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Abstract
In this paper, we present the definitions of fractional integrals and fractional
derivatives of a Pettis integrable function with respect to another function. This
concept follows the idea of Stieltjes-type operators and should allow us to study
fractional integrals using methods known from measure differential equations in
abstract spaces. We will show that some of the well-known properties of fractional
calculus for the space of Lebesgue integrable functions also hold true in abstract
function spaces. In particular, we prove a general Goebel–Rzymowski lemma for the
De Blasi measure of weak noncompactness and our fractional integrals.
We suggest a new definition of the Caputo fractional derivative with respect to

another function, which allows us to investigate the existence of solutions to some
Caputo-type fractional boundary value problems. As we deal with some Pettis
integrable functions, the main tool utilized in our considerations is based on the
technique of measures of weak noncompactness and Mönch’s fixed-point theorem.
Finally, to encompass the full scope of this research, some examples illustrating our
main results are given.
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1 Preliminaries
The domain of fractional calculus is a very rich field because of its applications, for in-
stance, in wave propagation in viscoelastic horns, sound-wave propagation or fractional
models and controls (see [5, 16, 22]). There are several definitions for fractional integrals
and for fractional derivatives [19, 36]. We are interested in the most general form of such
operators. Till now, the most general known definition of the fractional operators seems
to be the fractional integrals and derivatives of a Lebesgue function f with respect to an-
other function g (see [36, Sect. 18.2], [19, Sect. 2.5] and [5]). However, let us mention
that this definition allows us to operate only on real-valued functions. In the past decades,
this general definition has proven its applicability in many and different natural situations,
for instance, in [5], starting with the exponential growth model, the same problem was de-
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scribed by a fractional differential equation, and we shall see that the choice of the function
g determines the accuracy of the model.

Our goal is to expand the applications of such an approach for vector-valued functions.
Recently, considerable attention has been paid to the theory of fractional calculus in ab-
stract spaces, which is more complicated and different from the classical fractional calcu-
lus of real-valued functions. This is due to the fact that some of the long-known properties
of the real-valued function do not carry over into arbitrary Banach spaces. For instance,
the classical fundamental theorem of calculus in Banach spaces is more complicated than
the standard one. In addition, the weak absolute continuity of Banach-valued functions
does not necessary imply strong or everywhere weak differentiability.

The aim of this paper is two-fold. On the one hand, we define and discuss the properties
of the generalized form of the new fractional operators applied for the class of Pettis inte-
grable functions that seems to be interesting in itself. On the other hand, we apply those
results in order to ensure the existence of weakly continuous solutions for some boundary
value problems of fractional order.

We should at least briefly recall why we discuss as one topic the fractional calculus with
Orlicz spaces. This goes back to the origin of fractional calculus and fractional operators
in function spaces. It is motivated by some applications to integral equations or partial
differential equations [24, 27]. On the other hand, Pettis integrability is also strictly related
to some weak integrability conditions in Orlicz spaces ([38], for instance).

However, our results complement some of those obtained in [1, 3, 4, 11, 12, 29–31, 35]
or [39]), dealing with the properties of the fractional integral and differential operators
when acting on the space of Pettis integrable functions.

Let us recall that a function ψ : R+ → R
+ is said to be a Young function if ψ is increas-

ing, even, convex, and continuous with ψ(0) = 0 and limu→∞ ψ(u) = ∞). For any Young
function ψ , the function ˜ψ : R+ → R

+ defined by supv≥0{v|u| – ψ(v)} is called the Young
complement of ψ and it is well known that ˜ψ is a Young-type function as well.

The Orlicz space Lψ = Lψ ([a, b],R) consists of all (classes of ) measurable functions x :
[a, b] →R for which

‖x‖ψ := inf

{

k > 0 :
∫ b

a
ψ

( |x(s)|
k

)

ds < 1
}

, (1)

is finite (see, e.g., [20]). The particular choice ψ(u) = ψp(u) := 1
p |u|p, p ∈ [1,∞) leads to the

Lebesgue space Lp = Lp([a, b],R), p ∈ [1,∞). In this case, it can be easily seen that ψ̃p = ψp̃

with 1
p + 1

p̃ = 1 for p > 1.
In this connection, it is worth recalling that, for any Young function ψ , we have ψ(u –

v) ≤ ψ(u) – ψ(v) and ψ(ρu) ≤ ρψ(u) hold for any u, v ∈ R and ρ ∈ [0, 1]. Also, for the
nontrivial Young function ψ , L∞ ⊂ Lψ ⊂ Lψ . For further properties of Young functions
and Orlicz spaces generated by such functions we refer the reader to [2, 20, 35].

In the forthcoming pages E will be considered as a Banach space with norm ‖ · ‖ and
with its dual space E∗. Also, Ew denotes the space E when endowed with its weak topology
σ (E, E∗). Let C[I, E] denote the Banach space of (strongly) continuous functions x : I → E
endowed by the norm ‖x‖0 = supt∈I ‖x(t)‖. By C[I, Ew] we denote the Banach space of all
weakly continuous functions x : I → E with its weak topology (i.e., generated by continu-
ous linear functionals on E).
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Throughout this paper, we let g be a positive increasing function on an interval I :=
[a, b], having a positive continuous derivative, with g(a) = 0 (see, e.g., [19, Sect. 2.5] or [36,
Sect. 18.2]).

In this paper, we will have one more important class of functions. Namely, we let ϑ :
R

+ → R
+ be a Hölderian function, i.e., ϑ is increasing and continuous with ϑ(0) = 0. The

(generalized) Hölder space Cϑ [I, E] consists, by definition, of all x ∈ C[I, E] satisfying

∥

∥x(t) – x(s)
∥

∥ ≤ Lϑ
(∣

∣g(t) – g(s)
∣

∣

)

, L > 0.

Equipped with the norm

‖x‖ϑ := max
t∈I

∥

∥x(t)
∥

∥ + [x]ϑ , where [x]ϑ := sup
t 
=s

‖x(t) – x(s)‖
ϑ(|g(t) – g(s)|) ,

the space Cϑ
g [I, E] becomes a Banach space. Elements of Cϑ

g [I, E] are called generalized
Hölderian functions.

The particular choice g(t) = t, ϑ(t) = tα , α ∈ (0, 1] leads, of course, to the classical Hölder
space.

Let Cϑ
g [I, Ew] denote the Banach space of generalized Hölderian functions x : I → E, with

its weak topology (i.e., generated by continuous linear functionals on E).
Recall that the map T : X → Y , X and Y are Banach spaces and said to be weakly–

weakly sequentially continuous (ww-sequentially continuous) if and only it maps weakly
convergent sequences (xn) to x ∈ E into sequences (T(xn)) that are weakly convergent to
T(x) in Y .

Definition 1 ([13]) Let ME be a family of all bounded subsets of E and B1 denotes the
unit ball of E. The De Blasi measure of weak noncompactness is the mapping

μ : ME → [0,∞)

defined by

μ(X) := inf{ε > 0 : there exists a weakly compact subset � of E : X ⊂ εB1 + �}.

For the properties of μ see [13]. The following important Ambrosetti-type lemma will
be used in the paper:

Lemma 1 ([23]) Let V ⊂ C[I, E] be bounded and strongly equicontinuous. Then,
1. t �→ μ(V (t)) ∈ C[I,R+], where V (t) := {v(t) : v ∈ V , t ∈ I};
2. μC(V ) = supt∈I μ(V (t)) = μ(V (I)),

where μC denotes the De Blasi measure of weak noncompactness in C[I, E].

For our purpose, we will need the following Mönch fixed-point theorem whose founda-
tions of use for the weak topology we can find in [6]

Theorem 1 ([21]) Let Q be a nonempty, closed, convex, and equicontinuous subset of a
metrizable locally convex vector space C(I, E) such that 0 ∈ Q. Suppose T : Q → Q is
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weakly–weakly sequentially continuous. If the implication

V = conv
({0} ∪ T(V )

) ⇒ V is relatively weakly compact (2)

holds for every subset V ⊂Q, then the operator T has a fixed point in Q.

The following definition goes back to Pettis [28]

Definition 2 (Pettis integral) A weakly measurable function x : I → E is said to be Pettis
integrable on I if

1. x is Dunford integrable on I , that is, ϕx ∈ L1 for every ϕ ∈ E∗;
2. for any measurable A ⊂ I there exists an element in E denoted by

∫

A x(s) ds such that

ϕ

(∫

A
x(s) ds

)

=
∫

A
ϕx(s) ds for every ϕ ∈ E∗.

By P[I, E] denote the space of E-valued Pettis integrable functions on I . In particular, the
space P[I,R] = L1[I,R]. We need to introduce more function spaces. For convenience, we
recall the following:

Definition 3 ([8, 28]) For any Young function ψ we define a class Hψ (E) as

Hψ (E) :=
{

x : I → E : x weakly measurable satisfying ϕx ∈ Lψ (I) for every ϕ ∈ E∗}.

As its subspace let us consider

˜Hψ (E) :=
{

x : I → E : x strongly measurable satisfying ϕx ∈ Lψ (I) for every ϕ ∈ E∗}.

Moreover, the class Hψ
0 (E) (resp., ˜Hψ

0 (E)) is defined to be the subspace of Hψ (E) (resp.,
˜Hψ (E)) composed of Pettis integrable functions on I , that is

Hψ
0 (E) :=

{

x ∈Hψ (E) : x ∈ P[I, E]
}

, ˜Hψ
0 (E) :=

{

x ∈ ˜Hψ (E) : x ∈ P[I, E]
}

.

In particular, the well-known class Hp
0(E) denotes the class Hψ

0 (E) for the particular choice
ψ ≡ |·|p

p .

Obviously, ˜Hψ
0 (E) ⊆ Hψ

0 (E) ⊆ Hψ (E) and ˜Hψ
0 (E) ≡ Hψ

0 (E) holds true whenever E is
separable (cf. [28, Corollary 1.11]). Some special facts about these spaces are known (cf.
[14, 28, 38]):

Proposition 1
(1) If E is reflexive, then H1(E) ≡H1

0(E).
(2) For any Young function ψ with limu→∞ ψ(u)/u → ∞, ˜Hψ (E) ⊆Hψ

0 (E). In particular,
˜Hp(E) ⊆Hp

0(E) holds true for any p > 1. If, additionally, E is weakly complete or even
more generally, contains no isomorphic copy of c0, it is also true for any Young
function ψ . That is, ˜H1(E) ⊆H1

0(E) whenever E satisfies this additional condition.
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Clearly, since the weak continuity implies a strong measurability (see [18, page 73]), in
view of Proposition 1 it implies that:

Corollary 1 For any nontrivial Young function ψ the space C[I, Ew] is a proper subset of
˜Hψ

0 (E).

Let us stress that the connection between the Pettis integrability and Orlicz spaces is
much deeper than presented in [38] (see [7]). In the following, we will integrate vector-
valued functions with respect to some real-valued ones. For this reason we recall the re-
sults that complement some of those from [28, 35], dealing with the integrability of Pettis
integrable functions multiplied by real-valued ones.

Proposition 2 ([11, Proposition 5]) If x ∈Hψ
0 (E), then x(·)y(·) ∈ P[I, E] for every y ∈ Lψ̃ .

Let us stress that y cannot be vector valued, unless the space E is a Banach algebra. Now,
we should state an immediate, but important, consequence of Proposition 2:

Proposition 3 (cf. [28, Corollary 3.41]) If x ∈ P[I, E], then x(·)y(·) ∈ P[I, E] for every y ∈
L∞[I].

Let us recall necessary definitions and known facts about weak-type derivatives in Ba-
nach spaces. Let us collect all of them that are applied for problems described in the paper.

Definition 4 ([14, 28]) Consider a vector-valued function x : I → E. If for every ϕ ∈ E∗

functions ϕx are differentiable almost everywhere on I and if there exists a function y :
I → E such that for every ϕ ∈ E∗ there exists a null set N(ϕ) ⊂ I with

(

ϕx(t)
)′ = ϕy(t), for every t ∈ I \ N(ϕ),

then the function x is said to be pseudodifferentiable on I .
In this above definition, y is called a pseudoderivative of x. If the null set independent

of ϕ, then x is said to be a.e. weakly differentiable on I and y (in this case) is called a weak
derivative of x and exists almost everywhere on I . In particular, when E = R it is clear that
the pseudo- and a.e. weak derivatives coincide with the classical derivatives of real-valued
functions.

Let Dp denote the pseudodifferential operator (resp., Dω for the weak one). The best
result for a descriptive definition of the Pettis integral is that given by Pettis in [28, Sect. 8]
(see also [25, Theorem 5.1] and [18, 23]).

Lemma 2
(1) The indefinite integral of Pettis integrable (resp., weakly continuous) function is

weakly absolutely continuous and it is pseudo- (resp., weakly) differentiable with
respect to the right endpoint of the integration interval and its pseudo- (resp., weak)
derivative equals the integrand at that point.
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(2) A function x : I → E is an indefinite Pettis integral if and only if x is weakly absolutely
continuous and has a pseudoderivative Dpx on I . In this case, Dpx ∈ P[I, E] and

x(t) = x(a) +
∫ t

a
Dpx(s) ds, t ∈ I.

Before embarking on the next section, we remark that it is natural to assume that the
space E has total dual, i.e., a countable determining set. In fact, if E is separable, then both
E and E∗ have total dual, so even spaces like BV (I) or L∞(I) have this property. In this
connections, all considered pseudoderivatives of a function from I to E, will be uniquely
determined up to a set of measure zero. Deep results concerning this problem can be
found in [26, Corollary 3.4, Theorem 3.6].

We also recall the following facts: for any continuous g : I → R having a positive, con-
tinuous derivative g ′ on I , Proposition 3 may be combined with Corollary 1 in order to as-
sure that x(·)g ′(·) ∈ P[I, E] (resp. x(·)g ′(·) ∈ C[I, Ew]) holds true for every x ∈ Hψ

0 (E) (resp.,
x ∈ C[I, Ew]). From which, in view of Lemma 2, it follows that

⎧

⎨

⎩

( 1
g′(t)Dω)�1,g

a x(t) = ( 1
g′(t)Dω)

∫ t
a x(s)g ′(s) ds = x, holds for any x ∈ C[I, Ew], (�),

( 1
g′(t)Dp)�1,g

a x(t) = ( 1
g′(t)Dp)

∫ t
a x(s)g ′(s) ds = x, holds for any x ∈ P[I, E], (♦).

Remark 1 Let us note that
• The fact that the indefinite Pettis integral of a function x ∈ P[I, E] does not enjoy the

strong property of being a.e. weakly differentiable (see [15]), tells us that (�) does not
necessarily hold for arbitrary x ∈ P[I, E].

• The formula (♦) is not uniquely determined unless E has total dual E∗. Evidently,
according to (e.g., [37, page 2] and [10]), it may happen that ( 1

g′(t)Dω)�1,g
a x = y, with y

being weakly equivalent to x (but they need not be necessarily a.e. equal).

2 Generalized fractional integrals
Various modifications and generalizations of classical fractional integration operators are
known and are widely used both in theory and applications. In this section, we dwell on
such modifications such as fractional integrals of a given function x with respect to another
function g .

Definition 5 (cf. [5, 19, 36]) The generalized fractional (or g-fractional) integral of a given
function x : [a, b] → E of order α is defined by

�α,g
a x(t) :=

1
�(α)

∫ t

a

x(s)
(g(t) – g(s))1–α

g ′(s) ds, (–∞ ≤ a < b ≤ ∞),α > 0. (3)

For completeness, we define �α,g
a x(a) := 0. In the preceding definition the sign “

∫

” stands
for the Pettis integral (in particular, the Lebesgue integral when E = R).

It should be noted that, for the real-valued function x ∈ L1[a, b], it is well known that
(see, e.g., [5, 36]) �α,g

a x makes sense a.e. on I and �α,g
a �β ,g

a x = �β ,g
a �α,g

a x = �α+β ,g
a x holds true

for any α,β > 0. We also remark that, in a special case g(t) = t, t ∈ [a, b] or g(t) = ln t,
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t ∈ [1, e] we obtain two classical fractional integral operators: the Riemann-Louville and
the Hadamard ones.

Definition 5 allows us to unify different fractional integral for vector-valued functions
and consequently, in a unified manner, to solve some boundary value problems with dif-
ferent types of fractional integrals and derivatives. Clearly, it is not only a unification, we
extend existing results too.

Example 2.1 Let α > 0 and J ⊂ I be a set of positive measure. Consider the Banach space
E = B[I] of bounded real-valued functions on I . Define a weakly measurable function x :
I → B[I] by

x(t) :=

⎧

⎨

⎩

χ{t}(·), t ∈ J ,

θ , t /∈ J .

Obviously x ∈ P[I, B[I]]. To see this, let us remark that any ϕ ∈ B∗[I] may be identified
with a countable additive measure ζ defined on the σ -algebra on I . More precisely, ev-
ery bounded linear functional on B[I] is of the form x �−→ ∫

I x(t) dζ for some countable
additive measure ζ . Thus, for every measurable � ⊂ I we have

∫

�

ϕ
(

x(s)
)

ds =
∫

�

(∫

J
χ{s} dζ

)

ds = ϕ(θ ).

From which, by the definition of the Pettis integral, we conclude that x ∈ P[I, B[I]] as
claimed. Now, we will show that �α,g

a x exists on I with �α,g
a x = θ : Evidently, for every mea-

surable � ⊂ I we have

1
�(α)

∫

�

ϕ

(

x(s)
(g(t) – g(s))1–α

g ′(s)
)

ds =
1

�(α)

∫

�

ϕ(x(s))
(g(t) – g(s))1–α

g ′(s) ds = 0 = ϕ(θ ).

That is, by the definition of the Pettis integral, �α,g
a x exists on I and �α,g

a x = θ .

Remark 2 For any α ≥ 1, �α,g
a x exists for any x ∈ H1

0(E). This is a direct consequence of
Proposition 3, as we obtain s → (g(t) – g(s))α–1g ′(s) ∈ L∞[a, t] for a.e. t ∈ [a, b].

We sometimes considered some special cases of spaces E. Let us present one useful one:

Lemma 3 Let α ∈ (0, 1] and assume that E has no isomorphic copy of c0. Then, �α,g
a :

˜H1
0(E) → P[I, E].

Proof Let x ∈ ˜H1
0(E). By virtue of the fact that the strong measurability is preserved under

a multiplication operation of functions (cf. e.g., [18]), the product (g(t) – g(·))α–1g ′(·)x(·) :
[a, t] → E is strongly measurable on [0, t] for almost every t ∈ I . Consequently, by Young’s
inequality, it can be shown that for every ϕ ∈ E∗, the real-valued function s �→ ϕ((g(t) –
g(s))α–1g ′(s)x(s)) = (g(t) – g(s))α–1g ′(s)ϕ(x(s)) is Lebesgue integrable on [a, t], for almost ev-
ery t ∈ I . Hence, the existence of �α,g

a x follows from [17, Theorem 22].
Now, we proceed in order to show that �α,g

a : ˜H1
0(E) → P[I, E]. To see this, let x ∈ ˜H1

0(E),
define y := �α,g

a x and note that y ∈ H1(E). Thus, for any interval [c, d] ⊆ I , and any ϕ ∈ E∗
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we have

∫ d

c
ϕ
(

y(t)
)

dt =
∫ d

c
�α,g

a ϕ
(

x(t)
)

dt = ϕ(x[c,d]),

where

x[c,d] =
1

�(1 + α)

∫ d

a
x(s)

(

g(d) – g(s)
)αg ′(s) ds –

1
�(1 + α)

∫ c

a
x(s)

(

g(c) – g(s)
)αg ′(s) ds.

Since x ∈ P[I, E], then owing to Proposition 3, we have that x(·)(g(c) – g(·))αg ′(s) and
x(·)(g(b) – g(·))αg ′(·) are Pettis integrable on I and so x[c,d] ∈ E. A combination of these
results yields y ∈ H1(E) and there exists an element x[c,d] ∈ E such that ϕ(x[c,d]) =
∫ d

c ϕ(y(t)) dt, for every ϕ ∈ E∗ and any [c, d] ⊆ I . Since E has no copy of c0, it follows
in view of [17, Theorem 23] that y ∈ P[I, E]. The lemma is thus proved. �

In what follows, we outline and prove some aspects of a g–fractional integral in Banach
spaces and weak topologies. The following theorem complements similar results in [32,
Lemma 1] and [11, Theorem 2] dealing with the statements revealing how much the frac-
tional integral �α,g

a x is “better”, in the sense of space inclusions, than the function x.

Theorem 2 Let α ∈ (0, 1]. For any Young function ψ with its complementary Young func-
tion ψ̃ satisfying

∫ t

0
˜ψ

(

sα–1)ds < ∞, t > 0, (4)

the operator �α,g
a maps the spaceHψ

0 (E) into the (generalized) Hölder space C˜�α
g [I, Ew]. Also,

for any x ∈Hψ
0 (E) there is ϕ ∈ E∗, with ‖ϕ‖ = 1 such that

∥

∥�α,g
a x

∥

∥

˜�α
≤ 4

�(α)
∥

∥ϕ(x)
∥

∥

ψ

(

1 + ˜�α

(‖g‖)).

In particular, �α,g
a : C[I, Ew] → C˜�α

g [I, Ew]. Here, ˜�α : R+ →R
+ is defined as

˜�α(t) := inf

{

k > 0 : k
1

α–1

∫ tk
1

1–α

0
˜ψ

(

sα–1)ds ≤ 1
}

, t ≥ 0. (5)

To make the proof of Theorem 2 simpler we split it into several stages, providing the
following lemmas:

Lemma 4 ([11, Proposition 2]) For any α ∈ (0, 1], the function ˜�α defined as in (5) is a
Hölderian-type function, i.e., ˜�α is well defined, increasing, and continuous with ˜�α(0) = 0.
In other words, the space C˜�α

g [I, Ew] is a Hölderian-type space.

Proof It is clear that for any t > 0, the function

ut(σ ) := σ –
∫ tσ

0
˜ψ

(

sα–1)ds
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has a positive derivative for sufficiently large σ > 0 (because ˜ψ(u) → 0 as u → 0). Conse-
quently, for any t > 0, there is σ > 0 such that ut(σ ) > 0 and then for any t > 0 the set

{

σ > 0 : σ –1
∫ tσ

0
˜ψ

(

sα–1)ds ≤ 1
}


= ∅. (6)

Together with ˜�α(0) = 0, this implies that ˜�α is well defined on I . In view of the definition
of ˜�α , for 0 ≤ t ≤ s we have

∫ (˜�α (s))
1

α–1 t

0
˜ψ

(

sα–1)ds ≤
∫ (˜�α (s))

1
α–1 s

0
˜ψ

(

sα–1)ds ≤ (

˜�α(s)
) 1

α–1 .

Thus, we may put k = ˜�α(s) in (5), which implies ˜�α(t) ≤ ˜�α(s), as required for the mono-
tonicity of ˜�α . Finally, the continuity of ˜�α follows from the continuity and concavity of
t �→ ∫ t

0
˜ψ(sα–1) ds. �

Lemma 5 Let α ∈ (0, 1]. For any Young function ψ with its Young complement ψ̃ satisfying
(4), the integral �α,g

a x exists (is convergent) for any x ∈Hψ
0 (E). Moreover, it is true for every

x ∈ ˜Hψ (E) provided ψ satisfies the additional property that limu→∞ ψ(u)/u → ∞.
In particular, if E is reflexive (resp., weakly complete), �α,g

a x, x ∈Hψ (E) (resp., x ∈ ˜Hψ (E))
exists for any nontrivial Young function ψ .

Proof First, let us define u : I →R
+ by

u(s) :=

⎧

⎨

⎩

(g(t) – g(s))α–1g ′(s), s ∈ [a, t], t > a,

0, otherwise

and observe that for any t ∈ I the function

ut(η) := η –
1

‖g ′‖
∫ ηg(t)

0
˜ψ

(

sα–1)ds,

has a positive derivative for some sufficiently large η > 0 (because ˜ψ(u) → 0 as u → 0).
Consequently, for any t ∈ I there is a sufficiently large η > 0 such that ut(η) > 0 and thus
for any t ∈ I

{

k > 0 :
1

‖g ′‖
∫ ( k

‖g′‖ )
1

1–α g(t)

0
˜ψ

(

sα–1)ds ≤
(

k
‖g ′‖

) 1
1–α

}


= ∅. (7)

This is in line with the following observations that they give:

∫ b

a
˜ψ

( |u(s)|
k

)

ds

=
∫ t

a
˜ψ

( |(g(t) – g(s))α–1|g ′(s)
k

)

ds =
∫ t

a
˜ψ

( |(g(t) – g(s))α–1|‖g ′‖
k

g ′(s)
‖g ′‖

)

ds

≤
∫ t

a
˜ψ

( |(g(t) – g(s))α–1|‖g ′‖
k

)

g ′(s) ds
‖g ′‖ =

( k
‖g′‖ ) 1

α–1

‖g ′‖
∫ ( k

‖g′‖ )
1

1–α g(t)

0
˜ψ

(

sα–1)ds,
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hold for any k > 0, so u ∈ L
˜ψ (I). The assertion of our lemma follows directly from Propo-

sition 2.
Now, we claim that �α,g

a x exists for any x ∈ ˜Hψ (E) with ψ satisfying the additional prop-
erty limu→∞ ψ(u)/u → ∞. In view of the above observation, it follows from part (2) of
Proposition 1.

Next, let us assume that E is weakly complete, x ∈ ˜Hψ (E) for arbitrary ψ and note
that in this case ˜Hψ (E) ⊂ ˜H1(E). Since the strong measurability is preserved under
a multiplication operation, the pointwise product of strongly measurable functions
(g(t) – g(·))α–1g ′(·)x(·) : [a, t] → E is strongly measurable on [a, t], t ∈ I . In view of
Young’s inequality, we know that for every ϕ ∈ E∗, the real-valued function, ϕ((g(t) –
g(·))α–1g ′(·)x(·)) = (g(t) – g(·))α–1g ′(·)ϕx(·) is Lebesgue integrable on [a, t] for every t ∈ I .
Hence, the result is a consequence of part (2) of Proposition 1.

Similarly, when E is reflexive, the result follows from part (1) of Proposition 1. In this
case indeed, as for any nontrivial ψ we have Hψ (E) ⊆ H1(E). Consequently, for any x ∈
Hψ (E) and every ϕ ∈ E∗ the measurable real-valued function ϕ((g(t) – g(·))α–1g ′(·)x(·)) =
(g(t) – g(·))α–1g ′(·)ϕx(·) is Lebesgue integrable on [a, t] for every t ∈ I , and hence is weakly
measurable. The fact that in reflexive spaces any weakly measurable u : I → E is Pettis
integrable if and only if ϕu ∈ L1 holds for every ϕ ∈ E∗ (cf. Lemma 1 part (1)), guarantees
the existence of �α,g

a x on I . �

Remark 3 According to the assertion of Lemma 5, the function (g(t) – g(·))α–1g ′(·)x(·) ∈
P[[a, t], E] for every t ∈ I and any x ∈ Hψ

0 (E). Consequently, accordingly to the definition
of a Pettis integral for any t ∈ I there exists an element of E denoted by �α,g

a x(t) such that

ϕ
(�α,g

a x(t)
)

=
1

�(α)

∫ t

a
ϕ

(

x(s)g ′(s)
(g(t) – g(s))1–α

)

ds

=
1

�(α)

∫ t

a

ϕ(x(s))g ′(s) ds
(g(t) – g(s))1–α

= �α,g
a ϕ

(

x(t)
)

(8)

holds true for every ϕ ∈ E∗.

Remark 4 We should remark that, if �α,g
a x does not exist for some x ∈Hψ

0 (E), then it can-
not exist if we “enlarge” the space E into F . To see this, we argue by contradiction assuming
that �α,g

a x (when we consider x as a function from Hψ
0 (F)) exists. In this case, for the par-

ticular choice for the functional ϕ ∈ F∗ having ϕ|E = θ we conclude, in view of (8) and
x(I) ⊆ E, that ϕ(�α,g

a x(t)) = �α,g
a ϕ(x(t)) = 0, from which �α,g

a x(t) ∈ E. This would lead to a
contradiction.

Remark 5 Let a Young function ψ be such that the integral in (4) is finite. For any α ∈ (0, 1),
the assertion of Theorem 2 is still valid if at least one of the following cases holds true:

1. x ∈ ˜Hψ (E), where ψ satisfies the additional property limu→∞ ψ(u)/u → ∞;
2. E is weakly complete and x ∈ ˜Hψ (E);
3. E is reflexive and x ∈Hψ (E).

Evidently, it follows from Theorem 2, as in view of Lemma 5, in all of the above cases we
have ˜Hψ (E) ⊆Hψ (E) ⊆Hψ

0 (E).

We are now ready to provide the proof of Theorem 2.
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Proof of Theorem 2. Let a ≤ t1 ≤ t2 ≤ b and x ∈Hψ
0 (E). According to Lemma 5 and by the

definition of the indefinite Pettis integral, we ensure that �α,g
a x is well defined. In view of

Remark 3, it allows us to state the following chain of inequalities

∣

∣ϕ
(�α,g

a x(t2) – �α,g
a x(t1)

)∣

∣

=
∣

∣�α,g
a ϕ

(

x(t2)
)

– �α,g
a ϕ

(

x(t1)
)∣

∣

≤ 1
�(α)

(∫ t1

a

∣

∣

(

g(t2) – g(s)
)α–1 –

(

g(t1) – g(s)
)α–1∣

∣

∣

∣g ′(s)
∣

∣

∣

∣ϕ
(

x(s)
)∣

∣ds

+
∫ t2

t1

(

g(t2) – g(s)
)α–1g ′(s)

∣

∣ϕ
(

x(s)
)∣

∣ds
)

=
1

�(α)

∫ b

a

[

h1(s) + h2(s)
]∣

∣ϕ
(

x(s)
)∣

∣ds,

where

h1(s) :=

⎧

⎨

⎩

|(g(t2) – g(s))α–1 – (g(t1) – g(s))α–1|g ′(s) s ∈ [a, t1],

0 otherwise

and

h2(s) :=

⎧

⎨

⎩

(g(t2) – g(s))α–1g ′(s) s ∈ [t1, t2],

0 otherwise.

We claim that hi ∈ L
˜ψ (I), (i = 1, 2). Once our claim is established, in view of the Hölder

inequality in Orlicz spaces, we conclude that

∣

∣ϕ
(�α,g

a x(t2) – �α,g
a x(t1)

)∣

∣ ≤ 2[‖h1‖˜ψ + ‖h2‖˜ψ ]
�(α)

∥

∥ϕ(x)
∥

∥

ψ
. (9)

It remains to prove our claim by showing that hi ∈ L
˜ψ (I), i = 1, 2. To see this, fix k > 0. An

appropriate substitution, using some properties of Young functions, leads to the following
estimation

∫ b

a
˜ψ

( |h1(s)|
k

)

ds

=
∫ t1

a
˜ψ

( |(g(t2) – g(s))α–1 – (g(t1) – g(s))α–1|‖g ′‖
k

g ′(s)
‖g ′‖

)

ds

≤
∫ t1

a
˜ψ

(

[(g(t1) – g(s))α–1 – (g(t2) – g(s))α–1]‖g ′‖
k

)

g ′(s)
‖g ′‖ ds

≤
∫ t1

a

[

˜ψ

(

(g(t1) – g(s))α–1‖g ′‖
k

)

– ˜ψ

(

(g(t2) – g(s))α–1]‖g ′‖
k

)]

g ′(s)
‖g ′‖ ds

≤
( k
‖g′‖ ) 1

α–1

‖g ′‖
[∫ ( k

‖g′‖ )
1

1–α g(t1)

0
˜ψ

(

sα–1)ds –
∫ ( k

‖g′‖ )
1

1–α g(t2)

( k
‖g′‖ )

1
1–α (g(t2)–g(t1))

˜ψ
(

sα–1)ds
]

=
( k
‖g′‖ ) 1

α–1

‖g ′‖
[∫ ( k

‖g′‖ )
1

1–α g(t1)

0
˜ψ

(

sα–1)ds –
∫ ( k

‖g′‖ )
1

1–α g(t2)

0
˜ψ

(

sα–1)ds
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+
∫ ( k

‖g′‖ )
1

1–α (g(t2)–g(t1))

0
˜ψ

(

sα–1)ds
]

≤
( k
‖g′‖ ) 1

α–1

‖g ′‖
∫ ( k

‖g′‖ )
1

1–α (g(t2)–g(t1))

0
˜ψ

(

sα–1)ds.

In view of (6), the above observations guarantee the existence of k > 0 for which
∫ b

a
˜ψ( |h1(s)|

k ) ds ≤ 1. Then, we can conclude that h1 ∈ L
˜ψ (I). Moreover, our definitions of

˜�α and the norm in Orlicz spaces, along with the above observations, give us

‖h1‖˜ψ = inf

{

k > 0 :
∫ b

a
˜ψ

( |h1(s)|
k

)

ds ≤ 1
}

=
∥

∥g ′∥
∥ inf

{

k
‖g ′‖ > 0 :

∫ b

a
˜ψ

( |h1(s)|
k

)

ds ≤ 1
}

≤ ˜�α

(∣

∣g(t2) – g(t1)
∣

∣

)

.

Arguing similarly as above, we can show that

h2 ∈ L
˜ψ (I), and ‖h2‖˜ψ ≤ ˜�α

(∣

∣g(t2) – g(t1)
∣

∣

)

.

Thus, for any ϕ ∈ E∗ equation (9) takes the form

∣

∣ϕ
(�α,g

a x(t2) – �α,g
a x(t1)

)∣

∣ ≤ 4˜�α(|g(t2) – g(t1)|)
�(α)

∥

∥ϕ(x)
∥

∥

ψ
. (10)

This may be combined along with the Hahn–Banach theorem, in order to assure that

∥

∥�α,g
a x(t2) – �α,g

a x(t1)
∥

∥ ≤ 4˜�α(|g(t2) – g(t1)|)
�(α)

∥

∥ϕ(x)
∥

∥

ψ

holds true for some ϕ ∈ E∗ with ‖ϕ‖ = 1. Hence, �α,g
a : Hψ

0 (E) → C˜�α
g [I, Ew]. Also,

[�α,g
a x

]

˜�α
≤ 4

�(α)
∥

∥ϕ(x)
∥

∥

ψ
.

Moreover, in view of our definition �α,g
a x(a) := 0, we observe that

∥

∥�α,g
a x(t)

∥

∥ =
∥

∥�α,g
a x(t) – �α,g

a x(a)
∥

∥ ≤ ˜�α

(‖g‖)[�α,g
a x

]

˜�α
.

We finally obtain

∥

∥�α,g
a x

∥

∥

˜�α
≤ 4

�(α)
∥

∥ϕ(x)
∥

∥

ψ
(1 + ˜�α

(‖g‖). (11)

In this connection, the particular case follows from Corollary 1 and the theorem is then
proved. �

Example 2.2 Let α ∈ (0, 1) and ψ(u) = ψp(u) := 1
p |u|p, p ∈ (1,∞). In this case, we have

ψ̃p = ψp̃ with 1
p + 1

p̃ = 1. It can be easily seen that (4) holds true if and only if p > 1
α

. From
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which we conclude that �α,g
a maps the Bochner space Lp[I, E], p > 1

α
into the Hölder space

C˜�α
g [I, Ew], where

˜�α(t) =
tα– 1

p

p̃
√

p̃[1 – p̃(1 – α)]
, t ∈R

+.

For instance, in view of the above observation, �α,g
a : L2[I,R] → C˜�α [I,R] for α ∈ (0.5, 1)

with ˜�α(t) = tα– 1
2√

4α–2 .

Remark 6 Theorem 2 may be combined with [11, Example 1] in order to assure the ex-
istence of a Young function ψ (for instance, ψ(u) := e|u| – |u| – 1) for which �α,g

a maps
Hψ

0 (E) into C˜�α
g [I, I, Ew] “for all” α ∈ (0, 1]. According to Example 2.2, this interesting phe-

nomenon has no analog in the case of Lebesgue spaces Lp[I,R]).

Example 2.3 Let α > 0 and a, b ∈ R
+ such that b – a = 1. Define a strongly measurable

function x : [a, b] → L2[a, b] by

x(t) :=
∞

∑

n=1

en · χIn (t) =

⎧

⎨

⎩

en(·), t ∈ In,

0, otherwise,

where {en} is an orthonormal system in L2[a, b] and I ′
ns are the pairwise disjoint subinter-

vals of [a, b] defined by In = (a + 1/2n, a + 1/2n + 1/4n), n ∈N. Since

(∫ b

a

∣

∣ϕ
(

x(t)
)∣

∣

2 dt
) 1

2
=

( ∞
∑

n=1

|ϕ(en)|2
4n

) 1
2

≤
( ∞

∑

n=1

∣

∣ϕ(en)
∣

∣

2
) 1

2

≤ ‖ϕ‖L2

holds true for every ϕ ∈ L2[a, b]∗ = L2[a, b], we obtain ϕx ∈ L2[a, b] for every ϕ ∈ L2[a, b]∗.
Hence, x ∈ P[[a, b], L2[a, b]] (by applying Proposition 1). More precisely, x ∈Hψ2

0 (L2[a, b]).
Since L2[a, b] is reflexive, the integral �α,g

a x exists for any α > 0 (cf. Remark 2 when α ≥ 1
and Remark 5 when α ∈ (0, 1)). Moreover, in view of Example 2.2, we know that �α,g

a x ∈
C˜�α

g [[a, b], (L2[a, b])ω], with ˜�α(t) = tα– 1
2√

4α–2 holds for any α ∈ (0.5, 1).

Example 2.4 Let α ∈ (0, 1] and define x : [0, 1] → L1[0, 1] by

x(t) :=
1

�(1 – α)
(

g(t) – g(·))–α
χ[a,t](·), t ∈ [0, 1].

This function is weakly continuous on I = [0, 1]. Indeed, if φ ∈ L∞ ∼= L∗
1 corresponds to

ϕ ∈ L∗
1, then ϕ(x(t)) = �1–α,g

a ( φ(t)
g′(t) ). Since �1–α,g

a maps C[I,R] into itself, we can conclude
that ϕx ∈ C[I,R] for every ϕ ∈ L∗

1 that gives a reason to believe that x is weakly continuous
on I . Consequently, in view of Theorem 2, it follows that �α,g

a x exists on I . In this context,
we can show that

�α,g
a x(t)(·) = χ[a,t](·), holds for any α ∈ (0, 1]. (12)

This is easy to demonstrate because, by letting φ ∈ L∞ corresponding to ϕ ∈ L∗
1 and car-

rying out the necessary calculations using the substitution s = g(s)–g(ξ )
g(t)–g(ξ ) , it can be verified
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that

∫ t

a

ϕ([g(t) – g(s)]α–1g ′(s)x(s))
�(α)

ds

=
1

�(α)

∫ t

a

[

g(t) – g(s)
]α–1g ′(s)ϕ

(

x(s)
)

ds

=
∫ t

a

[g(t) – g(s)]α–1g ′(s)
�(α)

∫ s

a

φ(ξ )[g(s) – g(ξ )]–α

�(1 – α)
dξ ds

=
∫ t

a
φ(ξ )

∫ t

ξ

[g(t) – g(s)]α–1

�(α)
[g(s) – g(ξ )]–α

�(1 – α)
g ′(s) ds dξ

=
∫ t

a
φ(ξ ) dξ =

∫ b

a
φ(ξ )χ(a,t](ξ ) dξ = ϕ(χ[a,t]),

as needed for (12).

In view of the semigroup property of �α,g
a in Lebesgue spaces, an analogous reasoning

as in [11, Lemma 2] gives us the following:

Lemma 6 Let α,β ∈ (0, 1]. If x ∈Hψ
0 (E), where ψ is a Young function with its complement

˜ψ satisfying

∫ t

0
˜ψ

(

s–ν
)

ds < ∞, t > 0, where ν := max{1 – α, 1 – β}, (13)

then

�β ,g
a �α,g

a x = �β+α,g
a x = �α,g

a �β ,g
a x on I. (14)

In particular, the property (14) holds true for every x ∈ C[I, Ew].

Let us investigate some important properties of generalized fractional integrals with
Pettis integrals and measures of weak noncompactness. We need to prove a Goebel–
Rzymowski lemma that is important in our considerations and very useful in many similar
problems. We follow the idea from [9].

Lemma 7 Let μ be the De Blasi measure of weak noncompactness. For any α ∈ (0, 1], t ∈ I
and any bounded strongly equicontinuous set V ⊂ C[I, Ew]

μ
(�α,g

a V (t)
)

:= μ
(�α,g

a v(t) : v ∈ V , t ∈ I
) ≤ �α,g

a μ
(

V (t)
) ≤ ‖g‖α

�(1 + α)
· μC(V ).

Proof At the beginning, we note, in view of Theorem 2, that �α,g
a v exists and weakly con-

tinuous on I . Hence, μ(�α,g
a V (t)) makes sense. Next, define a function G : I × I → R

+ by

G(t, s) :=
1

�(α)

⎧

⎨

⎩

g′(s)
(g(t)–g(s))1–α , s ∈ [a, t], t > a,

0, otherwise.
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From the above definition we have �α,g
a x(t) =

∫ t
a G(t, s)x(s) ds. From the properties of the

Pettis integral for arbitrary w ∈ P[I, E] and t ∈ I we have

∫ t–τ

a
w(s) ds +

∫ t

t–τ

w(s) ds =
∫ t

a
w(s) ds, for some sufficiently small τ .

As V is equicontinuous, the set {G(t, ·)V (·)} is Pettis uniformly integrable on I , so for any
x ∈ V the set {ϕ(G(t, ·)x(·)) : ϕ ∈ E∗,‖ϕ‖ ≤ 1} is equiintegrable. Then, for any ε > 0 there
exists (sufficiently small) τ such that

∥

∥

∥

∥

∫ t

t–τ

G(t, s)V (s) ds
∥

∥

∥

∥

< ε. (15)

Thus, we can cover the set {∫ t
t–τ

G(t, s)v(s) ds : s ∈ [t – τ , t], v ∈ V } by balls with radius less
than ε and then

μ

({∫ t

t–τ

G(t, s)v(s) ds : s ∈ [t – τ , t], v ∈ V
})

< ε.

Now, let us estimate the set of integrals on [a, t –τ ]. Put v(·) = μ(V (·)). In view of Lemma 1,
v is a continuous function. Note that from our assumption it follows that s → G(t, s)v(s) is
continuous on [a, t – τ ], and hence uniformly continuous.

Thus, there exists δ > 0 such that

∣

∣G(t,η)v(q) – G(t, s)v(s)
∣

∣ < ε, (16)

provided that |q – s| < δ and |η – s| < δ with η, s, q ∈ [a, t – τ ].
Divide the interval [a, t – τ ] into n parts a = t0 < t1 < · · · < tn = t – τ such that |ti – ti–1| < δ

for i = 1, 2, . . . , n. Put Ti = [ti–1, ti]. As v is uniformly continuous, there exists si ∈ Ti such
that v(si) = β(V (Ti)) (i = 1, 2, . . . , n).

As

{∫ t–τ

a
G(t, s)x(s) ds : s ∈ [a, t – τ ], x ∈ V

}

⊂
n

∑

i=1

{∫

Ti

G(t, s)x(s) ds : s ∈ [a, t – τ ], x ∈ V
}

,

by the mean value theorem for the Pettis integral

∫

Ti

G(t, s)V (s) ds ∈ meas(Ti) · conv
{

G(t, s)V (s) : s ∈ Ti
}

.

Hence,

μ

({∫ t–τ

a
G(t, s)x(s) ds : s ∈ [a, t – τ ], x ∈ V

})

≤
n

∑

i=1

μ

({∫

Ti

G(t, s)x(s) ds : s ∈ [a, t – τ ], x ∈ V
})
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≤
b

∑

i=1

meas(Ti) · μ(

conv
{

G(t, s)V (s) : s ∈ Ti
})

≤
b

∑

i=1

meas(Ti) · max
s∈Ti

G(t, s) · μV (Ti)

≤
b

∑

i=1

meas(Ti) · G(t, ti) · μV (Ti)) ≤
b

∑

i=1

meas(Ti) · G(t, ti) · v(si).

Note that from (16) it follows that

b
∑

i=1

meas(Ti) · G(t, ti) · v(si) ≤
∫ t–τ

a
G(t, s)v(s) ds + (t – τ ) · ε.

Then,

{∫ t

a
G(t, s)x(s) ds : s ∈ [a, t – τ ], x ∈ V

}

⊂
{∫ t

a
G(t, s)x(s) ds : s ∈ [a, t – τ ], x ∈ V

}

+
{∫ t

t–τ

G(t, s)x(s) ds : s ∈ [a, t – τ ], x ∈ V
}

and

μ

({∫ t

a
G(t, s)x(s) ds : s ∈ [a, t], x ∈ V

})

≤
∫ t–τ

a
G(t, s)v(s) ds + (t – τ ) · ε + ε.

As ε is arbitrarily small, we obtain

μ

({∫ t

a
G(t, s)x(s) ds : s ∈ [a, t], x ∈ V

})

≤
∫ t–τ

a
G(t, s)v(s) ds,

i.e.,

μ
(�α,g

a V (t)
) ≤ �α,g

a μ
(

V (t)
)

.

It remains to prove the second estimation. Let us observe that

∂

∂s

(

(g(t) – g(s))α

α

)

=
–g ′(s)

(g(t) – g(s))1–α
.

As g(a) = 0,

∫ t

a
G(t, s) ds =

(g(t))α

α
.

Thus, �α,g
a μ(V (t)) ≤ (g(t))α

α·�(α) · μc(V ) ≤ ‖g‖α

�(1+α) · μc(V ). �

3 Generalized fractional derivatives
From now, the definitions of the g-fractional derivatives of x become a natural require-
ment.
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Definition 6 ([5, 19, 36]) The g–Caputo fractional-pseudo- (resp., weak) derivative of a
given function x of order α ∈ (m, m + 1], m ∈N := {0, 1, 2, . . .} is defined by

dα,g
p

dtα
x := �m+1–α,g

a δm+1
p x,

(

resp.,
dα,g

ω

dtα
x := �m+1–α,g

a δm+1
ω x

)

, t ∈ I. (17)

Here, δp and δω are defined as

δp :=
1

g ′(t)
Dp and δω :=

1
g ′(t)

Dω.

Remark 7 It is worthwhile to remark here that dα,g
p

dtα x (if exists), does not depend on the
choice of the mth pseudoderivatives of x. Evidently, if δm

p x = y1, δm
p x = y2, we know that y1,

y2 are weakly equivalent on I . It follows that

ϕ
(�m–α,g

a y1(t)
)

= �m–α,g
a ϕ

(

y1(t)
)

= �m–α,g
a ϕ

(

y2(t)
)

= ϕ
(�m–α,g

a y2(t)
)

, for any ϕ ∈ E∗.

Hence, �m–α,g
a y1(t) = �m–α,g

a y2 as needed.

This is a good place to remark that the conditions required for the existence of g-Caputo
fractional derivative are very restrictive. A very rough condition that ensures the existence
of dα,g

p
dtα x is that x ∈ ACm–1[[a, b], Ew]. In other words, the g–Caputo-type fractional deriva-

tive has the disadvantage that it completely loses its meaning if Dm–1x fails to be (almost
everywhere) differentiable on [a, b]. Unfortunately, even in the Hölder spaces, outside of
the space of absolutely continuous functions, the g-Caputo-type fractional differential op-
erator does not enjoy the “nice” behavior of being left inverse of the corresponding g-
fractional integral operator. In other words, outside of the space of absolutely continuous
functions, the equivalence of the g-fractional integral equations and the corresponding
g-Caputo fractional differential problem is no longer necessarily true even in the Hölder
spaces. This goes back to the well-known fact that the Riemann-Louville fractional integral
operator �α,t

0 is a continuous mapping from Hölder spaces “onto” Hölder spaces (which,
of course, contains also continuous nowhere differentiable functions), see, e.g., [36, The-
orem 13.13]. Indeed, in what follows, we will show that even in the context of real-valued
Hölderian functions the converse implication from the fractional integral equations to the
corresponding Caputo-type differential form is no longer necessarily true.

To see this, let us consider a particular form of the fractional integral operator �β ,g
a ,

α ∈ (0, 1) with g(t) = t, t ∈ [0, 1], E = R. Let x be a Hölderian (but nowhere differentiable
on [0, 1]) function of some critical order γ < 1. According to [36, Theorem 13.13] we know
that there is α ∈ (0, 1) depending only on γ and a Hölderian function y /∈ AC[0, 1] such
that �α,t

0 y = x. From this we can conclude that dα,t
p

dtα �α,t
0 y = dα,t

p
dtα x is “meaningless”. This gives a

reason to believe that even on Hölder spaces (but out of the space of absolutely continuous
functions), the operator dα

dtα has no left inverse of �α,t
0 y as required. For more examples

revealing the lack of equivalence between differential and integral forms of the Caputo-
type fractional problems, we refer the reader to [12]. It will be clarified later how to avoid
such a phenomenon (see formula (♦) and Lemma 8 below).

However, the following example shows that on the space C[I, Ew], but still outside of the
space of weakly absolutely continuous functions, it is no longer necessarily true that dα,g

p
dtα

is a left inverse of �α,g
a for any α > 0.
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Example 3.1 Let α ∈ (m, m + 1], m ∈N. Define x : [0, 1] → L1[0, 1] by

x(t) :=
1

�(1 + m – α)
(

g(t) – g(·))m–α
χ[a,t](·), t ∈ I = [0, 1].

Reasoning as in Example 2.4, we can ensure that this function is weakly (but not weakly
absolutely) continuous on I having a g-Caputo fractional integral of order α – m ∈ (0, 1]
on I and that �α–m,g

a x(t)(·) = χ[a,t](·). In this connection, in view of the continuity of x in
Theorem 2 and Lemma 6, implies that

�α,g
a x(t) = �m,g

a �α–m,g
a x(t) = �m,g

a χ[a,t].

By the aid of (♦), it follows that δm
p �α,g

a x = χ[a,t]. Since χ[a,t](·), t ∈ I is weakly absolutely
continuous and have no pseudo- (so trivially no weak) derivatives on I (see [33, Theo-
rem 3]), we conclude that the g–Caputo fractional pseudo- (trivially weak) derivative is
“meaningless”. Namely, dα,g

p
dtα �α,g

a x 
= x as required.

In order to avoid such a problem with the equivalence of the g-Caputo-type boundary
value problem of fractional orders α > 1 and the corresponding integral form, we are, sim-
ilarly as in [12], going to modify (slightly) our definition of the g–Caputo-type fractional
differential operator into a more suitable one

Definition 7 The modified g–Caputo fractional pseudo- (resp., weak) derivative “briefly
MCFPD (resp., MCFWD)” of order m + α, m ∈ N, α ∈ (0, 1) applied to the function x ∈
P[I, E] is defined as

dm+α,g
p

dtm+α
x := δm

p �1–α,g
a δpx,

(

resp.
dm+α,g

ω

dtm+α
x := δm

ω �1–α,g
a δωx

)

. (18)

Obviously, Definition 7 coincides with the usual definition of the g–Caputo-type frac-
tional differential operators when m = 0. Also, unless the space E has total dual E∗ (cf.
[10]), a g–Caputo fractional pseudoderivative of x is not necessary uniquely determined.

In what follows we will show that the results obtained in Example 3.1 have no analog
in the case of MCFPD whenever α > 1. Evidently, arguing similarly as in [12, proof of
Lemma 7], we can prove the following:

Lemma 8 Let α > 1. Assume that α = m + η, where m ≥ 1 with some η ∈ (0, 1). If ψ is a
Young function with its complementary function ψ̃ satisfying

∫ t

0
ψ̃

(

s–ν
)

ds < ∞, t > 0,ν := max{η, 1 – η}, (19)

then dα,g
p

dtα �α,g
a is well defined on Hψ

0 (E). If, additionally, the space E has total dual, then dα,g
p

dtα

is the left-inverse of �α,g
a , where the fractional differential operator is taken in the sense of

Definition 7.

Remark 8 Let us remark that, in view of (�), the assertion of Lemma 8 is still valid even
in the case of applying the operator (MCFWD) provided x ∈ C[I, Ew].
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The following example shows that our assumption that E has total dual is essential in
Lemma 8 and cannot be omitted even if x is weakly absolutely continuous on I . Out of the
context of such spaces we should assume instead that our derivatives should be of strongly
bounded variation (cf. [26]).

Example 3.2 Let α ∈ (m, m + 1], m ≥ 1 and assume that B[I] is the Banach space of
bounded real-valued functions on I . Define a Pettis integrable function x : I → B[I] as
in Example 2.1. The choice of this space is not accidental, because B[I] has no total dual.

Note that g ′(·)x(·) ∈ P[I, B[I]] (cf. Proposition 3). Bearing in mind the existence of �α,g
a x

on I and arguing similarly as in [12, proof of Lemma 7] there is no difficulty in proving
that

dα,g
p

dtα
�α,g

a x =
1

g ′(t)
Dp

∫ t

a
g ′(s)x(s) ds, t ∈ I. (20)

On the one hand, reasoning as in Example 2.1, we know that

∫ t

a
g ′(s)x(s) ds = θ , t ∈ I.

From which, by definition of Dp, it can be easily seen that Dp
∫ t

a g ′(s)x(s) ds = θ on I . On
the other hand, in view of Lemma 2, we conclude that Dp

∫ t
a g ′(s)x(s) ds = g ′(t)x(t) on I . In

this connection, we deduce that the function t �→ ∫ t
a g ′(s)x(s) ds has two pseudoderivatives

g ′(t)x(t) and θ on I that differ on a set of positive measures. Consequently, we infer by the
aid of (20) that on such a set dα,g

p
dtα �α,g

a x 
= x.

In the remaining part of this paper, all g–Caputo fractional pseudo- (trivially weak)
derivatives are taken in the sense of Definition 7.

Now, we are in the position to investigate the existence of solutions to the following
g–Caputo fractional boundary value problem

dα,g
p

dtα
x(t) = λf

(

t, x(t),
dβ ,g

p

dtβ
x(t)

)

, β ∈ (0, 1),α ∈ (1, 2), t ∈ I,λ ∈R (21)

combined with the nonlocal three-point boundary conditions

x(a) = 0, x(b) – px(ξ ) = c, a < ξ , < b, p ∈ [0,∞), c ∈ E. (22)

Here, dα,g
p

dtα denotes the g–Caputo fractional pseudodifferential operators defined as in
(18). It is absolutely necessary to start from the definition of a solution of this problem.
Let us introduce the following:

Definition 8 The function x ∈ C[I, Ew] is called a pseudo- (resp., weak) solution to the
problem ((21) and (22) if x admits a g–Caputo fractional pseudo- (resp., weak) derivative
of order α ∈ (1, 2) and satisfies (22) together with

dα,g
p

dtα
x(t) = λf

(

t, x(t),
dβ ,g

p

dtβ
x(t)

)
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and, respectively, for the weak derivative

dα,g
ω

dtα
x(t) = λf

(

t, x(t),
dβ ,g

ω

dtβ
x(t)

)

a.e. on I.

Let us present some proposed integral form for the differential problem (21). Assuming
very natural conditions, we always have the following relationship of their solutions:

Lemma 9 Let α ∈ (1, 2), β ∈ (0, 1), p ∈ [0,∞) and ξ ∈ I be such that ‖g‖ 
= p 1
α–1 g(ξ ). For

any f ∈ P[I, E], the integral equation modeled off the problem ((21) and (22)) in the form

u(t) =
c1

�(α – β)
(

g(t)
)α–β + λ�α–β ,g

a f
(

t, u(t),�β ,g
a u(t)

)

, (23)

where x = �β ,g
a u and

c1 =
�(α)

‖g‖α–1 – p(g(ξ ))α–1

× [

c + λ
(

p�α,g
a f

(

ξ , u(ξ ),�β ,g
a u(ξ )

)

– �α,g
a f

(

b, u(b),�β ,g
a u(b)

))]

(24)

has a solution u ∈ C[I, Ew] provided x = �β ,g
a u is a solution of BVP (21) and (22).

Proof Let x ∈ C[I, Ew] satisfy the problem ((21) and (22)) and define a function u :=
dβ ,g

p
dtβ x = �1–β ,g

a δpx. By virtue of our boundary condition x(a) = 0, using Lemma 2 we ar-
rive at x = �β ,g

a u. Also, the boundary condition x(b) – px(ξ ) = c is transformed into
�β ,g

a u(b) – p�β ,g
a u(ξ ) = c. In this case, the differential equation (21) reads as

dα,g
p

dtα
�β ,g

a u(t) = λf
(

t, u(t),�β ,g
a u(t)

)

, β ∈ (0, 1),α ∈ (1, 2), t ∈ I,λ ∈R. (25)

Now, in view of Definition 7 of MCFPD and letting

dα,g

dtα
�β ,g

a u(t) = δp�2–α,g
a δp�β ,g

a u(t) = λf
(

t, u(t),�β ,g
a u(t)

)

, t ∈ I,

means that

Dp�2–α
a δp�β ,g

a u(t) = λg ′(t)f
(

t, u(t),�β ,g
a u(t)

)

, t ∈ I.

Thus, “formally” we obtain

�2–α,g
a δp�β ,g

a u(t) = c1 + λ

∫ t

a
g ′(s)f

(

s, u(s),�β ,g
a u(s)

)

ds = c1 + λ�1,g
a f

(

t, u(t),�β ,g
a u(t)

)

.

Operating by �α,g
a yields

�2,g
a δp�β ,g

a u(t) = c1
(g(t))α

�(1 + α)
+ λ�α+1,g

a f
(

t, u(t),�β ,g
a u(t)

)

= c1
(g(t))α

�(1 + α)
+ λ

∫ t

a
g ′(s)

(�α,g
a f

(

t, u(t),�β ,g
a u(t)

))

ds.
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Now, differentiating δp both sides twice, we arrive at

δp�β ,g
a u(t) = c1

(g(t))α–2

�(α – 1)
+ λ�α–1,g

a f
(

t, u(t),�β ,g
a u(t)

)

. (26)

From which (still “formally”), we obtain

�β ,g
a u(t) = c0 +

c1

�(α)
(

g(t)
)α–1 + λ�α,g

a f
(

t, u(t),�β ,g
a u(t)

)

, (27)

with some (presently unknown) quantities c0, c1 ∈ E. Since x(a) = �β ,g
a u(a) = 0 and

�β ,g
a u(b) – p�β ,g

a u(ξ ) = c, it can be easily seen that c0 = 0 and

c1 =
�(α)

‖g‖α–1 – p(g(ξ ))α–1

[

c + λ
(

p�α,g
a f

(

ξ , u(ξ ),�β ,g
a u(ξ )

)

– �α,g
a f

(

b, u(b),�β ,g
a u(b)

))]

.

Operating by �1–β ,g
a on both sides of (27) yields

�1,g
a u(t) =

c1

�(1 + α – β)
(

g(t)
)α–β + λ�1+α–β ,g

a f
(

t, u(t),�β ,g
a u(t)

)

.

In this connection, we conclude that

u(t) =
c1

�(α – β)
(

g(t)
)α–β–1 + λ�α–β ,g

a f
(

t, u(t),�β ,g
a u(t)

)

, t ∈ I. (28)

Now, inserting c1 into (28) yields (“formally”) the integral equation. This completes the
proof. �

We should answer the question when the two problems are equivalent. To do this we
need to present a precise definition of the solutions for (23).

Definition 9 By a weak solution of (23) we mean a function u ∈ C[I, Ew] satisfying

ϕ
(

u(t)
)

= ϕ

(

c1

�(α – β)
(

g(t)
)α–β–1 + λ�α–β ,g

a f
(

t, u(t),�β ,g
a u(t)

)

)

, t ∈ I, for all ϕ ∈ E∗.

Let us recall that if we are studying pseudosolutions, some negligible sets Dϕ , where the
equation is not satisfied, are excluded and they are dependent on ϕ ∈ E∗. Such a set does
not affect the calculated fractional Pettis integrals (cf. Remark 7).

Since the space of all Pettis integrable functions is not complete, not all methods of the
proofs of the existence of solutions to the integral equation (23) are allowed and we cannot
follow many ideas taken from the case of the strong topology. We restrict our attention to
the case of weakly continuous solutions of the mentioned integral equation and then to
pseudosolutions of the problem (23).

Now, we are ready to present the following theorem that will allow us to introduce the
assertions that provide conditions under which we ensure the existence of weakly contin-
uous solutions to the integral equation (23).
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Theorem 3 Let β ∈ (0, 1), α ∈ (1, 2) such that α ≥ 1 + β . Assume that
A) ψ is a Young function such that its complementary Young function ˜ψ satisfies

∫ t

0
˜ψ

(

s–ν
)

ds < ∞, t > 0,ν := max{2 + β – α,α – β – 1}; (29)

B) Let f : I × E × E → E satisfy the following assumptions:
(1) For every t ∈ I , f (t, ·, ·) is ww-sequentially continuous;
(2) For every x, y ∈ C[I, Ew], f (·, x(·), y(·)) ∈ P[I, E];
(3) For any r > 0 and each ϕ ∈ E∗ there exists an Lψ (I,R)-integrable function

Mϕ
r : I →R

+ such that |ϕ(f (t, x, y))| ≤ Mϕ
r (t) for a.e. t ∈ I and all x, y ∈ C[I, Ew]

whenever max{‖y‖,‖x‖} ≤ r. Moreover, there exists a continuous nondecreasing
function � : R+ → R

+ and such that for all ϕ ∈ E∗ with ‖ϕ‖ ≤ 1, ‖Mϕ
r ‖ψ < �(r)

and
∫ ∞

0
dr

‖Mϕ
r ‖ψ

= ∞;
(4) There exists a positive constant k such that for arbitrary bounded sets B1, B2 ⊂ E,

we have

μ
(

f (I, B1, B2)
) ≤ k

[

μ(B1) + μ(B2)
]

. (30)

Then, there is ρ > 0 such that for any λ ∈ R with |λ| ≤ ρ , the integral equation (23) has at
least one weak solution u ∈ C[I, Ew].

Remark 9
1. In [34, Lemma 19] one can find some sufficient conditions to satisfy assumption B)

(2).
2. The integral in (29) is convergent, so in view of [11, Proposition 1], we also have

∫ t

0
˜ψ

(

sα–β–2)ds < ∞ and
∫ t

0
˜ψ

(

s1+β–α
)

ds < ∞ for any t ∈ I. (31)

Before embarking on the proof of the above theorem, let us define a constant

� :=
4˜�α–β–1(‖g‖)
�(α – β – 1)

[

1 +
‖g‖α(1 + p)�(α)

�(α – β)�(2 + β)|‖g‖α–1 – p(g(ξ ))α–1|
]

.

Moreover, let us define a positive real number ρ by

ρ :=

⎧

⎨

⎩

min{ 1
H , 1

L } H 
= 0,
1
L H = 0,

(32)

where

H := �
max{1,‖g‖β}

�(1 + β)
lim sup

r>0

�(r)
r

,

L := k‖g‖α–β

(

(1 + p)‖g‖α–1

α�(α – β)|‖g‖α–1 – p(g(ξ ))α–1| +
1

�(1 + α – β)

)[

1 +
‖g‖β

�(1 + β)

]

.
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In this case, for any λ ∈R with |λ| < ρ , we have

|λ|� lim sup
r>0

�(r)
r

≤ �(1 + β)
max{1,‖g‖β} .

In this connection, reasoning as in [34, proof of inequality (44)], we can show that there
exists R0 > 0 such that for any R > R0 we have

‖g‖α–β–1‖c‖�(α)
�(α – β)|‖g‖α–1 – p(g(ξ ))α–1| + |λ|��(R) ≤ �(1 + β)

max{1,‖g‖β}R. (33)

For brevity and to allow a generalization, let us keep in the following a symbol R0. We
are assured that under our assumptions for sufficiently small λ we have global solutions,
i.e., functions defined on the interval I .

Proof of Theorem 3 Define an operator T on C[I, Ew] generating the right-hand side of the
differential equation in BVP, i.e., of the form

Tu(t) :=
c1(g(t))α–β–1

�(α – β)
+ λ�1,g

a Ux(t), (34)

where β ∈ (0, 1), α ∈ (1, 2), with α ≥ 1 + β , t ∈ I and

Uu(t) := �α–β–1,g
a f

(

t, u(t),�β ,g
a u(t)

)

(35)

and c1 is defined by (24).
I. First, we note that the operators U and T are well defined on C[I, Ew]. To see this, let

us observe that for any u ∈ C[I, Ew], by Lemma 5 �β ,g
a u is well defined and by Theorem 2,

we have �β ,g
a u ∈ C[I, Ew].

Under assumption B) (2), for any u ∈ C[I, Ew] the superposition F(u) := f (·, u(·),�β ,g
a u(·))

is weakly measurable, Pettis integrable on I . Hence, in view of Remark 2, we obtain the
existence of �α,g

a F(u) for any u ∈ C[I, Ew]. This means that the element c1 ∈ E defined by
(24) is well defined, so is the first component of T .

Moreover, by assumption B) (3) we have

∫ b

a
ψ

( |ϕ(f (t, u(t),�β ,g
a u(t)))|

‖Mϕ
r ‖ψ

)

dt ≤
∫ b

a
ψ

(

Mϕ
r (t)

‖Mϕ
r ‖ψ

)

dt ≤ 1,

for any r ≥ max{‖u‖,‖�β ,g
a u‖} and for every ϕ ∈ E∗.

Then, F(u)(·) ∈ Hψ
0 (E) and ‖Fu‖ψ ≤ ‖Mϕ

r ‖ψ . Bearing in mind (29), it follows in view of
Theorem 2 that U is a well-defined operator on C[I, Ew] with its values in C[I, Ew]. In this
connection, Corollary 1 and Proposition 2 yield that Uu(·)g ′(·) ∈ P[I, E] holds true for any
u ∈ C[I, Ew]. Since α – β ≥ 1, in view of (31), by applying Lemma 6 and using Remark 2,
it follows that �α–β ,g

a f (·, u(·),�β ,g
a u(·)) = �1,g

a Uu(·)) and hence the operator T is defined on
the space C[I, Ew].

Moreover, as c1(g(t))α–β–1

�(α–β) is continuous with values in E and we just proved that U :
C[I, Ew] → C[I, Ew], then the same property holds true for T .
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II. Now, let us construct an invariant domain for T , which is required by Theorem 1.
Define a convex and closed subset Q ⊂ C[I, Ew] by

Q =
{

u ∈ [I, Ew] : ‖u‖ ≤ R0, and
∥

∥u(t) – u(s)
∥

∥

≤ ‖c1‖(|(g(t))α–β–1 – (g(s))α–β–1|)
�(α – β)

+
4|λ|

�(α – β – 1)

∫ g(t)

g(s)
˜�α–β–1(ζ )dζ , t, s ∈ I

}

.

Lemma 4 implies that Q is a strongly equicontinuous subset of C[I, Ew].
Observe that β ∈ (0, 1) and define r0 > R0 by r0 := R0

�(1+β) max{1,‖g‖β}. For any u ∈Q, we
have ‖u‖ ≤ r0 and ‖�β ,g

a u‖ ≤ r0.
We proved in Theorem 2 that for any θ ∈ (0, 1] and x ∈Hψ

0 (E) we have an estimation

∥

∥�θ ,g
a x(t)

∥

∥

˜�θ
≤ 4˜�θ (|g(t)|)

�(θ )
∥

∥ϕ(x)
∥

∥

ψ

for some ϕ ∈ E∗ with ‖ϕ‖ ≤ 1. Then, for θ = α – β – 1 this inequality is fulfilled. Take an
arbitrary u ∈ Q. By applying the estimation from B) (3) and as Mϕ

r0 ∈ Lψ , for any ϕ ∈ E∗

we have

∣

∣�α–β–1,g
a

∣

∣ϕ
(

f
(

t, u(t),�β ,g
a u(t)

))∣

∣

∣

∣ ≤ ∣

∣�α–β–1,g
a Mϕ

r0 (t)
∣

∣

≤ 4˜�α–β–1(g(t))
�(α – β – 1)

∥

∥Mϕ
r0

∥

∥

ψ
≤ 4˜�α–β–1(‖g‖)

�(α – β – 1)
∥

∥Mϕ
r0

∥

∥

ψ
.

We can also estimate ϕ(c1)

∣

∣ϕ(c1)
∣

∣ ≤ �(α)
|‖g‖α–1 – p(g(ξ ))α–1|

[

ϕ(c) + |λ|(p�α,g
a

∣

∣ϕ
(

f
(

ξ , u(ξ ),�β ,g
a u(ξ )

))∣

∣

+ �α,g
a |ϕ(f

(

b, u(b),�β ,g
a u(b)|)]

≤ �(α)
|‖g‖α–1 – p(g(ξ ))α–1|

[

ϕ(c) + |λ|(p�1+β ,g
a �α–β–1,g

a Mϕ
r0 (ξ )

+ �1+β ,g
a �α–β–1,g

a Mϕ
r0 (b)

)]

≤ �(α)
|‖g‖α–1 – p(g(ξ ))α–1|

[

ϕ(c) +
4|λ|(p + 1)˜�α–β–1(‖g‖)‖Mϕ

r0‖ψ

�(2 + β)�(α – β – 1)
‖g‖1+β

]

.

By taking the supremum over all ϕ ∈ E∗ with ‖ϕ‖ ≤ 1 in the above inequality and by ap-
plying the Hahn–Banach theorem we obtain

‖c1‖ ≤ �(α)
|‖g‖α–1 – p(g(ξ ))α–1|

[

‖c‖ +
4|λ|(p + 1)˜�α–β–1(‖g‖)�(r0)

�(2 + β)�(α – β – 1)
‖g‖1+β

]

. (36)

Moreover, again as a consequence of the Hahn–Banach theorem, for any u ∈Q and any
t ∈ I there exists ϕ ∈ E∗ with ‖ϕ‖ = 1 such that ‖T(u)(t)‖ = ϕ(T(u)(t)). Using (36), there is
no difficulty in showing that

∥

∥T(u)(t)
∥

∥ =
∣

∣ϕ(Tu)(t)
∣

∣
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≤ ‖c1‖‖g‖α–β–1

�(α – β)
+

4|λ|˜�α–β–1(‖g‖)
�(α – β – 1)

�(r0)

≤ ‖g‖α–β–1‖c‖�(α)
�(α – β)|‖g‖α–1 – p(g(ξ ))α–1| + |λ|��(r0).

Since r0 > R0, it follows in view of (33) that

‖Tx‖ = max
t∈I

∥

∥Tu(t)
∥

∥ ≤ �(1 + β)
max{1,‖g‖β} r0 = R0. (37)

Also, for any t, s ∈ I and any u ∈Q, it can be easily seen that

∥

∥T(u)(t) – T(u)(s)
∥

∥ ≤ ‖c1‖(|(g(t))α–β–1 – (g(s))α–β–1|)
�(α – β)

+
4|λ|

�(α – β – 1)

∫ g(t)

g(s)
˜�α–β–1(ζ ) dζ .

III. Now, we need to prove that T is weakly–weakly sequentially continuous. Let {un}
be a sequence in Q and let un → u in C[I, Ew]. Recall, that weak convergence in C[I, Ew]
means exactly its boundedness and weak pointwise convergence for any t ∈ I . The first
condition is assured by the definition of Q.

Fix an arbitrary t ∈ I . Consider now the operator U and observe that

U(un)(t) = �α–β–1,g
a f

(

t, un(t),�β ,g
a un(t)

)

.

From the dominated convergence theorem for the Pettis integral applied to �β ,g
a we obtain

convergence of �β ,g
a un(t) to �β ,g

a u(t)). Hence, assumption B) (1) implies that the sequence
f (t, un(t),�β ,g

a un(t)) converges weakly to f (t, u(t),�β ,g
a u(t)). This implies that �1,g

a Uun(t) →
�1,g

a Uu(t) and finally (Txn)(t) converges weakly to (Tu)(t) in (E, w) for each t ∈ I , which
means that T : Q→Q is weakly–weakly sequentially continuous in Q.

IV. Let us verify condition (2) in Theorem 1.
Let V be a subset ofQ satisfying V̄ = conv((TV )∪{0}). Obviously, V (t) ⊂ conv((TV )(t)∪

{0}), t ∈ I . Since T(Q) is uniformly bounded and strongly equicontinuous in C[I, Ew], it
follows that V is also bounded and equicontinuous. Taking into account our Lemma 1,
the function v(t) := μ(V (t)) is continuous on I , V (t) := {v(t) : v ∈ V } and

TV (t) =
{

Tv(t) : u ∈ V
}

=
{

c1(g(t))α–β–1

�(α – β)
+ λ�1,g

a Uu(t) : u ∈ V
}

.

Arguing similarly as in [11, Step 3 of the proof of Theorem 3] (see also Lemma 7), we can
show that

μ
({�α–β–1,g

a f
(

t, u(t),�β ,g
a u(t)

)

: u ∈ V
}) ≤ �α–β–1,g

a μ
({

f
(

t, u(t),�β ,g
a u(t)

)

: u ∈ V
})

.

Also, by the aid of properties of μ (see [13, 21]), in view of Lemma 7, we obtain that
μ({�1,g

a UV (t)} ≤ �1,g
a μ({UV (t)}. Thus,

μ
(

TV (t)
) ≤ μ

(

c1(V )(g(t))α–β–1

�(α – β)

)

+ |λ|μ(�1,g
a UV (t)

)
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= μ
(

c1(V )
) · (g(t))α–β–1

�(α – β)
+ |λ|�1,g

a μ
({�α–β–1,g

a f
(

t, u(t),�β ,g
a u(t)

)

: u ∈ V
})

≤ μ
(

c1(V )
) · (g(t))α–β–1

�(α – β)
+ |λ|�α–β ,g

a μ
({

f
(

t, u(t),�β ,g
a u(t)

)

: u ∈ V
})

. (38)

By applying assumption B) (4), we ensure that

μ
(

TV (t)
) ≤ μ

(

c1(V )
) · (g(t))α–β–1

�(α – β)
+ k|λ| · �α–β ,g

a
[

μ
(

V (t)
)

+ μ
(�β ,g

a V (t)
)]

≤ μ
(

c1(V )
) · ‖g‖α–β–1

�(α – β)
+

|λ|k‖g‖α–β

�(1 + α – β)

[

1 +
‖g‖β

�(1 + β)

]

μC(V ). (39)

An analogous reasoning leads to the estimate

μ
({�α,g

a f
(

t, u(t),�β ,g
a u(t)

)

: u ∈ V
}) ≤ k‖g‖α

�(1 + α)

[

1 +
‖g‖β

�(1 + β)

]

μC(V ).

Since

μ

({ ‖g‖α–β–1�(α)
�(α – β)|‖g‖α–1 – p(g(ξ ))α–1| c

})

= 0,

it follows in view of the definition of c1

μ
(

c1(V )
)‖g‖α–β–1

�(α – β)
≤ �(α)

�(α – β)|‖g‖α–1 – p(g(ξ ))α–1|
|λ|k(1 + p)‖g‖2α–β–1

�(1 + α)

×
[

1 +
‖g‖β

�(1 + β)

]

μC(V ). (40)

From the definition of the set V and by applying properties of measures of weak non-
compactness we obtain

μ
(

V (t)
)

= μ
(

conv
({0} ∪ TV (t)

))

= μ
(

TV (t)
)

≤ |λ|k‖g‖α–β

(

(1 + p)‖g‖α–1

α�(α – β)|‖g‖α–1 – p(g(ξ ))α–1| +
1

�(1 + α – β)

)

×
[

1 +
‖g‖β

�(1 + β)

]

μC(V ).

Hence, we can take the supremum over all t ∈ I

μC(V ) ≤ |λ|LμC(V ).

Taking into account that |λ|L ≤ 1, immediately, we obtain μC(V ) = 0, so V should be rel-
atively weakly compact in C[I, E].

Finally, Theorem 1 implies that T has a fixed point being a pseudosolution to the integral
equation (23). �

We point out that if E is reflexive then the implication (2) of Theorem 1 is automatically
satisfied, as subsets of reflexive Banach spaces are weakly compact if and only they are
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weakly closed and norm bounded. In this situation, it is no longer necessary to assume
any compactness hypothesis imposed on the nonlinearity of f to assure the existence of
solutions to the fractional integral equation (23).

In addition to giving a conditions under which the integral equation (23) admits a so-
lutions in the space C[I, Ew], Theorem 3 may be used to obtain a result concerning the
existence of solutions to the boundary value problem (21) and (22).

Now, we are in the position to state and prove the following existence theorem:

Theorem 4 Let β ∈ (0, 1), α ∈ (1, 2) such that α ≥ 1 +β . Assume that ψ is a Young function
such that its complementary Young function ˜ψ satisfies

∫ t

0
˜ψ

(

s–ν
)

ds < ∞, t > 0,ν := max{2 + β – α,α – β – 1}. (41)

Assume that E has a total dual. If f : I × E → E is a function fulfilling all assumptions
B) from Theorem 3, then the problem (21) and (22) admits at least one pseudosolution
x ∈ C[I, Ew].

Proof At the beginning, we note that if u ∈ C[I, Ew] solves the integral equation (23) then,
obviously u is weakly absolutely continuous function having integrable pseudoderivative
(cf. Lemma 2). Indeed, we have

δu(t) =
1

g ′(t)
dp

dt
u(t) =

c1

�(α – β – 1)
(

g(t)
)α–β–2 + λ�α–β–1,g

a f
(

t, u(t),�β ,g
a u(t)

)

.

Hence, by the definition of the pseudoderivative we have

1
g ′(t)

dϕu(t)
dt

∈ Lp,

for some p ∈ (1, 1
2+β–α

). Now, since �α–β–1,g
a f (·, u(·),�β ,g

a u(·)) ∈ C[I, Ew], it follows that

�β ,g
a �α–β–1,g

a f
(·, u(·),�β ,g

a u(·)) ∈ C[I, Ew].

In view of Lemma 6 we conclude that

�1–β ,g
a �β ,g

a �α–β–1,g
a f

(·, u(·),�β ,g
a u(·)) = �1,g

a �α–β–1,g
a f

(·, u(·),�β ,g
a u(·))

= �α–β ,g
a f

(

t, u(t),�β ,g
a u(t)

)

.

Consequently,

�1–β ,g
a �β ,g

a δpu(t) =
c1

�(α – β)
(

g(t)
)α–β–1 + λ�α–β ,g

a f
(

t, u(t),�β ,g
a u(t)

)

= u.

Seeing that u(a) = 0, we have, in view of Lemma 2, �1,g
a δpu(t) =

∫ t
a Dpu(s) ds = u(t), t ∈ I .

Now, let us define x := �β ,g
a u ∈ C[I, Ew]. Further,

x = �β ,g
a

(�1–β ,g
a �β ,g

a δpu(t)
)

.
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Therefore, for any ϕ ∈ E∗, by the commutative property of the g-fractional integral oper-
ator, we have

ϕx = �β ,g
a

(�1–β ,g
a �β ,g

a ϕ
(

δpu(t)
))

= �1,g
a �β ,g

a ϕ
(

δpu(t)
) ⇒ 1

g ′(t)
dϕx
dt

= �β ,g
a ϕ

(

δpu(t)
)

.

Accordingly,

�β ,g
a

(

1
g ′(t)

dϕx
dt

)

= �1,g
a ϕ

(

δpu(t)
)

= ϕ(u)

and

dβ ,g
p

dtα
x = u.

Thus, if u ∈ C[I, Ew] solves (23) then for all t ∈ I we obtain

�β ,g
a u(t) =

c1

�(α – β)
�β ,g

a
(

g(t)
)α–β–1 + λ�β ,g

a �α–β ,g
a f

(

t, u(t),�β ,g
a u(t)

)

).

Hence, by applying the above equality we obtain

x(t) =
�(α – β)c1

�(α)�(α – β)
(

g(t)
)α–1 + λ�α,g

a f (
(

t, x(t),
dβ ,g

p

dtα
x(t)

)

, t ∈ I.

By the definition of our generalized fractional derivative dα,g
p

dtα we infer

dα,g
p

dtα

[

c1

�(α)
(

g(t)
)α–1

]

= 0,

and by applying Lemma 8, we conclude that

dα,g
p

dtα
x(t) = λf

(

t, x(t),
dβ ,g

p

dtα
x(t)

)

.

On the other hand, there is no difficulty in showing that x satisfies
⎧

⎨

⎩

x(a) = 0,

x(b) – px(ξ ) = c, a < ξ < b, p ∈R
+, c ∈ E.

(42)

This means that x is a pseudosolution x of the problem ((21) and (22)). �

Some examples of the use of our theorem to the problem ((21) and (22)) can be found
in [12, Sect. 4]. However, it is worth noting that:

1. Our assumption that E has total dual is essential in Theorem 4 and cannot be
omitted even if f is weakly absolutely continuous on I . Evidently, if we define
f : I × B[I] × B[I] → B[I] by

f
(

t, x(t), y(t)
)

:=

⎧

⎨

⎩

χ{t}(·), t ∈ J , x, y ∈ B[I],

θ , t /∈ J .
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Then, using similar arguments as in the proof of Theorem 4, by the aid of
Example 3.2 we can show that

dα,g
p

dtα
x(t) 
= λf

(

t, x(t),
dβ ,g

p

dtα
x(t)

)

holds true on a subset of I of positive measure.
2. By virtue of the fact that the indefinite Pettis integral of a function f ∈ P[I, E] does not

enjoy the strong property of being a.e. weakly differentiable, it is immediately clear
that the result obtained in Theorem 4 has no analog if we replace dα,g

p
dtα by dα,g

ω

dtα .
3. Arguing similarly as in the [11, Theorem 5], we are to consider the multivalued case

of the problem ((21) and (22)).
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2. Abdalla, A.M., Cichoń, K., Salem, H.A.H.: On positive solutions of a system of equations generated by Hadamard

fractional operators. Adv. Differ. Equ. (2020). https://doi.org/10.1186/s13662-020-02702-0
3. Agarwal, R.P., Lupulescu, V., O’Regan, D., Rahman, G.: Nonlinear fractional differential equations in nonreflexive Banach

spaces and fractional calculus. Adv. Differ. Equ. 2015(1), 112, 1–18 (2015)
4. Agarwal, R.P., Lupulescu, V., O’Regan, D., Rahman, G.: Weak solutions for fractional differential equations in

nonreflexive Banach spaces via Riemann–Pettis integrals. Math. Nachr. 289, 395–409 (2016).
https://doi.org/10.1002/mana.201400010

5. Almeida, R.: A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci.
Numer. Simul. 44, 460–481 (2017)

6. Arino, O., Gautier, S., Penot, J.P.: A fixed-point theorem for sequentially continuous mappings with application to
ordinary differential equations. Funkc. Ekvacioj 27, 273–279 (1984)

7. Barcenas, D., Finol, C.E.: On vector measures, uniform integrability and Orlicz spaces. In: Vector Measures, Integration
and Related Topics, pp. 51–57. Birkhäuser, Basel (2009)

8. Calabuig, J.M., Rodríguez, J., Rueda, P., Sánchez-Pérez, E.A.: On p–Dunford integrable functions with values in Banach
spaces. J. Math. Anal. Appl. 464, 806–822 (2018)
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