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1 Introduction

In 2009, Novikov P6] used the perturbative symmetry approach to deduce a series of
generalized Camassa...Holm equations, including both quadratic and cubic nonlinearities,
which are integrable and possess an in“nite hierarchy of quasi-local higher symmetries.
They are of the following structure:

1 ... 2 Uy = F(U, Uy, Uxx, Uy, - - -), U= U(E,X), (1)

whereF is a function ofu and its derivatives with respect tx, and the subscript denotes
partial derivative. Among them, the most celebrated example is the Camassa...Holm equa-
tion (also called the CH equation)

Ut .. Ugex + 3UUy ... BiyUyy .. UUyyy =0, (2)

derived by Camassa and Holn2] and Fokas and Fuchssteinet []. It describes the motion

of shallow water waves and possesses a Lax pair, a bi-Hamiltonian structure, and in“nitely
many conserved integrals?). It can be solved by the inverse scattering method. One of
the remarkable features of the CH equation is that it has the single-peakon solutions

ut,x)=ce® ¢ R,
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and the multipeakon solutions
N
u(t,x) = pi (t)e--l-x--Qi(t)ly

i=1

wherep;(t) and g (t) satisfy the Hamilton systemZ]

o

Pi

=g = g Pipsign(g .. g)edal,
dg _ H _— A
@ = el
with Hamiltonian H = 3 i“jzl pip;€l. Itis shown that those peaked solitons are orbitally
stable in the energy spac&®]. Another remarkable feature of the CH equation is the so-
called wave-breaking phenomenon, that is, the wave pro“le remains bounded while its
slope becomes unbounded in “nite time{..7]. Hence equation ) has attracted lots of
attention since it was born. The dynamic properties related to the equation can be found
in[4,8,10,12,14..20, 23, 31, 33..38] and the references therein.

The other example is the Novikov equation

U .. Uk + AU%U ... BlUygUyy .. UPUygyx = 0. (3)

Itis shown in [26] that equation (3) possesses soliton solutions, in“nitely many conserved
guantities, a Lax pairin matrix form, and a bi-Hamiltonian structure. The conserved quan-
tities

Hyut) = u?+u2 dx
R
and

Ha(t)=  u®+2u2u2.

1
. 2 ..:—)’u;‘ dx

play an important role in the study of the dynamic properties related to equatioB)( More

information about the Novikov equation can be found in Tiglay47], Ni and Zhou [25],

Wu and Yin [29, 3(], Yan, Li, and Zhang 82], Mi and Mu [ 24] and the references therein.
In this paper, we are interested in the following equation:

Ut ...Ut)(x = %(3U)2( e nxuxxx ...U)Z(X),
u(0,x) = ug(x),

(4)

fort >0 andx R, andu stands for the unknown function on the lineR. Problem @)
admits traveling wave solutions and possesses conserved |&dfs [
XX

Eut) = u2+ud dx= ud +ud, dx (5)
R R

Tu and Yin [28] established the local well-posedness for the Cauchy problem in the critical
1
Besov spaceBzz’1 relying on the Littlewood...Paley decomposition, transport equations



Wang and GuaBoundary Value Problems  (2023) 2023:51 Page 30of 17

theory, logarithmic inequalities, and Osgoodess lemma. The global existence of a strong
solution and some blow-up results are also presented. Itis shown2i]that the solutions

of problem (4) are velocity potentials of the classical Camassa...Holm equation and also are
locally well posed in the other Besov spacBg,, s> max{%, %}. To our best knowledge, the
asymptotic behaviors for the Cauchy problen#] have not been studied yet. In this paper,
we “rst investigate the asymptotic behaviors of the strong solutions for problem)(in
weighted spaces” := LP(R, Pdx), extending the result in R2]. Then we present some
blow-up results, provided that the initial data satisfy certain conditions, which are more
precise than those in2g].

Notations The space of allin“nitely di erentiable functions (t, x) with compact support
in[0,+ )x RisdenotedbyC, .LetLP=LP(R)(1 p<+ )bethespaceofallmeasurable
functionsh suchthat h EP: z N, X)Pdx< .Wede'neL =L (R)withthestandard
norm h . =infme=0Sup, relh(t,x)|. For any real numbers, H® = HS(R) denotes the
Sobolev space with the norm

NI

hus= 1+ 2°h@t, )2d < |
R

whereh(t, )= ;e™ h(t,x)dx.
We denote by the convolution. Note thatifG(x) := e, x R,then(1...2)~¥=G f
forallf L2(R),andG (u..Uy) = u. Using this identity, we rewrite problem4) as follows:

12 = 2412
Ut ..5Ug =G Uy + SUs,],

(6)
u(0,x) = uo(x),
fort>0andx R, whichis equivalent to
Yt - UxYx = %yz +uy+ %ui ...%UZ,
Y= U .. Uy, -

U(O-X) = uO(X)1 Yo = Ug .. Uoxx-

2 Persistence properties

Motivated by the recent work R2, 35, 36], the aim of this section is to establish the per-
sistence properties for a generalized Camassa...Holm equation in the weightegbaces.
Let us “rst give some standard de“nitions.

Definition 2.1 An admissible weight function for problem 4) is a locally absolutely con-
tinuous function :R R such that, for someA >0 and almost allx R, | (X)|

Al (X)|, and that isv-moderate for some submultiplicative weight functiorv satisfying
infg v>0 and

(x)
r &

dx< . 8)



Wang and GuaBoundary Value Problems  (2023) 2023:51 Page 4 of 17

Definition 2.2 In general, a weight function is simply a nonnegative function R" R,
which is called submultiplicative if

v(x,y) v)v(y) forallx,y R".
Given a submultiplicative functionv, a positive function isv-moderate if and only if
Co>0: (x+y) Cov(x) (y) forallx,y R"

If isv-moderate for some submultiplicative functiorv, then we say that is moderate.
This is usually used in the theory of time-frequency analysi$][ Let us recall the most
standard example with such weights. Let

)= apca®) =M 1+]x| “log e+|x °.

Then we have the following two propertiesg2].

() Fora,c,d OandO b 1, suchaweightis submultiplicative.

(i)If a,ccd RandO0 b 1,then is moderate. More precisely, apcd IS . | -
moderate for|a| , bl .ldl ,and|d|

The elementary properties of submultiplicative and moderate weights can be found in
[22]. Let us collect our results on admissible weights.

Lemma 2.1 ([22]) Letv:R" R* and G, > 0.Then the following conditions are equiva-
lent:
1) xy:v(x+y)  Cov(x)v(y);
(2) foralll p,q,r and for any measurable functions f1,f2 :R"  C, we have the
weighted Young inequality

(fl fz)V ; Coy f1v p fov QO 1+

Lemma 2.2 ([22]) Letl p , and let v be a submultiplicative weight oR". The fol-
lowing two conditions are equivalent

(1)  is a v-moderate weight function (with constant Co);

(2) for all measurable functions f1 and fa, we have the weighted Young estimate

(fi ) , G fivafa p

Theorem 2.1 LetT >0,s> g and2 p .Assumethatu C([0,T],HS(R))isastrong
solution of problem(4) such that u0,x) = up satis“es

Uo ,Uox ,Uoxx Lp(R).

where is an admissible weight function for probleif#). Then, forallt [0,T], we have
the estimate

u LP + Ux LP + uXX LP

Up P+ Upx P+ Uoxx P €M
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for some constant G 0 depending only on v (through the constants ACy, infx g v, and
2 dx< ) and

M= sup u(t) Lt xu(t) Lt wU(t) L
t [0,T]

Proof Assume that isv-moderate and satis“es the above conditions. From the assump-
tionu C([0,T],H®),s>5/2, we get

M= sup u(t) + xu(t) + xu), <
t [0,T]

For anyN Z*, let us consider theN-truncations of : f(x) = fy(x) = min{ ,N}. Then
f:R Risalocally absolutely continuous function such that

fL N,f(x) Af(x) a.e.onR.
On the other hand, ifC; = max{Cy, 3, where =inf, pV(x)>0, then
f(x+y) Cv¥)f(x) xy R.

In addition, as shown in 2], the N-truncations f of av-moderate weight are uniformly
v-moderate with respect toN. We begin to consider the case 2 p< . Multiply the “rst
equation of problem ) by f|uf |P-{uf) and integrate to obtain

[uf [P-Fuf) ¢(uf)dx... |uf|P3uf)fu2dx
R R

XX

1
..R|uf|p"'2(uf)fG u)2(+§u2 dx=0. (9)

For the “rst term on the left-hand side of @), we have

p..1d

Lb‘ a uf LP, (10)

PR () dx= 5 ot f=

and the third term on the left-hand side of ) reads

1 1
|uf |P--quf))fG uf+§ufx dx uf BtfG uZ+ Zu?
R

2 XX |_P
1
uf B Gv i Ui o+ udif o,
CM uf %5t uf o+ Uef 1o, (11)

where we used the Holder inequality, Lemme&s1and 3.2 and @). For the second term,
we have

luf [P-Fuf)fu2dx = uyJuf|P-quf) (fu)..uf; dx
R R
uy|uf|P-quf) c(fu)dx +  uy|uf|Pfuf)uf, dx
R R

M
° uf P+ AM uf P (12)
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From (9) we obtain

d M
i uf 1p B+AM uf 1p+CM Uxf 1p+ Uxf 1p . (13)

Now we will give estimates oru,f. Di erentiating the “rst equation of problem (6) with
respect tox, we get

1
Ut .. UglUyy .. Gy UZ+ Eu2 =0, (14)
which multiplied by f results in the equation

1
t(UxF) . fuUge . G U2+ §U>2<x =0. (15)

Multiplying (15) by |uxf |P{u,f) with p  Z* and integrating give the equation
[Usf [P RUnf) c(uxf) X ... Juxf [PFuxf )fugUx dx
R R
2 1 2 —
o JufPrRud)Ge U2+ Zu2, dx=0. (16)
R

X 2XX

Using as similar procedure, we obtain the estimates

1d d
lud P qud) () dx= S b= ud B ud (17)
R|uxf|P---?(uxf)fuxuxxdx M uf Do, (18)

and

1 1
lucf P Rud )G, w2+ 22, dx  uf DG, w2+ Euz
R

X 2 XX XX Lp
Coud D' Gev o u2f ,+ udf |,
CM Uf P uf o+ Uef o, (19)
where we used «G(x)| < 2e¥. Therefore from (16)...19) it follows that
d
— W p (C+IM uyf 1p+CM ukf p). (20)

dt
Next, we focus on estimates afxf . Di erentiating ( 14) with respect tox and multiplying

by f result in the equation

1
t(Unf) . FUZ, . FUUyx - FGix u§+§u§X =0. (21)
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Multiply by Juxf [P Fusf) with p Z* and integrate to obtain the equation

U [P R ) ¢(Uf ) AX oo U [P RUsoc U2 AX oo U [P R ) U U X
R R R

XX

1
.. R|uxxf|p---?(uxxf)fexx u)2(+§u2 dx=0. (22)

Notice that the estimates

1d d
[y f |pm2(Uxxf) t(Uxxf)dx == Usxf Ep = U Epla
R

b dt Uxxf P, (23)

R|uxxf|""'2(uxxf)fu§xdx M uxf Do, (24)

and

1 1
R|uxxf|P---?(uxxf)fGXX u)2(+§ufx dX  Uef D5 G u§+§u§x

LP
CM Uuf D5 Uef o+ Uof » (25)

hold, where we used the equality?’G=G ... 1.
For the third-order derivative term, we have

RquxfIp"'iuxxf)fuxuxxxdx = Ruxluxxflp“"’(uxxf) x(f) - Lk dx
 Udlusof [P o) x(fue) dx
+ Rleuxxf|pmztuxxf)uxxfxdx
M Uad o+ AM uyf . (26)
p

Therefore from (22)...26) it follows that

d

1
a Uof b CM uf p+M 1+C+A+B Usof L. 27)

Now, combining (13), (20), and 7), we deduce

d
dat uf e+ U o+ Uf e

M 1
6+AM uf (p+@BC+1M uxf p+M 1+3C+A+B Ux 1P

CM uf (p+ uf p+ uUnf 1p. (28)
Integrating (28) gives

uf o+ U Lo+ Ul p

Uof Lo+ Uof Lo+ Ugef 1p €Mt [0,T] (29)
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Sincef (x) = fy(X) (x) asN fora.e.x R, recalling thatup , Ugx , Uoxx  LP,
we deduce

U p+ Ux pt+ Uxx P

Up p+ Uox Pt Ugxx P M t [0,T] (30)
Finally, we will treat the cas@ = . We haveug, Ugy, Uowx L2 L andf(x)=fy(X) L
So we obtain

uf La+ Uxf Lo+ uyf (o

Uof La+ Ugd a+ Ugef a €Mt [0,T] (31)

for g [2, ), where the last factor on the right-hand side is independent of Since
f L f L asp foranyf L2 L ,weget

uf |+ uf |+ unf L

Uof L + Uxf L + Uof ¢ €Mt [0,T], (32)

where the last factor on the right-hand side is independent &f. Now taking the limit as

N implies that estimate 81) remains valid forp= . O
Remarkl (1) Let = gogoWith c>0,andletp= . Then Theorem2.1states that the
condition

Uo(X) + Uox(X) + Uoux(x) C 1+[x|
implies the uniform algebraic decay in [0 ]:
Ut,X) + Ux(t,X) + Uuxe(tx)  C 1+[x] "

It is shown that the algebraic decay rates of a strong solution to proble#) are obtained.

(2) Let = L100ifx Oand (x)=1ifx OwithO a<1.Itiseasyto see that
such a weight satis“es the admissibility conditions of De“nitior2.1 Moreover, letp =
in Theorem 2.1 Then problem @) preserves the pointwise deca@(e®) asx + for
eacht > 0. Similarly, we have persistence of the decage #*) asx

Clearly, the limit case = 11,4 iS not covered in Theorem2.1 Furthermore, in the
following theorem, we may choose the weight = ;.4 with c<0,d R, and ﬁ <p

. More generally, when (1 4 - |)°log(e+ | -])¥ LP(R), Theorem 2.2 covers the case
of fast growing weights, which means that when\amoderate weight does not satisfy
condition (8), we may establish a variant of Theorer®.1, putting instead of assumption
(8), the following weaker condition:

vetl  LP(R), (33)

where2 p



Wang and GuaBoundary Value Problems  (2023) 2023:51 Page 9 of 17

Theorem 2.2 Let2 p ,let be a v-moderate weight function as in De“nitio@.1
satisfying condition(33), and let the initial data ug = u(0,x) satisfy

Uo ,Uox ,Uoxx LP(R) and Uo %,Uo)x %,UOXX % LZ(R)
Then the strong solution u of the Cauchy problem f@), emanating from w, satisfy

sup u(t) |pt+ Ux(t) Pt Un(t) |p <
t [0,T]

and

1 1 1
sup  U(t) 2 o+ Ux(t) 2 o+ ux(t) 2 ;2 <
t [0,T]

Remark2 Let = 110dx)=€¥andp= in Theorem2.2 If |up(X)|, |Uox(X)|, and|Uo x|
are bounded byCe™, then the strong solution satis“es

u(t,x) + Uy(t,X) + Ug(t,x) Ce¥™
uniformly in [0, T].
Proof The assumption that is av-moderate weight function implies
Co>0, sit, (x+y) Cov(xvy) xy R,
which, combined withinfrv > 0, gives
1 14 1
2(x+y)  CFvz(xvi(y) Xy R,
that is, %isav%-moderateweightfunction.The inequality (X)] Al (X)| reads

2o 3

I(x) = .

1
2

By condition (33), ve’ ™  LP. So the Holder inequality yields

1 1. I 2p
vzeM | vier , ez | cveM < | 9= 5 1
Thus Theorem2.1with p =2 applied to the weight 3 results in
1 1 1
U2 o+ U 2 % Ui 2
1 1 1
Up 2 2+ Uox 2 2% Uoxx 2 |2 et [o,T] (34)

From Lemmaz2.2andf (x) = fy (x) = min{ (X),N}, applying 83), we have
1 1
G uZ+ §U§x < G e f U2+ Zu2,
LP Lt
<c f%ux i2+ f%Uxx iz

ceMt, (35)
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Similarly, we have the estimates

1 1
Gy ui+-ud, < G e f Ui+ ZUud,

2 Lp 2 Ll

<c f%ux f2+ f%uxX fz
ceMt (36)
and
1 1 1

Gy UZ+-u3, = fG ui+Zud o+ f ui+ Ul

2 Lp 2 Lp 2 Lp

A

1 1
fGp f U2+ Zus,  + f U2+ U
2 L1 2 LP

1 2 1 2
Scof2ug o+ f2U 2 +CM Uf 1o+ und e

CEM L CM U f o+ Ul 1o . (37)

Here the constants on the right-hand side of36)...87) are independent olN. By using the
procedure as in the proof of Theoren2.1, we readily get

d M 1

0t uf o B+AM uf p+ fG u§+§u§X R (38)

d 2,1,

afuﬁ o M ouf p+ Gy U+ SUo (39)
LP

and
d 1 1
0t Uof p M 1+A+B U 1p+ TGy u>2(+§u)2(x B (40)

Substituting 35), (36), and 37) into (38), (39), and @0), respectively, and summing up
them, we have

d
dat uf e+ U o+ Uf e

KM uf (p+ U p+ Uxf o +CeEM, (41)
From Gronwalles inequality it follows that

uf o+ U Lo+ ugf e

Mt Uof Lp+ Ugxf Lp+ Ugf Lp +CéC+K)Mt. (42)

We obtain desired result by letting\ inthecase2 p< .The constantsthrough-
out the proof are independent op. So forp=, we can obtain the result from that es-
tablished for the “nite exponentsq by letting q . The rest of the proof is fully similar
to that of Theorem 2.1 O
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3 Blow-up

3.1 Several lemmas

In this section, we study the su cient conditions of blow-up solutions for problem 4) by
using some classical methods. Firstly, we need several lemmas.

Lemma3.1([3)) Letf CR),a>0,b>0,andf(0)> L.Iff (t) af%(t)..b, then

1 f(0) +
=——log
2 ab ).

f¢) + ast T (43)

vio || vic|

Lemma 3.2 ([13]) Letus HS,s 5/2. Thenthe corresponding solution u has the constant
energy integral
wZ+ul dx=  ud +ud, dx= uo 1.

R

X XX
R

Lemma 3.3 ([13]) Letuy HS,s 5/2.LetT be the lifespan of the solution to probled).
Then the corresponding solution blows up in “nite time if and only if

liminfinfm=... .
t T xR

Remark3 From Lemma3.2we see that(t,X) is bounded. This implies that the solution
to problem (4) blows up if and only if

lim Uy | =+
t T
3.2 Blow-up phenomenon

Theorem 3.1 Letuy HS(R)fors> g Let u(t,x) be the corresponding solution of with the
initial datum u (. Suppose that the slope of satis“es

Uy~ < (44)

where K& = @327 . and K2 = ﬁf._l' Then there exists the lifespan ¥  such
that the corresponding solution @, x) blows up in “nite time T with

1 K1h(0) +K
T= 2%k °8 no) K (49)
Proof De“ne g(t) = ux(t,x) andh(t) = , g dx. Then it follows that
4 --99=Q (46)

whereQ= (1... 2)~fuZ+ 1u2).
Di erentiating equation (46) with respect tox yields

1 1 1
gx..ggxzégf..g2+ 1..2 u)2(+§u)2(X . (47)
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Multiplying by 3g? both sides of 47) and integrating with respect tax over R, we have

d
—  gdx=
R

m gldx...3 g?gdx
R

NI =

R

3

+3 @1..272dx+> @1..2 U2 dx
R 2 g

= 1t 2+ 3+ 4. (48)

Using Holderss and Yonges inequalitie®)(and @8), we get

2=3 gzgfdx
R
1

2
3 gtdx (g)*dx
R R

N

1

2 4 2
3 Up 1 (g)*dx
R

Up fu,  x(0)'d

3 )
2 2

(49)

=3 1.2 dx

Uo (99X

w

Uo f ,  n(80"dX

2 2 ’ (50)

and

N

1277, 2 (g)tdx
R

1
2

w NI W NI w

2
S (@)
R

32 U ¢1+ 2(@)*dx
4 2 2 '

(51)

Combining inequalities @9)...%1), we obtain

24+3 2 , (24+3 2)

[ 2l +] sl +] 4 8 Uo 1+ 3

R(&)“ dx. (52)
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2

Choosing = 52—

yields

(24+3 27 s 1 4
2t 3+ 4 T Uo H1+Z R(gx) dax . (53)

Therefore, combining @8) and (52), we get

gldx .. K2, (54)
R

=]
=

8
I

2 _ (24+3 22
K="

where Ug ﬁl. Using Holderss inequality, we get

2

g dx gdx dgfdx U al g dx. (55)
R R R R

Combining (54) and (65), we have

%h(t) - K2h(t) + K2, (56)

whereK? = 1,
4 ug 01
From the assumption of the theorem we have thdt(0) > Kﬁl and the continuity argu-

ment ensures thah(t) >h(0). Lemma3.1(with a= K? andb = K?)implies thath(t)  +

_ 1 K1h(0)+K
ast T =g loglng &

On the other hand, using the fact that

Rgfdx Rgfdx Ut X) | Rgfdx: UetX) | Ug oyos (57)

Remark3 implies the statement of Theoren8.1
The characteristicg(t, x) related to problem @) is governed by

ai(t,X)=..ux t,q(t,x), t [0,T),
g0,x)=x, x R.

Applying the classical results in the theory of ordinary di erential equations, we can obtain
that the characteristicsg(t,x) CX([0,T) x R) with g(t,x) = e 04 4 Xd >0 for all
(t,x) [0,T)x R. Furthermore, itis shown in R8] that the potential y = u .. uyx satis“es

Yo 1,06, X) Gu(t,X) = Yp(x)e 0 e A (58)
Therefore we obtain the second blow-up result. O

Theorem 3.2 Letuy HS(R), s> g Suppose that there is a pointx R such that

2 2 2
Uox 2. <0 and Uox < —~Uox. (59)

2

1
U(Z)X(XZ) -"Eu(z)xx(x2) +
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Then the blow-up occurs in “nite time

1 U ... B2 + 241 U y1
To= — log —— —
2+1 Uox {1 USe - B3, ... 2+1 Ugx 1

Proof We track the dynamics ofP(t) = (ux 7? Uxx) (t, q(t, x2)) and Q(t) = (uy + guxx)(t,
q(t,x2)) along the characteristics

2
P(t) = (U + UxxQt) ---7(Utxx + UyxxCt)

2 1 2 1
= 5 PQ+ « 1.2t u)2(+§ufx i 1.2 u)2(+§uix
2 2+ 2 2
7PQ+ 7 Up 1 (60)
and
2
Q (1) = (Ut + UxxQ) + 7(Utxx + UxyxClt)
2 1 2 1
= 7PQ+ X 13 -1 U>2<+§uix +7 13 -1 U§+§U§X
2 2+ 2 2
..7PQ...T uO Hl. (61)

From (59) we see that the right-hand side of60) is positive and the right-hand side of
(61) is negative initially. HenceP increases, an® decreases. Then we obtain

2
WD<WQZUWH7TWM<Q (62)
2
Q®>Qmﬁwm+7?%m>0 (63)
Letting h(t)= ..PQ(t) and using the estimateQ'T'P h(t), we have

PQ+PQ
2 TPQ

L ZPQ+ 252 g 2 )Q+P(2PQ+ 252 Uy 2,)
2 PO

2PQ+ 252 Uy 2)(Q..P)

ht) = ..

2 .PQ
2 2+ 2 2
..TPQ...T uO Hl

5 o (64)
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In view of Lemma3.1, we obtainthath + ast Tgwith

1 2ho+(  2+1) Ug 1
To= log —

= = : (65)
2+1 Ugk w1 2ho( 2+1) Uox H1

Observe thath(t) =  3u2, ..u2< |7§uxx(t, q(t,x2))|. Thereforen + ast Tgimplies
that |ux(t,q(t,x2))] + ast To.
The proof of Theorem3.2is completed. g

Theorem 3.3 Letuy HS(R)fors> g Suppose that there existg x R such that uyx(x3) >
Uy wt. Then the wave breaking occurs in “nite time

1 Uoxx(X2) + U
T - log OXX( 2) 0 H1 ) (66)
Uy Ht Ugxx(X2) ... Ug H1

Proof Now we prove the wave-breaking phenomenon along the characteristigs x3). It
follows from (6) that

1
ut)y= 1..2"" U5+ S, (67)
and
1 1 1
uXX(t):Eu)Z(X..u)2(+ 1..2 u)2(+§ufX . (68)

Since (1...2)~Yu+ 1u2) 3uZ, we get

U, () Zu2 ..Zui (69)

SettingM (t) = ux(t,q(t,x3)) and using Younges inequality, Lemma&sland 3.2 and §9),
we get

M (t) %W .. Ko, (70)

whereK; = 3 Uy 2.
Since by the assumption of Theorerl.2 ugw(X3) > Uy w1, solving (0) results in

M + ast T, -
whereT = 1 log(uoxX(X3)+ Ug Hl) ]
Uo nl Uoxx(x3)---Ug 17"
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