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Abstract
In this paper, we study a free boundary problem modeling spherically symmetric
tumor growth with angiogenesis and a periodic supply of nutrients. The
mathematical model is a free boundary problem since the external radius of the
tumor denoted by R(t) changes with time. The characteristic of this model is the
consideration of both angiogenesis and periodic external nutrient supply. The cells
inside the tumor absorb nutrient u(r, t) through blood vessels and attracts blood
vessels at a rate proportional to α. Thus on the boundary, we have

ur(r, t) + α(u(r, t) –ψ (t)) = 0, r = R(t), t > 0,

where ψ (t) is the nutrient concentration provided externally. Considering that the
nutrient provided externally to the tumor are generally provided periodically, in this
paper, we assume that ψ (t) is a periodic function. Sufficient conditions for a tumor to
disappear are given. We investigate the existence, uniqueness, and stability of
solutions. The results show that when the nutrient concentration exceeds a certain
value and c is sufficiently small, the solutions of the model can be arbitrarily close to
the unique periodic function as t → ∞.

Keywords: Tumor growth; Free boundary problem; Angiogenesis; Asymptotic
behavior; Periodic solution

1 Introduction
Over the past few decades, various mathematical models were proposed to study different
stages and different effects on tumor growth, such as studies on avascular stage (see, e.g.,
[1, 2, 5, 6, 9, 10, 12, 16, 17]), studies on the stage with angiogenesis (see, e.g., [11, 13, 14, 20]),
studies on the effect of inhibitors [4, 7–9], studies on the effects of time delays [2, 3, 8, 9, 15,
18, 19], and so on. The main goal of this paper is to study the effects of periodic nutrient
supply on the dynamics of tumor growth with angiogenesis.
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In this paper, we study the following mathematical model:

cut = �ru – λu in r < R(t), t > 0, (1.1)

ur(r, t) + α
(
u(r, t) – ψ(t)

)
= 0 on r = R(t), t > 0, (1.2)

d
dt

(
4πR3(t)

3

)
= 4π

(∫ R(t)

0
su(r, t)r2 dr –

∫ R(t)

0
sũr2 dr

)
, t > 0, (1.3)

R(0) = R0, (1.4)

u(r, 0) = u0(r), where u0(r) ∈ [
0,ψ(0)

]
, for r ∈ [0, R0], (1.5)

where

�r· =
1
r2

∂

∂r

(
r2 ∂·

∂r

)
.

In the model, u(r, t) and R(t) are two unknown functions, where u(r, t) is the nutrient con-
centration, and R(t) denotes the external radius; λu in equation (2.1) is the consumption
rate of nutrient; α is a positive constant, which represents the density of blood vessels; ψ(t)
is a positive-valued function showing the concentration of nutrient outside the tumor; su
is the proliferation rate; the first term on the right-hand side of equation (2.3) is the total
volume increase caused by cell proliferation. The second term on the right-hand side of
equation (2.3) is the total volume decrease caused by the natural death, and the natural
death rate is sũ, which is a constant. c is a positive constant, which represents the ratio of
the nutrient diffusion time scale to the tumor growth time scale; for details, see [9, 12].
From [4, 7] we know that c � 1.

The above model in the case where α = ∞ and c = 0 has been studied by Bai and Xu [1].
Under two-dimensional nonradial symmetric perturbations, the linear stability of periodic
solutions is studied by Huang et al. [14]. Recently, He and Xing [13] extend the results of
[1] and discussed the three-dimensional nonradially symmetric perturbations. The above
model in the case where α = ∞ and

ψ(t) = σ̄ (1 – γ0κ), (1.6)

induced by the Gibbs–Thomson relation, has been studied by Wu [16, 17], where σ̄ and γ0

are constants, κ represents the mean curvature of the outer boundary of the tumor, and γ0

describes cell-to-cell adhesiveness. The case where ψ(t) is assumed to be a positive con-
stant but α is considered more general and is a function of t has been studied by Friedman
and Lam [11]. In [11] the concentration of nutrient outside the tumor is assumed to be
a constant, but in this paper, as we can see from (2.2), we assume that the nutrient pro-
vided externally to the tumor is generally provided periodically, so that ψ(t) is a periodic
function. This assumption is clearly more reasonable.

We give aufficient conditions for a tumor to disappear, and the results show that the
tumor will tend to disappear when the average nutrient concentration provided by the
outside is lower than a certain value within a cycle time (Theorem 3.1). We investigate the
existence, uniqueness, and stability of solutions. We also study the asymptotic behavior
of the solutions. The results show that when the nutrient concentration exceeds a certain
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value and c is sufficiently small, the solutions of the model can be arbitrarily close to the
unique periodic function as t → ∞ (Theorem 3.6).

The paper is arranged as follows: In Sect. 2, we prove the global existence and uniqueness
of solutions to the system. In Sect. 3, we study the asymptotic behavior of the solutions.

2 Global existence and uniqueness
By the change of variables

r̂ =
√

λr, û = su, ψ̂ = sψ , ˆ̃u = sũ,

after dropping “ˆ”, we simplify the problem to the following system:

cut = �ru – u in r < R(t), t > 0, (2.1)

ur(r, t) + α
(
u(r, t) – ψ(t)

)
= 0 on r = R(t), t > 0, (2.2)

R2(t)R′(t) =
∫ R(t)

0
u(r, t)r2 dr –

∫ R(t)

0
ũr2 dr, t > 0, (2.3)

R(0) = R0, (2.4)

u(r, 0) = u0(r), where u0(r) ∈ [
0,ψ(0)

]
, for r ∈ [0, R0]. (2.5)

In this paper, we assume that the following conditions are satisfied:
(A1) ψ is a positive-valued differentiable function on (0,∞) and ψ(t) = ψ(t + ω), where

ω > 0 is a constant. Moreover, there exists a positive constant B0 > 0 such that |ψ ′(t)| ≤ B0

for t ≥ 0.
(A2) u0(r) is a twice differentiable function.
We denote

ψ̄ =
1
ω

∫ ω

0
ψ(t) dt, ψ∗ = max

0≤t≤ω
ψ(t), ψ∗ = min

0≤t≤ω
ψ(t).

Let

p(x) =
x coth x – 1

x2 , g(x) = xp(x) = coth x –
1
x

, and G(x) =
αp(x)

α + g(x)
.

Lemma 2.1 (1) p′(x) < 0 for all x > 0, limx→0+ p(x) = 1/3, and limx→∞ p(x) = 0.
(2) g ′(x) > 0 for x ≥ 0, limx→0+ g(x) = 0, limx→∞ g(x) = 1.
(3) G′(x) < 0 for x > 0, limx→0+ G(x) = 1/3, limx→∞ G(x) = 0.

Proof (1) See [12]. Property (2) is from [11]. (3) can be easily obtained from (1) and (2). �

Lemma 2.2 Let (u(r, t), R(t)) be a solution of (2.1)–(2.5). Then for 0 < c < ψ∗/B0, we have
the following prior estimates:

(1) 0 ≤ u(r, t) ≤ ψ(t) for r ≤ R(t), t ≥ 0.
(2) K1R(t) ≤ R′(t) ≤ K2R(t), where K1 = –ũ/3 and K2 = (ψ∗ – ũ)/3.
(3) R0eK1t ≤ R(t) ≤ R0eK2t for all t ≥ 0.
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Proof (1) For 0 < c < ψ∗/B0, it is easy to check that u1 = 0 and u2 = ψ(t) are lower and
upper solutions to problem (2.1), (2.2), and (2.5). According to the comparison principle,
it follows that 0 ≤ u(r, t) ≤ ψ(t) for r ≤ R(t), t ≥ 0.

(2) Using (1), from (2.5) we get

–
∫ R(t)

0
ũr2 dr ≤ R2(t)R′(t) ≤

∫ R(t)

0

[
ψ(t) – ũ

]
r2 dr, (2.6)

which implies K1R(t) ≤ R′(t) ≤ K2R(t), where K1 = –ũ/3 and K2 = (ψ∗ – ũ)/3.
(3) From (2), integrating the three parts separately, we readily get that R0eK1t ≤ R(t) ≤

R0eK2t for all t ≥ 0. This completes the proof. �

Theorem 2.3 For c > 0 sufficiently small, problem (2.1)–(2.5) has a unique solution
(u(r, t), R(t)) for t ≥ 0.

Proof First, the free boundary problem can be transformed into a fixed boundary prob-
lem by variable transformation r �→ r

R(t) , and then the existence and uniqueness of the
solution follow by the Banach fixed point theorem. The proof is completely similar to that
of Theorem 1.1 in [20], and we omit the details. This competes the proof. �

3 Asymptotic behavior of the solutions
Theorem 3.1 If ψ̄ < ũ, then for any positive initial value R0, we have limt→∞ R(t) = 0.

Proof From Lemma 2.2(1) we obtain

–
1

R2(t)

∫ R(t)

0
ũr2 dr ≤ R′(t) ≤ 1

R2(t)

∫ R(t)

0

[
ψ(t) – ũ

]
r2 dr, t > 0. (3.1)

It follows that for t ≥ 0,

R(t) ≥ R0 exp(–ũt/3) > 0

and

R′(t)
R(t)

≤ ψ(t) – ũ
3

. (3.2)

For any ζ ∈ [0,ω], integrating with respect to t from ζ to ζ + nω both sides of (3.2), we
obtain

R(ζ + nω) ≤ R(ζ ) exp

(
n(ψ̄ – ũ)ω

3

)
→ 0 as n → ∞,

which implies limt→∞ R(t) = 0, where we use the fact

∫ ζ+nω

ζ

ψ(t) dt =
∫ nω

0
ψ(t) dt = n

∫ ω

0
ψ(t) dt = nωψ̄ .

This completes the proof. �
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Let

v(r, t) =
αψ(t)

α + g(R(t))
R(t) sinh r
r sinh R(t)

. (3.3)

Then v satisfies the following equations:

�rv =
1
r2

∂

∂r

(
r2 ∂v

∂r

)
= v in r < R(t), t > 0, (3.4)

vr(r, t) + α
(
v(r, t) – ψ(t)

)
= 0 on r = R(t), t > 0, (3.5)

Consider the following equation:

dR̃
dt

= R̃(t)
[

αψ(t)
α + g(R̃(t))

p
(
R̃(t)

)
–

ũ
3

]
. (3.6)

By the comparison principle we get

R̃ ≥ R̃(0) exp(–ũt/3) > 0 for t > 0. (3.7)

Lemma 3.2 Let ψ satisfies (A1). If ψ̄ > ũ, then
(1) there exists a unique positive ω-periodic solution R̄(t) to (3.6).
(2) Let R̃(t) be a positive solution of (3.6). Then there exist positive constants C0 and γ

such that

∣∣R̃(t) – R̄(t)
∣∣ ≤ C0 exp(–γ t). (3.8)

Proof (1) Since G′(x) < 0 and G(x) ∈ (0, 1/3) (see Lemma 2.1(3)), if ũ < ψ̄ ≤ ψ∗, then

ũ
3ψ̄

,
ũ

3ψ∗ ∈ (0, 1/3).

Let

b = G–1
(

ũ
3ψ̄

)
, x1 = b/ exp

(
ψ∗ – ũ

3
ω

)
, x2 = p–1

(
ũ

3ψ∗

)
.

For R0 ∈ [x1, x2], let R̃(t) be the solution of (3.6) with initial value R0. Define the map
F : [x1, x2] → (0,∞) by F(R0) = R̃(T). First, we prove that F maps [x1, x2] into itself. For
R0 ∈ [x1, x2], it is obvious that x2 is an upper solution of (3.6). It follows that

R̃(t) ≤ x2 for all t > 0. (3.9)

Thus R̃(ω) ≤ x2. Consider the following initial problem:

⎧
⎨

⎩

dR1
dt = R1(t)[ αψ(t)

α+g(R1(t)) p(R1(t)) – ũ
3 ],

R1(0) = x1.
(3.10)



Xu and Bai Boundary Value Problems         (2023) 2023:61 Page 6 of 15

By the comparison principle we have

R̃(t) ≥ R1(t) for t > 0. (3.11)

Since G(x) < 1/3 (see Lemma 2.1(3)), we get

dR1

dt
= R1(t)

[
αψ(t)

α + g(R1(t))
p
(
R1(t)

)
–

ũ
3

]
≤ R1(t)

(
ψ∗

3
–

ũ
3

)
.

It follows that

R1(t) ≤ x1 exp

((
ψ∗

3
–

ũ
3

)
t
)

≤ x1 exp

((
ψ∗

3
–

ũ
3

)
ω

)
= b = G–1

(
ũ

3ψ̄

)

for 0 ≤ t ≤ ω. Since

dR1

dt
= R1(t)

[
αψ(t)

α + g(R1(t))
p
(
R1(t)

)
–

ũ
3

]

≥ R1(t)
[

αψ(t)
α + g(b)

p(b) –
ũ
3

]
,

we can get

R1(ω) ≥ R1(0) exp

(
ωαψ̄

α + g(b)
p(b) –

ũω

3

)
= R1(0) = x1. (3.12)

From (3.9), (3.11), and (3.12) it follows that R̃(ω) ∈ [x1, x2]. Thus F maps [x1, x2] into
itself. Since the solution R̃(t) depends continuously on the initial value R0, it follows that
F is continuous. By Brouwer’s fixed point theorem, F has a fixed point R̄(0). It follows that
the solution R̄(t) of (3.6) through the initial point (0, R0) is a positive ω-periodic solution.

Next, we will prove that R̄(t) is a global attractor of all other positive solutions, which
also implies the uniqueness of the periodic solution R̄(t).

(2) Let

R̄∗ = max
0≤t≤ω

R̄(t), R̄∗ = min
0≤t≤ω

R̄(t).

Inequality (3.7) implies that R̄∗ ≥ R̄∗ > 0.
The uniqueness of the solution of (3.6) and the comparison principle imply that if R̃(0) >

R̄(0), then there must be R̃(t) > R̄(t) for t > 0, and if R̃(0) < R̄(0), then R̄(t) < R̄ for t > 0.
Assume that R̃(t) > R̄ for t > 0 (the proof of the case where R̃(t) < R̄ for t > 0 is similar and
is omitted). Let

R̃(t) = R̄(t) exp
(
y(t)

)
. (3.13)

Then y(t) > 0 for t > 0, and

y′(t) = ψ(t)
[

αp(R̄(t) exp(y(t)))
α(t) + g(R̄(t) exp(y(t)))

–
αp(R̄(t))

α + g(R̄(t))

]
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= ψ(t)G′(η(t)
)
R̄(t)

(
exp

(
y(t) – 1

))

≤ –ψ∗A0R̄∗
(
exp

(
y(t) – 1

))
,

where

η(t) = θ R̄(t) + (1 – θ )R̄(t) exp
(
y(t)

) ⊆ [
R̄∗, R̄∗ exp(y(0)

]
, 0 ≤ θ ≤ 1,

and

A0 = min
x∈�

(
–G′(x)

)
, where � =

{
x|x ∈ [

R̄∗, R̄∗ exp
(
y(0)

)]}
.

Therefore

(exp(y(t)) – 1)′

exp(y(t)) – 1
≤ –ψ∗A0R̄∗. (3.14)

It follows that

exp
(
y(t)

)
– 1 ≤ (

exp
(
y(0)

)
– 1

)
exp

(
(–ψ∗A0R̄∗)t

)
(3.15)

for t > 0, and hence

R̃(t) – R̄(t) = R̄(t)
(
exp

(
y(t)

)
– 1

) ≤ R̄(t)
(
exp

(
y(0)

)
– 1

)
exp

(
(–ψ∗A0R̄∗)t

)
(3.16)

for t > 0.
For the case R̃(t) < R̄ for t > 0, using similar arguments, it is not hard to get

R̄(t) – R̃(t) = R̄(t)
(
1 – exp

(
y(t)

))

≤ R̄(t)
(
1 – exp

(
y(0)

))
exp(

(
–ψ∗A1R̄∗ exp

(
y(0)

)
t
)
, (3.17)

where

A1 = min
x∈�

(
–G′(x)

)
, where � =

{
x|x ∈ [

R̄∗ exp
(
y(0)

)
, R̄∗)

]}
.

Taking γ = min{ψ∗A0R̄∗ exp(y(0),ψ∗A1R̄∗ exp(y(0)} and C0 = |1 – exp(y(0))|R̄∗, from
(3.16) and (3.17) we easily get

∣
∣R̃(t) – R̄(t)

∣
∣ ≤ C0 exp(–γ t)

for t > 0. This completes the proof of Lemma 3.2. �

Lemma 3.3 Let (u(r, t), R(t)) be a solution of (2.1)–(2.5). Suppose that for T0 ∈ (0,∞) and
a > 0,

max
{∣∣(Rψ)′

∣
∣,

∣
∣R′(t)

∣
∣} ≤ K ≤ K0, a ≤ R(t) ≤ 1/a. (3.18)
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Suppose further that

∣∣u0(r) – v(r, 0)
∣∣ ≤ M ≤ M0. (3.19)

Then there exists positive constant C and c0, depending only on a,α, K0, L0, M0,ψ∗, such
that

∣∣u(r, t) – v(r, t)
∣∣ ≤ CK

(
c + e–t/c) (3.20)

for 0 ≤ r ≤ R(t), 0 < t ≤ T0, and 0 < c ≤ c0.

Proof Direct calculation yields

vt(r, t) =
(
R(t)ψ(t)

)′ α

α + g(R(t))
sinh r

r sinh R(t)

– R′(t)ψ(t)
α(g ′(R) sinh R + (α + g(R)) cosh R)R

((α + g(R)) sinh R)2 .
sinh r

r
.

By (3.18) we get that for 0 ≤ r ≤ R(t),

∣∣vt(r, t)
∣∣ ≤ CK , (3.21)

where C only depends on ψ∗,α, and a.
Let

u±(r, t) = v(r, t) ± CKc ± Me–t/c.

Then

c
∂u+

∂t
– �ru+ + u+ ≥ –CKc + CKc = 0.

Since

∂u+

∂r
+ α

(
u+ – ψ(t)

)
= α

(
CKc + Me–t/c) ≥ 0 on r = R(t), t > 0, (3.22)

and u+(r, 0) ≥ u0(r), by the comparison principle it follows that

u+(r, t) ≥ u(r, t) for 0 ≤ r ≥ R(t), 0 < t ≤ T .

Using similar arguments, we easily get

u–(r, t) ≤ u(r, t) for 0 ≤ r ≥ R(t), 0 < t ≤ T .

This completes the proof. �

If ψ∗ > ũ, then

0 <
ũ

3ψ∗ ≤ ũ
3ψ∗

<
1
3

.
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Noticing that G′(x) < 0 and G(x) ∈ (0, 1/3), we can get that G(x) = ũ
3ψ∗ and G(y) = ũ

3ψ∗ have
unique positive constants solutions X0 and Y0, respectively, and X0 ≤ Y0.

Lemma 3.4 Let (u(r, t), R(t)) be a solution of (2.1)–(2.5). Suppose that R0 ∈ [a, 1/a] for
some a > 0. When ψ∗ > ũ, there exists a positive constant c0, independent of c, such that

1
2

min{X0, a} ≤ R(t) ≤ 2 max{Y0, 1/a} (3.23)

for t ≥ 0 and c ∈ (0, c0].

Proof If inequality (3.23) does not hold for some t, then there exists T > 0 such that for
t ∈ [0, T),

1
2

min{X0, a} ≤ R(t) ≤ 2 max{Y0, 1/a}

and either R(T) = 2 max{R̄, 1/a} or R(T) = 1
2 min{R̄, a}.

If R(T) = 2 max{Y0, 1/a}, then it follows that R′(T) ≥ 0. From (3.1) notice that for 0 ≤ t <
T ,

1
2

min{X0, a} ≤ R(t) ≤ 2 max{Y0, 1/a},

and we get that |R′(t)| ≤ K0, where K0 is a positive constant independent of c and T . It is
obvious that |u(r, 0) – v(r, 0)| ≤ ψ∗. Then by Lemma 3.3,

∣
∣u(r, t) – v(r, t)

∣
∣ ≤ C

(
c + e–t/c).

Then

R′(t) =
1

R2(t)

(∫ R(t)

0
u(r, t)r2 dr –

∫ R(t)

0
ũr2 dr

)

≤ 1
R2(t)

(∫ R(t)

0
v(r, t)r2 dr +

1
3

C
(
c + e–t/c)R3(t)

)
–

1
3

ũR(t)

=
R(t)

3

(
3αψ(t)

α + g(R(t))
p
(
R(t)

)
– ũ + C

(
c + e–t/c)

)

≤ R(t)
3

(
3αψ∗

α + g(R(t))
p
(
R(t)

)
– ũ + C

(
c + e–t/c)

)
.

In particular,

R′(T) ≤ R(T)
3

(
3αψ∗

α + g(R(T))
p
(
R(T)

)
– ũ + C

(
c + e–T/c)

)
.

Notice that

3αψ∗

α + g(R(T))
p
(
R(T)

)
– ũ <

3αψ∗

α + g(Y0)
p(Y0) – ũ = 0,
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so choosing c0 sufficiently small, for c ∈ (0, c0], we have

αψ∗

α + g(R(T))
p
(
R(T)

)
– ũ + C

(
c + e–T/c) < 0,

which implies R′(T) < 0, which contradicts with R′(T) ≥ 0.
If R(T) = 1

2 min{X0, a}, then the proof is similar, so we omit the details. This completes
the proof. �

Lemma 3.5 Let (u(r, t), R(t)) be a solution of (2.1)–(2.5), and let

v̄(r, t) =
αψ(t)

α + g(R̄(t))
R̄(t) sinh r
r sinh R̄(t)

. (3.24)

Suppose ψ satisfies (A1) and suppose further that R(t) ∈ [a, 1/a] for some a > 0. Then there
exists positive constants c0, C, and T0, independent of c, such that the following statement
holds: If for c ∈ (0, c0] and any b ∈ (0, b0],

∣
∣R(t) – R̄(t)

∣
∣ ≤ b, max

{∣∣(Rψ)′
∣
∣,

∣
∣R′(t)

∣
∣} ≤ b,

∣
∣u(r, t) – v̄(r, t)

∣
∣ ≤ b (3.25)

for t ≥ 0 and 0 ≤ r ≤ R(t), then for t ≥ T0, we have

∣∣R(t) – R̄(t)
∣∣ ≤ Cb

(
c + e–γ t),

∣∣u(r, t) – v̄(r, t)
∣∣ ≤ Cb

(
c + e–γ t), (3.26)

and
∣∣
∣∣R

′(t) – R̄(t)
[

αψ(t)
α + g(R̄(t))

p
(
R̄(t)

)
–

ũ
3

]∣∣
∣∣ ≤ Cb

(
c + e–γ t) (3.27)

for 0 ≤ r ≤ R(t).

Proof By the mean value theorem, using the facts that R(t) ∈ [a, 1/a] and R̄(t) ∈ [R̄∗, R̄∗],
we get

∣∣v(r, t) – v̄(r, t)
∣∣ ≤ C

∣∣R(t) – R̄(t)
∣∣ ≤ Cb (3.28)

for t ≥ 0 and 0 ≤ r ≤ R(t). We further denote by C different constants independent of c
and η. Thus

∣
∣u(r, t) – v̄(r, t)

∣
∣ ≤ ∣

∣u(r, t) – v(r, t)
∣
∣ +

∣
∣v(r, t) – v̄(r, t)

∣
∣ ≤ Cb (3.29)

for t ≥ 0 and 0 ≤ r ≤ R(t). Particularly,

∣∣u0(r) – v̄(r, 0)
∣∣ ≤ Cb for 0 ≤ r ≤ R0.

Since |R′(t)| ≤ b, by Lemma 3.3 there exists a constant c0 such that

∣
∣u(r, t) – v(r, t)

∣
∣ ≤ Cb

(
c + e–t/c). (3.30)
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Noticing that te–t ≤ 1 for t > 0, it follows that

e–t/c ≤ c/t ≤ c/T0 for t ≥ T0 > 1.

By a simple calculation we obtain that

1
R2(t)

∫ R(t)

0

(
v(r, t) – ũ

)
r2 dr = R(t)

[
αψ(t)

α + g(R(t))
p
(
R(t)

)
–

ũ
3

]
. (3.31)

Then for t ≥ T0 > 1, we have

∣∣
∣∣R

′(t) – R(t)
[

αψ(t)
α + g(R(t))

p
(
R(t)

)
–

ũ
3

]∣∣
∣∣

=
1

R2(t)

∫ R(t)

0

(
u(r, t) – v(r, t)

)
r2 dr

≤ 1
3R2(t)

(
Cb

(
c + e–t/c)R3(t)

)

=
R(t)

3
(
Cb

(
c + e–t/c))

≤ R(t)
3

(
Cb

(
c +

c
T0

))

≤ CbcR(t).

It follows that
∣∣
∣∣R

′(t) – R̄(t)
[

αψ(t)
α + g(R̄(t))

p
(
R̄(t)

)
–

ũ
3

]∣∣
∣∣ (3.32)

≤ CbcR(t) +
∣∣
∣∣R(t)

[
αψ(t)

α + g(R(t))
p
(
R(t)

)
–

ũ
3

]

– R̄(t)
[

αψ(t)
α + g(R̄(t))

p
(
R̄(t)

)
–

ũ
3

]∣∣
∣∣ (3.33)

≤ Cbc + C
∣∣R(t) – R̄(t)

∣∣. (3.34)

If ψ∗ > ũ, then there exists c0 > 0 sufficiently small such that

ψ∗ > ũ ∓ Cbc

for c ∈ (0, c0] and any b ∈ (0, b0]. By arguments similar to those in the proof of Lemma 3.2,
for the two initial value problems

⎧
⎨

⎩

dR±
dt = R±(t)[ αψ(t)

α+g(R±(t)) p(R±(t)) – ũ
3 ∓ Cbc], t ≥ T0,

R±(T0) = R̄±(T0) exp(±CbT0),
(3.35)

we can get the following statements: Assume that ψ satisfies (A1). If ψ∗ > ũ, then
(1) there exists a unique positive ω-periodic solution R̄±(t) to (3.35).
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(2) For any other positive solutions of (3.35), there exists a positive constant γ1 such that

∣∣R±(t) – R̄±(t)
∣∣ ≤ C exp(–γ1t), (3.36)

where C = |1 – exp(y(T0))|(R̄±)∗, (R̄±)∗ = max0≤t≤ω R̄±(t), and R±(t) = R̄±(t) exp(y(t)). Then

∣∣1 – exp
(
y(T0)

)∣∣(R̄±)∗ ≤ C|(y(T0)| ≤ Cb,

since |y(T0)| = | ln exp(±CbT0)| ≤ Cb. Therefore

∣
∣R±(t) – R̄±(t)

∣
∣ ≤ Cb exp(–γ1t). (3.37)

For t ∈ [T0, T0 + ω] and c sufficiently small,

∣∣R̄+(t) – R̄–(t)
∣∣

=
∣∣R(T0)

∣∣
∣
∣∣
∣exp

(∫ t

0
ψ(ξ )G

(
R̄+(ξ )

)
–

ũ
3

– Cbc
)

dξ

– exp

(∫ t

0
ψ(ξ )G

(
R̄–(ξ )

)
–

ũ
3

+ Cbc
)

dξ

∣∣
∣∣

≤ ∣
∣R(T0)

∣
∣
∣
∣exp

(
ψ∗t/3

)
exp(–Cbct) – exp(–ũt/3) exp(Cbct)

∣
∣

≤ ∣
∣R(T0)

∣
∣(

∣
∣exp

(
ψ∗t/3

)(
exp(–Cbct) – 1

)∣∣ +
∣
∣exp(–ũt/3)

(
exp(Cbct) – 1

)∣∣)

≤ ∣∣R(T0)
∣∣(∣∣exp

(
ψ∗ω/3

)(
exp(–Cbcω) – 1

)∣∣ +
∣∣(exp(Cbcω) – 1

)∣∣)

≤ Cbc,

where we used the fact that

∣
∣ex – 1

∣
∣ ≤ C|x|, C > 2 for |x| > 0 sufficiently small.

Since R̄+(t) and R̄–(t) are periodic functions with the same period ω, we have

∣∣R̄+(t) – R̄–(t)
∣∣ ≤ Cbc

for t ≥ T0. By the comparison principle it follows that

R–(t) ≤ R̄(t), R(t) ≤ R+(t)

and

R̄–(t) ≤ R̄(t), R(t) ≤ R̄+(t).

Therefore

∣∣R(t) – R̄(t)
∣∣ (3.38)

≤ max
∣∣R±(t) – R̄(t)

∣∣ (3.39)
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≤ max
∣∣R±(t) – R̄±(t)

∣∣ + max
∣∣R̄±(t) – R̄(t)

∣∣ (3.40)

≤ Cb exp(–γ1t) +
∣∣R̄+(t) – R̄–(t)

∣∣ (3.41)

≤ Cb
(
exp(–γ1t) + c

)
. (3.42)

From (3.28) we obtain

∣∣v(r, t) – v̄(r.t)
∣∣ ≤ Cb

(
c + exp(–γ1t)

)
.

By (3.30) we get

∣∣u(r, t) – v(r.t)
∣∣ ≤ Cb

(
c + exp(–γ t)

)
,

where γ = min{γ1, 1/c0}. Then (3.29) implies

∣∣u(r, t) – v̄(r, t)
∣∣ ≤ Cb

(
c + exp(–γ t)

)
.

Then (3.27) follows from (3.32)–(3.34) and (3.38)–(3.42). This completes the proof. �

Theorem 3.6 Let (u(r, t), R(t)) be a solution of (2.1)–(2.5). Assume that ψ∗ > ū. Suppose
for some a > 0, there holds R0 ∈ [a, 1/a]. Then, for any ε > 0, there exist positive constant c0

and T0 such that if c ∈ (0, c0], there hold

lim sup
t→∞

|R(t) – R̄(t)| ≤ ε, lim sup
t→∞

|u(r, t) – v̄(r, t)| ≤ ε

and

lim sup
t→∞

∣∣
∣∣R

′(t) – R̄(t)
[

αψ(t)
α + g(R̄(t))

p(R̄(t)) –
ũ
3

]∣∣
∣∣ ≤ ε. (3.43)

Proof From Lemma 3.4 we know that there exists a positive constant c0, independent of
c, such that

1
2

min{X0, a} ≤ R(t) ≤ 2 max{Y0, 1/a} (3.44)

for t ≥ 0 and c ∈ (0, c0]. Besides,

∣
∣R(t) – R̄(t)

∣
∣ ≤ 2

a
+ 2Y0 + R̄∗ =: b1.

By Lemma 2.2(ii) we easily get that |R′(t)| ≤ 2
a (|M1| + |M2|) =: b2 for 0 ≤ r ≤ R(t). Then

∣∣(Rψ)′
∣∣ ≤ ∣∣R′ψ

∣∣ +
∣∣Rψ ′∣∣ ≤ b2ψ

∗ + B0(2/a + 2Y0) =: b3.

Clearly, |u(r, t) – v(r, t)| ≤ 2ψ(t) ≤ 2ψ∗ = b4. Let b0 = max{b1, b2, b3, b4}. Then (3.25) holds
for 0 < b ≤ b0. By Lemma 3.5 we obtain

∣∣R(t) – R̄(t)
∣∣ ≤ Cb0

(
c + e–γ t),

∣∣u(r, t) – v̄(r, t)
∣∣ ≤ Cb0

(
c + e–γ t)
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and
∣∣
∣∣R

′(t) – R̄(t)
[

αψ(t)
α + g(R̄(t))

p
(
R̄(t)

)
–

ũ
3

]∣∣
∣∣ ≤ Cb0

(
c + e–γ t).

Choose c0 small enough and T0 large enough such that

e–γ T0 + c0 <
ε

Cb0
.

Thus, by taking the upper limit of the two sides of the above inequalities respectively, one
can get the desired results. This completes the proof of Theorem 3.6. �
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