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Abstract

In this paper, we present the de“nitions of fractional integrals and fractional
derivatives of a Pettis integrable function with respect to another function. This
concept follows the idea of Stieltjes-type operators and should allow us to study
fractional integrals using methods known from measure di�erential equations in
abstract spaces. We will show that some of the well-known properties of fractional
calculus for the space of Lebesgue integrable functions also hold true in abstract
function spaces. In particular, we prove a general Goebel…Rzymowski lemma for the
De Blasi measure of weak noncompactness and our fractional integrals.

We suggest a new de“nition of the Caputo fractional derivative with respect to
another function, which allows us to investigate the existence of solutions to some
Caputo-type fractional boundary value problems. As we deal with some Pettis
integrable functions, the main tool utilized in our considerations is based on the
technique of measures of weak noncompactness and Mönch•s “xed-point theorem.
Finally, to encompass the full scope of this research, some examples illustrating our
main results are given.
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1 Preliminaries
The domain of fractional calculus is a very rich “eld because of its applications, for in-

stance, in wave propagation in viscoelastic horns, sound-wave propagation or fractional

models and controls (see [5, 16, 22]). There are several de“nitions for fractional integrals

and for fractional derivatives [19, 36]. We are interested in the most general form of such

operators. Till now, the most general known de“nition of the fractional operators seems

to be the fractional integrals and derivatives of a Lebesgue functionf with respect to an-

other function g (see [36, Sect. 18.2], [19, Sect. 2.5] and [5]). However, let us mention

that this de“nition allows us to operate only on real-valued functions. In the past decades,

this general de“nition has proven its applicability in many and di�erent natural situations,

for instance, in [5], starting with the exponential growth model, the same problem was de-
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scribed by a fractional di�erential equation, and we shall see that the choice of the function

g determines the accuracy of the model.

Our goal is to expand the applications of such an approach for vector-valued functions.

Recently, considerable attention has been paid to the theory of fractional calculus in ab-

stract spaces, which is more complicated and di�erent from the classical fractional calcu-

lus of real-valued functions. This is due to the fact that some of the long-known properties

of the real-valued function do not carry over into arbitrary Banach spaces. For instance,

the classical fundamental theorem of calculus in Banach spaces is more complicated than

the standard one. In addition, the weak absolute continuity of Banach-valued functions

does not necessary imply strong or everywhere weak di�erentiability.

The aim of this paper is two-fold. On the one hand, we de“ne and discuss the properties

of the generalized form of the new fractional operators applied for the class of Pettis inte-

grable functions that seems to be interesting in itself. On the other hand, we apply those

results in order to ensure the existence of weakly continuous solutions for some boundary

value problems of fractional order.

We should at least brie”y recall why we discuss as one topic the fractional calculus with

Orlicz spaces. This goes back to the origin of fractional calculus and fractional operators

in function spaces. It is motivated by some applications to integral equations or partial

di�erential equations [24,27]. On the other hand, Pettis integrability is also strictly related

to some weak integrability conditions in Orlicz spaces ([38], for instance).

However, our results complement some of those obtained in [1, 3, 4, 11, 12, 29…31, 35]

or [39]), dealing with the properties of the fractional integral and di�erential operators

when acting on the space of Pettis integrable functions.

Let us recall that a functionψ :R+ → R
+ is said to be a Young function ifψ is increas-

ing, even, convex, and continuous withψ(0) = 0 andlimu→∞ ψ(u) = ∞). For any Young

function ψ , the function ˜ψ :R+ → R
+ de“ned by supv≥0{v|u| …ψ(v)} is called the Young

complement ofψ and it is well known that˜ψ is a Young-type function as well.

The Orlicz spaceLψ = Lψ ([a,b],R) consists of all (classes of) measurable functionsx :

[a,b] →R for which

‖x‖ψ := inf

{

k > 0 :
∫ b

a
ψ

( |x(s)|
k

)

ds< 1
}

, (1)

is “nite (see, e.g., [20]). The particular choiceψ(u) = ψp(u) := 1
p |u|p, p ∈ [1,∞) leads to the

Lebesgue spaceLp = Lp([a,b],R), p ∈ [1,∞). In this case, it can be easily seen thatψ̃p = ψp̃

with 1
p + 1

p̃ = 1 for p > 1.

In this connection, it is worth recalling that, for any Young functionψ , we haveψ(u …

v) ≤ ψ(u) …ψ(v) and ψ(ρu) ≤ ρψ(u) hold for any u,v ∈ R and ρ ∈ [0, 1]. Also, for the

nontrivial Young function ψ , L∞ ⊂ Lψ ⊂ Lψ . For further properties of Young functions

and Orlicz spaces generated by such functions we refer the reader to [2, 20, 35].

In the forthcoming pagesE will be considered as a Banach space with norm‖ · ‖ and

with its dual spaceE∗. Also,Ew denotes the spaceEwhen endowed with its weak topology

σ (E,E∗). Let C[I ,E] denote the Banach space of (strongly) continuous functionsx : I → E

endowed by the norm‖x‖0 = supt∈I ‖x(t)‖. ByC[I ,Ew] we denote the Banach space of all

weakly continuous functionsx : I → E with its weak topology (i.e., generated by continu-

ous linear functionals onE).
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Throughout this paper, we letg be a positive increasing function on an intervalI :=

[a,b], having a positive continuous derivative, withg(a) = 0 (see, e.g., [19, Sect. 2.5] or [36,

Sect. 18.2]).

In this paper, we will have one more important class of functions. Namely, we letϑ :

R
+ → R

+ be a Hölderian function, i.e.,ϑ is increasing and continuous withϑ(0) = 0. The

(generalized) Hölder spaceCϑ [I ,E] consists, by de“nition, of allx ∈ C[I ,E] satisfying

∥

∥x(t) …x(s)
∥

∥ ≤ Lϑ
(∣

∣g(t) …g(s)
∣

∣

)

, L > 0.

Equipped with the norm

‖x‖ϑ := max
t∈I

∥

∥x(t)
∥

∥ + [x]ϑ , where [x]ϑ := sup
t 
=s

‖x(t) …x(s)‖
ϑ(|g(t) …g(s)|) ,

the spaceCϑ
g [I ,E] becomes a Banach space. Elements ofCϑ

g [I ,E] are called generalized

Hölderian functions.

The particular choiceg(t) = t,ϑ(t) = tα ,α ∈ (0, 1] leads, of course, to the classical Hölder

space.

LetCϑ
g [I ,Ew] denote the Banach space of generalized Hölderian functionsx : I → E, with

its weak topology (i.e., generated by continuous linear functionals onE).

Recall that the mapT : X → Y, X and Y are Banach spaces and said to be weakly…

weakly sequentially continuous (ww-sequentially continuous) if and only it maps weakly

convergent sequences (xn) to x ∈ E into sequences (T(xn)) that are weakly convergent to

T(x) in Y.

Definition 1 ([13]) Let ME be a family of all bounded subsets ofE and B1 denotes the

unit ball of E. The De Blasi measure of weak noncompactness is the mapping

μ :ME → [0,∞)

de“ned by

μ(X) := inf{ε > 0 : there exists a weakly compact subset� of E : X ⊂ εB1 + �}.

For the properties ofμ see [13]. The following important Ambrosetti-type lemma will

be used in the paper:

Lemma 1 ([23]) Let V ⊂ C[I ,E] be bounded and strongly equicontinuous. Then,

1. t �→ μ(V (t)) ∈ C[I ,R+], where V(t) := {v(t) : v ∈ V,t ∈ I };
2. μC(V) = supt∈I μ(V (t)) = μ(V (I )),

whereμC denotes the De Blasi measure of weak noncompactness in C[I ,E].

For our purpose, we will need the following Mönch “xed-point theorem whose founda-

tions of use for the weak topology we can “nd in [6]

Theorem 1 ([21]) Let Q be a nonempty, closed, convex, and equicontinuous subset of a

metrizable locally convex vector space C(I ,E) such that 0 ∈ Q. Suppose T: Q → Q is
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weakly…weakly sequentially continuous. If the implication

V = conv
({0} ∪ T(V)

) ⇒ V is relatively weakly compact (2)

holds for every subset V⊂Q, then the operator T has a “xed point inQ.

The following de“nition goes back to Pettis [28]

Definition 2 (Pettis integral) A weakly measurable functionx : I → E is said to be Pettis

integrable onI if

1. x is Dunford integrable on I , that is, ϕx ∈ L1 for every ϕ ∈ E∗;
2. for any measurable A ⊂ I there exists an element in E denoted by

∫

A x(s)dssuch that

ϕ

(∫

A
x(s)ds

)

=
∫

A
ϕx(s)ds for every ϕ ∈ E∗.

ByP[I ,E] denote the space ofE-valued Pettis integrable functions onI . In particular, the

spaceP[I ,R] = L1[I ,R]. We need to introduce more function spaces. For convenience, we

recall the following:

Definition 3 ([8, 28]) For any Young functionψ we de“ne a classHψ (E) as

Hψ (E) :=
{

x : I → E: x weakly measurable satisfyingϕx ∈ Lψ (I ) for everyϕ ∈ E∗}.

As its subspace let us consider

˜Hψ (E) :=
{

x : I → E: x strongly measurable satisfyingϕx ∈ Lψ (I ) for everyϕ ∈ E∗}.

Moreover, the classHψ
0 (E) (resp., ˜Hψ

0 (E)) is de“ned to be the subspace ofHψ (E) (resp.,
˜Hψ (E)) composed of Pettis integrable functions onI , that is

Hψ
0 (E) :=

{

x ∈Hψ (E) : x ∈ P[I ,E]
}

, ˜Hψ
0 (E) :=

{

x ∈ ˜Hψ (E) : x ∈ P[I ,E]
}

.

In particular, the well-known classHp
0(E) denotes the classHψ

0 (E) for the particular choice

ψ ≡ |·|p
p .

Obviously, ˜Hψ
0 (E) ⊆ Hψ

0 (E) ⊆ Hψ (E) and ˜Hψ
0 (E) ≡ Hψ

0 (E) holds true wheneverE is

separable (cf. [28, Corollary 1.11]). Some special facts about these spaces are known (cf.

[14, 28, 38]):

Proposition 1
(1) If E is reflexive, then H1(E) ≡H1

0(E).
(2) For any Young function ψ with limu→∞ ψ(u)/u → ∞, ˜Hψ (E) ⊆Hψ

0 (E). In particular,
˜Hp(E) ⊆Hp

0(E) holds true for any p > 1. If, additionally, E is weakly complete or even
more generally, contains no isomorphic copy of c0, it is also true for any Young
function ψ . That is, ˜H1(E) ⊆H1

0(E) whenever E satisfies this additional condition.
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Clearly, since the weak continuity implies a strong measurability (see [18, page 73]), in

view of Proposition1 it implies that:

Corollary 1 For any nontrivial Young functionψ the space C[I ,Ew] is a proper subset of
˜Hψ

0 (E).

Let us stress that the connection between the Pettis integrability and Orlicz spaces is

much deeper than presented in [38] (see [7]). In the following, we will integrate vector-

valued functions with respect to some real-valued ones. For this reason we recall the re-

sults that complement some of those from [28, 35], dealing with the integrability of Pettis

integrable functions multiplied by real-valued ones.

Proposition 2 ([11, Proposition 5]) If x ∈Hψ
0 (E), then x(·)y(·) ∈ P[I ,E] for every y∈ Lψ̃ .

Let us stress thaty cannot be vector valued, unless the spaceE is a Banach algebra. Now,

we should state an immediate, but important, consequence of Proposition2:

Proposition 3 (cf. [28, Corollary 3.41]) If x ∈ P[I ,E], then x(·)y(·) ∈ P[I ,E] for every y∈
L∞[I ].

Let us recall necessary de“nitions and known facts about weak-type derivatives in Ba-

nach spaces. Let us collect all of them that are applied for problems described in the paper.

Definition 4 ([14, 28]) Consider a vector-valued functionx : I → E. If for everyϕ ∈ E∗

functions ϕx are di�erentiable almost everywhere onI and if there exists a functiony :

I → E such that for everyϕ ∈ E∗ there exists a null setN(ϕ) ⊂ I with

(

ϕx(t)
)′

= ϕy(t), for everyt ∈ I \ N(ϕ),

then the function x is said to be pseudodi�erentiable onI .

In this above de“nition, y is called a pseudoderivative ofx. If the null set independent

of ϕ, then x is said to be a.e. weakly di�erentiable onI andy (in this case) is called a weak

derivative ofx and exists almost everywhere onI . In particular, whenE= R it is clear that

the pseudo- and a.e. weak derivatives coincide with the classical derivatives of real-valued

functions.

Let Dp denote the pseudodi�erential operator (resp., Dω for the weak one). The best

result for a descriptive de“nition of the Pettis integral is that given by Pettis in [28, Sect. 8]

(see also [25, Theorem 5.1] and [18, 23]).

Lemma 2
(1) The indefinite integral of Pettis integrable (resp., weakly continuous) function is

weakly absolutely continuous and it is pseudo- (resp., weakly) differentiable with
respect to the right endpoint of the integration interval and its pseudo- (resp., weak)
derivative equals the integrand at that point.
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(2) A function x : I → E is an indefinite Pettis integral if and only if x is weakly absolutely
continuous and has a pseudoderivative Dpx on I . In this case, Dpx ∈ P[I ,E] and

x(t) = x(a) +
∫ t

a
Dpx(s)ds, t ∈ I .

Before embarking on the next section, we remark that it is natural to assume that the

spaceE has total dual, i.e., a countable determining set. In fact, ifE is separable, then both

E and E∗ have total dual, so even spaces likeBV(I ) or L∞(I ) have this property. In this

connections, all considered pseudoderivatives of a function fromI to E, will be uniquely

determined up to a set of measure zero. Deep results concerning this problem can be

found in [26, Corollary 3.4, Theorem 3.6].

We also recall the following facts: for any continuousg : I → R having a positive, con-

tinuous derivativeg′ on I , Proposition3 may be combined with Corollary1 in order to as-

sure thatx(·)g′(·) ∈ P[I ,E] (resp.x(·)g′(·) ∈ C[I ,Ew]) holds true for everyx ∈ Hψ
0 (E) (resp.,

x ∈ C[I ,Ew]). From which, in view of Lemma2, it follows that

⎧

⎨

⎩

( 1
g′(t)Dω)�1,g

a x(t) = ( 1
g′(t)Dω)

∫ t
a x(s)g′(s)ds= x, holds for anyx ∈ C[I ,Ew], (�),

( 1
g′(t)Dp)�1,g

a x(t) = ( 1
g′(t)Dp)

∫ t
a x(s)g′(s)ds= x,holds for anyx ∈ P[I ,E], (♦).

Remark1 Let us note that

• The fact that the indefinite Pettis integral of a function x ∈ P[I ,E] does not enjoy the
strong property of being a.e. weakly differentiable (see [15]), tells us that (�) does not
necessarily hold for arbitrary x ∈ P[I ,E].

• The formula (♦) is not uniquely determined unless E has total dual E∗. Evidently,
according to (e.g., [37, page 2] and [10]), it may happen that ( 1

g′(t)Dω)�1,g
a x = y, with y

being weakly equivalent to x (but they need not be necessarily a.e. equal).

2 Generalized fractional integrals
Various modi“cations and generalizations of classical fractional integration operators are

known and are widely used both in theory and applications. In this section, we dwell on

such modi“cations such as fractional integrals of a given functionx with respect to another

function g.

Definition 5 (cf. [5, 19,36]) The generalized fractional (org-fractional) integral of a given

function x : [a,b] → E of order α is de“ned by

�α,g
a x(t) :=

1
�(α)

∫ t

a

x(s)
(g(t) …g(s))1…α

g′(s)ds, (…∞ ≤ a < b ≤ ∞),α > 0. (3)

For completeness, we de“ne�α,g
a x(a) := 0. In the preceding de“nition the sign •

∫

Ž stands

for the Pettis integral (in particular, the Lebesgue integral whenE= R).

It should be noted that, for the real-valued functionx ∈ L1[a,b], it is well known that

(see, e.g., [5, 36]) �α,g
a x makes sense a.e. onI and�α,g

a �β,g
a x = �β,g

a �α,g
a x = �α+β,g

a x holds true

for any α,β > 0. We also remark that, in a special caseg(t) = t, t ∈ [a,b] or g(t) = ln t ,
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t ∈ [1,e] we obtain two classical fractional integral operators: the Riemann-Louville and

the Hadamard ones.

De“nition 5 allows us to unify di�erent fractional integral for vector-valued functions

and consequently, in a uni“ed manner, to solve some boundary value problems with dif-

ferent types of fractional integrals and derivatives. Clearly, it is not only a uni“cation, we

extend existing results too.

Example2.1 Letα > 0 andJ⊂ I be a set of positive measure. Consider the Banach space

E = B[I ] of bounded real-valued functions onI . De“ne a weakly measurable functionx :

I → B[I ] by

x(t) :=

⎧

⎨

⎩

χ{t}(·), t ∈ J,

θ , t /∈ J.

Obviously x ∈ P[I ,B[I ]]. To see this, let us remark that anyϕ ∈ B∗[I ] may be identi“ed

with a countable additive measureζ de“ned on the σ -algebra onI . More precisely, ev-

ery bounded linear functional onB[I ] is of the form x �−→ ∫

I x(t) dζ for some countable

additive measureζ . Thus, for every measurable� ⊂ I we have

∫

�

ϕ
(

x(s)
)

ds=
∫

�

(∫

J
χ{s} dζ

)

ds= ϕ(θ ).

From which, by the de“nition of the Pettis integral, we conclude thatx ∈ P[I ,B[I ]] as

claimed. Now, we will show that�α,g
a x exists onI with �α,g

a x = θ : Evidently, for every mea-

surable� ⊂ I we have

1
�(α)

∫

�

ϕ

(

x(s)
(g(t) …g(s))1…α

g′(s)
)

ds=
1

�(α)

∫

�

ϕ(x(s))
(g(t) …g(s))1…α

g′(s)ds= 0 = ϕ(θ ).

That is, by the de“nition of the Pettis integral,�α,g
a x exists onI and�α,g

a x = θ .

Remark2 For anyα ≥ 1, �α,g
a x exists for anyx ∈ H1

0(E). This is a direct consequence of

Proposition3, as we obtains→ (g(t) …g(s))α…1g′(s) ∈ L∞[a,t] for a.e.t ∈ [a,b].

We sometimes considered some special cases of spacesE. Let us present one useful one:

Lemma 3 Let α ∈ (0, 1] and assume that E has no isomorphic copy of c0. Then, �α,g
a :

˜H1
0(E) → P[I ,E].

Proof Let x ∈ ˜H1
0(E). By virtue of the fact that the strong measurability is preserved under

a multiplication operation of functions (cf.e.g., [18]), the product (g(t) …g(·))α…1g′(·)x(·) :

[a,t] → E is strongly measurable on [0,t] for almost everyt ∈ I . Consequently, by Young•s

inequality, it can be shown that for everyϕ ∈ E∗, the real-valued functions �→ ϕ((g(t) …

g(s))α…1g′(s)x(s)) = (g(t) …g(s))α…1g′(s)ϕ(x(s)) is Lebesgue integrable on [a,t], for almost ev-

ery t ∈ I . Hence, the existence of�α,g
a x follows from [17, Theorem 22].

Now, we proceed in order to show that�α,g
a : ˜H1

0(E) → P[I ,E]. To see this, letx ∈ ˜H1
0(E),

de“ne y := �α,g
a x and note thaty ∈ H1(E). Thus, for any interval [c,d] ⊆ I , and anyϕ ∈ E∗
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we have

∫ d

c
ϕ
(

y(t)
)

dt =
∫ d

c
�α,g

a ϕ
(

x(t)
)

dt = ϕ(x[c,d]),

where

x[c,d] =
1

�(1 +α)

∫ d

a
x(s)

(

g(d) …g(s)
)α

g′(s)ds…
1

�(1 +α)

∫ c

a
x(s)

(

g(c) …g(s)
)α

g′(s)ds.

Since x ∈ P[I ,E], then owing to Proposition 3, we have thatx(·)(g(c) …g(·))αg′(s) and

x(·)(g(b) …g(·))αg′(·) are Pettis integrable onI and sox[c,d] ∈ E. A combination of these

results yieldsy ∈ H1(E) and there exists an elementx[c,d] ∈ E such that ϕ(x[c,d]) =
∫ d

c ϕ(y(t))dt, for everyϕ ∈ E∗ and any [c,d] ⊆ I . SinceE has no copy ofc0, it follows

in view of [17, Theorem 23] thaty ∈ P[I ,E]. The lemma is thus proved. �

In what follows, we outline and prove some aspects of ag…fractional integral in Banach

spaces and weak topologies. The following theorem complements similar results in [32,

Lemma 1] and [11, Theorem 2] dealing with the statements revealing how much the frac-

tional integral �α,g
a x is •betterŽ, in the sense of space inclusions, than the functionx.

Theorem 2 Let α ∈ (0, 1].For any Young functionψ with its complementary Young func-

tion ψ̃ satisfying

∫ t

0

˜ψ
(

sα…1)ds< ∞, t > 0, (4)

the operator�α,g
a maps the spaceHψ

0 (E) into the(generalized) Hölder spaceC˜�α
g [I ,Ew]. Also,

for any x∈Hψ
0 (E) there isϕ ∈ E∗, with ‖ϕ‖ = 1 such that

∥

∥�α,g
a x

∥

∥

˜�α
≤ 4

�(α)

∥

∥ϕ(x)
∥

∥

ψ

(

1 + ˜�α

(‖g‖)).

In particular, �α,g
a : C[I ,Ew] → C˜�α

g [I ,Ew]. Here, ˜�α :R+ →R
+ is de“ned as

˜�α(t) := inf

{

k > 0 :k
1

α…1

∫ tk
1

1…α

0

˜ψ
(

sα…1)ds≤ 1
}

, t ≥ 0. (5)

To make the proof of Theorem2 simpler we split it into several stages, providing the

following lemmas:

Lemma 4 ([11, Proposition 2]) For anyα ∈ (0, 1], the function ˜�α de“ned as in(5) is a

Hölderian-type function, i.e.,˜�α is well de“ned, increasing,and continuous with˜�α(0) = 0.

In other words, the spaceC˜�α
g [I ,Ew] is a Hölderian-type space.

Proof It is clear that for anyt > 0, the function

ut (σ ) := σ …
∫ tσ

0

˜ψ
(

sα…1)ds
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has a positive derivative for su�ciently largeσ > 0 (because˜ψ(u) → 0 asu → 0). Conse-

quently, for anyt > 0, there isσ > 0 such thatut (σ ) > 0 and then for anyt > 0 the set

{

σ > 0 :σ…1
∫ tσ

0

˜ψ
(

sα…1)ds≤ 1
}


= ∅. (6)

Together with ˜�α(0) = 0, this implies that˜�α is well de“ned onI . In view of the de“nition

of ˜�α , for 0≤ t ≤ swe have

∫ (˜�α (s))
1

α…1t

0

˜ψ
(

sα…1)ds≤
∫ (˜�α (s))

1
α…1s

0

˜ψ
(

sα…1)ds≤ (

˜�α(s)
) 1

α…1.

Thus, we may putk = ˜�α(s) in (5), which implies˜�α(t) ≤ ˜�α(s), as required for the mono-

tonicity of ˜�α . Finally, the continuity of˜�α follows from the continuity and concavity of

t �→ ∫ t
0

˜ψ(sα…1)ds. �

Lemma 5 Letα ∈ (0, 1].For any Young functionψ with its Young complement̃ψ satisfying

(4), the integral�α,g
a x exists(is convergent) for any x∈Hψ

0 (E). Moreover, it is true for every

x ∈ ˜Hψ (E) providedψ satis“es the additional property thatlimu→∞ ψ(u)/u → ∞.

In particular, if E is re”exive(resp., weakly complete),�α,g
a x, x ∈Hψ (E) (resp., x ∈ ˜Hψ (E))

exists for any nontrivial Young functionψ .

Proof First, let us de“neu : I →R
+ by

u(s) :=

⎧

⎨

⎩

(g(t) …g(s))α…1g′(s), s∈ [a,t], t > a,

0, otherwise

and observe that for anyt ∈ I the function

ut (η) := η …
1

‖g′‖
∫ ηg(t)

0

˜ψ
(

sα…1)ds,

has a positive derivative for some su�ciently largeη > 0 (because˜ψ(u) → 0 asu → 0).
Consequently, for anyt ∈ I there is a su�ciently large η > 0 such thatut (η) > 0 and thus

for any t ∈ I

{

k > 0 :
1

‖g′‖
∫ ( k

‖g′‖ )
1

1…α g(t)

0

˜ψ
(

sα…1)ds≤
(

k
‖g′‖

) 1
1…α

}


= ∅. (7)

This is in line with the following observations that they give:

∫ b

a

˜ψ

( |u(s)|
k

)

ds

=
∫ t

a

˜ψ

( |(g(t) …g(s))α…1|g′(s)
k

)

ds=
∫ t

a

˜ψ

( |(g(t) …g(s))α…1|‖g′‖
k

g′(s)
‖g′‖

)

ds

≤
∫ t

a

˜ψ

( |(g(t) …g(s))α…1|‖g′‖
k

)

g′(s)ds
‖g′‖ =

( k
‖g′‖ )

1
α…1

‖g′‖
∫ ( k

‖g′‖ )
1

1…α g(t)

0

˜ψ
(

sα…1)ds,
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hold for any k > 0, sou ∈ L
˜ψ (I ). The assertion of our lemma follows directly from Propo-

sition 2.

Now, we claim that�α,g
a x exists for anyx ∈ ˜Hψ (E) with ψ satisfying the additional prop-

erty limu→∞ ψ(u)/u → ∞. In view of the above observation, it follows from part (2) of

Proposition1.

Next, let us assume thatE is weakly complete,x ∈ ˜Hψ (E) for arbitrary ψ and note

that in this case ˜Hψ (E) ⊂ ˜H1(E). Since the strong measurability is preserved under

a multiplication operation, the pointwise product of strongly measurable functions

(g(t) …g(·))α…1g′(·)x(·) : [a,t] → E is strongly measurable on [a,t], t ∈ I . In view of

Young•s inequality, we know that for everyϕ ∈ E∗, the real-valued function,ϕ((g(t) …

g(·))α…1g′(·)x(·)) = (g(t) …g(·))α…1g′(·)ϕx(·) is Lebesgue integrable on [a,t] for every t ∈ I .

Hence, the result is a consequence of part (2) of Proposition1.

Similarly, whenE is re”exive, the result follows from part (1) of Proposition1. In this

case indeed, as for any nontrivialψ we haveHψ (E) ⊆ H1(E). Consequently, for anyx ∈
Hψ (E) and everyϕ ∈ E∗ the measurable real-valued functionϕ((g(t) …g(·))α…1g′(·)x(·)) =

(g(t) …g(·))α…1g′(·)ϕx(·) is Lebesgue integrable on [a,t] for everyt ∈ I , and hence is weakly

measurable. The fact that in re”exive spaces any weakly measurableu : I → E is Pettis

integrable if and only ifϕu ∈ L1 holds for everyϕ ∈ E∗ (cf. Lemma1 part (1)), guarantees

the existence of�α,g
a x on I . �

Remark3 According to the assertion of Lemma5, the function (g(t) …g(·))α…1g′(·)x(·) ∈
P[[a,t],E] for every t ∈ I and anyx ∈ Hψ

0 (E). Consequently, accordingly to the de“nition

of a Pettis integral for anyt ∈ I there exists an element ofE denoted by�α,g
a x(t) such that

ϕ
(�α,g

a x(t)
)

=
1

�(α)

∫ t

a
ϕ

(

x(s)g′(s)
(g(t) …g(s))1…α

)

ds

=
1

�(α)

∫ t

a

ϕ(x(s))g′(s)ds
(g(t) …g(s))1…α

= �α,g
a ϕ

(

x(t)
)

(8)

holds true for everyϕ ∈ E∗.

Remark4 We should remark that, if�α,g
a x does not exist for somex ∈Hψ

0 (E), then it can-

not exist if we •enlargeŽ the spaceEinto F. To see this, we argue by contradiction assuming

that �α,g
a x (when we considerx as a function fromHψ

0 (F)) exists. In this case, for the par-

ticular choice for the functionalϕ ∈ F∗ having ϕ|E = θ we conclude, in view of (8) and

x(I ) ⊆ E, that ϕ(�α,g
a x(t)) = �α,g

a ϕ(x(t)) = 0, from which �α,g
a x(t) ∈ E. This would lead to a

contradiction.

Remark5 Let a Young functionψ be such that the integral in (4) is “nite. For anyα ∈ (0, 1),

the assertion of Theorem2 is still valid if at least one of the following cases holds true:

1. x ∈ ˜Hψ (E), where ψ satisfies the additional property limu→∞ ψ(u)/u → ∞;
2. E is weakly complete and x ∈ ˜Hψ (E);
3. E is reflexive and x ∈Hψ (E).

Evidently, it follows from Theorem2, as in view of Lemma5, in all of the above cases we

have ˜Hψ (E) ⊆Hψ (E) ⊆Hψ
0 (E).

We are now ready to provide the proof of Theorem2.



Salem et al.Boundary Value Problems        (2023) 2023:57 Page 11 of 30

Proof of Theorem2. Leta ≤ t1 ≤ t2 ≤ b andx ∈Hψ
0 (E). According to Lemma5 and by the

de“nition of the inde“nite Pettis integral, we ensure that�α,g
a x is well de“ned. In view of

Remark3, it allows us to state the following chain of inequalities

∣

∣ϕ
(�α,g

a x(t2) …�α,g
a x(t1)

)∣

∣

=
∣

∣�α,g
a ϕ

(

x(t2)
)

…�α,g
a ϕ

(

x(t1)
)∣

∣

≤ 1
�(α)

(∫ t1

a

∣

∣

(

g(t2) …g(s)
)α…1

…
(

g(t1) …g(s)
)α…1∣

∣

∣

∣g′(s)
∣

∣

∣

∣ϕ
(

x(s)
)∣

∣ds

+
∫ t2

t1

(

g(t2) …g(s)
)α…1

g′(s)
∣

∣ϕ
(

x(s)
)∣

∣ds
)

=
1

�(α)

∫ b

a

[

h1(s) + h2(s)
]∣

∣ϕ
(

x(s)
)∣

∣ds,

where

h1(s) :=

⎧

⎨

⎩

|(g(t2) …g(s))α…1… (g(t1) …g(s))α…1|g′(s) s∈ [a,t1],

0 otherwise

and

h2(s) :=

⎧

⎨

⎩

(g(t2) …g(s))α…1g′(s) s∈ [t1, t2],

0 otherwise.

We claim that hi ∈ L
˜ψ (I ), (i = 1,2). Once our claim is established, in view of the Hölder

inequality in Orlicz spaces, we conclude that

∣

∣ϕ
(�α,g

a x(t2) …�α,g
a x(t1)

)∣

∣ ≤ 2[‖h1‖˜ψ + ‖h2‖˜ψ ]

�(α)

∥

∥ϕ(x)
∥

∥

ψ
. (9)

It remains to prove our claim by showing thathi ∈ L
˜ψ (I ), i = 1,2. To see this, “xk > 0. An

appropriate substitution, using some properties of Young functions, leads to the following
estimation

∫ b

a

˜ψ

( |h1(s)|
k

)

ds

=
∫ t1

a

˜ψ

( |(g(t2) …g(s))α…1… (g(t1) …g(s))α…1|‖g′‖
k

g′(s)
‖g′‖

)

ds

≤
∫ t1

a

˜ψ

(

[(g(t1) …g(s))α…1… (g(t2) …g(s))α…1]‖g′‖
k

)

g′(s)
‖g′‖ ds

≤
∫ t1

a

[

˜ψ

(

(g(t1) …g(s))α…1‖g′‖
k

)

…˜ψ

(

(g(t2) …g(s))α…1]‖g′‖
k

)]

g′(s)
‖g′‖ ds

≤
( k
‖g′‖ )

1
α…1

‖g′‖
[∫ ( k

‖g′‖ )
1

1…α g(t1)

0

˜ψ
(

sα…1)ds…
∫ ( k

‖g′‖ )
1

1…α g(t2)

( k
‖g′‖ )

1
1…α (g(t2)…g(t1))

˜ψ
(

sα…1)ds
]

=
( k
‖g′‖ )

1
α…1

‖g′‖
[∫ ( k

‖g′‖ )
1

1…α g(t1)

0

˜ψ
(

sα…1)ds…
∫ ( k

‖g′‖ )
1

1…α g(t2)

0

˜ψ
(

sα…1)ds



Salem et al.Boundary Value Problems        (2023) 2023:57 Page 12 of 30

+
∫ ( k

‖g′‖ )
1

1…α (g(t2)…g(t1))

0

˜ψ
(

sα…1)ds
]

≤
( k
‖g′‖ )

1
α…1

‖g′‖
∫ ( k

‖g′‖ )
1

1…α (g(t2)…g(t1))

0

˜ψ
(

sα…1)ds.

In view of (6), the above observations guarantee the existence ofk > 0 for which
∫ b

a
˜ψ( |h1(s)|

k )ds≤ 1. Then, we can conclude thath1 ∈ L
˜ψ (I ). Moreover, our de“nitions of

˜�α and the norm in Orlicz spaces, along with the above observations, give us

‖h1‖˜ψ = inf

{

k > 0 :
∫ b

a

˜ψ

( |h1(s)|
k

)

ds≤ 1
}

=
∥

∥g′∥
∥ inf

{

k
‖g′‖ > 0 :

∫ b

a

˜ψ

( |h1(s)|
k

)

ds≤ 1
}

≤ ˜�α

(∣

∣g(t2) …g(t1)
∣

∣

)

.

Arguing similarly as above, we can show that

h2 ∈ L
˜ψ (I ), and ‖h2‖˜ψ ≤ ˜�α

(∣

∣g(t2) …g(t1)
∣

∣

)

.

Thus, for anyϕ ∈ E∗ equation (9) takes the form

∣

∣ϕ
(�α,g

a x(t2) …�α,g
a x(t1)

)∣

∣ ≤ 4˜�α(|g(t2) …g(t1)|)
�(α)

∥

∥ϕ(x)
∥

∥

ψ
. (10)

This may be combined along with the Hahn…Banach theorem, in order to assure that

∥

∥�α,g
a x(t2) …�α,g

a x(t1)
∥

∥ ≤ 4˜�α(|g(t2) …g(t1)|)
�(α)

∥

∥ϕ(x)
∥

∥

ψ

holds true for someϕ ∈ E∗ with ‖ϕ‖ = 1. Hence,�α,g
a :Hψ

0 (E) → C˜�α
g [I ,Ew]. Also,

[�α,g
a x

]

˜�α
≤ 4

�(α)

∥

∥ϕ(x)
∥

∥

ψ
.

Moreover, in view of our de“nition �α,g
a x(a) := 0, we observe that

∥

∥�α,g
a x(t)

∥

∥ =
∥

∥�α,g
a x(t) …�α,g

a x(a)
∥

∥ ≤ ˜�α

(‖g‖)[�α,g
a x

]

˜�α
.

We “nally obtain

∥

∥�α,g
a x

∥

∥

˜�α
≤ 4

�(α)

∥

∥ϕ(x)
∥

∥

ψ
(1 + ˜�α

(‖g‖). (11)

In this connection, the particular case follows from Corollary1 and the theorem is then
proved. �

Example2.2 Letα ∈ (0, 1) andψ(u) = ψp(u) := 1
p |u|p, p ∈ (1,∞). In this case, we have

ψ̃p = ψp̃ with 1
p + 1

p̃ = 1. It can be easily seen that (4) holds true if and only ifp > 1
α

. From
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which we conclude that�α,g
a maps the Bochner spaceLp[I ,E], p > 1

α
into the Hölder space

C˜�α
g [I ,Ew], where

˜�α(t) =
tα…1

p

p̃
√

p̃[1 …p̃(1 …α)]
, t ∈R

+.

For instance, in view of the above observation,�α,g
a : L2[I ,R] → C˜�α [I ,R] for α ∈ (0.5, 1)

with ˜�α(t) = tα…1
2√

4α…2
.

Remark6 Theorem2 may be combined with [11, Example 1] in order to assure the ex-
istence of a Young functionψ (for instance,ψ(u) := e|u| …|u| … 1) for which�α,g

a maps
Hψ

0 (E) into C˜�α
g [I , I ,Ew] •for allŽα ∈ (0, 1]. According to Example2.2, this interesting phe-

nomenon has no analog in the case of Lebesgue spacesLp[I ,R]).

Example2.3 Letα > 0 anda,b ∈ R
+ such that b …a = 1. De“ne a strongly measurable

function x : [a,b] → L2[a,b] by

x(t) :=
∞

∑

n=1

en · χIn (t) =

⎧

⎨

⎩

en(·), t ∈ In,

0, otherwise,

where{en} is an orthonormal system inL2[a,b] and I ′
ns are the pairwise disjoint subinter-

vals of [a,b] de“ned by In = (a + 1/2n,a + 1/2n + 1/4n), n ∈N. Since

(∫ b

a

∣

∣ϕ
(

x(t)
)∣

∣

2
dt

) 1
2

=

( ∞
∑

n=1

|ϕ(en)|2
4n

) 1
2

≤
( ∞

∑

n=1

∣

∣ϕ(en)
∣

∣

2

) 1
2

≤ ‖ϕ‖L2

holds true for everyϕ ∈ L2[a,b]∗ = L2[a,b], we obtainϕx ∈ L2[a,b] for everyϕ ∈ L2[a,b]∗.
Hence,x ∈ P[[a,b], L2[a,b]] (by applying Proposition1). More precisely,x ∈Hψ2

0 (L2[a,b]).
SinceL2[a,b] is re”exive, the integral�α,g

a x exists for anyα > 0 (cf. Remark2 whenα ≥ 1
and Remark5 when α ∈ (0, 1)). Moreover, in view of Example2.2, we know that�α,g

a x ∈
C˜�α

g [[a,b], (L2[a,b])ω], with ˜�α(t) = tα…1
2√

4α…2
holds for anyα ∈ (0.5, 1).

Example2.4 Letα ∈ (0, 1] and de“nex : [0, 1]→ L1[0,1] by

x(t) :=
1

�(1 …α)

(

g(t) …g(·))…α
χ[a,t] (·), t ∈ [0, 1].

This function is weakly continuous onI = [0,1]. Indeed, ifφ ∈ L∞ ∼= L∗
1 corresponds to

ϕ ∈ L∗
1, then ϕ(x(t)) = �1…α,g

a ( φ(t)
g′(t) ). Since�1…α,g

a mapsC[I ,R] into itself, we can conclude
that ϕx ∈ C[I ,R] for everyϕ ∈ L∗

1 that gives a reason to believe thatx is weakly continuous
on I . Consequently, in view of Theorem2, it follows that �α,g

a x exists onI . In this context,
we can show that

�α,g
a x(t)(·) = χ[a,t] (·), holds for anyα ∈ (0, 1]. (12)

This is easy to demonstrate because, by lettingφ ∈ L∞ corresponding toϕ ∈ L∗
1 and car-

rying out the necessary calculations using the substitutions= g(s)…g(ξ )
g(t)…g(ξ ) , it can be veri“ed
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that

∫ t

a

ϕ([g(t) …g(s)]α…1g′(s)x(s))
�(α)

ds

=
1

�(α)

∫ t

a

[

g(t) …g(s)
]α…1

g′(s)ϕ
(

x(s)
)

ds

=
∫ t

a

[g(t) …g(s)]α…1g′(s)
�(α)

∫ s

a

φ(ξ )[g(s) …g(ξ )]…α

�(1 …α)
dξ ds

=
∫ t

a
φ(ξ )

∫ t

ξ

[g(t) …g(s)]α…1

�(α)
[g(s) …g(ξ )]…α

�(1 …α)
g′(s)dsdξ

=
∫ t

a
φ(ξ )dξ =

∫ b

a
φ(ξ )χ(a,t] (ξ )dξ = ϕ(χ[a,t] ),

as needed for (12).

In view of the semigroup property of�α,g
a in Lebesgue spaces, an analogous reasoning

as in [11, Lemma 2] gives us the following:

Lemma 6 Letα,β ∈ (0, 1].If x ∈Hψ
0 (E), whereψ is a Young function with its complement

˜ψ satisfying

∫ t

0

˜ψ
(

s…ν
)

ds< ∞, t > 0,whereν := max{1 …α, 1 …β}, (13)

then

�β,g
a �α,g

a x = �β+α,g
a x = �α,g

a �β,g
a x on I. (14)

In particular, the property(14) holds true for every x∈ C[I ,Ew].

Let us investigate some important properties of generalized fractional integrals with

Pettis integrals and measures of weak noncompactness. We need to prove a Goebel…

Rzymowski lemma that is important in our considerations and very useful in many similar

problems. We follow the idea from [9].

Lemma 7 Letμ be the De Blasi measure of weak noncompactness. For anyα ∈ (0, 1],t ∈ I

and any bounded strongly equicontinuous set V⊂ C[I ,Ew]

μ
(�α,g

a V (t)
)

:= μ
(�α,g

a v(t) : v ∈ V,t ∈ I
) ≤ �α,g

a μ
(

V(t)
) ≤ ‖g‖α

�(1 +α)
· μC(V).

Proof At the beginning, we note, in view of Theorem2, that �α,g
a v exists and weakly con-

tinuous on I . Hence,μ(�α,g
a V (t)) makes sense. Next, de“ne a functionG : I × I → R

+ by

G(t,s) :=
1

�(α)

⎧

⎨

⎩

g′(s)
(g(t)…g(s))1…α , s∈ [a,t], t > a,

0, otherwise.
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From the above de“nition we have�α,g
a x(t) =

∫ t
a G(t,s)x(s)ds. From the properties of the

Pettis integral for arbitraryw ∈ P[I ,E] and t ∈ I we have

∫ t…τ

a
w(s)ds+

∫ t

t…τ

w(s)ds=
∫ t

a
w(s)ds, for some su�ciently small τ .

As V is equicontinuous, the set{G(t, ·)V (·)} is Pettis uniformly integrable onI , so for any

x ∈ V the set{ϕ(G(t, ·)x(·)) : ϕ ∈ E∗,‖ϕ‖ ≤ 1} is equiintegrable. Then, for anyε > 0 there

exists (su�ciently small) τ such that

∥

∥

∥

∥

∫ t

t…τ

G(t,s)V(s)ds

∥

∥

∥

∥

< ε. (15)

Thus, we can cover the set{∫ t
t…τ

G(t,s)v(s)ds: s∈ [t …τ , t ], v ∈ V } by balls with radius less

than ε and then

μ

({∫ t

t…τ

G(t,s)v(s)ds: s∈ [t …τ , t ], v ∈ V
})

< ε.

Now, let us estimate the set of integrals on [a,t …τ ]. Putv(·) = μ(V (·)). In view of Lemma1,

v is a continuous function. Note that from our assumption it follows thats→ G(t,s)v(s) is

continuous on [a,t …τ ], and hence uniformly continuous.

Thus, there existsδ > 0 such that

∣

∣G(t,η)v(q) …G(t,s)v(s)
∣

∣ < ε, (16)

provided that |q …s| < δ and |η …s| < δ with η,s,q ∈ [a,t …τ ].

Divide the interval [a,t …τ ] into n partsa = t0 < t1 < · · · < tn = t …τ such that|ti …ti…1| < δ

for i = 1, 2, . . . ,n. Put Ti = [ti…1,ti ]. As v is uniformly continuous, there existssi ∈ Ti such

that v(si ) = β(V (Ti )) (i = 1, 2, . . . ,n).

As

{∫ t…τ

a
G(t,s)x(s)ds: s∈ [a,t …τ ], x ∈ V

}

⊂
n

∑

i=1

{∫

Ti

G(t,s)x(s)ds: s∈ [a,t …τ ], x ∈ V
}

,

by the mean value theorem for the Pettis integral

∫

Ti

G(t,s)V(s)ds∈ meas(Ti) · conv
{

G(t,s)V(s) : s∈ Ti
}

.

Hence,

μ

({∫ t…τ

a
G(t,s)x(s)ds: s∈ [a,t …τ ], x ∈ V

})

≤
n

∑

i=1

μ

({∫

Ti

G(t,s)x(s)ds: s∈ [a,t …τ ], x ∈ V
})
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≤
b

∑

i=1

meas(Ti) · μ(

conv
{

G(t,s)V(s) : s∈ Ti
})

≤
b

∑

i=1

meas(Ti) · max
s∈Ti

G(t,s) · μV(Ti)

≤
b

∑

i=1

meas(Ti) · G(t,ti ) · μV(Ti)) ≤
b

∑

i=1

meas(Ti) · G(t,ti ) · v(si ).

Note that from (16) it follows that

b
∑

i=1

meas(Ti) · G(t,ti ) · v(si ) ≤
∫ t…τ

a
G(t,s)v(s)ds+ (t …τ ) · ε.

Then,

{∫ t

a
G(t,s)x(s)ds: s∈ [a,t …τ ], x ∈ V

}

⊂
{∫ t

a
G(t,s)x(s)ds: s∈ [a,t …τ ], x ∈ V

}

+
{∫ t

t…τ

G(t,s)x(s)ds: s∈ [a,t …τ ], x ∈ V
}

and

μ

({∫ t

a
G(t,s)x(s)ds: s∈ [a,t], x ∈ V

})

≤
∫ t…τ

a
G(t,s)v(s)ds+ (t …τ ) · ε + ε.

As ε is arbitrarily small, we obtain

μ

({∫ t

a
G(t,s)x(s)ds: s∈ [a,t], x ∈ V

})

≤
∫ t…τ

a
G(t,s)v(s)ds,

i.e.,

μ
(�α,g

a V (t)
) ≤ �α,g

a μ
(

V(t)
)

.

It remains to prove the second estimation. Let us observe that

∂

∂s

(

(g(t) …g(s))α

α

)

=
…g′(s)

(g(t) …g(s))1…α
.

As g(a) = 0,

∫ t

a
G(t,s)ds=

(g(t))α

α
.

Thus,�α,g
a μ(V (t)) ≤ (g(t))α

α·�(α) · μc(V ) ≤ ‖g‖α

�(1+α) · μc(V ). �

3 Generalized fractional derivatives
From now, the de“nitions of the g-fractional derivatives ofx become a natural require-
ment.
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Definition 6 ([5, 19, 36]) The g…Caputo fractional-pseudo- (resp., weak) derivative of a
given functionx of order α ∈ (m,m + 1], m ∈N := {0,1,2, . . .} is de“ned by

dα,g
p

dtα
x := �m+1…α,g

a δm+1
p x,

(

resp.,
dα,g

ω

dtα
x := �m+1…α,g

a δm+1
ω x

)

, t ∈ I . (17)

Here,δp andδω are de“ned as

δp :=
1

g′(t)
Dp and δω :=

1
g′(t)

Dω.

Remark7 It is worthwhile to remark here that
dα,g

p
dtα x (if exists), does not depend on the

choice of themth pseudoderivatives ofx. Evidently, ifδm
p x = y1, δm

p x = y2, we know thaty1,
y2 are weakly equivalent onI . It follows that

ϕ
(�m…α,g

a y1(t)
)

= �m…α,g
a ϕ

(

y1(t)
)

= �m…α,g
a ϕ

(

y2(t)
)

= ϕ
(�m…α,g

a y2(t)
)

, for anyϕ ∈ E∗.

Hence,�m…α,g
a y1(t) = �m…α,g

a y2 as needed.

This is a good place to remark that the conditions required for the existence ofg-Caputo
fractional derivative are very restrictive. A very rough condition that ensures the existence

of
dα,g

p
dtα x is that x ∈ ACm…1[[a,b],Ew]. In other words, theg…Caputo-type fractional deriva-

tive has the disadvantage that it completely loses its meaning ifDm…1x fails to be (almost
everywhere) di�erentiable on [a,b]. Unfortunately, even in the Hölder spaces, outside of
the space of absolutely continuous functions, theg-Caputo-type fractional di�erential op-
erator does not enjoy the •niceŽ behavior of being left inverse of the correspondingg-
fractional integral operator. In other words, outside of the space of absolutely continuous
functions, the equivalence of theg-fractional integral equations and the corresponding
g-Caputo fractional di�erential problem is no longer necessarily true even in the Hölder
spaces. This goes back to the well-known fact that the Riemann-Louville fractional integral
operator �α,t

0 is a continuous mapping from Hölder spaces •ontoŽ Hölder spaces (which,
of course, contains also continuous nowhere di�erentiable functions), see, e.g., [36, The-
orem 13.13]. Indeed, in what follows, we will show that even in the context of real-valued
Hölderian functions the converse implication from the fractional integral equations to the
corresponding Caputo-type di�erential form is no longer necessarily true.

To see this, let us consider a particular form of the fractional integral operator�β,g
a ,

α ∈ (0, 1) with g(t) = t, t ∈ [0, 1], E = R. Let x be a Hölderian (but nowhere di�erentiable
on [0,1]) function of some critical orderγ < 1. According to [36, Theorem 13.13] we know
that there isα ∈ (0, 1) depending only onγ and a Hölderian functiony /∈ AC[0,1] such

that �α,t
0 y = x. From this we can conclude that

dα,t
p

dtα �α,t
0 y =

dα,t
p

dtα x is •meaninglessŽ. This gives a
reason to believe that even on Hölder spaces (but out of the space of absolutely continuous
functions), the operator dα

dtα has no left inverse of�α,t
0 y as required. For more examples

revealing the lack of equivalence between di�erential and integral forms of the Caputo-
type fractional problems, we refer the reader to [12]. It will be clari“ed later how to avoid
such a phenomenon (see formula (♦) and Lemma8 below).

However, the following example shows that on the spaceC[I ,Ew], but still outside of the

space of weakly absolutely continuous functions, it is no longer necessarily true that
dα,g

p
dtα

is a left inverse of�α,g
a for anyα > 0.
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Example3.1 Letα ∈ (m,m + 1], m ∈N. De“ne x : [0, 1]→ L1[0,1] by

x(t) :=
1

�(1 + m …α)

(

g(t) …g(·))m…α
χ[a,t] (·), t ∈ I = [0, 1].

Reasoning as in Example2.4, we can ensure that this function is weakly (but not weakly

absolutely) continuous onI having ag-Caputo fractional integral of orderα …m ∈ (0, 1]

on I and that �α…m,g
a x(t)(·) = χ[a,t] (·). In this connection, in view of the continuity ofx in

Theorem2 and Lemma6, implies that

�α,g
a x(t) = �m,g

a �α…m,g
a x(t) = �m,g

a χ[a,t] .

By the aid of (♦), it follows that δm
p �α,g

a x = χ[a,t] . Sinceχ[a,t] (·), t ∈ I is weakly absolutely

continuous and have no pseudo- (so trivially no weak) derivatives onI (see [33, Theo-

rem 3]), we conclude that theg…Caputo fractional pseudo- (trivially weak) derivative is

•meaninglessŽ. Namely,
dα,g

p
dtα �α,g

a x 
= x as required.

In order to avoid such a problem with the equivalence of theg-Caputo-type boundary

value problem of fractional ordersα > 1 and the corresponding integral form, we are, sim-

ilarly as in [12], going to modify (slightly) our de“nition of the g…Caputo-type fractional

di�erential operator into a more suitable one

Definition 7 The modi“ed g…Caputo fractional pseudo- (resp., weak) derivative •brie”y

MCFPD (resp., MCFWD)Ž of orderm + α, m ∈ N, α ∈ (0, 1) applied to the functionx ∈
P[I ,E] is de“ned as

dm+α,g
p

dtm+α
x := δm

p �1…α,g
a δpx,

(

resp.
dm+α,g

ω

dtm+α
x := δm

ω �1…α,g
a δωx

)

. (18)

Obviously, De“nition 7 coincides with the usual de“nition of theg…Caputo-type frac-

tional di�erential operators when m = 0. Also, unless the spaceE has total dualE∗ (cf.

[10]), ag…Caputo fractional pseudoderivative ofx is not necessary uniquely determined.

In what follows we will show that the results obtained in Example3.1 have no analog

in the case of MCFPD wheneverα > 1. Evidently, arguing similarly as in [12, proof of

Lemma 7], we can prove the following:

Lemma 8 Let α > 1. Assume thatα = m + η, where m≥ 1 with someη ∈ (0, 1).If ψ is a

Young function with its complementary functioñψ satisfying

∫ t

0
ψ̃

(

s…ν
)

ds< ∞, t > 0,ν := max{η, 1 …η}, (19)

then
dα,g

p
dtα �α,g

a is well de“ned onHψ
0 (E). If, additionally, the space E has total dual, then

dα,g
p

dtα

is the left-inverse of�α,g
a , where the fractional di�erential operator is taken in the sense of

De“nition 7.

Remark8 Let us remark that, in view of (�), the assertion of Lemma8 is still valid even

in the case of applying the operator (MCFWD) providedx ∈ C[I ,Ew].
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The following example shows that our assumption thatE has total dual is essential in

Lemma8 and cannot be omitted even ifx is weakly absolutely continuous onI . Out of the

context of such spaces we should assume instead that our derivatives should be of strongly

bounded variation (cf. [26]).

Example3.2 Let α ∈ (m,m + 1], m ≥ 1 and assume thatB[I ] is the Banach space of

bounded real-valued functions onI . De“ne a Pettis integrable functionx : I → B[I ] as

in Example2.1. The choice of this space is not accidental, becauseB[I ] has no total dual.

Note that g′(·)x(·) ∈ P[I ,B[I ]] (cf. Proposition3). Bearing in mind the existence of�α,g
a x

on I and arguing similarly as in [12, proof of Lemma 7] there is no di�culty in proving

that

dα,g
p

dtα
�α,g

a x =
1

g′(t)
Dp

∫ t

a
g′(s)x(s)ds, t ∈ I . (20)

On the one hand, reasoning as in Example2.1, we know that

∫ t

a
g′(s)x(s)ds= θ , t ∈ I .

From which, by de“nition of Dp, it can be easily seen thatDp
∫ t

a g′(s)x(s)ds= θ on I . On

the other hand, in view of Lemma2, we conclude thatDp
∫ t

a g′(s)x(s)ds= g′(t)x(t) on I . In

this connection, we deduce that the functiont �→ ∫ t
a g′(s)x(s)dshas two pseudoderivatives

g′(t)x(t) andθ on I that di�er on a set of positive measures. Consequently, we infer by the

aid of (20) that on such a set
dα,g

p
dtα �α,g

a x 
= x.

In the remaining part of this paper, allg…Caputo fractional pseudo- (trivially weak)

derivatives are taken in the sense of De“nition7.

Now, we are in the position to investigate the existence of solutions to the following

g…Caputo fractional boundary value problem

dα,g
p

dtα
x(t) = λf

(

t ,x(t),
dβ,g

p

dtβ
x(t)

)

, β ∈ (0, 1),α ∈ (1, 2),t ∈ I ,λ ∈R (21)

combined with the nonlocal three-point boundary conditions

x(a) = 0, x(b) …px(ξ ) = c, a < ξ , <b, p ∈ [0,∞), c∈ E. (22)

Here,
dα,g

p
dtα denotes theg…Caputo fractional pseudodi�erential operators de“ned as in

(18). It is absolutely necessary to start from the de“nition of a solution of this problem.

Let us introduce the following:

Definition 8 The function x ∈ C[I ,Ew] is called a pseudo- (resp., weak) solution to the

problem ((21) and (22) if x admits ag…Caputo fractional pseudo- (resp., weak) derivative

of order α ∈ (1, 2) and satis“es (22) together with

dα,g
p

dtα
x(t) = λf

(

t ,x(t),
dβ,g

p

dtβ
x(t)

)
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and, respectively, for the weak derivative

dα,g
ω

dtα
x(t) = λf

(

t ,x(t),
dβ,g

ω

dtβ
x(t)

)

a.e. onI .

Let us present some proposed integral form for the di�erential problem (21). Assuming
very natural conditions, we always have the following relationship of their solutions:

Lemma 9 Let α ∈ (1, 2),β ∈ (0, 1),p ∈ [0,∞) and ξ ∈ I be such that‖g‖ 
= p
1

α…1g(ξ ). For

any f ∈ P[I ,E], the integral equation modeled o� the problem((21) and (22)) in the form

u(t) =
c1

�(α …β)

(

g(t)
)α…β

+ λ�α…β,g
a f

(

t ,u(t),�β,g
a u(t)

)

, (23)

where x= �β,g
a u and

c1 =
�(α)

‖g‖α…1…p(g(ξ ))α…1

× [

c+ λ
(

p�α,g
a f

(

ξ ,u(ξ ),�β,g
a u(ξ )

)

…�α,g
a f

(

b,u(b),�β,g
a u(b)

))]

(24)

has a solution u∈ C[I ,Ew] provided x= �β,g
a u is a solution of BVP(21) and (22).

Proof Let x ∈ C[I ,Ew] satisfy the problem ((21) and (22)) and de“ne a function u :=
dβ,g

p

dtβ
x = �1…β,g

a δpx. By virtue of our boundary conditionx(a) = 0, using Lemma2 we ar-
rive at x = �β,g

a u. Also, the boundary conditionx(b) …px(ξ ) = c is transformed into
�β,g

a u(b) …p�β,g
a u(ξ ) = c. In this case, the di�erential equation (21) reads as

dα,g
p

dtα
�β,g

a u(t) = λf
(

t ,u(t),�β,g
a u(t)

)

, β ∈ (0, 1),α ∈ (1, 2),t ∈ I ,λ ∈R. (25)

Now, in view of De“nition 7 of MCFPD and letting

dα,g

dtα
�β,g

a u(t) = δp�2…α,g
a δp�β,g

a u(t) = λf
(

t ,u(t),�β,g
a u(t)

)

, t ∈ I ,

means that

Dp�2…α
a δp�β,g

a u(t) = λg′(t)f
(

t ,u(t),�β,g
a u(t)

)

, t ∈ I .

Thus, •formallyŽ we obtain

�2…α,g
a δp�β,g

a u(t) = c1 + λ

∫ t

a
g′(s)f

(

s,u(s),�β,g
a u(s)

)

ds= c1 + λ�1,g
a f

(

t ,u(t),�β,g
a u(t)

)

.

Operating by�α,g
a yields

�2,g
a δp�β,g

a u(t) = c1
(g(t))α

�(1 +α)
+ λ�α+1,g

a f
(

t ,u(t),�β,g
a u(t)

)

= c1
(g(t))α

�(1 +α)
+ λ

∫ t

a
g′(s)

(�α,g
a f

(

t ,u(t),�β,g
a u(t)

))

ds.
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Now, di�erentiating δp both sides twice, we arrive at

δp�β,g
a u(t) = c1

(g(t))α…2

�(α … 1)
+ λ�α…1,g

a f
(

t ,u(t),�β,g
a u(t)

)

. (26)

From which (still •formallyŽ), we obtain

�β,g
a u(t) = c0 +

c1

�(α)

(

g(t)
)α…1

+ λ�α,g
a f

(

t ,u(t),�β,g
a u(t)

)

, (27)

with some (presently unknown) quantitiesc0,c1 ∈ E. Since x(a) = �β,g
a u(a) = 0 and

�β,g
a u(b) …p�β,g

a u(ξ ) = c, it can be easily seen thatc0 = 0 and

c1 =
�(α)

‖g‖α…1…p(g(ξ ))α…1

[

c+ λ
(

p�α,g
a f

(

ξ ,u(ξ ),�β,g
a u(ξ )

)

…�α,g
a f

(

b,u(b),�β,g
a u(b)

))]

.

Operating by�1…β,g
a on both sides of (27) yields

�1,g
a u(t) =

c1

�(1 +α …β)

(

g(t)
)α…β

+ λ�1+α…β,g
a f

(

t ,u(t),�β,g
a u(t)

)

.

In this connection, we conclude that

u(t) =
c1

�(α …β)

(

g(t)
)α…β…1

+ λ�α…β,g
a f

(

t ,u(t),�β,g
a u(t)

)

, t ∈ I . (28)

Now, inserting c1 into (28) yields (•formallyŽ) the integral equation. This completes the

proof. �

We should answer the question when the two problems are equivalent. To do this we

need to present a precise de“nition of the solutions for (23).

Definition 9 By a weak solution of (23) we mean a functionu ∈ C[I ,Ew] satisfying

ϕ
(

u(t)
)

= ϕ

(

c1

�(α …β)

(

g(t)
)α…β…1

+ λ�α…β,g
a f

(

t ,u(t),�β,g
a u(t)

)

)

, t ∈ I , for all ϕ ∈ E∗.

Let us recall that if we are studying pseudosolutions, some negligible setsDϕ , where the

equation is not satis“ed, are excluded and they are dependent onϕ ∈ E∗. Such a set does

not a�ect the calculated fractional Pettis integrals (cf. Remark7).

Since the space of all Pettis integrable functions is not complete, not all methods of the

proofs of the existence of solutions to the integral equation (23) are allowed and we cannot

follow many ideas taken from the case of the strong topology. We restrict our attention to

the case of weakly continuous solutions of the mentioned integral equation and then to

pseudosolutions of the problem (23).

Now, we are ready to present the following theorem that will allow us to introduce the

assertions that provide conditions under which we ensure the existence of weakly contin-

uous solutions to the integral equation (23).
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Theorem 3 Letβ ∈ (0, 1),α ∈ (1, 2)such thatα ≥ 1 +β. Assume that

A) ψ is a Young function such that its complementary Young function ˜ψ satisfies

∫ t

0

˜ψ
(

s…ν
)

ds< ∞, t > 0,ν := max{2 +β …α,α …β … 1}; (29)

B) Let f : I × E× E→ E satisfy the following assumptions:
(1) For every t ∈ I , f (t, ·, ·) is ww-sequentially continuous;
(2) For every x,y∈ C[I ,Ew], f (·,x(·),y(·)) ∈ P[I ,E];
(3) For any r > 0 and each ϕ ∈ E∗ there exists an Lψ (I ,R)-integrable function

Mϕ
r : I →R

+ such that |ϕ(f (t,x,y))| ≤ Mϕ
r (t) for a.e. t ∈ I and all x,y∈ C[I ,Ew]

whenever max{‖y‖,‖x‖} ≤ r . Moreover, there exists a continuous nondecreasing
function � :R+ → R

+ and such that for all ϕ ∈ E∗ with ‖ϕ‖ ≤ 1, ‖Mϕ
r ‖ψ < �(r)

and
∫ ∞

0
dr

‖Mϕ
r ‖ψ

= ∞;
(4) There exists a positive constant k such that for arbitrary bounded sets B1,B2 ⊂ E,

we have

μ
(

f (I ,B1,B2)
) ≤ k

[

μ(B1) + μ(B2)
]

. (30)

Then, there isρ > 0 such that for anyλ ∈ R with |λ| ≤ ρ, the integral equation(23) has at

least one weak solution u∈ C[I ,Ew].

Remark9

1. In [34, Lemma 19] one can find some sufficient conditions to satisfy assumption B)
(2).

2. The integral in (29) is convergent, so in view of [11, Proposition 1], we also have

∫ t

0

˜ψ
(

sα…β…2)ds< ∞ and
∫ t

0

˜ψ
(

s1+β…α
)

ds< ∞ for any t ∈ I . (31)

Before embarking on the proof of the above theorem, let us de“ne a constant

� :=
4˜�α…β…1(‖g‖)
�(α …β … 1)

[

1 +
‖g‖α(1 +p)�(α)

�(α …β)�(2 +β)|‖g‖α…1…p(g(ξ ))α…1|
]

.

Moreover, let us de“ne a positive real numberρ by

ρ :=

⎧

⎨

⎩

min{ 1
H , 1

L } H 
= 0,
1
L H = 0,

(32)

where

H := �
max{1,‖g‖β}

�(1 +β)
lim sup

r>0

�(r)
r

,

L := k‖g‖α…β

(

(1 + p)‖g‖α…1

α�(α …β)|‖g‖α…1…p(g(ξ ))α…1| +
1

�(1 +α …β)

)[

1 +
‖g‖β

�(1 +β)

]

.
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In this case, for anyλ ∈R with |λ| < ρ, we have

|λ|� lim sup
r>0

�(r)
r

≤ �(1 +β)
max{1,‖g‖β} .

In this connection, reasoning as in [34, proof of inequality (44)], we can show that there

existsR0 > 0 such that for anyR> R0 we have

‖g‖α…β…1‖c‖�(α)
�(α …β)|‖g‖α…1…p(g(ξ ))α…1| + |λ|��(R) ≤ �(1 +β)

max{1,‖g‖β}R. (33)

For brevity and to allow a generalization, let us keep in the following a symbolR0. We

are assured that under our assumptions for su�ciently smallλ we have global solutions,

i.e., functions de“ned on the intervalI .

Proof of Theorem3 De“ne an operatorT on C[I ,Ew] generating the right-hand side of the

di�erential equation in BVP, i.e., of the form

Tu(t) :=
c1(g(t))α…β…1

�(α …β)
+ λ�1,g

a Ux(t), (34)

whereβ ∈ (0, 1),α ∈ (1, 2), withα ≥ 1 +β, t ∈ I and

Uu(t) := �α…β…1,g
a f

(

t ,u(t),�β,g
a u(t)

)

(35)

andc1 is de“ned by (24).

I. First, we note that the operatorsU andT are well de“ned onC[I ,Ew]. To see this, let

us observe that for anyu ∈ C[I ,Ew], by Lemma5 �β,g
a u is well de“ned and by Theorem2,

we have�β,g
a u ∈ C[I ,Ew].

Under assumption B) (2), for anyu ∈ C[I ,Ew] the superpositionF(u) := f (·,u(·),�β,g
a u(·))

is weakly measurable, Pettis integrable onI . Hence, in view of Remark2, we obtain the

existence of�α,g
a F(u) for any u ∈ C[I ,Ew]. This means that the elementc1 ∈ E de“ned by

(24) is well de“ned, so is the “rst component ofT .

Moreover, by assumption B) (3) we have

∫ b

a
ψ

( |ϕ(f (t,u(t),�β,g
a u(t)))|

‖Mϕ
r ‖ψ

)

dt ≤
∫ b

a
ψ

(

Mϕ
r (t)

‖Mϕ
r ‖ψ

)

dt ≤ 1,

for any r ≥ max{‖u‖,‖�β,g
a u‖} and for everyϕ ∈ E∗.

Then, F(u)(·) ∈ Hψ
0 (E) and‖Fu‖ψ ≤ ‖Mϕ

r ‖ψ . Bearing in mind (29), it follows in view of

Theorem2 that U is a well-de“ned operator onC[I ,Ew] with its values inC[I ,Ew]. In this

connection, Corollary1 and Proposition2 yield that Uu(·)g′(·) ∈ P[I ,E] holds true for any

u ∈ C[I ,Ew]. Sinceα …β ≥ 1, in view of (31), by applying Lemma6 and using Remark2,

it follows that �α…β,g
a f (·,u(·),�β,g

a u(·)) = �1,g
a Uu(·)) and hence the operatorT is de“ned on

the spaceC[I ,Ew].

Moreover, as c1(g(t))α…β…1

�(α…β) is continuous with values inE and we just proved thatU :

C[I ,Ew] → C[I ,Ew], then the same property holds true forT .



Salem et al.Boundary Value Problems        (2023) 2023:57 Page 24 of 30

II. Now, let us construct an invariant domain forT , which is required by Theorem1.

De“ne a convex and closed subsetQ ⊂ C[I ,Ew] by

Q =
{

u ∈ [I ,Ew] : ‖u‖ ≤ R0, and
∥

∥u(t) …u(s)
∥

∥

≤ ‖c1‖(|(g(t))α…β…1… (g(s))α…β…1|)
�(α …β)

+
4|λ|

�(α …β … 1)

∫ g(t)

g(s)

˜�α…β…1(ζ )dζ , t ,s∈ I
}

.

Lemma4 implies thatQ is a strongly equicontinuous subset ofC[I ,Ew].

Observe thatβ ∈ (0, 1) and de“ner0 > R0 by r0 := R0
�(1+β) max{1,‖g‖β}. For anyu ∈Q, we

have‖u‖ ≤ r0 and‖�β,g
a u‖ ≤ r0.

We proved in Theorem2 that for any θ ∈ (0, 1] andx ∈Hψ
0 (E) we have an estimation

∥

∥�θ ,g
a x(t)

∥

∥

˜�θ
≤ 4˜�θ (|g(t)|)

�(θ )

∥

∥ϕ(x)
∥

∥

ψ

for someϕ ∈ E∗ with ‖ϕ‖ ≤ 1. Then, forθ = α …β … 1 this inequality is ful“lled. Take an

arbitrary u ∈ Q. By applying the estimation from B) (3) and asMϕ
r0 ∈ Lψ , for anyϕ ∈ E∗

we have

∣

∣�α…β…1,g
a

∣

∣ϕ
(

f
(

t ,u(t),�β,g
a u(t)

))∣

∣

∣

∣ ≤ ∣

∣�α…β…1,g
a Mϕ

r0
(t)

∣

∣

≤ 4˜�α…β…1(g(t))
�(α …β … 1)

∥

∥Mϕ
r0

∥

∥

ψ
≤ 4˜�α…β…1(‖g‖)

�(α …β … 1)

∥

∥Mϕ
r0

∥

∥

ψ
.

We can also estimateϕ(c1)

∣

∣ϕ(c1)
∣

∣ ≤ �(α)
|‖g‖α…1…p(g(ξ ))α…1|

[

ϕ(c) + |λ|(p�α,g
a

∣

∣ϕ
(

f
(

ξ ,u(ξ ),�β,g
a u(ξ )

))∣

∣

+ �α,g
a |ϕ(f

(

b,u(b),�β,g
a u(b)|)]

≤ �(α)
|‖g‖α…1…p(g(ξ ))α…1|

[

ϕ(c) + |λ|(p�1+β,g
a �α…β…1,g

a Mϕ
r0

(ξ )

+ �1+β,g
a �α…β…1,g

a Mϕ
r0

(b)
)]

≤ �(α)
|‖g‖α…1…p(g(ξ ))α…1|

[

ϕ(c) +
4|λ|(p + 1)˜�α…β…1(‖g‖)‖Mϕ

r0‖ψ

�(2 +β)�(α …β … 1)
‖g‖1+β

]

.

By taking the supremum over allϕ ∈ E∗ with ‖ϕ‖ ≤ 1 in the above inequality and by ap-

plying the Hahn…Banach theorem we obtain

‖c1‖ ≤ �(α)
|‖g‖α…1…p(g(ξ ))α…1|

[

‖c‖ +
4|λ|(p + 1)˜�α…β…1(‖g‖)�(r0)

�(2 +β)�(α …β … 1)
‖g‖1+β

]

. (36)

Moreover, again as a consequence of the Hahn…Banach theorem, for anyu ∈Q and any

t ∈ I there existsϕ ∈ E∗ with ‖ϕ‖ = 1 such that‖T(u)(t)‖ = ϕ(T(u)(t)). Using (36), there is

no di�culty in showing that

∥

∥T(u)(t)
∥

∥ =
∣

∣ϕ(Tu)(t)
∣

∣
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≤ ‖c1‖‖g‖α…β…1

�(α …β)
+

4|λ|˜�α…β…1(‖g‖)
�(α …β … 1)

�(r0)

≤ ‖g‖α…β…1‖c‖�(α)
�(α …β)|‖g‖α…1…p(g(ξ ))α…1| + |λ|��(r0).

Sincer0 > R0, it follows in view of (33) that

‖Tx‖ = max
t∈I

∥

∥Tu(t)
∥

∥ ≤ �(1 +β)
max{1,‖g‖β} r0 = R0. (37)

Also, for anyt,s∈ I and anyu ∈Q, it can be easily seen that

∥

∥T(u)(t) …T(u)(s)
∥

∥ ≤ ‖c1‖(|(g(t))α…β…1… (g(s))α…β…1|)
�(α …β)

+
4|λ|

�(α …β … 1)

∫ g(t)

g(s)

˜�α…β…1(ζ )dζ .

III. Now, we need to prove thatT is weakly…weakly sequentially continuous. Let{un}
be a sequence inQ and let un → u in C[I ,Ew]. Recall, that weak convergence inC[I ,Ew]
means exactly its boundedness and weak pointwise convergence for anyt ∈ I . The “rst
condition is assured by the de“nition ofQ.

Fix an arbitraryt ∈ I . Consider now the operatorU and observe that

U(un)(t) = �α…β…1,g
a f

(

t ,un(t),�β,g
a un(t)

)

.

From the dominated convergence theorem for the Pettis integral applied to�β,g
a we obtain

convergence of�β,g
a un(t) to �β,g

a u(t)). Hence, assumption B) (1) implies that the sequence
f (t,un(t),�β,g

a un(t)) converges weakly tof (t,u(t),�β,g
a u(t)). This implies that�1,g

a Uun(t) →
�1,g

a Uu(t) and “nally (Txn)(t) converges weakly to (Tu)(t) in (E,w) for eacht ∈ I , which
means thatT :Q→Q is weakly…weakly sequentially continuous inQ.

IV. Let us verify condition (2) in Theorem 1.
Let V be a subset ofQ satisfyingV̄ = conv((TV )∪{0}). Obviously,V (t) ⊂ conv((TV )(t)∪

{0}), t ∈ I . SinceT(Q) is uniformly bounded and strongly equicontinuous inC[I ,Ew], it
follows that V is also bounded and equicontinuous. Taking into account our Lemma1,
the function v(t) := μ(V (t)) is continuous onI , V (t) := {v(t) : v ∈ V } and

TV (t) =
{

Tv(t) : u ∈ V
}

=
{

c1(g(t))α…β…1

�(α …β)
+ λ�1,g

a Uu(t) : u ∈ V
}

.

Arguing similarly as in [11, Step 3 of the proof of Theorem 3] (see also Lemma7), we can
show that

μ
({�α…β…1,g

a f
(

t ,u(t),�β,g
a u(t)

)

: u ∈ V
}) ≤ �α…β…1,g

a μ
({

f
(

t ,u(t),�β,g
a u(t)

)

: u ∈ V
})

.

Also, by the aid of properties ofμ (see [13, 21]), in view of Lemma7, we obtain that
μ({�1,g

a UV (t)} ≤ �1,g
a μ({UV (t)}. Thus,

μ
(

TV (t)
) ≤ μ

(

c1(V)(g(t))α…β…1

�(α …β)

)

+ |λ|μ(�1,g
a UV (t)

)
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= μ
(

c1(V)
) · (g(t))α…β…1

�(α …β)
+ |λ|�1,g

a μ
({�α…β…1,g

a f
(

t ,u(t),�β,g
a u(t)

)

: u ∈ V
})

≤ μ
(

c1(V)
) · (g(t))α…β…1

�(α …β)
+ |λ|�α…β,g

a μ
({

f
(

t ,u(t),�β,g
a u(t)

)

: u ∈ V
})

. (38)

By applying assumption B) (4), we ensure that

μ
(

TV (t)
) ≤ μ

(

c1(V)
) · (g(t))α…β…1

�(α …β)
+ k|λ| · �α…β,g

a

[

μ
(

V(t)
)

+ μ
(�β,g

a V (t)
)]

≤ μ
(

c1(V)
) · ‖g‖α…β…1

�(α …β)
+

|λ|k‖g‖α…β

�(1 +α …β)

[

1 +
‖g‖β

�(1 +β)

]

μC(V). (39)

An analogous reasoning leads to the estimate

μ
({�α,g

a f
(

t ,u(t),�β,g
a u(t)

)

: u ∈ V
}) ≤ k‖g‖α

�(1 +α)

[

1 +
‖g‖β

�(1 +β)

]

μC(V).

Since

μ

({ ‖g‖α…β…1�(α)
�(α …β)|‖g‖α…1…p(g(ξ ))α…1|c

})

= 0,

it follows in view of the de“nition of c1

μ
(

c1(V)
)‖g‖α…β…1

�(α …β)
≤ �(α)

�(α …β)|‖g‖α…1…p(g(ξ ))α…1|
|λ|k(1 + p)‖g‖2α…β…1

�(1 +α)

×
[

1 +
‖g‖β

�(1 +β)

]

μC(V). (40)

From the de“nition of the set V and by applying properties of measures of weak non-
compactness we obtain

μ
(

V(t)
)

= μ
(

conv
({0} ∪ TV (t)

))

= μ
(

TV (t)
)

≤ |λ|k‖g‖α…β

(

(1 + p)‖g‖α…1

α�(α …β)|‖g‖α…1…p(g(ξ ))α…1| +
1

�(1 +α …β)

)

×
[

1 +
‖g‖β

�(1 +β)

]

μC(V).

Hence, we can take the supremum over allt ∈ I

μC(V) ≤ |λ|LμC(V).

Taking into account that|λ|L ≤ 1, immediately, we obtainμC(V) = 0, soV should be rel-
atively weakly compact inC[I ,E].

Finally, Theorem1implies thatT has a “xed point being a pseudosolution to the integral
equation (23). �

We point out that if E is re”exive then the implication (2) of Theorem1 is automatically
satis“ed, as subsets of re”exive Banach spaces are weakly compact if and only they are
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weakly closed and norm bounded. In this situation, it is no longer necessary to assume

any compactness hypothesis imposed on the nonlinearity off to assure the existence of

solutions to the fractional integral equation (23).

In addition to giving a conditions under which the integral equation (23) admits a so-

lutions in the spaceC[I ,Ew], Theorem 3 may be used to obtain a result concerning the

existence of solutions to the boundary value problem (21) and (22).

Now, we are in the position to state and prove the following existence theorem:

Theorem 4 Letβ ∈ (0, 1),α ∈ (1, 2)such thatα ≥ 1+β.Assume thatψ is a Young function

such that its complementary Young function˜ψ satis“es

∫ t

0

˜ψ
(

s…ν
)

ds< ∞, t > 0,ν := max{2 +β …α,α …β … 1}. (41)

Assume that E has a total dual. If f : I × E → E is a function ful“lling all assumptions

B) from Theorem3, then the problem(21) and (22) admits at least one pseudosolution

x ∈ C[I ,Ew].

Proof At the beginning, we note that ifu ∈ C[I ,Ew] solves the integral equation (23) then,

obviouslyu is weakly absolutely continuous function having integrable pseudoderivative

(cf. Lemma2). Indeed, we have

δu(t) =
1

g′(t)
dp

dt
u(t) =

c1

�(α …β … 1)

(

g(t)
)α…β…2

+ λ�α…β…1,g
a f

(

t ,u(t),�β,g
a u(t)

)

.

Hence, by the de“nition of the pseudoderivative we have

1
g′(t)

dϕu(t)
dt

∈ Lp,

for somep ∈ (1, 1
2+β…α

). Now, since�α…β…1,g
a f (·,u(·),�β,g

a u(·)) ∈ C[I ,Ew], it follows that

�β,g
a �α…β…1,g

a f
(·,u(·),�β,g

a u(·)) ∈ C[I ,Ew].

In view of Lemma6 we conclude that

�1…β,g
a �β,g

a �α…β…1,g
a f

(·,u(·),�β,g
a u(·)) = �1,g

a �α…β…1,g
a f

(·,u(·),�β,g
a u(·))

= �α…β,g
a f

(

t ,u(t),�β,g
a u(t)

)

.

Consequently,

�1…β,g
a �β,g

a δpu(t) =
c1

�(α …β)

(

g(t)
)α…β…1

+ λ�α…β,g
a f

(

t ,u(t),�β,g
a u(t)

)

= u.

Seeing thatu(a) = 0, we have, in view of Lemma2, �1,g
a δpu(t) =

∫ t
a Dpu(s)ds= u(t), t ∈ I .

Now, let us de“nex := �β,g
a u ∈ C[I ,Ew]. Further,

x = �β,g
a

(�1…β,g
a �β,g

a δpu(t)
)

.
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Therefore, for anyϕ ∈ E∗, by the commutative property of theg-fractional integral oper-
ator, we have

ϕx = �β,g
a

(�1…β,g
a �β,g

a ϕ
(

δpu(t)
))

= �1,g
a �β,g

a ϕ
(

δpu(t)
) ⇒ 1

g′(t)
dϕx
dt

= �β,g
a ϕ

(

δpu(t)
)

.

Accordingly,

�β,g
a

(

1
g′(t)

dϕx
dt

)

= �1,g
a ϕ

(

δpu(t)
)

= ϕ(u)

and

dβ,g
p

dtα
x = u.

Thus, if u ∈ C[I ,Ew] solves (23) then for all t ∈ I we obtain

�β,g
a u(t) =

c1

�(α …β)
�β,g

a

(

g(t)
)α…β…1

+ λ�β,g
a �α…β,g

a f
(

t ,u(t),�β,g
a u(t)

)

).

Hence, by applying the above equality we obtain

x(t) =
�(α …β)c1

�(α)�(α …β)

(

g(t)
)α…1

+ λ�α,g
a f (

(

t ,x(t),
dβ,g

p

dtα
x(t)

)

, t ∈ I .

By the de“nition of our generalized fractional derivative
dα,g

p
dtα we infer

dα,g
p

dtα

[

c1

�(α)

(

g(t)
)α…1

]

= 0,

and by applying Lemma8, we conclude that

dα,g
p

dtα
x(t) = λf

(

t ,x(t),
dβ,g

p

dtα
x(t)

)

.

On the other hand, there is no di�culty in showing that x satis“es

⎧

⎨

⎩

x(a) = 0,

x(b) …px(ξ ) = c, a < ξ < b,p ∈R
+,c∈ E.

(42)

This means thatx is a pseudosolutionx of the problem ((21) and (22)). �

Some examples of the use of our theorem to the problem ((21) and (22)) can be found
in [12, Sect. 4]. However, it is worth noting that:

1. Our assumption that E has total dual is essential in Theorem 4 and cannot be
omitted even if f is weakly absolutely continuous on I . Evidently, if we define
f : I × B[I ] × B[I ] → B[I ] by

f
(

t ,x(t),y(t)
)

:=

⎧

⎨

⎩

χ{t}(·), t ∈ J,x,y∈ B[I ],

θ , t /∈ J.
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Then, using similar arguments as in the proof of Theorem 4, by the aid of
Example 3.2 we can show that

dα,g
p

dtα
x(t) 
= λf

(

t ,x(t),
dβ,g

p

dtα
x(t)

)

holds true on a subset of I of positive measure.
2. By virtue of the fact that the indefinite Pettis integral of a function f ∈ P[I ,E] does not

enjoy the strong property of being a.e. weakly differentiable, it is immediately clear
that the result obtained in Theorem 4 has no analog if we replace dα,g

p
dtα by dα,g

ω

dtα .
3. Arguing similarly as in the [11, Theorem 5], we are to consider the multivalued case

of the problem ((21) and (22)).
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