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Abstract
In this paper, we discussed a stochastic optimal control of hepatitis C that minimizes
the side effect and reduces the viral load. The control variables represent the drug
therapy used for blocking a new infection and virus production. The solution of
control problem is solved using the stochastic minimum principle and a four-step
scheme. The numerical simulation is carried out to justify the theoretical analysis. The
result shows that using both types of drugs for therapy is much more effective.
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1 Introduction
Hepatitis C is an inflammatory liver disease caused by the hepatitis C virus (HCV) that
can lead to cirrhosis and/or hepatocellular cancer [1]. Hepatitis C is a bloodborne dis-
ease, which is mostly transmitted through contaminated needles used for dialysis, tattoos,
piercings, and unclean blood transfusion [2–4]. HCV infection does not always require
treatment since the immune response can clear the infection. However, when hepatitis
C becomes chronic, treatment is needed to cure the disease. WHO recommends using
direct-acting antiviral (DAA) therapy [5].

Certain variants are associated with a higher potential for resistance or therapeutic fail-
ure. The DAA regimen faces a risk of resistance when administered to a group of infected
patients with a special variant known as the resistant associated variant (RAV). Thus, in
every case of suspected resistance or failure of therapy with the DAA regimen, it is neces-
sary to examine resistance genotypes. The results of this examination will be considered
for therapy modification, either by adding the duration, other agents, especially ribavirin,
or by substituting the regimen [6].

In the past 10 years, there have been two types of standard therapies for chronic hepatitis
C that are often used in the treatment of hepatitis C, namely a combination of interferon
and ribavirin. This therapy gave satisfactory results, i.e., in patients with HCV genotypes 2
and 3, around 80% of patients could achieve sustained virological response (SVR24), while
in HCV genotype 1, only 40-50% of patients managed to achieve SVR24 [6]. Based on the
basic HCV model provided by Neumann [7], Dustin et al. [8] and Hasan et al. [6], they
explained that the type and duration of therapy depend on the type of HCV genotype.
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Thus, giving the same therapy to different patients can result in different effects. This
phenomenon will be modeled as stochastic effects.

Furthermore, a combination of interferon and ribavirin also has side effects such as
anemia, drowsiness, indigestion, and shortness of breath [9]. Therefore, in this paper, a
stochastic optimal control problem is established to determine the optimal drug effec-
tiveness to treat hepatitis C. The objective function is minimizing viral load and drug side
effects.

Several papers have discussed the optimal control of hepatitis C. Martin et al. in [10] had
determined the optimal therapy program for hepatitis C patients over 10 years, consider-
ing biomedical and economic goals. In this case, the minimum cost is determined to re-
duce viral load and the cost of secondary effects caused during therapy. Meanwhile, Pere-
grino et al. [9] considered optimal control of cellular level HCV with immune response,
and Zhang et al. [11] proposed optimal control of HCV model with treatment, both of
whom used the maximum Pontryagin principle. Their research focused on a determin-
istic model, whereas we developed a stochastic optimal control model in this study. We
could investigate the effects of uncertainty in the optimal control of the hepatitis C prob-
lem. Another research that analyzes the fractional order mathematical model of hepatitis
B is studied in [12].

In [13–15], they discussed about an optimal control problem in deterministic and
stochastic epidemic models using the Hamilton-Jacobi equation. Meanwhile, Ishikawa
[16] designed the optimal control of the SIR model using the maximum stochastic prin-
ciple and the four-step scheme technique. However, researchers have not discussed the
optimal control problem where the control variable is contained in the diffusion coeffi-
cient. In this article, we present the new results of the stochastic optimal control where
the control variable is contained in the diffusion coefficient. The optimal control problem
is solved using the Hamilton-Jacobi-Bellman (HJB) equation, which is a nonlinear function
and challenging to solve numerically. In this paper, the minimum stochastic principle and
the four-step scheme will be applied to the stochastic control of the hepatitis C epidemic
model. Based on medical literature [7], the optimal solution determines the effectiveness
of drugs related to administer drug doses during therapy.

The rest of this paper is organized as follows. Section 2 presents the mathematical mod-
eling for hepatitis C with a stochastic control and the analysis. Then, in Sect. 3, we car-
ried out numerical simulations to verify theoretical results. Finally, in the last section, we
present a conclusion.

2 HCV stochastic control model with a diffusion coefficient that contains
control variables

HCV initially infects target cells, proliferates inside them, and then gets released into the
extracellular space without disrupting the cell integrity. During its life cycle, HCV usurps
host cell molecules, termed host factors, and various cell biological mechanisms ranging
from endocytosis to the secretory pathway. The HCV life cycle can be separated into four
steps: (1) virus entry; (2) genome translation and polyprotein processing; (3) genome repli-
cation and (4) particle assembly and release from the host cell. Virions are released from
the cells most likely by exocytosis or transmitted to other cells via a cell-free mechanism
[17].
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Recall a deterministic mathematical model of HCV given in [7] as

dT
dt

= � – δ1T – (1 – η)βVT ,

dI
dt

= (1 – η)βVT – δ2I,

dV
dt

= (1 – ε)kI – cV . (1)

The cell population N(t) is categorized into three sub-populations. Let T(t) be the number
of healthy or uninfected cells, I(t) be the number of infected cells, and V (t) be the number
of free viruses. The uninfected cells are produced at rate � and die naturally at a constant
rate δ1. Cells become infected when they interact with the virus at a constant rate β ; once
infected, they will die at a constant rate δ2. HCV is produced by infected cells at a constant
rate k and cleared at a constant rate c. Parameter η is the effectiveness of a drug in stopping
new infection and ε is the effectiveness of a drug in blocking virus production.

For the deterministic Model (1), there are two equilibrium points, namely the disease-
free equilibrium point E0 = ( �

δ1
, 0, 0) and the endemic equilibrium point E1 = ( δ2c

(1–η)(1–ε)kβ
,

�
δ2

– δ1c
(1–η)(1–ε)kβ

, (1–ε)k�

δ2c – δ1
(1–η)β ). By using the next generation matrix method [18], the

basic reproduction number for the deterministic model or uncontrolled system is R0 =
(1–η)(1–ε)�βk

cδ1δ2
.

We defined two controls variables as follows
1 u1(t) represents the control variable to block new infection.
2 u2(t) represents the control variable of hepatitis C to block the virus production.

We assumed that the control variables are stochastic, i.e., u1(t) = u1 + σ1u1 dB(t)/dt and
u2(t) = u2 +σ2u2 dB(t)/dt, where B(t) is standard Brownian motion. The stochastic control
system model is given by

⎧
⎪⎪⎨

⎪⎪⎩

dT = (� – δ1T – (1 – u1)βVT) dt + σ1u1βVT dB(t),

dI = ((1 – u1)βVT – δ2I) dt – σ1u1βVT dB(t),

dV = ((1 – u2)kI – cV ) dt – σ2u2kI dB(t),

(2)

where

U =
{

(u1, u2) : 0 ≤ u1, u2 < 1
}

, (3)

is the set of control variables and u1, u2 is {Ft}-adapted. If σ1 = σ2 = 0, then System (2)
becomes a deterministic model studied in [7], where u1 = η and u2 = ε.

System (2) represents the dynamics of a biological cell population. Therefore, the num-
ber of cell populations should be non-negative and bounded. For this reason, we first es-
tablished the global existence, positivity, and boundedness of solutions for the proposed
model in the following theorem.

Theorem 2.1 For any initial value in R
3
+, the System (2) is uniformly and ultimately

bounded and belongs to the closed and bounded positively invariant set for every t ≥ 0.
The coefficients of the System (2) satisfy the Lipschitz condition. Then there exists a unique
time-global solution (T(t), I(t), V (t)) ⊂R

3
+, t ≥ 0 with probability 1.
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Proof Consider System (2), it can be seen that the coefficients of the System (2) satisfy the
Lipschitz condition thus guarantee the solution is unique and local. Next, it can be proved
that the explosion time is infinity (i.e., the time when the solution tends to infinity), thus
the solution is global. The detailed proof is analog to [13, 19–21]. �

In our control problem, objective is to reduce the viral load and to minimize the therapy
cost. This objective function/cost function is defined as follows

J(u) = E
[∫ tf

0
L
(
x(t), u(t)

)
dt

]

= E
[∫ tf

0

1
2

c1V (t)2 +
1
2

c2u1(t)2 +
1
2

c3u2(t)2 dt
]

. (4)

The first term of equation (4) represents the main biological target, i.e., reducing the viral
load. The constant c1 is related to the cost for lowering viral load, c2 and c3 are related
to the cost of therapy. Since the integral is a random variable, then we need to take the
expected value. Thus, the optimal control problem is determining optimal control u∗

1, u∗
2

that minimizes the objective function J(u).
The existence of the optimal control pair can be obtained using a result by [22].

Theorem 2.2 There is an optimal control (u∗
1(t), u∗

2(t)) such that

J
(
u∗

1, u∗
2
)

= min
{

J(u1, u2) : u = (u1, u2) ∈ U
}

. (5)

The optimal control variable can then be determined in the following theorem.

Theorem 2.3 The optimal control u∗
1(t) and u∗

2(t) of the System (2), which minimize the
objective function (4) are characterized by

u1(t)∗ = min
{

max{0, ū1}, 1
}

,

u2(t)∗ = min
{

max{0, ū2}, 1
}

.

where

ū1 =
(p2 – p1)βVT + (q2 – q1)βVT

c2 – (σ 2
1 β2V̄ V T̄T)(φ11 – φ21 + φ22 – φ12)

,

ū2 =
p3kI + q3σ2kI
c3 – σ 2

2 k2φ33 ĪI
.

Proof In order to construct the optimal control (u∗
1(t), u∗

2(t)), defined

f1 = � – δ1T – (1 – u1)βVT ,

f2 = (1 – u1)βVT – δ2I,

f3 = (1 – u2)kI – cV ,

g1 = σ1u1βVT , g2 = –σ1u1βVT , g3 = –σ2u2kI. (6)
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and we constructed Hamiltonian function as follows

H(x, u, p, q) =
〈
f(x, u), p

〉
+ L(x, u) +

〈
g(x), q

〉
(7)

where 〈·, ·〉 stands for the Euclidian inner product and

f : R3 × U →R
3, g : R3 →R

3, p : R →R
3,

q : R →R
3, L : R3 × U →R,

f = (f1, f2, f3)t , p = (p1, p2, p3)t , q = (q1, q2, q3)t , x = (T , I, V )t . (8)

Vector p and q denote the adjoint vectors. Thus, we have

H(x, u, p, q) =
〈
f(x, u), p

〉
+ L(x, u) +

〈
g(x), q

〉

= p1
[
� – δ1T – (1 – u1)βVT

]
+ p2

[
(1 – u1)βVT – δ2I

]

+ p3
[
(1 – u2)kI – cV

]
+

1
2

c1V (t)2 +
1
2

c2u1(t)2 +
1
2

c3u2(t)2

+ q1σ1u1βVT – q2σ1u1βVT – q3σ2u2kI. (9)

Based on the stochastic minimum principle [23], then we get the following system of
differential equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dT = (� – δ1T – (1 – u1)βVT) dt + σ1u1βVTdB(t),

dI = ((1 – u1)βVT – δ2I) dt – σ1u1βVTdB(t),

dV = ((1 – u2)kI – cV ) dt – σ2u2kI dB(t),

dp1 = [p1δ1 + p1(1 – u1)βV – p2(1 – u1)βV – q1σ1u1βV

+ q2σ1u1βV ] dt + q1 dB(t),

dp2 = [p2δ2 – p3(1 – u2)k + q3σ2u2k] dt + q2 dB(t),

dp3 = [p1(1 – u1)βT – p2(1 – u1)βT + p3c – c1V – q1σ1u1βT

+ q2σ1u1βT] dt + q3 dB(t),

x(0) = (T0, I0, V0)t , p(tf ) = (0, 0, 0)t .

(10)

According to [23], the controller can balance the scale of control and the degree of un-
certainty if the diffusion coefficient contains control variables in the stochastic situation.
Therefore, we need to define a New Hamiltonian function since the marginal value alone
may not be able to fully characterize the trade-off between the cost and control gain in an
uncertain environment. The New Hamiltonian function is given as follows

H(t, x, u) = H(t, x, u) –
1
2

trace
[
g(t, x, u)tPg(t, x, u)

]

+
1
2

trace
{[

g(t, x, u) – g(t, x̄, ū)
]tP

[
g(t, x, u) – g(t, x̄, ū)

]}

= H(t, x, u) –
1
2
[
(P11 – P21 + P22 – P12)(σ1u1βVT)2

+ σ 2
2 u2

2k2I2P33
]

+
1
2
[
(P11 – P21 + P22 – P12)(σ1β)2
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× (u1VT – ū1V̄ T̄)2 + (σ2k)2(u2I – ū2 Ī)2P33
]
. (11)

The value of H is optimal if the following conditions are satisfied

∂H
∂u1

= 0 and
∂H
∂u2

= 0, (12)

which give

ū1 =
(p2 – p1)βVT + (q2 – q1)βVT

c2 – (σ 2
1 β2V̄ V T̄T)(P11 – P21 + P22 – P12)

, (13)

ū2 =
p3kI + q3σ2kI
c3 – σ 2

2 k2P33 ĪI
. (14)

Since u should be in the control space U , then we have

u1(t) = min
{

max{0, ū1}, 1
}

, (15)

u2(t) = min
{

max{0, ū2}, 1
}

. (16)

Furthermore, we consider the second order adjoining equation as follows

dP = –
{

f t
x P(t) + P(t)fx + (gx)tP(t)(gx) + (gx)t(Q(t)

)

+ Q(t)(gx) + Hxx
}

dt + Q(t) dB(t),
(17)

P(tf ) = 0, (18)

with P and Q are n×n matrices. The equations (10) and (17) are called forward-backward
stochastic differential equations(FBSDE) with terminal conditions (18). Next, we will apply
the four-step scheme method to solve the problem (17).

Step 1: Assume that P(t) and x(t) are related, i.e.,

P(t) = 

(
t, x(t)

)
, (19)

where 
 = (φij)n×n is n × n matrix and φij is vector-valued function with i, j = 1, 2, . . . , n
Step 2: By using Itô’s formula, we obtain

dφij(t, x) =
{

∂φij(t, x)
∂t

+
〈
∂φij(t, x)

∂x
, f (x, u)

〉

+
1
2

trace
[

∂

∂x

(
∂φji(t, x)

∂x

)

g(x)g(x)t
]}

dt

+
〈
∂φij(t, x)

∂x
, g(x)

〉

dB(t). (20)

Since P(t) = φ(t, x(t)) and u is a function of p, q and x, then we have

∂φij(t, x)
∂t

+
〈
∂φij(t, x)

∂x
, f (x,φ, q)

〉

+ �
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+
1
2

trace
[

∂

∂x

(
∂φij(t, x)

∂x

)

g(x)g(x)t
]

= 0 (21)

and

Q(t) =
〈
∂φij(t, x)

∂x
, g(x)

〉

(22)

with the terminal conditions

φij(tf , x) = 0, i, j = 1, 2, 3 (23)

and � is the coefficient dt of (17). Furthermore, the system of partial differential equations
in equation (21) is obtained as follows

∂φ11(t, x)
∂t

+
∂φ11(t, x)

∂T
[
� – δ1T – (1 – u1)βVT

]

+
∂φ11(t, x)

∂I
[
(1 – u1)βVT – δ2I

]
+

∂φ11(t, x)
∂V

[
(1 – u2)kI – cV

]

+
1
2

(
∂φ11(t, x)

∂T
σ1u1βVT –

∂φ11(t, x)
∂I

σ1u1βVT –
∂φ11(t, x)

∂V
σ2u2kI

)2

+
(
–2δ1φ11 + (φ21 – φ11)(1 – u1)βV + (φ12 – φ11)(1 – u1)βV

+ (φ11 – φ21 + φ22 – φ12)(σ1u1βV )2)

+ (Q11 – Q21)σ1u1βV + (Q11 – Q12σ1u1βV ) = 0. (24)

Analog for φij where i, j = 1, 2, 3.

∂φ33(t, x)
∂t

+
∂φ33(t, x)

∂T
[
� – δ1T – (1 – u1)βVT

]

+
∂φ33(t, x)

∂I
[
(1 – u1)βVT – δ2I

]
+

∂φ33(t, x)
∂V

[
(1 – u2)kI – cV

]

+
1
2

(
∂φ33(t, x)

∂T
σ1u1βVT –

∂φ33(t, x)
∂I

σ1u1βVT –
∂φ33(t, x)

∂V
σ2u2kI

)2

+
(
–2cφ33 + (φ23 – φ13)(1 – u1)βT + (φ32 – φ31)(1 – u1)βT

+ (φ11 – φ21 + φ22 – φ12)(σ1u1βT)2)

+ (Q13 – Q23)σ1u1βT + (Q31 – Q32)σ1u1βT + c1 = 0. (25)

Meanwhile, from equation (13) and (14), we have

ū1 =
(p2 – p1)βVT + (q2 – q1)βVT

c2 – (σ 2
1 β2V̄ V T̄T)(φ11 – φ21 + φ22 – φ12)

, (26)

ū2 =
p3kI + q3σ2kI
c3 – σ 2

2 k2φ33 ĪI
. (27)

By using the property of the control space U in (3), we obtain

u1(t)∗ = min
{

max{0, ū1}, 1
}

, (28)
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u2(t)∗ = min
{

max{0, ū2}, 1
}

. (29)

Analogously, for the first-order adjoint equation (10), the four-step scheme method is also
applied, and then the system of partial differential equations is given as follows

∂θ1(t, x)
∂t

+
∂θ1(t, x)

∂T
[
� – δ1T – (1 – u1)βVT

]

+
∂θ1(t, x)

∂I
[
(1 – u1)βVT – δ2I

]
+

∂θ1(t, x)
∂V

[
(1 – u2)kI – cV

]

+
1
2

(
∂θ1(t, x)

∂T
σ1u1βVT –

∂θ1(t, x)
∂I

σ1u1βVT –
∂θ1(t, x)

∂V
σ2u2kI

)2

– θ1(t, x)δ1 – θ1(t, x)(1 – u1)βV + θ2(t, x)(1 – u1)βV

+
(

∂θ1

∂T
–

∂θ2

∂T

)

(σ1u1βV )2T +
(

∂θ2

∂I
–

∂θ1

∂I

)

(σ1u1βV )2T

+
(

∂θ2

∂V
–

∂θ1

∂V

)

σ1u1βVσ2u2kI = 0. (30)

Analog for θ2, then for θ3 as follow

∂θ3(t, x)
∂t

+
∂θ3(t, x)

∂T
[
� – δ1T – (1 – u1)βVT

]

+
∂θ3(t, x)

∂I
[
(1 – u1)βVT – δ2I

]
+

∂θ3(t, x)
∂V

[
(1 – u2)kI – cV

]

+
1
2

(
∂θ3(t, x)

∂T
σ1u1βVT –

∂θ3(t, x)
∂I

σ1u1βVT –
∂θ3(t, x)

∂V
σ2u2kI

)2

– θ1(t, x)(1 – u1)βT + θ2(t, x)(1 – u1)βT – θ3(t, x)c + c1V

+
(

∂θ1

∂T
–

∂θ2

∂T

)

(σ1u1βT)2V +
(

∂θ2

∂I
–

∂θ1

∂I

)

(σ1u1βT)2V

+
(

∂θ2

∂V
–

∂θ1

∂V

)

σ1u1βTσ2u2kI = 0 (31)

with the terminal condition

θ1(tf , x) = θ2(tf , x) = θ3(tf , x) = 0. (32)

Step 3: Solve the partial differential equations systems (24)-(25) with the condition (23),
thus we obtained φij(t, x), i, j = 1, 2, 3. Next, formed P(t) = 
(t, x(t)).

Step 4: Substituting P(t) and Q(t) into equations (15), (16), and (17). Then, the first-order
adjoining equation (10) is solved using a four-step scheme method, namely solving the
system of partial differential equations (30)-(31) with terminal conditions (32), resulting
in an optimal control u1(t) and u2(t). �

3 Numerical simulations
In this section, we carried out some numerical simulations to support our obtained theo-
ritical result of the Model (2). We use a nonstandard finite difference method (NSFD) that
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Figure 1 An epidemic of HCV with and without stochastic control for the System (2).

is explained in [24–26] to produce a reliable and consistent solution to biological nature.
The parameter values chosen here are consistent with studies presented in [27–29]. The
parameters are � = 1, β = 0.09, δ1 = 0.2, δ2 = 0.3, k = 2, c = 1.2, c1 = 100, c2 = 50, c3 = 100,
and initial values T(0) = 3, I(0) = 2, V (0) = 1 (arbitrary unit) and time t (arbitrary unit).
We assume the parameters of intensity noise are σ1 = 0.09 and σ2 = 0.0009.

Figure 1 shows the solution of the System (2) with and without control. This figure illus-
trates the uncontrolled system trajectory tends to an infected equilibrium point (T , I, V ) =
(2, 2, 3.3) where R0 = 2.5 > 1 after time t = 20 (arbitrary unit). It means that hepatitis C still
persists. Meanwhile, the blue line in Figs. 1a, 1b, and 1c describe the solution of system
(2) with control u1 and u2. We can see that the number of healthy cells gradually increases
with optimal control until it reaches a constant value. We also observe that infected cells
tend to zero and free viruses slightly oscillate. It can be seen that therapy can decrease the
infected cells and free viruses, thus the spread of hepatitis C can be controlled. Figure 1c
shows that the control can minimize the viral load. Based on Fig. 1d, the effectiveness is
consistent after time t = 20.

In Fig. 2, it can be seen that the number of healthy cells and infected cells are gradu-
ally increasing and decreasing, respectively. There are oscillations in the number of free
viruses as the effect of stochastic control. In addition, Fig. 2d, 2e, and 2f show the control
variable of the model when using one or both therapy. The effectiveness of drugs is con-
sistent after 20 unit time. Regardless of the endemicity, when the R0 of the model without
control is more than one, it means that hepatitis C persists. By considering the model with
the control, hepatitis C will disappear over time.

4 Conclusions
In this paper, we have investigated the stochastic optimal control problem of the hepatitis
C epidemic model, where we consider ribavirin and interferon treatment as control vari-
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Figure 2 An epidemic of HCV with control u1, u2, and both.

ables. By applying the stochastic minimum principles and a four-step scheme, we obtain
the stochastic optimal solution for controlling the spread of hepatitis C. The results show
the importance of considering stochastic factors in the spread of hepatitis C. The higher
the noise intensity, the more variation in the control variable solution. It means that there
are many variations in the optimal control values for the effectiveness of therapy. In addi-
tion, there is an effect when using the therapy of both types of drugs compared to therapy
using one. Our findings showed that using both types of drugs was much more effective
than using one.

In the future, research on optimal control systems that consider random factors can be
developed, especially for diffusion coefficients containing control variables with Brownian
motion multi-dimension.
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