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1 Introduction
One of the important applied problems in analytical methods is solving the singular
boundary value problems for differential equations. Singular problems have been inten-
sively studied in the last decades. They arise naturally and repeatedly in physical models,
often because of the coordinate system. These kinds of problems also appear in glacial
advance, in transport of coal slurries down conveyor belts and in some other geophysical
and industrial contents [8, 13, 21].

In the present paper, we consider the following (p(x), q(x))-biharmonic problem

⎧
⎨

⎩

�2
p(x)u + �2

q(x)u + θ (x) |u|s–2u
|x|2s = λf (x, u) in �,

u = �u = 0 on ∂�,
(1.1)

where � ⊂ R
N (N > 2) is a bounded domain with boundary of class C1; p, q ∈ C+(�) sat-

isfying the following inequalities

max{2, N/2} < q– ≤ q(x) ≤ q+ < p– ≤ p(x) ≤ p+ < +∞.

And,

�2
r(x)u := �

(|�u|r(x)–2�u
)

denotes r(x)-biharmonic operator for r ∈ {p, q}; θ ∈ L∞(�) is a real function with
ess infx∈� θ (x) > 0; s is a constant such that 1 < s < N/2; λ > 0 is a real parameter, and
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f : � ×R →R is a Carathéodory function, which holds the following growth condition:

∣
∣f (x, s)

∣
∣ ≤ a1 + a2|s|γ (x)–1 (1.2)

for (x, s) ∈ � ×R, where a1 and a2 are positive constants and γ ∈ C(�) such that

1 < γ (x) ≤ p(x) a.e. x ∈ �.

In 2014, the existence of multiple weak solutions for the following nonlinear elliptic prob-
lem with the Navier boundary value involving the p-biharmonic operator was studied [4]

⎧
⎨

⎩

�(|�u|p–2�u) = λf (x, u) in �,

u = 0 = �u on ∂�,

where � is an open bounded subset of Rn with a smooth enough boundary ∂�, λ is a
positive parameter, and f is a suitable continuous function defined on the set � ×R.

The existence of the solutions to the following weighted (p(x), q(x))-Laplacian problem
consisting of a singular term

⎧
⎨

⎩

–a(x)�p(x)u – b(x)�q(x)u + u|u|s–2

|x|s = λf (x, u) in �,

u = 0 on ∂�,

has been proved [17], where � ⊂ R
N is a bounded domain with smooth boundary, a, b ∈

L∞(�) are positive functions with a(x) ≥ 1 a.e. on �; λ > 0 is a real parameter, f : �×R →
R is a Carathéodory function satisfying the following growth condition

∣
∣f (x, t)

∣
∣ ≤ α + β|t|h(x)–1

for all (x, t) ∈ � × R. See also [2, 3] and the references therein. The existence of at least
one positive radial solution of the p-biharmonic problem

�Hn
(
w(ξ )|�Hn u|p–2�Hn u

)
+ R(ξ )w(ξ )|u|p–2u

=
m∑

i=1

ai
(|ξ |Hn

)|u|qi–2u –
k∑

j=1

bj
(|ξ |Hn

)|u|rj–2u,

with the Navier boundary condition on a Korányi ball was proved [25] via a variational
principle, where w ∈ As is a Muckenhoupt weight function, and �2

Hn ,p is the Heisenberg
p-biharmonic operator.

The purpose of this paper is to prove the existence and multiplicity of weak solutions to
the problem (1.1).

The structure of the paper is as follows: in Sect. 2, we recall some basic facts, which will
be used later, and we also introduce our main tools. In Sect. 3, the existence of one weak
solution for the problem (1.1) is proved; in Sect. 4, the existence of multiple weak solutions
for the problem (1.1) is verified.
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2 Basic definitions and preliminary results
Through the paper, we assume that � ⊂ R

N (N > 2) is a bounded domain with boundary
of class C1; p, q ∈ C(�), which hold the following inequalities

max{N/2, 2} < q– ≤ q(x) ≤ q+ < p– ≤ p(x) ≤ p+ < ∞, (2.1)

where

r– := inf
x∈�

r(x) and r+ := sup
x∈�

r(x)

for r ∈ {p, q}. We denote the variable exponent Lebesgue space by Lp(x)(�), i.e.,

Lp(x)(�) =
{

� −→ R : u is measurable and
∫

�

∣
∣u(x)

∣
∣p(x) dx < ∞

}

,

with the Luxemburg norm [10]

|u|p(x) := inf

{

λ > 0 :
∫

�

∣
∣
∣
∣
u(x)
λ

∣
∣
∣
∣

p(x)

dx ≤ 1
}

.

For any u ∈ Lp(x)(�) and v ∈ Lp′(x)(�), where Lp′(x)(�) is the conjugate space of Lp(x)(�), the
Hölder type inequality

∣
∣
∣
∣

∫

�

uv dx
∣
∣
∣
∣ ≤

(
1

p– +
1

p′–

)

|u|p(x)|v|p′(x)

holds true.
Following the authors of [22], for any κ > 0, we put

κ ř :=

⎧
⎨

⎩

κr+
κ < 1,

κr–
κ ≥ 1,

(2.2)

and,

κ r̂ :=

⎧
⎨

⎩

κr–
κ < 1,

κr+
κ ≥ 1

(2.3)

for r ∈ C+(�). The following proposition is well-known in Lebesgue spaces with varia-
tional exponent (for instance, see [15, Proposition 2.7]).

Proposition 2.1 For each u ∈ Lp(x)(�), we have

|u|p̌p(x) ≤
∫

�

∣
∣u(x)

∣
∣p(x) dx ≤ |u|p̂p(x).

Proposition 2.2 ([12]) Let p, q ∈ C+(�). If q(x) ≤ p(x), a.e. on �, then Lp(x)(�) ↪→ Lq(x)(�);
moreover, there is a constant kq such that

|u|q(x) ≤ kq|u|p(x).
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We denote the variable exponent Sobolev space W k,p(x)(�) for k = 1, 2, by

W k,p(x)(�) :=
{

u ∈ Lp(x)(�) : Dαu ∈ Lp(x)(�), |α| ≤ k
}

,

that in which Dαu = ∂ |α|
∂α1 x1...∂αN xN

where α = (α1,α2, . . . ,αN ) is a multi-index with |α| =

N

i=1αi. The space W k,p(x)(�) with the norm

‖u‖k,p(x) = 
|α|≤k
∣
∣Dαu

∣
∣
p(x)

is a Banach separable and reflexive space. We assume that W 1,p(x)
0 (�) is the closure of

C∞
0 (�) in W 1,p(x)(�), which has the norm ‖u‖1,p(x) = |Du|p(x). In what follows, we set

X := W 1,p(x)
0 (�) ∩ W 2,p(x)(�),

endowed with the norm

‖u‖ := inf

{

μ > 0
∫

�

∣
∣
∣
∣
�u
μ

∣
∣
∣
∣

p(x)

dx ≤ 1
}

.

Remark 2.1 As a consequence of Proposition 2.2, if q(x) ≤ p(x) a.e on �, one has

W 1,p(x)
0 (�) ↪→ W 1,q(x)

0 (�) and W 2,p(x)(�) ↪→ W 2,q(x)(�).

In a special case,

X ↪→ W 1,p–

0 (�) ∩ W 2,p–
(�)

On the other hand, because p– > N/2, so

W 1,p–

0 (�) ∩ W 2,p–
(�) ↪→ C0(�).

Thus, the embedding X ↪→ C0(�) is compact; moreover, there exists constant L > 0 such
that

|u|∞ ≤ L‖u‖, (2.4)

where |u|∞ = supx∈� u(x).

Here, we recall the classical Hardy-Rellich inequality mentioned in [9].

Lemma 2.1 Let 1 < s < N/2. Then for u ∈ W 1,s
0 (�) ∩ W 2,s(�), one has

∫

�

|u(x)|s
|x|2s dx ≤ 1

H s

∫

�

∣
∣�u(x)

∣
∣s dx,

where Hs := ( N(s–1)(N–2s)
s2 )s.

We mean by weak solution of the problem (1.1) is as follows.
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Definition 2.1 We say that function u ∈ X is a weak solution of Problem (1.1) if u = �u = 0
on ∂� and

∫

�

|�u|p(x)–2�u�v dx +
∫

�

|�u|q(x)–2�u�v dx

+
∫

�

θ (x)
|u|s–2

|x|2s uv dx – λ

∫

�

f (x, u)v dx = 0

for every v ∈ X.

We continue by introducing the main tools of this paper. Do to this, we need the follow-
ing definition.

Definition 2.2 Let � and � be two continuously Gâteaux differentiable functionals de-
fined on a real Banach space X and fix r ∈ R. The functional I := � – � is said to verify
the Palais-Smale condition cut of upper at r (in short (PS)[r]) if any sequence {un}n∈N ∈ X
such that

• I(un) is bounded;
• limn→+∞ ‖I ′(un)‖X∗ = 0;
• �(un) < r for each n ∈N;

has a convergent subsequence.
If r = ∞, we say that the functional I := � – � verify the Palais-Smale condition.

The following is one of the main tools of the next section established in [6].

Theorem 2.1 Let X be a real Banach space, and let �,� : X −→ R be two continuously
Gâteaux differentiable functionals such that

inf
x∈X

� = �(0) = �(0) = 0.

Assume that there exists positive constant r ∈R and x ∈ X with 0 < �(x) < r such that

supx∈�–1(]–∞,r[) �(x)
r

<
�(x)
�(x)

, (2.5)

and for each

λ ∈ � :=
]

�(x)
�(x)

,
r

supx∈�–1(]–∞,r[) �(x)

[

the functional Iλ = � – λ� satisfies the (PS)[r]-condition, then for each λ ∈ �, there is xλ ∈
�–1(]0, r[) such that Iλ(xλ) ≤ Iλ(x) for all x ∈ �–1(]0, r[) and I ′

λ(uλ) = 0.

The other tool is the following abstract result proved in [5].

Theorem 2.2 Let X be a real Banach space and �,� : X → R be two continuously
Gâteaux differentiable functionals such that � is bounded from below and �(0) = �(0) = 0.
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Fix r > 0 and assume that for each

λ ∈
]

0,
r

supu∈�–1(]–∞,r[) �(u)

[

,

the functional Iλ := � – λ� satisfies the Palais-Smale condition, and it is unbounded from
below. Then, for each

λ ∈
]

0,
r

supu∈�–1(]–∞,r[) �(u)

[

,

the functional Iλ admits two distinct critical points.

The other tool is the following theorem from [7].

Theorem 2.3 Let X be a reflexive real Banach space, � : X → R be a coercive, contin-
uously Gâteaux differentiable and sequentially weakly lower semi-continuous functional
whose Gâteaux derivative admits a continuous inverse on X∗, � : X → R be a continu-
ously Gâteaux differentiable whose Gâteaux derivative is compact such that

inf
X

� = �(0) = �(0) = 0.

Assume that there exist r > 0 and x̄ ∈ X, with r < �(x̄), such that
(i) sup�(x)<r �(x)

r < �(x)
�(x) ;

(ii) for each λ ∈ �r := ] �(x)
�(x) , r

sup�(x)<r �(x) [, the functional Iλ := � – λ� is coercive.
Then, for each λ ∈ �r , the functional � – λ� has at least three distinct critical points in X.

In the sequel, we put

δ(x) = sup
{
δ > 0 : B(x, δ) ⊆ �

}
and R := sup

x∈�

δ(x).

Obviously, there exists x0 = (x0
1, . . . , x0

N ) ∈ � such that

B
(
x0, R

) ⊆ �.

3 Existence result
Let � : X →R be a functional defined by

�(u) =
∫

�

1
p(x)

|�u|p(x) dx +
∫

�

1
q(x)

|�u|q(x) dx +
1
s

∫

�

θ (x)
|u(x)|s
|x|2s dx,

where 1 < s < N/2, and the inequalities (2.1) hold.

Remark 3.1 Under the above assumptions, we gain

1
p+ ‖u‖p̌ ≤ �(u) ≤ K

(‖u‖p̂ + ‖u‖s),

where K = max{ 2
s , 2|θ |∞

sHs
}.
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Proof Because 1 < s < N/2 < q– ≤ q+ < p– ≤ p+, we have

1
p+ ‖u‖p̌ ≤

∫

�

1
p(x)

|�u|p(x) dx

≤ �(u)

≤ 1
s

∫

�

|�u|p(x) dx +
1
s

∫

�

|�u|q(x) dx +
1
s

∫

�

θ (x)
|u(x)|s
|x|2s dx.

By applying the Hardy’s inequality, we gain

1
p+ ‖u‖p̌ ≤ �(u) ≤ K

(‖u‖p̂ + ‖u‖s),

where K = max{ 2
s , 2|θ |∞

sHs
}, and then the proof is completed. �

It is known that � is a continuously Gâteaux differentiable functional; moreover,

〈
�′(u), v

〉
=

∫

�

(

|�u|p(x)–2�u�v + |�u|q(x)–2�u�v + θ (x)
|u(x)|s–2uv

|x|2s

)

dx

for u, v ∈ X (see [18]). Let f : � × R → R be a Carathéodory function with the growth
condition (1.2) and define

F(x, t) :=
∫ t

0
f (x, s) ds. (3.1)

Then the functional � : X →R with

�(u) :=
∫

�

F
(
x, u(x)

)
dx

for every u ∈ X is continuously Gâteaux differentiable with the following compact deriva-
tive

〈
� ′(u), v

〉
:=

∫

�

f
(
x, u(x)

)
v(x) dx

for every u, v in X (see [1]). Now, define

Iλ = � – λ� .

If I ′
λ(u) = 0, we have

∫

�

(

|�u|p(x)–2�u�v + |�u|q(x)–2�u�v

+ θ (x)
|u|s–2uv

|x|2s

)

dx – λ

∫

�

f (x, u)v dx = 0

for every u, v ∈ X, then the critical points of Iλ are the weak solutions of Problem (1.1).
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Lemma 3.1 The functional Iλ verifies the Palais-Smale condition for every λ > 0.

Proof Let {un} ⊆ X be a Palais-Smale sequence, that is

sup
n

Iλ(un) < +∞ and
∥
∥I ′

λ(un)
∥
∥

X∗ −→ 0; (3.2)

We prove that {un} ⊆ X contains a convergent subsequence. By using (1.2), the Hölder
inequality, and (2.4), we have

�(u) =
∫

�

F
(
x, u(x)

)
dx

≤ a1

∫

�

∣
∣u(x)

∣
∣dx +

a2

γ –

∫

�

∣
∣u(x)

∣
∣γ (x) dx

≤ a1
∣
∣u(x)

∣
∣∞

∫

�

1 dx +
a2

γ –

∣
∣u(x)

∣
∣γ̂∞

∫

�

1 dx

≤ |�|
(

a1L‖u‖ +
a2

γ – Lγ̂ ‖u‖γ̂

)

, (3.3)

where |�| is the Lebesgue measure of �. So, for n large enough, from Remark 3.1 and (3.3),
one has

〈
I ′
λ(un), un

〉
=

〈
�′

λ(un), un
〉
– λ

〈
� ′

λ(un), un
〉

≥ ‖un‖p̌ – λ|�|
(

a1L‖un‖ +
a2

γ – Lγ̂ ‖un‖γ̂

)

.

Then, by applying (3.2), we have

‖un‖p̌ ≤ λ|�|
(

a1L‖u‖ +
a2

γ – Lγ̂ ‖u‖γ̂

)

;

since γ (x) ≤ p(x), it follows that {un} is bounded. By the Eberlian-Smulyan theorem, pass-
ing to a subsequence if necessary, we can assume that un ⇀ u. Then � ′(un) −→ � ′(u)
because of compactness. Since I ′

λ(un) = �′(un) – λ� ′(un) −→ 0, then �′(un) −→ λ� ′(un).
By [11, Theorem 3.1], �′ is a homeomorphism, then un −→ u, and so Iλ satisfies the Palais-
Smale compactness condition. �

The next is one of the main results of this paper.

Theorem 3.1 Let f : � ×R −→R be Carathéodory function satisfying (1.2). Assume that
there exist r > 0 and δ > 0 such that

K̂
((

2δN
R2 – ( R

2 )2

)p̂

+
(

2δN
R2 – ( R

2 )2

)s)

m
(

RN –
(

R
2

)N)

< r, (3.4)

where m := πN/2

N/2�(N/2) is the measure of unit ball of RN , and � is the Gamma function. Then,
for each λ ∈ ]Ar,δ , Br[, where

Ar,δ :=
K(( 2δN

R2–( R
2 )2 )p̂ + ( 2δN

R2–( R
2 )2 )s)(2N – 1)

infx∈� F(x, δ)
,
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and

Br :=
r

|�|(a1L(p+r)
1
p̌ + a2

γ – Lγ̂ (p+r)
γ̂

p̌ )
,

Problem (1.1) admits at least one non-trivial weak solution.

Proof Using Theorem 2.1, one can prove the theorem. Thus, we need to show that the
hypotheses of Theorem 2.1 are hold.

First of all, for the given λ > 0, from Lemma 3.1, the functional Iλ satisfies the (PS)[r]

condition. Let r > 0 and δ > 0 be as in (3.4) and the function w ∈ X be defined by

w(x) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 x ∈ � \ B(x0, R),

δ x ∈ B(x0, R
2 ),

δ

R2–( R
2 )2 (R2 –

∑N
i=1(xi – x0

i )2) x ∈ B(x0, R) \ B(x0, R
2 ),

(3.5)

where x = (x1, . . . , xN ) ∈ �. Then,

N∑

i=1

∂2w
∂x2

i
(x) =

⎧
⎨

⎩

0 x ∈ (� \ B(x0, R)) ∪ B(x0, R
2 ),

– 2δN
R2–( R

2 )2 x ∈ B(x0, R) \ B(x0, R
2 ).

So, by applying Remark 3.1, one has

1
p+

(
2δN

R2 – ( R
2 )2

)p̌

m
(

RN –
(

R
2

)N)

< �(w)

≤ K
((

2δN
R2 – ( R

2 )2

)p̂

+
(

2δN
R2 – ( R

2 )2

)s)

m
(

RN –
(

R
2

)N)

,

then, we gain �(w) < r. Plus that, one has

�(w) ≥
∫

B(x0, R
2 )

F(x, δ) dx ≥ inf
x∈�

F(x, δ)m
(

R
2

)N

.

Then, we deduce that

�(w)
�(w)

>
infx∈� F(x, δ)

K(( 2δN
R2–( R

2 )2 )p̂ + ( 2δN
R2–( R

2 )2 )s)(2N – 1)
.

On the other side, using Remark 3.1, for each u ∈ �–1((–∞, 1[), we have

‖u‖ ≤ [
p+�(u)

] 1
p̌ ≤ (

p+r
) 1

p̌ . (3.6)

Hence, from (3.6) and (3.3), we deduce

sup
�(u)<r

�(u) ≤ |�|
(

a1L
(
p+r

) 1
p̌ +

a2

γ – Lγ̂
(
p+r

) γ̂

p̌

)

.
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Therefore, the conditions of Theorem 2.1 are verified. So, for each

λ ∈ ]Ar,δ , Br[ ⊆
]

�(w)
�(w)

,
r

supu∈�–1(]–∞,r[) �(u)

[

,

the functional Iλ has at least one non-zero critical point, which is the weak solution of
Problem (1.1). �

4 Multiplicity of weak solutions
Theorem 4.1 Let f : � × R −→ R be Carathéodory function satisfying Condition (1.2),
and there exist constants μ > p+, D > 0 such that

0 < μF(x, t) ≤ tf (x, t) (4.1)

for all x ∈ � and |t| > D. Then, for each λ ∈ ]0, Br[, where

Br :=
r

|�|(a1L(p+r)
1
p̌ + a2

γ – Lγ̂ (p+r)
γ̂

p̌ )
,

the problem (1.1) admits at least two distinct weak solution.

Proof By hypothesis (4.1) and simple computations, there exists α,β > 0 such that

F(x, t) ≥ α|t|μ – β

for all x ∈ � and |t| > D. We show that Iλ is unbounded from below for r > 1

Iλ(ru) = (� – λ�)(ru)

≤ 1
p+ K

(
rp+‖u‖p̂ + rs‖u‖s) – λ

∫

�

F(x, ru) dx

≤ rp+

p+ K
(‖u‖p̂ + ‖u‖s) – λrμ

∫

�

|u|μ dx + λβ|�|;

since μ > p+ > s, so, Iλ is unbounded from below, and from Lemma 3.1, the functional Iλ
verifies the Palais-Smale condition, so all hypotheses of Theorem 2.2 are verified. Then,
for each λ ∈ ]0, Br[, Iλ admits at least two distinct critical points that are weak solutions of
Problem (1.1). �

Theorem 4.2 Let f : � × R −→ R be a Carathéodory function satisfying (1.2). Then, for
each λ ∈ ]Ar,δ , Br[, where Ar,δ and Br are given as in Theorem 3.1, those are

Ar,δ :=
K(( 2δN

R2–( R
2 )2 )p̂ + ( 2δN

R2–( R
2 )2 )s)(2N – 1)

infx∈� F(x, δ)
,

and

Br :=
r

|�|(a1L(p+r)
1
p̌ + a2

γ – Lγ̂ (p+r)
γ̂

p̌ )
,

the problem (1.1) has at least three weak solutions.
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Proof The functionals � and � defined in previous section satisfy all regularity assump-
tions requested in Theorem 2.3. So, our aim is to verify (i) and (ii) of Theorem 2.3. Put

1
p+

(
2δN

R2 – ( R
2 )2

)p̌

m
(

RN –
(

R
2

)N)

= r

and consider w ∈ X as above, that is

w(x) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 x ∈ � \ B(x0, R),

δ x ∈ B(x0, R
2 ),

δ

R2–( R
2 )2 (R2 –

∑N
i=1(xi – x0

i )2) x ∈ B(x0, R) \ B(x0, R
2 ),

(4.2)

So, by applying Remark 3.1, we gain

�(w) =
∫

�

1
p(x)

|�w|p(x) dx +
∫

�

1
q(x)

|�w|q(x) dx +
1
s

∫

�

θ (x)
|w(x)|s
|x|2s dx

>
1

p+

(
2δN

R2 – ( R
2 )2

)p̌

m
(

RN –
(

R
2

)N)

= r.

Therefore, the assumption (i) of Theorem 2.3 is satisfied. Now, we prove that the func-
tional Iλ is coercive for all λ > 0.

From (3.3), we have

�(u) ≤ |�|
(

a1L‖u‖ +
a2

γ – Lγ̂ ‖u‖γ̂

)

;

and, from Remark 3.1, 1
p+ ‖u‖p̌ ≤ �(u). So, we gain that

Iλ(u) ≥ 1
p+ ‖u‖p̌ – λ|�|

(

a1L‖u‖ +
a2

γ – Lγ̂ ‖u‖γ̂

)

;

since p̌ > γ̂ > 1, the functional Iλ is coercive. Then condition (ii) holds. So, all hypotheses
of Theorem 2.3 are verified. Then, for each λ ∈ ]Ar,δ , Br[, the functional Iλ admits at least
three distinct critical points that are weak solutions of Problem (1.1). �

Remark 4.1 An interesting problem is to probe the existence and multiplicity of solutions
of this equation under the Steklov-type boundary conditions [16, 19, 20, 24, 26] or in the
Heisenberg Sobolev spaces and Orlicz-Sobolev spaces. Interested readers can see details
of these spaces in [14, 22, 23, 25] and references therein.
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