp + ‖uxf ‖Lp + ‖uxxf ‖Lp

)
. (28)

Integrating (28) gives

‖uf ‖Lp + ‖uxf ‖Lp + ‖uxxf ‖Lp

≤ (‖u0f ‖Lp + ‖u0xf ‖Lp + ‖u0xxf ‖Lp
)
eCMt ∀t ∈ [0, T]. (29)
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Since f (x) = fN (x) → φ(x) as N → ∞ for a.e. x ∈ R, recalling that u0φ, u0xφ, u0xxφ ∈ Lp,
we deduce

‖uφ‖Lp + ‖uxφ‖Lp + ‖uxxφ‖Lp

≤ (‖u0φ‖Lp + ‖u0xφ‖Lp + ‖u0xxφ‖Lp
)
eCMt ∀t ∈ [0, T]. (30)

Finally, we will treat the case p = ∞. We have u0, u0x, u0xx ∈ L2 ∩L∞ and f (x) = fN (x) ∈ L∞.
So we obtain

‖uf ‖Lq + ‖uxf ‖Lq + ‖uxxf ‖Lq

≤ (‖u0f ‖Lq + ‖u0xf ‖Lq + ‖u0xxf ‖Lq
)
eCMt ∀t ∈ [0, T] (31)

for q ∈ [2,∞), where the last factor on the right-hand side is independent of q. Since
‖f ‖Lp → ‖f ‖L∞ as p → ∞ for any f ∈ L2 ∩ L∞, we get

‖uf ‖L∞ + ‖uxf ‖L∞ + ‖uxxf ‖L∞

≤ (‖u0f ‖L∞ + ‖u0xf ‖L∞ + ‖u0xxf ‖L∞
)
eCMt ∀t ∈ [0, T], (32)

where the last factor on the right-hand side is independent of N . Now taking the limit as
N → ∞ implies that estimate (31) remains valid for p = ∞. �

Remark 1 (1) Let φ = φ0,0,c,0 with c > 0, and let p = ∞. Then Theorem 2.1 states that the
condition

∣
∣u0(x)

∣
∣ +

∣
∣u0,x(x)

∣
∣ +

∣
∣u0,xx(x)

∣
∣ ≤ C

(
1 + |x|)–c

implies the uniform algebraic decay in [0, T]:

∣
∣u(t, x)

∣
∣ +

∣
∣ux(t, x)

∣
∣ +

∣
∣uxx(t, x)

∣
∣ ≤ C

(
1 + |x|)–c.

It is shown that the algebraic decay rates of a strong solution to problem (4) are obtained.
(2) Let φ = φa,1,0,0 if x ≥ 0 and φ(x) = 1 if x ≤ 0 with 0 ≤ a < 1. It is easy to see that

such a weight satisfies the admissibility conditions of Definition 2.1. Moreover, let p = ∞
in Theorem 2.1. Then problem (4) preserves the pointwise decay O(e–ax) as x → +∞ for
each t > 0. Similarly, we have persistence of the decay O(e–ax) as x → –∞.

Clearly, the limit case φ = φ1,1,c,d is not covered in Theorem 2.1. Furthermore, in the
following theorem, we may choose the weight φ = φ1,1,c,d with c < 0, d ∈ R, and 1

|c| < p ≤
∞. More generally, when (1 + | · |)c log(e + | · |)d ∈ Lp(R), Theorem 2.2 covers the case
of fast growing weights, which means that when a v-moderate weight φ does not satisfy
condition (8), we may establish a variant of Theorem 2.1, putting instead of assumption
(8), the following weaker condition:

ve–|·| ∈ Lp(R), (33)

where 2 ≤ p ≤ ∞.
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Theorem 2.2 Let 2 ≤ p ≤ ∞, let φ be a v-moderate weight function as in Definition 2.1
satisfying condition (33), and let the initial data u0 = u(0, x) satisfy

u0φ, u0,xφ, u0,xxφ ∈ Lp(R) and u0φ
1
2 , u0,xφ

1
2 , u0,xxφ

1
2 ∈ L2(R).

Then the strong solution u of the Cauchy problem for (4), emanating from u0, satisfy

sup
t∈[0,T]

(∥∥u(t)φ
∥∥

LP +
∥∥ux(t)φ

∥∥
LP +

∥∥uxx(t)φ
∥∥

LP
)

< ∞

and

sup
t∈[0,T]

(∥∥u(t)φ
1
2
∥
∥

L2 +
∥
∥ux(t)φ

1
2
∥
∥

L2 +
∥
∥uxx(t)φ

1
2
∥
∥

L2
)

< ∞.

Remark 2 Let φ = φ1,1,0,0(x) = e|x| and p = ∞ in Theorem 2.2. If |u0(x)|, |u0,x(x)|, and |u0,xx|
are bounded by Ce–|x|, then the strong solution satisfies

∣
∣u(t, x)

∣
∣ +

∣
∣ux(t, x)

∣
∣ +

∣
∣uxx(t, x)

∣
∣ ≤ Ce–|x|

uniformly in [0, T].

Proof The assumption that φ is a v-moderate weight function implies

∃C0 > 0, s.t., φ(x + y) ≤ C0v(x)v(y) ∀x, y ∈R,

which, combined with infR v > 0, gives

φ
1
2 (x + y) ≤ C

1
2

0 v
1
2 (x)v

1
2 (y) ∀x, y ∈R,

that is, φ 1
2 is a v 1

2 -moderate weight function. The inequality |φ′(x)| ≤ A|φ(x)| reads

∣
∣(φ

1
2
)′(x)

∣
∣ =

1
2
φ– 1

2
∣
∣φ′(x)

∣
∣ ≤ A

2
φ

1
2 .

By condition (33), ve–|x| ∈ Lp. So the Hölder inequality yields

∥∥v
1
2 e–|x|∥∥

L1 ≤ ∥∥v
1
2 e

–|x|
2

∥∥
L2p

∥∥e
–|x|

2
∥∥

Lq ≤ c
∥∥ve–|x|∥∥

Lp < ∞, q =
2p

2p – 1
.

Thus Theorem 2.1 with p = 2 applied to the weight φ
1
2 results in

∥∥uφ
1
2
∥∥

L2 +
∥∥uxφ

1
2
∥∥

L2 +
∥∥uxxφ

1
2
∥∥

L2

≤ (∥∥u0φ
1
2
∥∥

L2 +
∥∥u0xφ

1
2
∥∥

L2 +
∥∥u0xxφ

1
2
∥∥

L2
)
eCMt ∀t ∈ [0, T]. (34)

From Lemma 2.2 and f (x) = fN (x) = min{φ(x), N}, applying (33), we have
∥∥
∥∥fG ∗

[
u2

x +
1
2

u2
xx

]∥∥
∥∥

Lp
� ‖fG‖Lp

∥∥
∥∥f

[
u2

x +
1
2

u2
xx

]∥∥
∥∥

L1

� c
(∥∥f

1
2 ux

∥∥2
L2 +

∥∥f
1
2 uxx

∥∥2
L2

)

≤ CeCMt . (35)
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Similarly, we have the estimates

∥∥∥
∥fGx ∗

[
u2

x +
1
2

u2
xx

]∥∥∥
∥

Lp
� ‖fGx‖Lp

∥∥∥
∥f

[
u2

x +
1
2

u2
xx

]∥∥∥
∥

L1

� c
(∥∥f

1
2 ux

∥∥2
L2 +

∥∥f
1
2 uxx

∥∥2
L2

)

≤ CeCMt (36)

and
∥∥
∥∥fGxx ∗

[
u2

x +
1
2

u2
xx

]∥∥
∥∥

Lp
=

∥∥
∥∥fG ∗

[
u2

x +
1
2

u2
xx

]∥∥
∥∥

Lp
+

∥∥
∥∥f

[
u2

x +
1
2

u2
xx

]∥∥
∥∥

Lp

� ‖fG‖Lp

∥∥
∥∥f

[
u2

x +
1
2

u2
xx

]∥∥
∥∥

L1
+

∥∥
∥∥f

[
u2

x +
1
2

u2
xx

]∥∥
∥∥

Lp

� c
(∥∥f

1
2 ux

∥∥2
L2 +

∥∥f
1
2 uxx

∥∥2
L2

)
+ CM

(‖uxf ‖Lp + ‖uxxf ‖Lp
)

≤ CeCMt + CM
(‖uxf ‖Lp + ‖uxxf ‖Lp

)
. (37)

Here the constants on the right-hand side of (35)–(37) are independent of N . By using the
procedure as in the proof of Theorem 2.1, we readily get

d
dt

‖uf ‖Lp ≤
(

M
p

+ AM
)

‖uf ‖Lp +
∥∥
∥∥fG ∗

[
u2

x +
1
2

u2
xx

]∥∥
∥∥

Lp
, (38)

d
dt

‖uxf ‖Lp ≤ M‖uxf ‖Lp +
∥∥
∥∥fGx ∗

[
u2

x +
1
2

u2
xx

]∥∥
∥∥

Lp
, (39)

and

d
dt

‖uxxf ‖Lp ≤ M
(

1 + A +
1
p

)
‖uxxf ‖Lp +

∥∥
∥∥fGxx ∗

[
u2

x +
1
2

u2
xx

]∥∥
∥∥

Lp
. (40)

Substituting (35), (36), and (37) into (38), (39), and (40), respectively, and summing up
them, we have

d
dt

(‖uf ‖Lp + ‖uxf ‖Lp + ‖uxxf ‖Lp
)

≤ KM
(‖uf ‖Lp + ‖uxf ‖Lp + ‖uxxf ‖Lp

)
+ CeCMt . (41)

From Gronwall’s inequality it follows that

‖uf ‖Lp + ‖uxf ‖Lp + ‖uxxf ‖Lp

≤ eKMt(‖u0f ‖Lp + ‖u0xf ‖Lp + ‖u0xxf ‖Lp
)

+ Ce(C+K )Mt . (42)

We obtain desired result by letting N → ∞ in the case 2 ≤ p < ∞. The constants through-
out the proof are independent of p. So for p = ∞, we can obtain the result from that es-
tablished for the finite exponents q by letting q → ∞. The rest of the proof is fully similar
to that of Theorem 2.1. �
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3 Blow-up
3.1 Several lemmas
In this section, we study the sufficient conditions of blow-up solutions for problem (4) by
using some classical methods. Firstly, we need several lemmas.

Lemma 3.1 ([3]) Let f ∈ C1(R), a > 0, b > 0, and f (0) >
√

b
a . If f ′(t) ≥ af 2(t) – b, then

f (t) → +∞ as t → T =
1

2
√

ab
log

( f (0) +
√

b
a

f (0) –
√

b
a

)
. (43)

Lemma 3.2 ([13]) Let u0 ∈ Hs, s ≥ 5/2. Then the corresponding solution u has the constant
energy integral

∫

R

(
u2

x + u2
xx

)
dx =

∫

R

(
u2

0x + u2
0xx

)
dx = ‖u0x‖2

H1 .

Lemma 3.3 ([13]) Let u0 ∈ Hs, s ≥ 5/2. Let T be the lifespan of the solution to problem (4).
Then the corresponding solution blows up in finite time if and only if

lim inf
t→T

inf
x∈R

m = –∞.

Remark 3 From Lemma 3.2 we see that u(t, x) is bounded. This implies that the solution
to problem (4) blows up if and only if

lim
t→T

‖uxx‖L∞ = +∞.

3.2 Blow-up phenomenon
Theorem 3.1 Let u0 ∈ Hs(R) for s > 3

2 . Let u(t, x) be the corresponding solution of with the
initial datum u0. Suppose that the slope of u′

0 satisfies

∫

R

(
u′

0
)3 < –

K
K1

, (44)

where K2 = (24+3
√

2)2

16 ‖u′
0‖4

H1 and K2
1 = 1

4‖u′
0‖2

H1
. Then there exists the lifespan T < ∞ such

that the corresponding solution u(t, x) blows up in finite time T with

T =
1

2KK1
log

(
K1h(0) + K
K1h(0) – K

)
. (45)

Proof Define g(t) = ux(t, x) and h(t) =
∫
R

g3
x dx. Then it follows that

gt – ggx = Q, (46)

where Q = ∂x(1 – ∂2
x )–1(u2

x + 1
2 u2

xx).
Differentiating equation (46) with respect to x yields

gtx – ggxx =
1
2

g2
x – g2 +

(
1 – ∂2

x
)–1

(
u2

x +
1
2

u2
xx

)
. (47)



Wang and Guo Boundary Value Problems         (2023) 2023:51 Page 12 of 17

Multiplying by 3g2
x both sides of (47) and integrating with respect to x over R, we have

d
dt

∫

R

g3
x dx =

1
2

∫

R

g4
x dx – 3

∫

R

g2g2
x dx

+ 3
∫

R

g2
x
(
1 – ∂2

x
)–1(u2

x
)

dx +
3
2

∫

R

g2
x
(
1 – ∂2

x
)–1(u2

xx
)

dx

= 
1 + 
2 + 
3 + 
4. (48)

Using Hölder’s and Yong’s inequalities, (5), and (48), we get


2 = 3
∫

R

g2g2
x dx

≤ 3
(∫

R

g4 dx
) 1

2
(∫

R

(gx)4 dx
) 1

2

≤ 3
∥
∥u′

0
∥
∥2

H1

(∫

R

(gx)4 dx
) 1

2

≤ 3
(‖u′

0‖4
H1

2ε
+

ε
∫
R

(gx)4 dx
2

)
, (49)


3 = 3
∫

R

g2
x
(
1 – ∂2

x
)–1(u2

x
)

dx

≤ 3
∥∥(

1 – ∂2
x
)–1(u2

x
)∥∥

L2

(∫

R

(gx)4 dx
) 1

2

≤ 3
∥∥u′

0
∥∥2

H1

(∫

R

(gx)4 dx
) 1

2

≤ 3
(‖u′

0‖4
H1

2ε
+

ε
∫
R

(gx)4 dx
2

)
, (50)

and


4 =
3
2

∫

R

g2
x
(
1 – ∂2

x
)–1(u2

xx
)

dx

≤ 3
2
∥∥(

1 – ∂2
x
)–1(u2

xx
)∥∥

L2

(∫

R

(gx)4 dx
) 1

2

≤ 3
√

2
4

∥
∥u′

0
∥
∥2

H1

(∫

R

(gx)4 dx
) 1

2

≤ 3
√

2
4

(‖u0‖4
H1

2ε
+

ε
∫
R

(gx)4 dx
2

)
. (51)

Combining inequalities (49)–(51), we obtain

|
2| + |
3| + |
4| ≤ 24 + 3
√

2
8ε

‖u0‖4
H1 +

(24 + 3
√

2)ε
8

∫

R

(gx)4 dx. (52)
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Choosing ε = 2
24+3

√
3 yields


2 + 
3 + 
4 ≥ –
(

(24 + 3
√

2)2

16
‖u0‖4

H1 +
1
4

∫

R

(gx)4 dx
)

. (53)

Therefore, combining (48) and (52), we get

d
dt

∫

R

g3
x dx ≥ 1

4

∫

R

g4
x dx – K2, (54)

where K2 = (24+3
√

2)2

16 ‖u′
0‖4

H1 . Using Hölder’s inequality, we get

(∫

R

g3
x dx

)2

≤
∫

R

g2
x dx

∫

R
g4

x dx ≤ ∥∥u′
0
∥∥2

H1

∫

R

g4
x dx. (55)

Combining (54) and (55), we have

d
dt

h(t) ≥ –K2
1 h2(t) + K2, (56)

where K2
1 = 1

4‖u′
0‖2

H1
.

From the assumption of the theorem we have that h(0) > K
K1

, and the continuity argu-
ment ensures that h(t) > h(0). Lemma 3.1 (with a = K2

1 and b = K2) implies that h(t) → +∞
as t → T = 1

2K1K log K1h(0)+K
K1h(0)–K .

On the other hand, using the fact that

∫

R

g3
x dx ≤

∫

R

g3
x dx ≤ ∥∥uxx(t, x)

∥∥
L∞

∫

R

g2
x dx =

∥∥uxx(t, x)
∥∥

L∞
∥∥u′

0
∥∥2

H1 , (57)

Remark 3 implies the statement of Theorem 3.1.
The characteristics q(t, x) related to problem (4) is governed by

qt(t, x) = –ux
(
t, q(t, x)

)
, t ∈ [0, T),

q(0, x) = x, x ∈R.

Applying the classical results in the theory of ordinary differential equations, we can obtain
that the characteristics q(t, x) ∈ C1([0, T) × R) with qx(t, x) = e

∫ t
0 –uxx(τ ,q(τ ,x)) dτ > 0 for all

(t, x) ∈ [0, T) ×R. Furthermore, it is shown in [28] that the potential y = u – uxx satisfies

yx
(
t, q(t, x)

)
qx(t, x) = y′

0(x)e
∫ t

0 uxx(τ ,q(τ ,x)) dτ . (58)

Therefore we obtain the second blow-up result. �

Theorem 3.2 Let u0 ∈ Hs(R), s > 5
2 . Suppose that there is a point x2 ∈R such that

√
2

2

(
u2

0x(x2) –
1
2

u2
0xx(x2)

)
+

2 +
√

2
4

‖u0x‖2
H1 < 0 and u0x <

√
2

2
u0xx. (59)
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Then the blow-up occurs in finite time

T0 =
1

√√
2 + 1‖u0x‖H1

log

(
√

u2
0xx – 2u2

0x +
√√

2 + 1‖u0x‖H1
√

u2
0xx – 2u2

0x –
√√

2 + 1‖u0x‖H1

)
.

Proof We track the dynamics of P(t) = (ux –
√

2
2 uxx)(t, q(t, x2)) and Q(t) = (ux +

√
2

2 uxx)(t,
q(t, x2)) along the characteristics

P′(t) = (utx + uxxqt) –
√

2
2

(utxx + uxxxqt)

=
√

2
2

PQ + ∂x
(
1 – ∂2

x
)–1

(
u2

x +
1
2

u2
xx

)
–

√
2

2
(
1 – ∂2

x
)–1

(
u2

x +
1
2

u2
xx

)

≤
√

2
2

PQ +
2 +

√
2

4
∥
∥u′

0
∥
∥2

H1 (60)

and

Q′(t) = (utx + uxxqt) +
√

2
2

(utxx + uxxxqt)

= –
√

2
2

PQ + ∂x
(
1 – ∂2

x
)–1

(
u2

x +
1
2

u2
xx

)
+

√
2

2
(
1 – ∂2

x
)–1

(
u2

x +
1
2

u2
xx

)

≥ –
√

2
2

PQ –
2 +

√
2

4
∥∥u′

0
∥∥2

H1 . (61)

From (59) we see that the right-hand side of (60) is positive and the right-hand side of
(61) is negative initially. Hence P increases, and Q decreases. Then we obtain

P(t) < P(0) = u0x –
√

2
2

u0xx < 0, (62)

Q(t) > Q(0) = u0x +
√

2
2

u0xx > 0. (63)

Letting h(t) =
√

–PQ(t) and using the estimate Q–P
2 ≥ h(t), we have

h′(t) = –
P′Q + PQ′

2
√

–PQ

≥ –(
√

2
2 PQ + 2+

√
2

4 ‖u′
0‖2

H1 )Q + P(
√

2
2 PQ + 2+

√
2

4 ‖u′
0‖2

H1 )
2
√

–PQ

≥ –(
√

2
2 PQ + 2+

√
2

4 ‖u′
0‖2

H1 )(Q – P)
2
√

–PQ

≥ –
√

2
2

PQ –
2 +

√
2

4
∥
∥u′

0
∥
∥2

H1

≥
√

2
2

h2(t) –
2 +

√
2

4
∥∥u′

0
∥∥2

H1 . (64)
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In view of Lemma 3.1, we obtain that h → +∞ as t → T0 with

T0 =
1

√√
2 + 1‖u0x‖H1

log

(√
2h0 + (

√√
2 + 1)‖u0x‖H1√

2h0 – (
√√

2 + 1)‖u0x‖H1

)
, (65)

Observe that h(t) =
√

1
2 u2

xx – u2
x < |

√
2

2 uxx(t, q(t, x2))|. Therefore h → +∞ as t → T0 implies
that |uxx(t, q(t, x2))| → +∞ as t → T0.

The proof of Theorem 3.2 is completed. �

Theorem 3.3 Let u0 ∈ Hs(R) for s > 5
2 . Suppose that there exists x3 ∈R such that u0xx(x3) >

‖u′
0‖H1 . Then the wave breaking occurs in finite time

T∗ =
1

‖u′
0‖H1

log

(
u0xx(x2) + ‖u′

0‖H1

u0xx(x2) – ‖u′
0‖H1

)
. (66)

Proof Now we prove the wave-breaking phenomenon along the characteristics q(t, x3). It
follows from (6) that

u′
x(t) = ∂x

(
1 – ∂2

x
)–1

(
u2

x +
1
2

u2
xx

)
(67)

and

u′
xx(t) =

1
2

u2
xx – u2

x +
(
1 – ∂2

x
)–1

(
u2

x +
1
2

u2
xx

)
. (68)

Since (1 – ∂2
x )–1(u2

x + 1
2 u2

xx) ≥ 1
2 u2

x , we get

u′
xx(t) ≥ 1

2
u2

xx –
1
2

u2
x. (69)

Setting M(t) = uxx(t, q(t, x3)) and using Young’s inequality, Lemmas 3.1 and 3.2, and (69),
we get

M′(t) ≥ 1
2

M2 – K2, (70)

where K2 = 1
2‖u′

0‖2
H1 .

Since by the assumption of Theorem 3.2, u0xx(x3) > ‖u′
0‖H1 , solving (70) results in

M → +∞ as t → T∗, (71)

where T∗ = 1
‖u′

0‖H1
log( u0xx(x3)+‖u′

0‖H1
u0xx(x3)–‖u′

0‖H1
). �
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