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1 Preliminaries

The domain of fractional calculus is a very rich “eld because of its applications, for in-
stance, in wave propagation in viscoelastic horns, sound-wave propagation or fractional
models and controls (seed, 16, 22]). There are several de“nitions for fractional integrals

and for fractional derivatives 19, 36]. We are interested in the most general form of such
operators. Till now, the most general known de“nition of the fractional operators seems

to be the fractional integrals and derivatives of a Lebesgue functibmwith respect to an-

other function g (see B6, Sect. 18.2],19, Sect. 2.5] andq]). However, let us mention

that this de“nition allows us to operate only on real-valued functions. In the past decades,
this general de“nition has proven its applicability in many and di erent natural situations,
forinstance, in ], starting with the exponential growth model, the same problem was de-
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scribed by a fractional di erential equation, and we shall see that the choice of the function
g determines the accuracy of the model.

Our goal is to expand the applications of such an approach for vector-valued functions.
Recently, considerable attention has been paid to the theory of fractional calculus in ab-
stract spaces, which is more complicated and di erent from the classical fractional calcu-
lus of real-valued functions. This is due to the fact that some of the long-known properties
of the real-valued function do not carry over into arbitrary Banach spaces. For instance,
the classical fundamental theorem of calculus in Banach spaces is more complicated than
the standard one. In addition, the weak absolute continuity of Banach-valued functions
does not necessary imply strong or everywhere weak di erentiability.

The aim of this paper is two-fold. On the one hand, we de“ne and discuss the properties
of the generalized form of the new fractional operators applied for the class of Pettis inte-
grable functions that seems to be interesting in itself. On the other hand, we apply those
results in order to ensure the existence of weakly continuous solutions for some boundary
value problems of fractional order.

We should at least brie”y recall why we discuss as one topic the fractional calculus with
Orlicz spaces. This goes back to the origin of fractional calculus and fractional operators
in function spaces. It is motivated by some applications to integral equations or partial
di erential equations [24, 27]. On the other hand, Pettis integrability is also strictly related
to some weak integrability conditions in Orlicz spaces3§], for instance).

However, our results complement some of those obtained ih, 3, 4, 11, 12, 29..31, 35]
or [39)), dealing with the properties of the fractional integral and di erential operators
when acting on the space of Pettis integrable functions.

Let us recall that a functiomy : R* — R* is said to be a Young function if/ is increas-
ing, even, convex, and continuous witly(0) = 0 andlim_, », ¥ (u) = oo). For any Young
function v, the function ¥ : R* — R* de“ned by sup,ofVvlul ../ (v)} is called the Young
complement of and it is well known that+' is a Young-type function as well.

The Orlicz spacelL,, = Ly([a,b],R) consists of all (classes of) measurable functioxs
[a,b] — R for which

[ ::inf{k>o:fabw<@> ds< 1}, (1)

is “nite (see, e.g.,40]). The particular choicey (u) = yp(u) := %|u|p, p € [1,00) leads to the
Lebesgue spads, = Lp([a,b], R), p € [1,00). Inthis case, it can be easily seen th@p = ¥
with %+%:1forp>1.

In this connection, it is worth recalling that, for any Young function/, we havey (u ...
V) < ¢ (u) ...y (V) and ¥ (pu) < py(u) hold for anyu,v e R and p € [0,1]. Also, for the
nontrivial Young function ¢, L, C Ly, C Ly. For further properties of Young functions
and Orlicz spaces generated by such functions we refer the reader2dp, 35].

In the forthcoming pagesE will be considered as a Banach space with norjn || and
with its dual spaceE*. Also, E,, denotes the spac& when endowed with its weak topology
o (E,E*). LetC[l,E] denote the Banach space of (strongly) continuous functiors| — E
endowed by the norm||x|lo = sup;, [IX(t)]|. By C[l, Es] we denote the Banach space of all
weakly continuous functions<: 1 — E with its weak topology (i.e., generated by continu-
ous linear functionals onE).
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Throughout this paper, we letg be a positive increasing function on an intervdl :=
[a,b], having a positive continuous derivative, witg(a) = 0 (see, e.g. 1B, Sect. 2.5] or B6,
Sect. 18.2]).

In this paper, we will have one more important class of functions. Namely, we &t
R* — R* be a Hoélderian function, i.e.y? is increasing and continuous with}(0) = 0. The
(generalized) Holder spacé?[I, E] consists, by de“nition, of allx € C[l, E] satisfying

[x() .. x(9)| <L (|ot) ..9(9)|), L>0.

Equipped with the norm

— — IX(t) - x(9)ll
Xy := T?EaIXHX(t)” +[X]s, where ]y —Stl;g m7

the spacecg[I,E] becomes a Banach space. Elementsajf[l,E] are called generalized
Hoélderian functions.

The particular choiceg(t) =t, ¢ (t) =t*, « € (0, 1] leads, of course, to the classical Holder
space.

Letcg[l , Ew] denote the Banach space of generalized Hélderian functiond — E, with
its weak topology (i.e., generated by continuous linear functionals Bh

Recall that the mapT : X — Y, X and Y are Banach spaces and said to be weakly...
weakly sequentially continuousww-sequentially continuous) if and only it maps weakly
convergent sequences() to x € E into sequencesT (x,)) that are weakly convergent to
TX)inY.

Definition 1 ([13]) Let Mg be a family of all bounded subsets @& and B; denotes the
unit ball of E. The De Blasi measure of weak honcompactness is the mapping

Mg —[0,00)
de“ned by
1(X) :=inf{e > 0 : there exists a weakly compact subsetof E: X C €B; + Q}.

For the properties ofu see [L3]. The following important Ambrosetti-type lemma will
be used in the paper:

Lemma 1 ([23]) LetV c C[I,E] be bounded and strongly equicontinuoLiBhen,
1.t u(V () € C[I,RY], where V(t) :={v(t) :ve V,tel};
2. pe(V) = supgy u(V (1)) = u(V (1)),

wherepu denotes the De Blasi measure of weak noncompactness$lireC

For our purpose, we will need the following Ménch “xed-point theorem whose founda-
tions of use for the weak topology we can “nd ind]

Theorem 1 ([21]) Let Q be a nonemptyclosed convex and equicontinuous subset of a
metrizable locally convex vector spacel(E) such that0 € Q. Suppose T: Q — Q is
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weakly...weakly sequentially continuoifghe implication
V =con({0}UT(V)) =V is relatively weakly compact 2)
holds for every subset ¥ O, then the operator T has a “xed point irQ.
The following de“nition goes back to Pettis 28]

Definition 2 (Pettis integral) A weakly measurable functior:| — E is said to be Pettis
integrable onl if

1. X is Dunford integrable on |, that is, ¢X € L; for every ¢ € E*;

2. for any measurable A C | there exists an element in E denoted by [, X(s) dssuch that

q)(/ x(s)ds) = / ex(9)ds for every ¢ € E*.
A A

By P[l,E] denote the space oE-valued Pettis integrable functions oi. In particular, the
spaceP[l,R] = Ly[l,R]. We need to introduce more function spaces. For convenience, we
recall the following:

Definition 3 ([8, 28]) For any Young functionys we de“ne a clas${¥ (E) as

HY(E) = {x 1 — E:x weakly measurable satisfyingx € L (1) for everygp E*}.
As its subspace let us consider

HY(E) = {x:1 — E:xstrongly measurable satisfyingx € L, (I) for everyp € E*}.

Moreover, the cIassHE,”(E) (resp.,ﬁg(E)) is de“ned to be the subspace diY (E) (resp.,
7—~N(E)) composed of Pettis integrable functions oh that is

HY (E):=|{xe HY(E) :x € P[I,E]}, HY (E) =[x e H' (E) :x e P[I,E]}.

In particular, the well-known cIass%S(E) denotes the cIaSS{O‘”(E) for the particular choice

.|P
1)05%.

Obviously, HY (E) € H{ (E) < HY (E) and H} (E) = HY (E) holds true wheneverE is
separable (cf.Z8, Corollary 1.11]). Some special facts about these spaces are known (cf.
[14, 28, 38)):

Proposition 1

(1) IfE is reflexive, then H(E) = H3(E).

(2) For any Young function ¥ with limy_, o ¥ (U)/ U — o0, ﬁ‘/’(E) c ’Hg(E). In particular,
HP(E) HE(E) holds true for any p> L. If, additionally, E is weakly complete or even
more generally, contains no isomorphic copy of Gy, it is also true for any Young
Sfunction . That is, ﬁl(E) C ‘H3(E) whenever E satisfies this additional condition.
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Clearly, since the weak continuity implies a strong measurability (sd8[page 73]), in
view of Propositionl it implies that:

Corollary 1 For any nontrivial Young functiony the space @1,E,] is a proper subset of
HY (E).

Let us stress that the connection between the Pettis integrability and Orlicz spaces is
much deeper than presented in3g] (see [7]). In the following, we will integrate vector-
valued functions with respect to some real-valued ones. For this reason we recall the re-
sults that complement some of those fromB, 35], dealing with the integrability of Pettis
integrable functions multiplied by real-valued ones.

Proposition 2 ([11, Proposition 5]) If x € ’HO‘”(E), then x(-)y(-) € P[I,E] forevery ye L;.

Let us stress thay cannot be vector valued, unless the spakés a Banach algebra. Now,
we should state an immediate, but important, consequence of Propositi2in

Proposition 3 (cf. [28, Corollary 3.41)) If x € P[l,E], then x(:)y(-) € P[l,E] for every ye
Loo[l].

Let us recall necessary de“nitions and known facts about weak-type derivatives in Ba-
nach spaces. Let us collect all of them that are applied for problems described in the paper.

Definition 4 ([14, 28]) Consider a vector-valued functiorx : | — E. If for every ¢ € E*
functions ¢x are di erentiable almost everywhere or and if there exists a functiony :
| — E such that for everyp € E* there exists a null seN (¢) C | with

(px(1)) = py(t), foreveryt 1\ N(gp),

then the function x is said to be pseudodi erentiable on.

In this above de“nition, y is called a pseudoderivative of. If the null set independent
of ¢, thenx is said to be a.e. weakly di erentiable ohandy (in this case) is called a weak
derivative ofx and exists almost everywhere dn In particular, whenE =R it is clear that
the pseudo- and a.e. weak derivatives coincide with the classical derivatives of real-valued
functions.

Let ©, denote the pseudodi erential operator (esp, ©,, for the weak one). The best
result for a descriptive de“nition of the Pettis integral is that given by Pettis ir2B, Sect. 8]
(see also?5, Theorem 5.1] and 1.8, 23)).

Lemma 2
(1) The indefinite integral of Pettis integrable (resp., weakly continuous) function is
weakly absolutely continuous and it is pseudo- (resp., weakly) differentiable with
respect to the right endpoint of the integration interval and its pseudo- (resp., weak)

derivative equals the integrand at that point.
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(2) A function x:| — Eis an indefinite Pettis integral if and only if X is weakly absolutely
continuous and has a pseudoderivative DpX on |. In this case, DpX € P[I,E] and

x(t):x(a)+/t©px(s)ds, tel.

Before embarking on the next section, we remark that it is natural to assume that the
spacekE has total dual, i.e., a countable determining set. In factHfis separable, then both
E and E* have total dual, so even spaces lilB/(l) or L. (I) have this property. In this
connections, all considered pseudoderivatives of a function frdnto E, will be uniquely
determined up to a set of measure zero. Deep results concerning this problem can be
found in [26, Corollary 3.4, Theorem 3.6].

We also recall the following facts: for any continuoug: | — R having a positive, con-
tinuous derivativeg on |, Proposition3 may be combined with Corollaryl in order to as-
sure thatx(-)g'(-) € P[I,E] (resp.x(-)J (-) € C[I,Ey]) holds true for everyx € ”Hg(E) (resp.,

x € C[l,Ey]). From which, in view of Lemma2, it follows that

(ﬁ@w)fségx(t) = (37 0w) [ x(99(9ds=x, holds for anyx € C[I,E], (),
(ﬁQp):Ts;‘gx(t) = (g,—%t)i)p) f; X(9g'(9) ds= x, holds for anyx € P[I ,E], (<).

Remarkl Let us note that
«+ The fact that the indefinite Pettis integral of a function x € P[I, E] does not enjoy the
strong property of being a.e. weakly differentiable (see [15]), tells us that (") does not
necessarily hold for arbitrary x € P[I, E].
« The formula (<) is not uniquely determined unless E has total dual E*. Evidently,
according to (e.g., [37, page 2] and [10]), it may happen that (ﬁ@w)?@;’gx =y, withy

being weakly equivalent to X (but they need not be necessarily a.e. equal).

2 Generalized fractional integrals

Various modi“cations and generalizations of classical fractional integration operators are
known and are widely used both in theory and applications. In this section, we dwell on
such modi“cations such as fractional integrals of a given functiorwith respect to another
function g.

Definition 5 (cf. [5,19,36]) The generalized fractional (og-fractional) integral of a given
function x: [a,b] — E of order « is de“ned by

‘ X(9)
I(e) Ja (o(t) ..9(9)"~

JRX(t) = g(9ds (.co<a<b=<oo),a>0. ()

For completeness, we de“n&z %x(a) := 0. In the preceding de“nition the sign 9 Z stands
for the Pettis integral (in particular, the Lebesgue integral whdh=R).

It should be noted that, for the real-valued functiorx € L;[a,b], it is well known that

(see, e.g.5, 36]) 3% makes sense a.e. drand 329359 = 3593%% = 34" 9% holds true

for any «,8 > 0. We also remark that, in a special cagft) =t, t € [a,b] or g(t) = Int,
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t € [1,€] we obtain two classical fractional integral operators: the Riemann-Louville and
the Hadamard ones.

De“nition 5 allows us to unify di erent fractional integral for vector-valued functions
and consequently, in a uni“ed manner, to solve some boundary value problems with dif-
ferent types of fractional integrals and derivatives. Clearly, it is not only a uni“cation, we
extend existing results too.

Example2.1 Leta >0 andJC | be a set of positive measure. Consider the Banach space
E = B[l] of bounded real-valued functions on. De“ne a weakly measurable functior :
| — B[l] by

xu(), teld
0, t¢d

X(t) ==

Obviously x € P[1,B[I]]. To see this, let us remark that any < B*[I] may be identi“ed

with a countable additive measure de“ned on the o -algebra onl. More precisely, ev-
ery bounded linear functional onB[l] is of the form x — [, x(t)d¢ for some countable
additive measure; . Thus, for every measurabl& c | we have

/Zgo(x(s))ds:/z</Jx{s}d{> ds=¢(9).

From which, by the de“nition of the Pettis integral, we conclude thax € P[I,B[l]] as
claimed. Now, we will show thatxs 9x exists onl with 33 = 6: Evidently, for every mea-
surableX C | we have

. X / 1 p(x(9)
ds= ds=0= .
I'(a) ./;: Y < O O (S)> 1@ )y 90 g9 (9ds=0=¢(0)

~2.9

That is, by the de“nition of the Pettis integral 33 °x exists onl and 35 = 6.

Remark2 For anya > 1, 33% exists for anyx € H3(E). This is a direct consequence of
Proposition 3, as we obtairs — (g(t) ..9(9)* ¥ (9 € Loo[a,t] for a.e.t € [a,b].

We sometimes considered some special cases of sp&cé®t us present one useful one:

Lemma 3 Let« € (0,1] and assume that E has no isomorphic copy of €hen, 359 :
HA(E) — P[I,E].

Proof Letx ﬁé(E). By virtue of the fact that the strong measurability is preserved under
a multiplication operation of functions ¢f.e.g., [L8]), the product (g(t) .. g(-))* & ()x(-) :
[a,t] — Eis strongly measurable on [@] for almost everyt € . Consequently, by Younges
inequality, it can be shown that for every € E*, the real-valued functions— ¢((g(t) ...
a(9)* Y (9x(9) = (g(t) .. 9(9)* Y (¢ (X(9) is Lebesgue integrable ora[t], for almost ev-
eryt e |. Hence, the existence o3 x follows from [17, Theorem 22].

Now, we proceed in order to show thats3® : H3(E) — P[I,E]. To see this, letx € H3(E),

~x%9

de“ne y := 33”x and note thaty e H(E). Thus, for any interval f,d] € I, and anyyp € E*
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we have

d d
/C o(y(t)) dt = / 399 (x(1)) dt = p(Kea).

where

d c
e = ey ), X0 -60) d@ 85— [ 900 -009) 9@

Sincex € P[l,E], then owing to Proposition 3, we have thatx(-)(g(c) ...9(-))*d'(9) and
X(-)(9(0) ..9(-))*d (-) are Pettis integrable orl and soxq € E. A combination of these
results yieldsy € H(E) and there exists an elemenkiq € E such that ¢(Xcq) =
fcd @(y(t))dt, for everyp € E* and any [,d] C I. SinceE has no copy ofc, it follows
in view of [17, Theorem 23] thaty € P[l,E]. The lemma is thus proved. O

In what follows, we outline and prove some aspects ofja.fractional integral in Banach
spaces and weak topologies. The following theorem complements similar results38 [
Lemma 1] and L1, Theorem 2] dealing with the statements revealing how much the frac-

x99

tional integral 33 %x is *betterZ, in the sense of space inclusions, than the functian

Theorem 2 Letwx € (0, 1]. For any Young functiony with its complementary Young func-
tion ¢ satisfying

/OtJ(S"“'I)dS<oo, t>0, (4)

the operator33 maps the spacélg(E) into the (generalizeyiHolder spacéfg’ﬂ [1,E]. Also,
for any xe HE,”(E) there isp € E*, with ||¢| =1 such that

. .
I35, = g Il (1 + Talian),

In particular, 339 : C[l,Ey] — Cg’a[I,EW]. Here ¥, :R* — R* is de“ned as

1
tk T

\Tla(t):zinf{k>0:ka-1--l/0 ¥ (Y ds< 1}, t>0. (5)

To make the proof of Theorem2 simpler we split it into several stages, providing the
following lemmas:

Lemma 4 ([11, Proposition 2]) For anya € (0, 1], the function ¥, de“ned as in(5) is a
Holderian-type functioni.e., T, is well de“ned increasingand continuous with\TJa(O) =0.
In other words the spacefg’a [l1,E4] is a Holderian-type space

Proof It is clear that for anyt > 0, the function

to
u(o) =o /o ¥ (s ds
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has a positive derivative for su ciently larges >0 (becausa?(u) — 0 asu — 0). Conse-
quently, for anyt > 0, there iso > 0 such thatu(c) > 0 and then for anyt > 0 the set

{o>o:o---1/0tca(§---1)dsg 1}7@. (6)

Together with T, (0) =0, thisimplies thatl, is well de“ned onl. In view of the de“nition
of ¥,, for 0 <t < swe have

O = L
| P(syds= | J(syds= (Tu@) "
0 0

Thus, we may putk = ¥, (s) in (5), which implies U, (t) < ¥, (S), as required for the mono-
tonicity of U, . Finally, the continuity of ¥, follows from the continuity and concavity of
t [y (sYds 0

Lemma 5 Leta € (0, 1].For any Young functiony with its Young complemeni satisfying
(4), the integral 33 x exists(is convergentfor any xe Hg(E). Moreoverit is true for every
X € ﬁ‘/’(E) providedyr satis“es the additional property thatim,_, o, ¥ (U)/u — oc.

In particular, if E is re”exive(resp, weakly complete 359x, x € H¥ (E) (resp, x € 7—~l”’(E))
exists for any nontrivial Young functiony.

Proof First, let us de“neu : 1 — R* by

i {(g(t) LI YO, selatlt>a,
u(s =

0, otherwise

and observe that for any € | the function

. 1 ngt) @ g
U (1) -—TI---”g,—”/(; ¥ (Y ds

has a positive derivative for some su ciently large; > 0 (because)/(u) — 0 asu — 0).
Consequently, for anyt € | there is a su ciently large n > 0 such thatu;(n) > 0 and thus
foranyt el

1 T K \T5
k>0:—— g3d ?. 7
{ 7 ||9’||/o Vi) SS(IIQ’II) }7 )

This is in line with the following observations that they give:

i)

:/;J(I(g(t) --g(li))“""rg/(s)) ds= /;J(I(g(t) --g(i))““"rllgll ﬁ;ﬁ)ds

[t (1) - gl g@ds _ (T et
‘/J”( k ) ol gl /0 V(s
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hold for anyk >0, sou € L (I). The assertion of our lemma follows directly from Propo-
sition 2.

Now, we claim that3 %x exists for anyx e ’}W(E) with ¢ satisfying the additional prop-
erty lim,_, », ¥ (u)/u — oo. In view of the above observation, it follows from part (2) of
Proposition1.

Next, let us assume thak is weakly completex e ﬁ‘/’(E) for arbitrary ¢ and note
that in this case?—Nl‘/’(E) C ﬁl(E). Since the strong measurability is preserved under
a multiplication operation, the pointwise product of strongly measurable functions
(9@t ...g(N* Y (OxX() : [at] = E is strongly measurable ond,t], t € I. In view of
Younges inequality, we know that for every € E*, the real-valued function,e((g(t) ...
g N Y (OX()) = (gt) ..9()* Y ()ex(-) is Lebesgue integrable ora[t] for everyt e I.
Hence, the result is a consequence of part (2) of Proposititin

Similarly, whenE is re”exive, the result follows from part (1) of Propositiori. In this
case indeed, as for any nontriviak we haveH" (E) € H(E). Consequently, for any e
HY(E) and everyyp € E* the measurable real-valued functiog((g(t) .. g(-))* Y (-)x(-)) =
(9(t) ..g(-))* Y (-)ex(-) is Lebesgue integrable ora[t] for everyt € |, and hence is weakly
measurable. The fact that in re”exive spaces any weakly measurabld — E is Pettis
integrable if and only ifpu € L; holds for everyy € E* (cf. Lemmal part (1)), guarantees
the existence ofsa% on . O

Remark3 According to the assertion of Lemma, the function (g(t) ..9(-))* Y (-)x(-) €
P[[a,t], E] for everyt € | and anyx € ’H,O‘”(E). Consequently, accordingly to the de“nition
of a Pettis integral for anyt € | there exists an element o denoted by33x(t) such that

T T A
¢°%g“°)‘F651;w(@a)um$ﬂﬂ>ds

= 1 t (/J(X(S))g’(s) ds _ L’Nsavg
(@) Ja Q1) ..g@9)te 2 p(X(t)) ©

holds true for everyyp € E*.

Remark4 We should remark that, if35 % does not exist for somex € ’Hg(E), then it can-
not exist if we senlargeZ the spacginto F. To see this, we argue by contradiction assuming
that 33°x (when we consideix as a function from’l—[o"’(F)) exists. In this case, for the par-
ticular choice for the functional ¢ € F* having ¢|g = 6 we conclude, in view of §) and
x(1) C E, that ¢(Jax(t)) = Ja%(x(t)) = 0, from which 33 (t) € E. This would lead to a
contradiction.

Remark5 Leta Young functiomj be such thatthe integral in4) is “nite. Forany« € (0, 1),
the assertion of Theoren?® is still valid if at least one of the following cases holds true:

1. xe ﬁ"’(E), where V¥ satisfies the additional property limy_, o ¥ (U)/U — 00;

2. Eis weakly complete and x € ﬁ‘/’(E);

3. Eis reflexive and x € HY (E).
Evidently, it follows from Theorem2, as in view of Lemmab, in all of the above cases we
haveH" (E) € 1 (E) € H{ (E).

We are now ready to provide the proof of Theoreng.
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Proof of Theoren2. Leta<t; <t <bandxe Ho"’(E). According to Lemmab and by the
de“nition of the inde“nite Pettis integral, we ensure that33?x is well de“ned. In view of
Remarks3, it allows us to state the following chain of inequalities

|0 (JL9X(t2) .. SLOX(t1)) |

- 35 (1) - A5 )|
t a...1 a... ,
s@(a (o(tz) - 99)“ . (0(t2) .- 99)“ |g S| (x(9) | ds
t2
+ / (o(ts) --99)" HOle(x©)| ds)
t1

b
- i | [ sl (9) 05

where

h __ll(g(tz)--Q(S))““'l---g(tl)--Q(S))“'“]fg/(s) se[a,ta],
1(9) = 0

otherwise

otherwise.

. [(g(tz) YOO selttal

We claim that h; € L (1), (i =1,2). Once our claim is established, in view of the Holder
inequality in Orlicz spaces, we conclude that

2[Ihally + IIh2ll 7]

|0 (JL9X(t2) .. SLX(t1))| < @) le)| " 9)

It remains to prove our claim by showing thah; € Lj(1),1=1,2. To see this, “xk > 0. An

appropriate substitution, using some properties of Young functions, leads to the following
estimation

(282

-["5 (192 - g9) L 6lt) 99 Hg | )

K B
M () -89 6t a9\ 9
—/ 'ﬁ( K )”g,”ds
3 OB g (o) 511191196
= [T )T R s

1
( )@ )Tagty) (FoTegt)
- "ﬂ/” [/ ToT w(sf""'l)ds.../ Q] w(S"'“l)dS]
0 (5)T% (olt2)-t)

gl

1 1
(HQ/L”)‘Tl (HQL/H)HQ(M)N (\Ig’H) 2 g(ty)
gl [/ ‘/’(Sx"'])ds---/ P(s)ds
0 0
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()T (ot2). )
[

0

1
(X )a )T (g(t2).ot0)
- Mgl /ng T(<Yds
0

- gl

In view of (6), the above observations guarantee the existence lof> 0 for which
[P ¥ (Gl ds < 1. Then, we can conclude thah € L (1). Moreover, our de“nitions of
U, and the norm in Orlicz spaces, along with the above observations, give us

Ihally = inf{k>o;/ab;/;(|h1k(s)|>dsS 1}
=|d] mf{ i Ozfabﬁ(lhlk(s)l)dsg 1}

< lAf’o[(|g(t2) - g(t1)]).

Arguing similarly as above, we can show that
hoelz(1), and [hally < Wo(lg(t2) .- glta)])-
Thus, for anyg € E* equation @) takes the form

(35 35| = 20X I g (10

This may be combined along with the Hahn...Banach theorem, in order to assure that

4, (19(t2) .- olta)1)
Fia) l ||<p(x)||¢

[389x(t2) .35 %x(ty) || =

holds true for somey € E* with ||| = 1. Hence 359 : H(‘)”(E — Cg‘a[I,EW]. Also,

4
[Sg,gx]% < @ |<P(X)”¢'

~e.9

Moreover, in view of our de“nition J5°x(a) := 0, we observe that
[38XO] = [543 9x(@)] < T (91 [35 %], -
We “nally obtain
[355¢l5, = s o], @+ B lg) ay
®) e

In this connection, the particular case follows from Corollary and the theorem is then
proved. 0

Example2.2 Leta € (0,1) andy(u) = yp(u) := %|u|p, p € (1,00). In this case, we have
Vp = Wp With % + % = 1. It can be easily seen that holds true if and only ifp> 2. From
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which we conclude that33® maps the Bochner spacky[l,E], p> L into the Holder space
Cg[1,En], where

W, (t) = ta—p teR".
PRI .. p(L ..a)]

For instance, inlview of the above observatiodg? : Ly[I,R] — C‘T‘a[l ,R] for « € (0.5,1)
with B, (t) = 2

Remark6é Theorem2 may be combined with L1, Example 1] in order to assure the ex-
istence of a Young functiony (for instance, v (u) := €'l ...Ju| ... 1) for which33*® maps
H(‘)”(E) into Cg’a[l ,1,Ey] *for allZa € (0, 1]. According to Example2.2, this interesting phe-
nomenon has no analog in the case of Lebesgue spdggb, R]).

Example2.3 Leta > 0 anda,b € R* such thatb ...a=1. De“ne a strongly measurable
function x: [a,b] — Ly[a,b] by

X(t) ::Zen () = [zn('), teln,

n=1 otherwise,

where{e,} is an orthonormal system irL,[a,b] and ;s are the pairwise disjoint subinter-
vals of a,b] de“ned by I, = (a+ 1/2",a+ 1/2" + 1/4"), n € N. Since

(/ab“”(x(t))'zdt)%:(Z |¢(%)|> (le(en)|> < llglle,

n=1

holds true for everyp € Ly[a,b]* = Ly[a,b], we obtaingx € L[a,b] for every¢ € L;[a, b]*.
Hence x € P[[a,b], L,[a, b]] (by applying Propositionl). More preciselyx € ’ng(Lz[a, b]).
Sincel[a,b] is re”exive, the integral¥a °x exists for anya > 0 (cf. Remark2 whena > 1
and Remark5 whena € (0, 1)). Moreover in view of Exampl@.2, we know thatX3 % e

C“’a[[a b], (Lo[a, b]).,], with ¥ (t)— 2 2 holds foranya € (0.5, 1).

Example2.4 Letx € (0,1] and de“nex: [0, 1]— L4[0, 1] by

X(t) = (9®) --90)) “ xtan(), tel0,1].

r(1 )

This function is weakly continuous onl = [0, 1]. Indeed, if¢ € Ly, = L} corresponds to

@ € L, then p(x(t)) = 33 O‘g("’((tt))) Sinced5 9 mapsC[l,R] into itself, we can conclude
that px € C[I,R] for everyg € L] that gives a reason to believe thatis weakly continuous
~%.9

on |. Consequently, in view of Theoren, it follows that I3 X exists onl. In this context,
we can show that

J8X()() = x[a (), holds for anye € (0, 1]. (12)

This is easy to demonstrate because, by lettiggge L, corresponding tog € L} and car-

rying out the necessary calculations using the substitutiar 98 ggg it can be veri‘ed
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that

[ 80961 Y5
a ['(a)

t
- ﬁ / [ot) .. 0] H(9e(x(9) ds
_ (M8 991 YO [ e . oE))

A (@) T T %S
_ o) - 991 Mg --9E)]*
‘/a € ) T T ML) 00U

t b
. / $(5)de = / ()X ©) dE = p(xga).

as needed for12).

In view of the semigroup property of33* in Lebesgue spaces, an analogous reasoning
asin [11, Lemma 2] gives us the following:

Lemma 6 Letw,8 € (0,1].1fx € ’H(‘J”(E), whereyr is a Young function with its complement

U satisfying
t ~
/ Y (s”)ds<oco, t>O0wherev:=max{l..a,1..8}, (13)
0
then
JB9329x = 9% = 329369 on . (14)

In particular, the property(14) holds true for every x C[I,E,].

Let us investigate some important properties of generalized fractional integrals with
Pettis integrals and measures of weak noncompactness. We need to prove a Goebel...
Rzymowski lemma that is important in our considerations and very useful in many similar
problems. We follow the idea from 9].

Lemma 7 Letpu be the De Blasi measure of weak noncompactnEssanya € (0, 1],t €|
and any bounded strongly equicontinuous setvCJ[l, E,]

R(ILOV (1)) = (IF9v(t) :ve V tel) <339p(V(t) < F(”f'_';) e (V).

~a,0

Proof At the beginning, we note, in view of Theoren2, that I, v exists and weakly con-
tinuous on . Hence,u (33 °V (t)) makes sense. Next, de“ne a functio® : | x | — R* by

4O
oty:=+ |@oors sclatht>a
7 T()

0, otherwise.
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From the above de“nition we havexg 9x(t) = f; G(t,9)x(s)ds. From the properties of the
Pettis integral for arbitraryw € P[l,E] and t € | we have

t.t t t

/ w(s)ds+ / w(s)ds= / w(s)ds, for some su ciently small z.
a t.t a

AsV is equicontinuous, the sefG(t,-)V (-)} is Pettis uniformly integrable onl, so for any

x € V the set{p(G(t,)x(")) : ¢ € E*, |l¢|l < 1} is equiintegrable. Then, for any > 0 there

exists (su ciently small) = such that

/ t G(t,9V (9 ds| <e. (15)
t

T

Thus, we can cover the se{tftt__r G(t,9v(9ds:se [t ..1,t],ve V} by balls with radius less
than ¢ and then

u({/tt G(t,9v(9ds:se [t ...‘E,t],VEV}) <e.

T

Now, let us estimate the set of integrals o[t .. z]. Putv(:) = u(V (-)). In view of Lemmal,
v is a continuous function. Note that from our assumption it follows thas — G(t, 9)v(s) is
continuous on [a,t ..r], and hence uniformly continuous.

Thus, there exists) > 0 such that

|Gt V() .- G(t, V(9| <e, (16)

provided that|g..5 <8 and|n ..§ <§ with n,sq€[at ..z].

Divide theinterval [a,t ..z]into n partsa=tg<t; <---<t,=t..r suchthat|t;..tj {<$
fori=1,2,...n. PutT; =[t;. 1t]. As vis uniformly continuous, there existss € T; such

thatv(s)=B8(V(T)) (=1,2,...n).
As

{/u G(t,9x(9)ds:se[a,t..1],x € V}
c Z{f G(t,9x(9ds:se[at ...t],er},
i=1 W/Ti
by the mean value theorem for the Pettis integral
/ G(t,9)V (9 dse meagT;) - conv{G(t,9V () :s€ Ti}.
Ti
Hence,
t.t
IL({/ G(t,9x(9)ds:se[a,t..7],xeV })

< M({/T G(t,9x(9)ds:se[a,t .. 1], x € V})

i=1
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b
<> meagT;) - u(CONY{G(t, 9V (9 :se Ti})

i=1

b
<> meagT))- max G(t,9)- wV (Ti)

i=1

b b
<) meagTi)- G(t,t) - uV(Ti)) < ) meagTi) - G(t,t) - V(s)-
i=1 i=1

Note that from (16) it follows that

.7

b t

Zmeas(Ti)~G(t,ti)-v(s)§f G(t,9v(9ds+(t..1)-e.

i=1 a
Then,

t t
{/ G(t,9x(g)ds:se [a,t ...r],xev} C {/ G(t,9x(g)ds:se [a,t ...r],xev}
t
+ {/ G(t,9x(9)ds: se [a,t ...r],xev}

.7

and
t t.t
IL({/ G(t,9x(g)ds:se [a,t],er}) 5/ G(t,9v(9ds+ (t..7) e +e.

As ¢ is arbitrarily small, we obtain

u({/at G(t,9x(s)ds:se[a,t],x e V}) < /au G(t,9)v(9 ds,

r(IGOV (1) < 359 (V (1))

It remains to prove the second estimation. Let us observe that

9 ((g(t) --Q(S))“> -g(9

s\ o " 0 9@

Asg(a)=0,

(9"

o

/at G(t,9)ds=

Thus, 35 %0 (V (1) < S5 - u (V) < 295 ug(V). O

3 Generalized fractional derivatives
From now, the de“nitions of the g-fractional derivatives ofx become a natural require-
ment.
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Definition 6 ([5, 19, 36]) The g...Caputo fractional-pseudo+ésp, weak) derivative of a
given functionx of order« € (m,m+ 1], me N:={0, 1, 2,..}.is de“ned by

dp® dgy?
Wx = Q@95 (resp, —Zox = ymLaggmrly ) tel. (17)

Here, 8, and§,, are de“ned as

1
Do
g

8p = P, and §,:=

1
g
Remark?7 It is worthwhile to remark here that d’:a x (if exists), does not depend on the
choice of themth pseudoderivatives ok. Evidently, ifsg'x = y1, §7'X = y2, we know thatys,
y, are weakly equivalent on. It follows that

P (181 (1)) = 30 (ya(1)) = ST (yo(t)) = ¢ (3T-“%ys(1)),  for anye € "

~M..a,g

Hence, 35 “%i(t) = Ja %, as needed.

This is a good place to remark that the conditions required for the existencegCaputo
fractional derivative are very restrictive. A very rough condition that ensures the existence

of 2 T x is thatx € AC™}[a,b], Ey]. In other words, theg...Caputo-type fractional deriva-
tive has the disadvantage that it completely loses its meaningfF fails to be (almost
everywhere) di erentiable on f,b]. Unfortunately, even in the Holder spaces, outside of
the space of absolutely continuous functions, tigeCaputo-type fractional di erential op-
erator does not enjoy the *niceZ behavior of being left inverse of the corresponding
fractional integral operator. In other words, outside of the space of absolutely continuous
functions, the equivalence of thg-fractional integral equations and the corresponding
g-Caputo fractional di erential problem is no longer necessarily true even in the Holder
spaces. This goes back to the well-known fact that the Riemann-Louville fractional integral
operatork‘@,‘t is a continuous mapping from Hélder spaces sontoZ Holder spaces (which,
of course, contains also continuous nowhere di erentiable functions), see, e.g6, [The-
orem 13.13]. Indeed, in what follows, we will show that even in the context of real-valued
Hélderian functions the converse implication from the fractional integral equations to the
corresponding Caputo-type di erential form is no longer necessarily true.

To see this, let us consider a particular form of the fractional integral operat@ﬁ’g,
a € (0,1) withg(t) =t,t € [0, 1], E=R. Letx be a Hélderian (but nowhere di erentiable
on [0, 1]) function of some critical ordery < 1. According to [36, Theorem 13.13] we know
that there is« € (0, 1) depending only ony and a Holderian functiony ¢ AC[O, 1] such

ot ot
motl

that Iy’ ty x. From this we can conclude thafz 35"y = Zﬁ’a x is smeaninglessZ This gives a
reason to believe that even on Holder spaces (but out of the space of absolutely continuous
functions), the operatordta has no left inverse oﬁ‘sg'ty as required. For more examples
revealing the lack of equivalence between di erential and integral forms of the Caputo-
type fractional problems, we refer the reader td.p)]. It will be clari“ed later how to avoid
such a phenomenon (see formula) and Lemma8 below).

However, the following example shows that on the spa€4l, E,], but still outside of the

.9
space of weakly absolutely continuous functions, it is no longer necessarily true t%{
is a left inverse of33* for any« > 0.
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Example3.1 Lete € (m,m+ 1], m e N. De“ne x: [0, 1]— L;4[0, 1] by

1 m..«
X(t) = ——(g(t) ..9(-)) ), tel=][0,1].
O mgrm ey 00 -90)" “xaa0: tel=[0.1]
Reasoning as in Exampl2.4, we can ensure that this function is weakly (but not weakly
absolutely) continuous onl having ag-Caputo fractional integral of ordera ...m € (0, 1]
~0..mg

on | and that 33 "x(t)(-) = x[ag (). In this connection, in view of the continuity ofx in
Theorem2 and Lemmas6, implies that

JeIX(t) = IT9J%MIx(t) = I3 xjay-

By the aid of ), it follows that 6mmsa X = X[at]- Sincexay (), t € | is weakly absolutely
continuous and have no pseudo- (so trivially no weak) derivatives brisee B3, Theo-
rem 3]), we conclude that theg...Caputo fractional pseudo- (trivially weak) derivative is

emeaninglessZ NameI)gn— a9 # x as required.

In order to avoid such a problem with the equivalence of thg-Caputo-type boundary
value problem of fractional ordersr > 1 and the corresponding integral form, we are, sim-
ilarly as in [12], going to modify (slightly) our de“nition of the g...Caputo-type fractional
di erential operator into a more suitable one

Definition 7 The modi“ed g...Caputo fractional pseudorésp, weak) derivative «briey
MCFPD (resp, MCFWD)Z of orderm + a, m € N, « € (0, 1) applied to the functionx e
P[I,E] is de“ned as

dm+a o] m+a g
e T 8035 98X, <resp i T (Sar?ts;“"’g%x). (18)

Obviously, De“nition 7 coincides with the usual de“nition of theg...Caputo-type frac-
tional di erential operators when m = 0. Also, unless the spacE has total dualE* (cf.
[10)), ag...Caputo fractional pseudoderivative gfis not necessary uniquely determined.

In what follows we will show that the results obtained in Exampl&.1 have no analog
in the case of MCFPD whenever > 1. Evidently, arguing similarly as inl[2, proof of
Lemma 7], we can prove the following:

Lemma 8 Let« > 1. Assume thate = m + 5, where m> 1 with somen € (0,1).1f ¢ isa
Young function with its complementary functiofr satisfying

t
f &(S"’) ds<oo, t>0,v:=max{n,1..9}, (19)
0

,g
then & s 33%is well de“ned on’H (B). If, additionally, the space E has total duathen F
is the left-inverse o4, where the fractional di erential operator is taken in the sense of
De“nition 7.

Remark8 Let us remark that, in view of §), the assertion of Lemma is still valid even
in the case of applying the operator (MCFWD) provided € C[I,E,].
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The following example shows that our assumption thdE has total dual is essential in
Lemma8and cannot be omitted even ik is weakly absolutely continuous oh. Out of the
context of such spaces we should assume instead that our derivatives should be of strongly
bounded variation (cf. 6]).

Example3.2 Lete € (m,m + 1], m > 1 and assume thaBJ[l] is the Banach space of
bounded real-valued functions orl. De“ne a Pettis integrable functionx : | — BJ[l] as
in Example2.1 The choice of this space is not accidental, becawBj¢] has no total dual.

Note that g'(-)x(-) € P[I,B[I]] (cf. Proposition 3). Bearing in mind the existence ofa°x
on | and arguing similarly as in 12, proof of Lemma 7] there is no di culty in proving
that

.9

dp N
dtaAag (t)i) /d(s)x(s)ds tel. (20)

On the one hand, reasoning as in Exampkl, we know that

/td(S)x(s)dsze, tel.

From which, by de“nition of ®,, it can be easily seen thaD, f; g(9x(9ds=60onl. On
the other hand, in view of Lemm&2, we conclude thatD, f; gex(9ds=gt)x)onl.In
this connection, we deduce that the functioth — f; d(9x(s) dshas two pseudoderivatives

g(t)x(t) and6é on | that di er on a set of positive measures. Consequently, we infer by the

D «0‘9

aid of (20) that on such a setdta

X ZX.

In the remaining part of this paper, allg...Caputo fractional pseudo- (trivially weak)
derivatives are taken in the sense of De"nitiof.

Now, we are in the position to investigate the existence of solutions to the following
g...Caputo fractional boundary value problem

dag dﬁg
—X(t) AMf (t x(t), X(t)) Be(0,Daec(l,2tel,AeR (22)

combined with the nonlocal three-point boundary conditions

x(a) =0, x(b) ..px(&) =c, a<g,<b, p € [0,00), ceE (22)
ug
Here, 4= denotes theg...Caputo fractional pseudodi erential operators de“ned as in
(18). It is absolutely necessary to start from the de“nition of a solution of this problem.
Let us introduce the following:

Definition 8 The function x € C[l,E,] is called a pseudo-resp, weak) solution to the
problem ((21) and 2) if x admits ag...Caputo fractional pseudordsp, weak) derivative
of order « € (1, 2) and satis“es22) together with

@9

B9
x(t) Af (t X(t), Go x(t))
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and, respectively, for the weak derivative

da ie] dﬂ
Wx(t) Af (t X(t), x(t)) a.e.onl.

Let us present some proposed integral form for the di erential problen(). Assuming
very natural conditions, we always have the following relationship of their solutions:

Lemma 9 Leta € (1,2),8 €(0,1),p € [0,00) and & € | be such that| g| ;!pﬁlg(s). For
any f € P[l,E], the integral equation modeled o the probler(21) and (22)) in the form

uit)= ——— ( ﬂ) (g(t)"* + A3L-P9 (t,u(t), 3L9()), (23)
where x= 359y and
S )
lglle-L.. p(g(€))--*
x [c+A(p3Lf (&,u(€), 35%(E)) .. 329 (b, u(b), 35%(b)))] (24)

has a solution ue C[I,E,] provided x= 3 359 is a solution of BVHR21) and (22).

Proof Let x € C[l,E,] satisfy the problem (1) and 22)) and de“ne a functionu :=

£.9
(:Eﬂ X =33 ’Sgapx By virtue of our boundary conditionx(a) = 0, using Lemma2 we ar-

rive at x = 35%. Also, the boundary conditionx(b) ...px(¢) = c is transformed into

?sggu(b) p*:;ﬁ u(&) = c. In this case, the di erential equation 21) reads as

ag

dt SB9u(t) =af (t,u(t),5%(t)), Be(0,1)ae(l,2)tel,reRr. (25)
Now, in view of De“nition 7 of MCFPD and letting

g

a IEu(t) = 8,32 98,38 9u(t) = Af (t,u(t), 3% (L)), tel,

means that
DpI3“8,389(t) = Ag (OF (t, u(t), 3% (L)), tel.

Thus, *formallyZ we obtain

t
32-285,389u(t) = ¢ + A / g (9f (s u(9),32%(9) ds= ¢ + AL (t, u(t), 35 %(t)).
a

~o.9

Operating by33” yields

(9(t))”
F(l +a)

(9(t))”
r(l+a

3295,389u(t) = ¢

+ A3 (t,u(t), S5%u(t))

t
A/ o/ (9(ILf (t,u(t), 35 %(t))) ds

=G



Salem et alBoundary Value Problems  (2023) 2023:57 Page 21 of 30

Now, di erentiating §, both sides twice, we arrive at

5p38%(t) = ¢ S((t))a“?* 23591 (£,u(0), 33%u(D)). (20)

a...1)

From which (still sformallyZ), we obtain

SEu(t) =co + m(g(t)) ASZO (t,u(t), 35 %u(t)), (27)

with some (presently unknown) quantitiescy,c; € E. Since x(a) = 38 %u(a) = 0 and

359 (b) .. p3EOu(E) = ¢, it can be easily seen thak = 0 and

')
lglle-L.. p(g(€))-

Lt A(pSF9f (£, u(8), 59(#)) .. 359 (b, u(b), 35 %u(b))) ].

C=

Operating by?vi"ﬂ’g on both sides of 27) yields

3L9u(t) = m(ga))”’“’3 2RO (¢, u(t), 3E%u().

In this connection, we conclude that

u(t) = - ﬂ)( (t))a..ﬁ...l+ Asg"ﬁ,gf (t,u(t),dﬁ gu(t)) tel. (28)

Now, inserting ¢; into (28) yields (sformallyZ) the integral equation. This completes the
proof. O

We should answer the question when the two problems are equivalent. To do this we
need to present a precise de“nition of the solutions fo2@).

Definition 9 By a weak solution 0f23) we mean a functionu € CJ[I,E,] satisfying

o(u) = ¢ < e ﬂ)(g(t))a"ﬂ"'l+kfs‘;"ﬂ'gf(t u(t), ﬂgu(t))) tel, forallg e E*.

Let us recall that if we are studying pseudosolutions, some negligible €&fswhere the
equation is not satis“ed, are excluded and they are dependent@m E*. Such a set does
not a ect the calculated fractional Pettis integrals (cf. Remark.

Since the space of all Pettis integrable functions is not complete, not all methods of the
proofs of the existence of solutions to the integral equatio28) are allowed and we cannot
follow many ideas taken from the case of the strong topology. We restrict our attention to
the case of weakly continuous solutions of the mentioned integral equation and then to
pseudosolutions of the problemZ3).

Now, we are ready to present the following theorem that will allow us to introduce the
assertions that provide conditions under which we ensure the existence of weakly contin-
uous solutions to the integral equationd3).
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Theorem 3 Letg € (0,1),x € (1, 2)such thate > 1 + 8. Assume that
A) ¥ is a Young function such that its complementary Young function v satisfies

/t J(S'”) ds<oo, t>0,v:=max{2+8..a,0..8...% (29)
0
B) Letf :1 x E x E— Esatisfy the following assumptions:
(1) Foreverytel,f(t,-,-) is Ww-sequentially continuous;
(2) Forevery X,y e C[l,Ey], f(-,x(:),¥(-)) € P[I,E];
(3) Foranyr >0and each ¢ € E* there exists an Ly (I, R)-integrable function
MY | — R* such that |p(f(t,x,y))| <M (t) fora.e.t €| and all X,y € C[I,Ey]
whenever max{||y|l, |X||} <r. Moreover, there exists a continuous nondecreasing
Sunction Q :R* — R* and such that for all ¢ € E* with |l¢|| <1, [M{ ||y < Q(r)

0o dr — .
and [, MEL, — O
(4) There exists a positive constant K such that for arbitrary bounded sets By,B, C E,
we have

u(f(1,B1.By)) < K[w(B1) + w(By)]- (30)

Then, there isp > 0 such that for anyx € R with |1| < p, the integral equation(23) has at
least one weak solution & C[I,E,].

Remark9

1. In [34, Lemma 19] one can find some sufficient conditions to satisfy assumption B)

(2).

2. The integral in (29) is convergent, so in view of [11, Proposition 1], we also have

t t
/J(S’"ﬂ"ads<oo and /1/7(Sl+ﬂ"°‘)ds<oo foranytel. (31)
0

0

Before embarking on the proof of the above theorem, let us de“ne a constant

Am 4, 5. {llgl) [1 . gl (L +p)I(a) ]
TTep Dl T AT+ Al pe@y1]

Moreover, let us de“ne a positive real numbep by

(32)
= O'
where

= amax(Lidly ()
F(1+/3) r>0 r '

A (L +p)lgle- 1 ){ ngnﬁ]
L=kl (al“(oc---ﬂ)l||9||°‘-"1--p(9(5))“-"’f+F(1+a---ﬁ) Y rap)
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In this case, for any. € R with |A| < p, we have

|A|A lim sup Q(r)f r@+p) .
0 r~ max{1,(g|*}

In this connection, reasoning as in34, proof of inequality (44)], we can show that there
existsRy > 0 such that for anyR> R, we have

lgl*-#3iclIT (@)
P(a .. A)lllglleL.. p(g())* 1

r@a+p)

+ | AMAQR < ——————R.
MARR) = T o)

(33)

For brevity and to allow a generalization, let us keep in the following a symii®). We
are assured that under our assumptions for su ciently small we have global solutions,
i.e., functions de“ned on the interval .

Proof of Theoren3 De"ne an operatorT on C[l, E,] generating the right-hand side of the
di erential equation in BVP, i.e., of the form

Tu(t) = 2O steux, (34)

M« ..B)

wherep € (0,1),« € (1,2), witha > 1+8,t €l and
Uu(t) :=3-#-8f (t, u(t), 35%(t)) (35)

andc; is de“ned by 24).

I. First, we note that the operatord) and T are well de“ned onCJ[l,E,]. To see this, let
us observe that for any € C[l,E,], by Lemma5 359 is well de“ned and by Theoren?,
we haved?%u e C[I,E,].

Under assumption B) (2), for any € C[I,E,] the superpositionF(u) :=f (-, u(~),i‘s§’gu(-))
is weakly measurable, Pettis integrable dnHence, in view of Remark, we obtain the
existence of33 °F(u) for any u € C[l,E,]. This means that the element; € E de“ned by
(24) is well de“ned, so is the “rst component ofT .

Moreover, by assumption B) (3) we have

b (e @U@ UON [P MEO Y
/a W( IM7 1y )dt_/a w(lll\/l?’llw)dt_1

for anyr > max{|u|, ||£‘s§‘gu||} and for everyy € E*.

Then, F(u)()) € Hy (E) and [|Full, < IM{]|,. Bearing in mind Q9), it follows in view of
Theorem2that U is a well-de“ned operator onC[l, E,] with its values inC[l, E,]. In this
connection, Corollaryl and Proposition2 yield that Uu(-)d'(-) € P[l, E] holds true for any
u e C[l,E,]. Sincex .. 8 > 1, in view of 31), by applying Lemma6 and using Remark,
it follows that 3% 9 (-, u(-), 35%(-)) = 33%0u(-)) and hence the operatof is de“ned on
the spaceC[l, E,].

Moreover, as%1 is continuous with values inE and we just proved thatU :
C[l,Es] — C[I,E4], then the same property holds true foif .
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II. Now, let us construct an invariant domain forT , which is required by Theoremi.
De“ne a convex and closed subs€ c C[l,E,] by

Q= {u €[1,Eu]: llull < Ro, and fJu(t) .. u(9)|

t))e-B1 a.p... 4 qt) _
_ lerl((a) ﬂ)g(s» %>+F(a 2 1)/g B, (e tsell.

- F(Ol . ()
Lemma4 implies that Q is a strongly equicontinuous subset &Z[l, Ey].

Observe thats € (0, 1) and de“nerg >Ry by rg := max{1,]/g||#}. For anyu € Q, we
have|lu|| < roand |35 < ro.

We proved in Theorem2 that for any 6 € (0, 1] andx HO"’(E) we have an estimation

1“(1+f3)

AT, (J9(t)))

||Sg'gx(t) ” ¥, = () ||<p(X) ”w

for someg € E* with |¢|| < 1. Then, ford =« .. 8 ... 1 this inequality is ful‘lled. Take an
arbitrary u € Q. By applying the estimation from B) (3) and a§lf, € L, for any ¢ € E*
we have

4‘Ifa..,s...(||9||) H

s, < Rt

We can also estimate(c;)

I'(c
e |||g||a---1..§o()g(s»“---%
+ 329 (f (b,u(b), 349u(b)))]

3 r(«)
~ gl p(ag))*-1
Py b B )]

- I(a) [w(c) 4|?»|(p+1)%..5...1||9||)IIM |I¢/” IIM}
~ llglle-t pg§))* -4 Fr@+pr(a..p...1)

[0(9) + M9 (f (5,u(6),35%(8)))|

By taking the supremum over alp € E* with ||¢|| < 1 in the above inequality and by ap-
plying the Hahn...Banach theorem we obtain

(36)

ol < r(o) }[”C” 4|x|(p+1)wa__ﬂ.__<ngn)sz(o)” Hlﬂ

~ gl p(g(§))>- Fr@+pr(..p...1)

Moreover, again as a consequence of the Hahn...Banach theorem, fouang and any
t €| there existsp € E* with |¢| =1 such that|| T (u)(t)|| = ¢(T (u)(t)). Using 36), there is
no di culty in showing that

ITW®| = e(Tu)®)|
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a.p...1 7
_ llcdifigl L AV . 91

T ..f) Mo p.. 1) 2o
gl *-Ycl T ()
AMAQ .
= T plligh. pa@y— A%
Sincerg > Ry, it follows in view of (33) that
_ r'(1+p) _
Tl = IItng“TU(t)H = mro =Ro. (37)

Also, for anyt,se | and anyu € Q, it can be easily seen that

leali(I(gt)*#-1... 6(9)*#1)
[ ..8)

41| )/g(t) -~
R Wy 8... ds.

ITW®) .. TWeE| <

lll. Now, we need to prove thafl is weakly...weakly sequentially continuous. Let,}
be a sequence i and letu, — u in CJ[l,E,]. Recall, that weak convergence @[l ,E,]
means exactly its boundedness and weak pointwise convergence fortany. The “rst
condition is assured by the de“nition ofQ.

Fix an arbitraryt € |. Consider now the operatot) and observe that

U (Un)(0) = 324 (1, U (1), 5 %un 1)).

From the dominated convergence theorem for the Pettis integral applied%é‘g we obtain
convergence oﬁg’gun(t) to Sg’gu(t)). Hence, assumption B) (1) implies that the sequence
f(t, un(t), 35%n(t)) converges weakly t(t, u(t), 35 9u(t)). This implies thatXa2Uun(t) —
;‘si‘gUu(t) and “nally (Txn)(t) converges weakly toTu)(t) in (E,w) for eacht € I, which
means thatT : Q@ — Q is weakly...weakly sequentially continuousgh

IV. Let us verify condition ) in Theorem 1.

LetV be a subset of satisfyingV = cony(TV)U{0}). Obviously,V (t) c con((TV)(t)U
{0}, t € 1. SinceT (Q) is uniformly bounded and strongly equicontinuous irC[l,E,], it
follows that V is also bounded and equicontinuous. Taking into account our Lemnia

the function v(t) := n(V (t)) is continuous onl, V (t) := {v(t) :ve V} and

cu(g(t)” 4!

TV (t) = {Tv(t) ‘u GV} = { I'a..B)

+A3390u(t)iu eV }

Arguing similarly as in [L1, Step 3 of the proof of Theorem 3] (see also Lemnig we can
show that

p({SF-BF (tu(), 3% (L)) cu e V}) < 3&F-Bu({f (tut), 3% (L)) :ue V}).

Also, by the aid of properties ofu (see [L3, 21]), in view of Lemma?7, we obtain that
r(133°0V (0} < 32k ({UV (V). Thus,

cu(V)(g(t)* #

i\
IL(TV(t))SIL< e f) )+I/\IM(S¥§'@’UV(t))



Salem et alBoundary Value Problems  (2023) 2023:57 Page 26 of 30

=u(cl(V))~%l+ ML ({SLF-Bf (t,u(t), 35 %(t)) cue V)
a..f...1
< w(a(v)- (g((t” PR ([f (u),34%(0) e V). (@9

By applying assumption B) (4), we ensure that
(g(t))a..ﬂ...l
I« ..B8)

a.f...1 Ak o.f B
<o) e s O e (39

p(TV (1) < r(cu(V)) - =5 +KIAL- 35 P9 (V (1) + 1 (I59V (1))]

An analogous reasoning leads to the estimate

« p
w ({329 (t,u(t),¥0%(t)) tueV}) < Fl((lj:_g-ya)[l+r(||f!-ﬂ):|uC(V)'

Since

gl *-1 () } _
'L({F(a - Bllglle- 1--p(g($))“---1c )_O'

it follows in view of the de“nition of ¢;

||9||D‘”’3'“1< I'(@) IAIK(L +p)glf2-#-1
#at) Ple..p) ~ Tl Bllgl**.. pgE)* I'(1+a)
PP L S 0
I rasp et

From the de“nition of the setV and by applying properties of measures of weak non-
compactness we obtain

r(V () = p(con({0UTV (1)) = n(TV (1))

@+plgle-t . 1 )
al(a..A)llgle-L. paE)*t Td+a..p)

gl
* [“ F(1+ﬂ)]’LC(V)'

Hence, we can take the supremum over alk |

< |A|k||g||“--ﬂ(

uc(V) < IALpc(V).

Taking into account that|1|L < 1, immediately, we obtainuc(V) =0, soV should be rel-
atively weakly compact irC|[l, E].

Finally, TheoremlimpliesthatT has a “xed point being a pseudosolution to the integral
equation 23). O

We point out that if E is re”exive then the implication ) of Theorem1is automatically
satis“ed, as subsets of re"exive Banach spaces are weakly compact if and only they are
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weakly closed and norm bounded. In this situation, it is no longer necessary to assume
any compactness hypothesis imposed on the nonlinearityfofo assure the existence of
solutions to the fractional integral equationZ3).

In addition to giving a conditions under which the integral equationZ3) admits a so-
lutions in the spaceC|[l,E,], Theorem 3 may be used to obtain a result concerning the
existence of solutions to the boundary value problerg®) and 22).

Now, we are in the position to state and prove the following existence theorem:

Theorem4 Letg € (0,1),« € (1,2)such thate > 1+ 8. Assume that) is a Young function
such that its complementary Young functiop satis“es

t
/ J(S'“) ds<oo, t>0:i=max{2+f..o,0..8...1 (41)
0

Assume that E has a total duallf f : 1 x E — E is a function ful“lling all assumptions
B) from Theorem3, then the problem(21) and (22) admits at least one pseudosolution
x € C[l,Ey].

Proof At the beginning, we note that ifu € C[l,E,] solves the integral equationZ3) then,
obviouslyu is weakly absolutely continuous function having integrable pseudoderivative
(cf. Lemma2). Indeed, we have

1 dp ()_ C1

U= 5o ar Mo.p..1

foQ) " F 235 B (1, u), 3 %u().

Hence, by the de“nition of the pseudoderivative we have

1 dout) .
g(t) dt P

for somep € (1, 2—). Now, sinced2* 8 (., u(-), 35%(.)) e C[I, Ey], it follows that

1
1246 .«
L9 BE (-, u(), 349u()) € CII, Eal.

In view of Lemma6 we conclude that

3\;--ﬂ,93g,ggg--ﬁ---lgf( u(-),’ ﬂgu())—qégwuﬁ---lgf( u(-), s ﬁgu())

= JL-POf (t,u(t), S5%u(t)).
Consequently,

3L-AoxBos ou(t) = (C 5 (g(t))a..ﬂ...l+ PRI (t u(t),: ﬁgu(t)) =u

Seeing thatu(a) = 0, we have, in view of Lemma, %é’gapu(t) = f; Dpu(ds=u(t), t .
Now, let us de“nex := 32 9u € C[I,E,]. Further,

x= 3933493 SByu(t).
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Therefore, for anyp € E*, by the commutative property of theg-fractional integral oper-
ator, we have

1 dex
ox = ORYFON B (3p000)) = (U)o — = 3% (su(t).

Accordingly,

d
(S ) = e lau) =

and

dte X=U.

Thus, ifu € C[l,E,] solves 23) then for allt € | we obtain

JOU(t) = ———3E9(g(t)) "+ ABLISL A (t,u(t), SL9u(L))).

(ﬂ)

Hence, by applying the above equality we obtain

_ D(e..p)a wd, - el dp®
X(t) = m (g(t)) + )\.Ja gf((t,x(t), WX(t)>l tel.

By the de“nition of our generalized fractional derivatlve— we infer

dto
dg' C1
o Lreyeor]=o.

and by applying LemmaB, we conclude that

ag B9
Z?X(t) Af (t X(t), 0'—x(t))

On the other hand, there is no di culty in showing that x satis“es

{x(a)=0,
(42)
x(b) ..px(§)=c, a<&é<bpeR*ceE

This means thatx is a pseudosolutiorx of the problem (1) and 22)). O

Some examples of the use of our theorem to the problen2{) and 22)) can be found
in[12, Sect. 4]. However, it is worth noting that:
1. Our assumption that E has total dual is essential in Theorem 4 and cannot be

omitted even if f is weakly absolutely continuous on I. Evidently, if we define
f:1 x B[] x B[I]— B[l] by

X{t}(-), t e Jx,yeBll],

f(t,x(t),y(t)) = . e3
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Then, using similar arguments as in the proof of Theorem 4, by the aid of

Example 3.2 we can show that

g dp?
GO 7 A (t,x(t), Wx(t)>

holds true on a subset of | of positive measure.
2. By virtue of the fact that the indefinite Pettis integral of a function f € P[l, E] does not
enjoy the strong property of being a.e. weakly differentiable, it is immediately clear

o : A
that the result obtained in Theorem 4 has no analog if we replace Gz by %‘fw .

3. Arguing similarly as in the [11, Theorem 5], we are to consider the multivalued case
of the problem ((21) and (22)).
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